blob: a4a82bdef5af972bf047082906b9e9f5bc49300e [file] [log] [blame]
//=- LoongArchISelLowering.cpp - LoongArch DAG Lowering Implementation ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that LoongArch uses to lower LLVM code into
// a selection DAG.
//
//===----------------------------------------------------------------------===//
#include "LoongArchISelLowering.h"
#include "LoongArch.h"
#include "LoongArchMachineFunctionInfo.h"
#include "LoongArchRegisterInfo.h"
#include "LoongArchSubtarget.h"
#include "LoongArchTargetMachine.h"
#include "MCTargetDesc/LoongArchBaseInfo.h"
#include "MCTargetDesc/LoongArchMCTargetDesc.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicsLoongArch.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;
#define DEBUG_TYPE "loongarch-isel-lowering"
STATISTIC(NumTailCalls, "Number of tail calls");
static cl::opt<bool> ZeroDivCheck(
"loongarch-check-zero-division", cl::Hidden,
cl::desc("Trap on integer division by zero."),
cl::init(false));
LoongArchTargetLowering::LoongArchTargetLowering(const TargetMachine &TM,
const LoongArchSubtarget &STI)
: TargetLowering(TM), Subtarget(STI) {
MVT GRLenVT = Subtarget.getGRLenVT();
// Set up the register classes.
addRegisterClass(GRLenVT, &LoongArch::GPRRegClass);
if (Subtarget.hasBasicF())
addRegisterClass(MVT::f32, &LoongArch::FPR32RegClass);
if (Subtarget.hasBasicD())
addRegisterClass(MVT::f64, &LoongArch::FPR64RegClass);
setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, GRLenVT,
MVT::i1, Promote);
// TODO: add necessary setOperationAction calls later.
setOperationAction(ISD::SHL_PARTS, GRLenVT, Custom);
setOperationAction(ISD::SRA_PARTS, GRLenVT, Custom);
setOperationAction(ISD::SRL_PARTS, GRLenVT, Custom);
setOperationAction(ISD::FP_TO_SINT, GRLenVT, Custom);
setOperationAction(ISD::ROTL, GRLenVT, Expand);
setOperationAction(ISD::CTPOP, GRLenVT, Expand);
setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
setOperationAction(ISD::TRAP, MVT::Other, Legal);
setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
setOperationAction({ISD::GlobalAddress, ISD::BlockAddress, ISD::ConstantPool,
ISD::JumpTable},
GRLenVT, Custom);
setOperationAction(ISD::GlobalTLSAddress, GRLenVT, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
if (Subtarget.is64Bit())
setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
setOperationAction(ISD::DYNAMIC_STACKALLOC, GRLenVT, Expand);
setOperationAction({ISD::STACKSAVE, ISD::STACKRESTORE}, MVT::Other, Expand);
setOperationAction(ISD::VASTART, MVT::Other, Custom);
setOperationAction({ISD::VAARG, ISD::VACOPY, ISD::VAEND}, MVT::Other, Expand);
if (Subtarget.is64Bit()) {
setOperationAction(ISD::SHL, MVT::i32, Custom);
setOperationAction(ISD::SRA, MVT::i32, Custom);
setOperationAction(ISD::SRL, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
setOperationAction(ISD::BITCAST, MVT::i32, Custom);
setOperationAction(ISD::ROTR, MVT::i32, Custom);
setOperationAction(ISD::ROTL, MVT::i32, Custom);
setOperationAction(ISD::CTTZ, MVT::i32, Custom);
setOperationAction(ISD::CTLZ, MVT::i32, Custom);
setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
setOperationAction(ISD::READ_REGISTER, MVT::i32, Custom);
setOperationAction(ISD::WRITE_REGISTER, MVT::i32, Custom);
if (Subtarget.hasBasicF() && !Subtarget.hasBasicD())
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
if (Subtarget.hasBasicF())
setOperationAction(ISD::FRINT, MVT::f32, Legal);
if (Subtarget.hasBasicD())
setOperationAction(ISD::FRINT, MVT::f64, Legal);
}
// LA32 does not have REVB.2W and REVB.D due to the 64-bit operands, and
// the narrower REVB.W does not exist. But LA32 does have REVB.2H, so i16
// and i32 could still be byte-swapped relatively cheaply.
setOperationAction(ISD::BSWAP, MVT::i16, Custom);
if (Subtarget.is64Bit()) {
setOperationAction(ISD::BSWAP, MVT::i32, Custom);
}
// Expand bitreverse.i16 with native-width bitrev and shift for now, before
// we get to know which of sll and revb.2h is faster.
setOperationAction(ISD::BITREVERSE, MVT::i8, Custom);
if (Subtarget.is64Bit()) {
setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
} else {
setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_VOID, MVT::i64, Custom);
}
static const ISD::CondCode FPCCToExpand[] = {
ISD::SETOGT, ISD::SETOGE, ISD::SETUGT, ISD::SETUGE,
ISD::SETGE, ISD::SETNE, ISD::SETGT};
if (Subtarget.hasBasicF()) {
setCondCodeAction(FPCCToExpand, MVT::f32, Expand);
setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
setOperationAction(ISD::BR_CC, MVT::f32, Expand);
setOperationAction(ISD::FMA, MVT::f32, Legal);
setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal);
setOperationAction(ISD::FSIN, MVT::f32, Expand);
setOperationAction(ISD::FCOS, MVT::f32, Expand);
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
setOperationAction(ISD::FPOW, MVT::f32, Expand);
setOperationAction(ISD::FREM, MVT::f32, Expand);
}
if (Subtarget.hasBasicD()) {
setCondCodeAction(FPCCToExpand, MVT::f64, Expand);
setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
setOperationAction(ISD::BR_CC, MVT::f64, Expand);
setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal);
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
setOperationAction(ISD::FMA, MVT::f64, Legal);
setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
setOperationAction(ISD::FSIN, MVT::f64, Expand);
setOperationAction(ISD::FCOS, MVT::f64, Expand);
setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
setOperationAction(ISD::FPOW, MVT::f64, Expand);
setOperationAction(ISD::FREM, MVT::f64, Expand);
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
}
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
setOperationAction(ISD::BR_CC, GRLenVT, Expand);
setOperationAction(ISD::SELECT_CC, GRLenVT, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, GRLenVT, Expand);
if (!Subtarget.is64Bit())
setLibcallName(RTLIB::MUL_I128, nullptr);
setOperationAction(ISD::FP_TO_UINT, GRLenVT, Custom);
setOperationAction(ISD::UINT_TO_FP, GRLenVT, Expand);
if ((Subtarget.is64Bit() && Subtarget.hasBasicF() &&
!Subtarget.hasBasicD())) {
setOperationAction(ISD::SINT_TO_FP, GRLenVT, Custom);
setOperationAction(ISD::UINT_TO_FP, GRLenVT, Custom);
}
// Compute derived properties from the register classes.
computeRegisterProperties(STI.getRegisterInfo());
setStackPointerRegisterToSaveRestore(LoongArch::R3);
setBooleanContents(ZeroOrOneBooleanContent);
setMaxAtomicSizeInBitsSupported(Subtarget.getGRLen());
setMinCmpXchgSizeInBits(32);
// Function alignments.
const Align FunctionAlignment(4);
setMinFunctionAlignment(FunctionAlignment);
setTargetDAGCombine(ISD::AND);
setTargetDAGCombine(ISD::OR);
setTargetDAGCombine(ISD::SRL);
}
bool LoongArchTargetLowering::isOffsetFoldingLegal(
const GlobalAddressSDNode *GA) const {
// In order to maximise the opportunity for common subexpression elimination,
// keep a separate ADD node for the global address offset instead of folding
// it in the global address node. Later peephole optimisations may choose to
// fold it back in when profitable.
return false;
}
SDValue LoongArchTargetLowering::LowerOperation(SDValue Op,
SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
case ISD::EH_DWARF_CFA:
return lowerEH_DWARF_CFA(Op, DAG);
case ISD::GlobalAddress:
return lowerGlobalAddress(Op, DAG);
case ISD::GlobalTLSAddress:
return lowerGlobalTLSAddress(Op, DAG);
case ISD::INTRINSIC_WO_CHAIN:
return lowerINTRINSIC_WO_CHAIN(Op, DAG);
case ISD::INTRINSIC_W_CHAIN:
return lowerINTRINSIC_W_CHAIN(Op, DAG);
case ISD::INTRINSIC_VOID:
return lowerINTRINSIC_VOID(Op, DAG);
case ISD::BlockAddress:
return lowerBlockAddress(Op, DAG);
case ISD::JumpTable:
return lowerJumpTable(Op, DAG);
case ISD::SHL_PARTS:
return lowerShiftLeftParts(Op, DAG);
case ISD::SRA_PARTS:
return lowerShiftRightParts(Op, DAG, true);
case ISD::SRL_PARTS:
return lowerShiftRightParts(Op, DAG, false);
case ISD::ConstantPool:
return lowerConstantPool(Op, DAG);
case ISD::FP_TO_SINT:
return lowerFP_TO_SINT(Op, DAG);
case ISD::BITCAST:
return lowerBITCAST(Op, DAG);
case ISD::UINT_TO_FP:
return lowerUINT_TO_FP(Op, DAG);
case ISD::SINT_TO_FP:
return lowerSINT_TO_FP(Op, DAG);
case ISD::VASTART:
return lowerVASTART(Op, DAG);
case ISD::FRAMEADDR:
return lowerFRAMEADDR(Op, DAG);
case ISD::RETURNADDR:
return lowerRETURNADDR(Op, DAG);
case ISD::WRITE_REGISTER:
return lowerWRITE_REGISTER(Op, DAG);
}
return SDValue();
}
SDValue LoongArchTargetLowering::lowerWRITE_REGISTER(SDValue Op,
SelectionDAG &DAG) const {
if (Subtarget.is64Bit() && Op.getOperand(2).getValueType() == MVT::i32) {
DAG.getContext()->emitError(
"On LA64, only 64-bit registers can be written.");
return Op.getOperand(0);
}
if (!Subtarget.is64Bit() && Op.getOperand(2).getValueType() == MVT::i64) {
DAG.getContext()->emitError(
"On LA32, only 32-bit registers can be written.");
return Op.getOperand(0);
}
return Op;
}
SDValue LoongArchTargetLowering::lowerFRAMEADDR(SDValue Op,
SelectionDAG &DAG) const {
if (!isa<ConstantSDNode>(Op.getOperand(0))) {
DAG.getContext()->emitError("argument to '__builtin_frame_address' must "
"be a constant integer");
return SDValue();
}
MachineFunction &MF = DAG.getMachineFunction();
MF.getFrameInfo().setFrameAddressIsTaken(true);
Register FrameReg = Subtarget.getRegisterInfo()->getFrameRegister(MF);
EVT VT = Op.getValueType();
SDLoc DL(Op);
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
int GRLenInBytes = Subtarget.getGRLen() / 8;
while (Depth--) {
int Offset = -(GRLenInBytes * 2);
SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
DAG.getIntPtrConstant(Offset, DL));
FrameAddr =
DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
}
return FrameAddr;
}
SDValue LoongArchTargetLowering::lowerRETURNADDR(SDValue Op,
SelectionDAG &DAG) const {
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
return SDValue();
// Currently only support lowering return address for current frame.
if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) {
DAG.getContext()->emitError(
"return address can only be determined for the current frame");
return SDValue();
}
MachineFunction &MF = DAG.getMachineFunction();
MF.getFrameInfo().setReturnAddressIsTaken(true);
MVT GRLenVT = Subtarget.getGRLenVT();
// Return the value of the return address register, marking it an implicit
// live-in.
Register Reg = MF.addLiveIn(Subtarget.getRegisterInfo()->getRARegister(),
getRegClassFor(GRLenVT));
return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, GRLenVT);
}
SDValue LoongArchTargetLowering::lowerEH_DWARF_CFA(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
auto Size = Subtarget.getGRLen() / 8;
auto FI = MF.getFrameInfo().CreateFixedObject(Size, 0, false);
return DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
}
SDValue LoongArchTargetLowering::lowerVASTART(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
auto *FuncInfo = MF.getInfo<LoongArchMachineFunctionInfo>();
SDLoc DL(Op);
SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
getPointerTy(MF.getDataLayout()));
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
MachinePointerInfo(SV));
}
SDValue LoongArchTargetLowering::lowerUINT_TO_FP(SDValue Op,
SelectionDAG &DAG) const {
assert(Subtarget.is64Bit() && Subtarget.hasBasicF() &&
!Subtarget.hasBasicD() && "unexpected target features");
SDLoc DL(Op);
SDValue Op0 = Op.getOperand(0);
if (Op0->getOpcode() == ISD::AND) {
auto *C = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
if (C && C->getZExtValue() < UINT64_C(0xFFFFFFFF))
return Op;
}
if (Op0->getOpcode() == LoongArchISD::BSTRPICK &&
Op0.getConstantOperandVal(1) < UINT64_C(0X1F) &&
Op0.getConstantOperandVal(2) == UINT64_C(0))
return Op;
if (Op0.getOpcode() == ISD::AssertZext &&
dyn_cast<VTSDNode>(Op0.getOperand(1))->getVT().bitsLT(MVT::i32))
return Op;
EVT OpVT = Op0.getValueType();
EVT RetVT = Op.getValueType();
RTLIB::Libcall LC = RTLIB::getUINTTOFP(OpVT, RetVT);
MakeLibCallOptions CallOptions;
CallOptions.setTypeListBeforeSoften(OpVT, RetVT, true);
SDValue Chain = SDValue();
SDValue Result;
std::tie(Result, Chain) =
makeLibCall(DAG, LC, Op.getValueType(), Op0, CallOptions, DL, Chain);
return Result;
}
SDValue LoongArchTargetLowering::lowerSINT_TO_FP(SDValue Op,
SelectionDAG &DAG) const {
assert(Subtarget.is64Bit() && Subtarget.hasBasicF() &&
!Subtarget.hasBasicD() && "unexpected target features");
SDLoc DL(Op);
SDValue Op0 = Op.getOperand(0);
if ((Op0.getOpcode() == ISD::AssertSext ||
Op0.getOpcode() == ISD::SIGN_EXTEND_INREG) &&
dyn_cast<VTSDNode>(Op0.getOperand(1))->getVT().bitsLE(MVT::i32))
return Op;
EVT OpVT = Op0.getValueType();
EVT RetVT = Op.getValueType();
RTLIB::Libcall LC = RTLIB::getSINTTOFP(OpVT, RetVT);
MakeLibCallOptions CallOptions;
CallOptions.setTypeListBeforeSoften(OpVT, RetVT, true);
SDValue Chain = SDValue();
SDValue Result;
std::tie(Result, Chain) =
makeLibCall(DAG, LC, Op.getValueType(), Op0, CallOptions, DL, Chain);
return Result;
}
SDValue LoongArchTargetLowering::lowerBITCAST(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
SDValue Op0 = Op.getOperand(0);
if (Op.getValueType() == MVT::f32 && Op0.getValueType() == MVT::i32 &&
Subtarget.is64Bit() && Subtarget.hasBasicF()) {
SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
return DAG.getNode(LoongArchISD::MOVGR2FR_W_LA64, DL, MVT::f32, NewOp0);
}
return Op;
}
SDValue LoongArchTargetLowering::lowerFP_TO_SINT(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
if (Op.getValueSizeInBits() > 32 && Subtarget.hasBasicF() &&
!Subtarget.hasBasicD()) {
SDValue Dst =
DAG.getNode(LoongArchISD::FTINT, DL, MVT::f32, Op.getOperand(0));
return DAG.getNode(LoongArchISD::MOVFR2GR_S_LA64, DL, MVT::i64, Dst);
}
EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
SDValue Trunc = DAG.getNode(LoongArchISD::FTINT, DL, FPTy, Op.getOperand(0));
return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Trunc);
}
static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
SelectionDAG &DAG, unsigned Flags) {
return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
}
static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
SelectionDAG &DAG, unsigned Flags) {
return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
Flags);
}
static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
SelectionDAG &DAG, unsigned Flags) {
return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
N->getOffset(), Flags);
}
static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
SelectionDAG &DAG, unsigned Flags) {
return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
}
template <class NodeTy>
SDValue LoongArchTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
bool IsLocal) const {
SDLoc DL(N);
EVT Ty = getPointerTy(DAG.getDataLayout());
SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
// TODO: Check CodeModel.
if (IsLocal)
// This generates the pattern (PseudoLA_PCREL sym), which expands to
// (addi.w/d (pcalau12i %pc_hi20(sym)) %pc_lo12(sym)).
return SDValue(DAG.getMachineNode(LoongArch::PseudoLA_PCREL, DL, Ty, Addr),
0);
// This generates the pattern (PseudoLA_GOT sym), which expands to (ld.w/d
// (pcalau12i %got_pc_hi20(sym)) %got_pc_lo12(sym)).
return SDValue(DAG.getMachineNode(LoongArch::PseudoLA_GOT, DL, Ty, Addr), 0);
}
SDValue LoongArchTargetLowering::lowerBlockAddress(SDValue Op,
SelectionDAG &DAG) const {
return getAddr(cast<BlockAddressSDNode>(Op), DAG);
}
SDValue LoongArchTargetLowering::lowerJumpTable(SDValue Op,
SelectionDAG &DAG) const {
return getAddr(cast<JumpTableSDNode>(Op), DAG);
}
SDValue LoongArchTargetLowering::lowerConstantPool(SDValue Op,
SelectionDAG &DAG) const {
return getAddr(cast<ConstantPoolSDNode>(Op), DAG);
}
SDValue LoongArchTargetLowering::lowerGlobalAddress(SDValue Op,
SelectionDAG &DAG) const {
GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
assert(N->getOffset() == 0 && "unexpected offset in global node");
return getAddr(N, DAG, N->getGlobal()->isDSOLocal());
}
SDValue LoongArchTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
SelectionDAG &DAG,
unsigned Opc) const {
SDLoc DL(N);
EVT Ty = getPointerTy(DAG.getDataLayout());
MVT GRLenVT = Subtarget.getGRLenVT();
SDValue Addr = DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, 0);
SDValue Offset = SDValue(DAG.getMachineNode(Opc, DL, Ty, Addr), 0);
// Add the thread pointer.
return DAG.getNode(ISD::ADD, DL, Ty, Offset,
DAG.getRegister(LoongArch::R2, GRLenVT));
}
SDValue LoongArchTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
SelectionDAG &DAG,
unsigned Opc) const {
SDLoc DL(N);
EVT Ty = getPointerTy(DAG.getDataLayout());
IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
// Use a PC-relative addressing mode to access the dynamic GOT address.
SDValue Addr = DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, 0);
SDValue Load = SDValue(DAG.getMachineNode(Opc, DL, Ty, Addr), 0);
// Prepare argument list to generate call.
ArgListTy Args;
ArgListEntry Entry;
Entry.Node = Load;
Entry.Ty = CallTy;
Args.push_back(Entry);
// Setup call to __tls_get_addr.
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(DL)
.setChain(DAG.getEntryNode())
.setLibCallee(CallingConv::C, CallTy,
DAG.getExternalSymbol("__tls_get_addr", Ty),
std::move(Args));
return LowerCallTo(CLI).first;
}
SDValue
LoongArchTargetLowering::lowerGlobalTLSAddress(SDValue Op,
SelectionDAG &DAG) const {
if (DAG.getMachineFunction().getFunction().getCallingConv() ==
CallingConv::GHC)
report_fatal_error("In GHC calling convention TLS is not supported");
GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
assert(N->getOffset() == 0 && "unexpected offset in global node");
SDValue Addr;
switch (getTargetMachine().getTLSModel(N->getGlobal())) {
case TLSModel::GeneralDynamic:
// In this model, application code calls the dynamic linker function
// __tls_get_addr to locate TLS offsets into the dynamic thread vector at
// runtime.
Addr = getDynamicTLSAddr(N, DAG, LoongArch::PseudoLA_TLS_GD);
break;
case TLSModel::LocalDynamic:
// Same as GeneralDynamic, except for assembly modifiers and relocation
// records.
Addr = getDynamicTLSAddr(N, DAG, LoongArch::PseudoLA_TLS_LD);
break;
case TLSModel::InitialExec:
// This model uses the GOT to resolve TLS offsets.
Addr = getStaticTLSAddr(N, DAG, LoongArch::PseudoLA_TLS_IE);
break;
case TLSModel::LocalExec:
// This model is used when static linking as the TLS offsets are resolved
// during program linking.
Addr = getStaticTLSAddr(N, DAG, LoongArch::PseudoLA_TLS_LE);
break;
}
return Addr;
}
SDValue
LoongArchTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
switch (Op.getConstantOperandVal(0)) {
default:
return SDValue(); // Don't custom lower most intrinsics.
case Intrinsic::thread_pointer: {
EVT PtrVT = getPointerTy(DAG.getDataLayout());
return DAG.getRegister(LoongArch::R2, PtrVT);
}
}
}
// Helper function that emits error message for intrinsics with chain.
static SDValue emitIntrinsicWithChainErrorMessage(SDValue Op,
StringRef ErrorMsg,
SelectionDAG &DAG) {
DAG.getContext()->emitError("argument to '" + Op->getOperationName(0) + "' " +
ErrorMsg);
return DAG.getMergeValues({DAG.getUNDEF(Op.getValueType()), Op.getOperand(0)},
SDLoc(Op));
}
SDValue
LoongArchTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
MVT GRLenVT = Subtarget.getGRLenVT();
SDValue Op0 = Op.getOperand(0);
std::string Name = Op->getOperationName(0);
const StringRef ErrorMsgOOR = "out of range";
switch (Op.getConstantOperandVal(1)) {
default:
return Op;
case Intrinsic::loongarch_crc_w_b_w:
case Intrinsic::loongarch_crc_w_h_w:
case Intrinsic::loongarch_crc_w_w_w:
case Intrinsic::loongarch_crc_w_d_w:
case Intrinsic::loongarch_crcc_w_b_w:
case Intrinsic::loongarch_crcc_w_h_w:
case Intrinsic::loongarch_crcc_w_w_w:
case Intrinsic::loongarch_crcc_w_d_w: {
std::string Name = Op->getOperationName(0);
DAG.getContext()->emitError(Name + " requires target: loongarch64");
return DAG.getMergeValues({DAG.getUNDEF(Op.getValueType()), Op0}, DL);
}
case Intrinsic::loongarch_csrrd_w:
case Intrinsic::loongarch_csrrd_d: {
unsigned Imm = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
if (!isUInt<14>(Imm))
return emitIntrinsicWithChainErrorMessage(Op, ErrorMsgOOR, DAG);
return DAG.getMergeValues(
{DAG.getNode(LoongArchISD::CSRRD, DL, GRLenVT, Op0,
DAG.getConstant(Imm, DL, GRLenVT)),
Op0},
DL);
}
case Intrinsic::loongarch_csrwr_w:
case Intrinsic::loongarch_csrwr_d: {
unsigned Imm = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
if (!isUInt<14>(Imm))
return emitIntrinsicWithChainErrorMessage(Op, ErrorMsgOOR, DAG);
return DAG.getMergeValues(
{DAG.getNode(LoongArchISD::CSRWR, DL, GRLenVT, Op0, Op.getOperand(2),
DAG.getConstant(Imm, DL, GRLenVT)),
Op0},
DL);
}
case Intrinsic::loongarch_csrxchg_w:
case Intrinsic::loongarch_csrxchg_d: {
unsigned Imm = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
if (!isUInt<14>(Imm))
return emitIntrinsicWithChainErrorMessage(Op, ErrorMsgOOR, DAG);
return DAG.getMergeValues(
{DAG.getNode(LoongArchISD::CSRXCHG, DL, GRLenVT, Op0, Op.getOperand(2),
Op.getOperand(3), DAG.getConstant(Imm, DL, GRLenVT)),
Op0},
DL);
}
case Intrinsic::loongarch_iocsrrd_d: {
if (Subtarget.is64Bit())
return DAG.getMergeValues(
{DAG.getNode(
LoongArchISD::IOCSRRD_D, DL, GRLenVT, Op0,
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op.getOperand(2))),
Op0},
DL);
else {
DAG.getContext()->emitError(
"llvm.loongarch.crc.w.d.w requires target: loongarch64");
return DAG.getMergeValues({DAG.getUNDEF(Op.getValueType()), Op0}, DL);
}
}
#define IOCSRRD_CASE(NAME, NODE) \
case Intrinsic::loongarch_##NAME: { \
return DAG.getMergeValues( \
{DAG.getNode(LoongArchISD::NODE, DL, GRLenVT, Op0, Op.getOperand(2)), \
Op0}, \
DL); \
}
IOCSRRD_CASE(iocsrrd_b, IOCSRRD_B);
IOCSRRD_CASE(iocsrrd_h, IOCSRRD_H);
IOCSRRD_CASE(iocsrrd_w, IOCSRRD_W);
#undef IOCSRRD_CASE
case Intrinsic::loongarch_cpucfg: {
return DAG.getMergeValues(
{DAG.getNode(LoongArchISD::CPUCFG, DL, GRLenVT, Op0, Op.getOperand(2)),
Op0},
DL);
}
case Intrinsic::loongarch_lddir_d: {
unsigned Imm = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
if (!isUInt<8>(Imm)) {
DAG.getContext()->emitError("argument to '" + Op->getOperationName(0) +
"' out of range");
return DAG.getMergeValues({DAG.getUNDEF(Op.getValueType()), Op0}, DL);
}
return Op;
}
case Intrinsic::loongarch_movfcsr2gr: {
if (!Subtarget.hasBasicF()) {
DAG.getContext()->emitError(
"llvm.loongarch.movfcsr2gr expects basic f target feature");
return DAG.getMergeValues(
{DAG.getUNDEF(Op.getValueType()), Op.getOperand(0)}, SDLoc(Op));
}
unsigned Imm = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
if (!isUInt<2>(Imm)) {
DAG.getContext()->emitError("argument to '" + Op->getOperationName(0) +
"' " + ErrorMsgOOR);
return DAG.getMergeValues(
{DAG.getUNDEF(Op.getValueType()), Op.getOperand(0)}, SDLoc(Op));
}
return DAG.getMergeValues(
{DAG.getNode(LoongArchISD::MOVFCSR2GR, DL, Op.getValueType(),
DAG.getConstant(Imm, DL, GRLenVT)),
Op.getOperand(0)},
DL);
}
}
}
// Helper function that emits error message for intrinsics with void return
// value.
static SDValue emitIntrinsicErrorMessage(SDValue Op, StringRef ErrorMsg,
SelectionDAG &DAG) {
DAG.getContext()->emitError("argument to '" + Op->getOperationName(0) + "' " +
ErrorMsg);
return Op.getOperand(0);
}
SDValue LoongArchTargetLowering::lowerINTRINSIC_VOID(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
MVT GRLenVT = Subtarget.getGRLenVT();
SDValue Op0 = Op.getOperand(0);
uint64_t IntrinsicEnum = Op.getConstantOperandVal(1);
SDValue Op2 = Op.getOperand(2);
const StringRef ErrorMsgOOR = "out of range";
switch (IntrinsicEnum) {
default:
// TODO: Add more Intrinsics.
return SDValue();
case Intrinsic::loongarch_cacop_d:
case Intrinsic::loongarch_cacop_w: {
if (IntrinsicEnum == Intrinsic::loongarch_cacop_d && !Subtarget.is64Bit()) {
DAG.getContext()->emitError(
"llvm.loongarch.cacop.d requires target: loongarch64");
return Op.getOperand(0);
}
if (IntrinsicEnum == Intrinsic::loongarch_cacop_w && Subtarget.is64Bit()) {
DAG.getContext()->emitError(
"llvm.loongarch.cacop.w requires target: loongarch32");
return Op.getOperand(0);
}
// call void @llvm.loongarch.cacop.[d/w](uimm5, rj, simm12)
unsigned Imm1 = cast<ConstantSDNode>(Op2)->getZExtValue();
if (!isUInt<5>(Imm1))
return emitIntrinsicErrorMessage(Op, ErrorMsgOOR, DAG);
SDValue Op4 = Op.getOperand(4);
int Imm2 = cast<ConstantSDNode>(Op4)->getSExtValue();
if (!isInt<12>(Imm2))
return emitIntrinsicErrorMessage(Op, ErrorMsgOOR, DAG);
return Op;
}
case Intrinsic::loongarch_dbar: {
unsigned Imm = cast<ConstantSDNode>(Op2)->getZExtValue();
if (!isUInt<15>(Imm))
return emitIntrinsicErrorMessage(Op, ErrorMsgOOR, DAG);
return DAG.getNode(LoongArchISD::DBAR, DL, MVT::Other, Op0,
DAG.getConstant(Imm, DL, GRLenVT));
}
case Intrinsic::loongarch_ibar: {
unsigned Imm = cast<ConstantSDNode>(Op2)->getZExtValue();
if (!isUInt<15>(Imm))
return emitIntrinsicErrorMessage(Op, ErrorMsgOOR, DAG);
return DAG.getNode(LoongArchISD::IBAR, DL, MVT::Other, Op0,
DAG.getConstant(Imm, DL, GRLenVT));
}
case Intrinsic::loongarch_break: {
unsigned Imm = cast<ConstantSDNode>(Op2)->getZExtValue();
if (!isUInt<15>(Imm))
return emitIntrinsicErrorMessage(Op, ErrorMsgOOR, DAG);
return DAG.getNode(LoongArchISD::BREAK, DL, MVT::Other, Op0,
DAG.getConstant(Imm, DL, GRLenVT));
}
case Intrinsic::loongarch_movgr2fcsr: {
if (!Subtarget.hasBasicF()) {
DAG.getContext()->emitError(
"llvm.loongarch.movgr2fcsr expects basic f target feature");
return Op0;
}
unsigned Imm = cast<ConstantSDNode>(Op2)->getZExtValue();
if (!isUInt<2>(Imm))
return emitIntrinsicErrorMessage(Op, ErrorMsgOOR, DAG);
return DAG.getNode(
LoongArchISD::MOVGR2FCSR, DL, MVT::Other, Op0,
DAG.getConstant(Imm, DL, GRLenVT),
DAG.getNode(ISD::ANY_EXTEND, DL, GRLenVT, Op.getOperand(3)));
}
case Intrinsic::loongarch_syscall: {
unsigned Imm = cast<ConstantSDNode>(Op2)->getZExtValue();
if (!isUInt<15>(Imm))
return emitIntrinsicErrorMessage(Op, ErrorMsgOOR, DAG);
return DAG.getNode(LoongArchISD::SYSCALL, DL, MVT::Other, Op0,
DAG.getConstant(Imm, DL, GRLenVT));
}
#define IOCSRWR_CASE(NAME, NODE) \
case Intrinsic::loongarch_##NAME: { \
SDValue Op3 = Op.getOperand(3); \
if (Subtarget.is64Bit()) \
return DAG.getNode(LoongArchISD::NODE, DL, MVT::Other, Op0, \
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2), \
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op3)); \
else \
return DAG.getNode(LoongArchISD::NODE, DL, MVT::Other, Op0, Op2, Op3); \
}
IOCSRWR_CASE(iocsrwr_b, IOCSRWR_B);
IOCSRWR_CASE(iocsrwr_h, IOCSRWR_H);
IOCSRWR_CASE(iocsrwr_w, IOCSRWR_W);
#undef IOCSRWR_CASE
case Intrinsic::loongarch_iocsrwr_d: {
if (Subtarget.is64Bit())
return DAG.getNode(
LoongArchISD::IOCSRWR_D, DL, MVT::Other, Op0, Op2,
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op.getOperand(3)));
else {
DAG.getContext()->emitError(
"llvm.loongarch.iocsrwr.d requires target: loongarch64");
return Op.getOperand(0);
}
}
#define ASRT_LE_GT_CASE(NAME) \
case Intrinsic::loongarch_##NAME: { \
if (!Subtarget.is64Bit()) { \
DAG.getContext()->emitError(Op->getOperationName(0) + \
" requires target: loongarch64"); \
return Op.getOperand(0); \
} \
return Op; \
}
ASRT_LE_GT_CASE(asrtle_d)
ASRT_LE_GT_CASE(asrtgt_d)
#undef ASRT_LE_GT_CASE
case Intrinsic::loongarch_ldpte_d: {
unsigned Imm = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
if (!isUInt<8>(Imm))
return emitIntrinsicErrorMessage(Op, ErrorMsgOOR, DAG);
if (!Subtarget.is64Bit()) {
DAG.getContext()->emitError(Op->getOperationName(0) +
" requires target: loongarch64");
return Op.getOperand(0);
}
return Op;
}
}
}
SDValue LoongArchTargetLowering::lowerShiftLeftParts(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
SDValue Lo = Op.getOperand(0);
SDValue Hi = Op.getOperand(1);
SDValue Shamt = Op.getOperand(2);
EVT VT = Lo.getValueType();
// if Shamt-GRLen < 0: // Shamt < GRLen
// Lo = Lo << Shamt
// Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (GRLen-1 ^ Shamt))
// else:
// Lo = 0
// Hi = Lo << (Shamt-GRLen)
SDValue Zero = DAG.getConstant(0, DL, VT);
SDValue One = DAG.getConstant(1, DL, VT);
SDValue MinusGRLen = DAG.getConstant(-(int)Subtarget.getGRLen(), DL, VT);
SDValue GRLenMinus1 = DAG.getConstant(Subtarget.getGRLen() - 1, DL, VT);
SDValue ShamtMinusGRLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusGRLen);
SDValue GRLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, GRLenMinus1);
SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
SDValue ShiftRightLo =
DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, GRLenMinus1Shamt);
SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusGRLen);
SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusGRLen, Zero, ISD::SETLT);
Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
SDValue Parts[2] = {Lo, Hi};
return DAG.getMergeValues(Parts, DL);
}
SDValue LoongArchTargetLowering::lowerShiftRightParts(SDValue Op,
SelectionDAG &DAG,
bool IsSRA) const {
SDLoc DL(Op);
SDValue Lo = Op.getOperand(0);
SDValue Hi = Op.getOperand(1);
SDValue Shamt = Op.getOperand(2);
EVT VT = Lo.getValueType();
// SRA expansion:
// if Shamt-GRLen < 0: // Shamt < GRLen
// Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ GRLen-1))
// Hi = Hi >>s Shamt
// else:
// Lo = Hi >>s (Shamt-GRLen);
// Hi = Hi >>s (GRLen-1)
//
// SRL expansion:
// if Shamt-GRLen < 0: // Shamt < GRLen
// Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ GRLen-1))
// Hi = Hi >>u Shamt
// else:
// Lo = Hi >>u (Shamt-GRLen);
// Hi = 0;
unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
SDValue Zero = DAG.getConstant(0, DL, VT);
SDValue One = DAG.getConstant(1, DL, VT);
SDValue MinusGRLen = DAG.getConstant(-(int)Subtarget.getGRLen(), DL, VT);
SDValue GRLenMinus1 = DAG.getConstant(Subtarget.getGRLen() - 1, DL, VT);
SDValue ShamtMinusGRLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusGRLen);
SDValue GRLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, GRLenMinus1);
SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
SDValue ShiftLeftHi =
DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, GRLenMinus1Shamt);
SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusGRLen);
SDValue HiFalse =
IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, GRLenMinus1) : Zero;
SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusGRLen, Zero, ISD::SETLT);
Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
SDValue Parts[2] = {Lo, Hi};
return DAG.getMergeValues(Parts, DL);
}
// Returns the opcode of the target-specific SDNode that implements the 32-bit
// form of the given Opcode.
static LoongArchISD::NodeType getLoongArchWOpcode(unsigned Opcode) {
switch (Opcode) {
default:
llvm_unreachable("Unexpected opcode");
case ISD::SHL:
return LoongArchISD::SLL_W;
case ISD::SRA:
return LoongArchISD::SRA_W;
case ISD::SRL:
return LoongArchISD::SRL_W;
case ISD::ROTR:
return LoongArchISD::ROTR_W;
case ISD::ROTL:
return LoongArchISD::ROTL_W;
case ISD::CTTZ:
return LoongArchISD::CTZ_W;
case ISD::CTLZ:
return LoongArchISD::CLZ_W;
}
}
// Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
// node. Because i8/i16/i32 isn't a legal type for LA64, these operations would
// otherwise be promoted to i64, making it difficult to select the
// SLL_W/.../*W later one because the fact the operation was originally of
// type i8/i16/i32 is lost.
static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, int NumOp,
unsigned ExtOpc = ISD::ANY_EXTEND) {
SDLoc DL(N);
LoongArchISD::NodeType WOpcode = getLoongArchWOpcode(N->getOpcode());
SDValue NewOp0, NewRes;
switch (NumOp) {
default:
llvm_unreachable("Unexpected NumOp");
case 1: {
NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0);
break;
}
case 2: {
NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
break;
}
// TODO:Handle more NumOp.
}
// ReplaceNodeResults requires we maintain the same type for the return
// value.
return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
}
void LoongArchTargetLowering::ReplaceNodeResults(
SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
SDLoc DL(N);
EVT VT = N->getValueType(0);
switch (N->getOpcode()) {
default:
llvm_unreachable("Don't know how to legalize this operation");
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
case ISD::ROTR:
assert(VT == MVT::i32 && Subtarget.is64Bit() &&
"Unexpected custom legalisation");
if (N->getOperand(1).getOpcode() != ISD::Constant) {
Results.push_back(customLegalizeToWOp(N, DAG, 2));
break;
}
break;
case ISD::ROTL:
ConstantSDNode *CN;
if ((CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))) {
Results.push_back(customLegalizeToWOp(N, DAG, 2));
break;
}
break;
case ISD::FP_TO_SINT: {
assert(VT == MVT::i32 && Subtarget.is64Bit() &&
"Unexpected custom legalisation");
SDValue Src = N->getOperand(0);
EVT FVT = EVT::getFloatingPointVT(N->getValueSizeInBits(0));
if (getTypeAction(*DAG.getContext(), Src.getValueType()) !=
TargetLowering::TypeSoftenFloat) {
SDValue Dst = DAG.getNode(LoongArchISD::FTINT, DL, FVT, Src);
Results.push_back(DAG.getNode(ISD::BITCAST, DL, VT, Dst));
return;
}
// If the FP type needs to be softened, emit a library call using the 'si'
// version. If we left it to default legalization we'd end up with 'di'.
RTLIB::Libcall LC;
LC = RTLIB::getFPTOSINT(Src.getValueType(), VT);
MakeLibCallOptions CallOptions;
EVT OpVT = Src.getValueType();
CallOptions.setTypeListBeforeSoften(OpVT, VT, true);
SDValue Chain = SDValue();
SDValue Result;
std::tie(Result, Chain) =
makeLibCall(DAG, LC, VT, Src, CallOptions, DL, Chain);
Results.push_back(Result);
break;
}
case ISD::BITCAST: {
SDValue Src = N->getOperand(0);
EVT SrcVT = Src.getValueType();
if (VT == MVT::i32 && SrcVT == MVT::f32 && Subtarget.is64Bit() &&
Subtarget.hasBasicF()) {
SDValue Dst =
DAG.getNode(LoongArchISD::MOVFR2GR_S_LA64, DL, MVT::i64, Src);
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Dst));
}
break;
}
case ISD::FP_TO_UINT: {
assert(VT == MVT::i32 && Subtarget.is64Bit() &&
"Unexpected custom legalisation");
auto &TLI = DAG.getTargetLoweringInfo();
SDValue Tmp1, Tmp2;
TLI.expandFP_TO_UINT(N, Tmp1, Tmp2, DAG);
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Tmp1));
break;
}
case ISD::BSWAP: {
SDValue Src = N->getOperand(0);
assert((VT == MVT::i16 || VT == MVT::i32) &&
"Unexpected custom legalization");
MVT GRLenVT = Subtarget.getGRLenVT();
SDValue NewSrc = DAG.getNode(ISD::ANY_EXTEND, DL, GRLenVT, Src);
SDValue Tmp;
switch (VT.getSizeInBits()) {
default:
llvm_unreachable("Unexpected operand width");
case 16:
Tmp = DAG.getNode(LoongArchISD::REVB_2H, DL, GRLenVT, NewSrc);
break;
case 32:
// Only LA64 will get to here due to the size mismatch between VT and
// GRLenVT, LA32 lowering is directly defined in LoongArchInstrInfo.
Tmp = DAG.getNode(LoongArchISD::REVB_2W, DL, GRLenVT, NewSrc);
break;
}
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Tmp));
break;
}
case ISD::BITREVERSE: {
SDValue Src = N->getOperand(0);
assert((VT == MVT::i8 || (VT == MVT::i32 && Subtarget.is64Bit())) &&
"Unexpected custom legalization");
MVT GRLenVT = Subtarget.getGRLenVT();
SDValue NewSrc = DAG.getNode(ISD::ANY_EXTEND, DL, GRLenVT, Src);
SDValue Tmp;
switch (VT.getSizeInBits()) {
default:
llvm_unreachable("Unexpected operand width");
case 8:
Tmp = DAG.getNode(LoongArchISD::BITREV_4B, DL, GRLenVT, NewSrc);
break;
case 32:
Tmp = DAG.getNode(LoongArchISD::BITREV_W, DL, GRLenVT, NewSrc);
break;
}
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Tmp));
break;
}
case ISD::CTLZ:
case ISD::CTTZ: {
assert(VT == MVT::i32 && Subtarget.is64Bit() &&
"Unexpected custom legalisation");
Results.push_back(customLegalizeToWOp(N, DAG, 1));
break;
}
case ISD::INTRINSIC_W_CHAIN: {
SDValue Op0 = N->getOperand(0);
EVT VT = N->getValueType(0);
uint64_t Op1 = N->getConstantOperandVal(1);
MVT GRLenVT = Subtarget.getGRLenVT();
if (Op1 == Intrinsic::loongarch_movfcsr2gr) {
if (!Subtarget.hasBasicF()) {
DAG.getContext()->emitError(
"llvm.loongarch.movfcsr2gr expects basic f target feature");
Results.push_back(DAG.getMergeValues(
{DAG.getUNDEF(N->getValueType(0)), N->getOperand(0)}, SDLoc(N)));
Results.push_back(N->getOperand(0));
return;
}
unsigned Imm = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
if (!isUInt<2>(Imm)) {
DAG.getContext()->emitError("argument to '" + N->getOperationName(0) +
"' " + "out of range");
Results.push_back(DAG.getMergeValues(
{DAG.getUNDEF(N->getValueType(0)), N->getOperand(0)}, SDLoc(N)));
Results.push_back(N->getOperand(0));
return;
}
Results.push_back(
DAG.getNode(ISD::TRUNCATE, DL, VT,
DAG.getNode(LoongArchISD::MOVFCSR2GR, SDLoc(N), MVT::i64,
DAG.getConstant(Imm, DL, GRLenVT))));
Results.push_back(N->getOperand(0));
return;
}
SDValue Op2 = N->getOperand(2);
std::string Name = N->getOperationName(0);
switch (Op1) {
default:
llvm_unreachable("Unexpected Intrinsic.");
#define CRC_CASE_EXT_BINARYOP(NAME, NODE) \
case Intrinsic::loongarch_##NAME: { \
Results.push_back(DAG.getNode( \
ISD::TRUNCATE, DL, VT, \
DAG.getNode( \
LoongArchISD::NODE, DL, MVT::i64, \
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2), \
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3))))); \
Results.push_back(N->getOperand(0)); \
break; \
}
CRC_CASE_EXT_BINARYOP(crc_w_b_w, CRC_W_B_W)
CRC_CASE_EXT_BINARYOP(crc_w_h_w, CRC_W_H_W)
CRC_CASE_EXT_BINARYOP(crc_w_w_w, CRC_W_W_W)
CRC_CASE_EXT_BINARYOP(crcc_w_b_w, CRCC_W_B_W)
CRC_CASE_EXT_BINARYOP(crcc_w_h_w, CRCC_W_H_W)
CRC_CASE_EXT_BINARYOP(crcc_w_w_w, CRCC_W_W_W)
#undef CRC_CASE_EXT_BINARYOP
#define CRC_CASE_EXT_UNARYOP(NAME, NODE) \
case Intrinsic::loongarch_##NAME: { \
Results.push_back( \
DAG.getNode(ISD::TRUNCATE, DL, VT, \
DAG.getNode(LoongArchISD::NODE, DL, MVT::i64, Op2, \
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, \
N->getOperand(3))))); \
Results.push_back(N->getOperand(0)); \
break; \
}
CRC_CASE_EXT_UNARYOP(crc_w_d_w, CRC_W_D_W)
CRC_CASE_EXT_UNARYOP(crcc_w_d_w, CRCC_W_D_W)
#undef CRC_CASE_EXT_UNARYOP
#define CSR_CASE(ID) \
case Intrinsic::loongarch_##ID: { \
if (!Subtarget.is64Bit()) { \
DAG.getContext()->emitError(Name + " requires target: loongarch64"); \
Results.push_back(DAG.getUNDEF(VT)); \
Results.push_back(N->getOperand(0)); \
} \
break; \
}
CSR_CASE(csrrd_d);
CSR_CASE(csrwr_d);
CSR_CASE(csrxchg_d);
CSR_CASE(iocsrrd_d);
#undef CSR_CASE
case Intrinsic::loongarch_csrrd_w: {
unsigned Imm = cast<ConstantSDNode>(Op2)->getZExtValue();
if (!isUInt<14>(Imm)) {
DAG.getContext()->emitError("argument to '" + Name + "' out of range");
Results.push_back(DAG.getUNDEF(VT));
Results.push_back(N->getOperand(0));
break;
}
Results.push_back(
DAG.getNode(ISD::TRUNCATE, DL, VT,
DAG.getNode(LoongArchISD::CSRRD, DL, GRLenVT, Op0,
DAG.getConstant(Imm, DL, GRLenVT))));
Results.push_back(N->getOperand(0));
break;
}
case Intrinsic::loongarch_csrwr_w: {
unsigned Imm = cast<ConstantSDNode>(N->getOperand(3))->getZExtValue();
if (!isUInt<14>(Imm)) {
DAG.getContext()->emitError("argument to '" + Name + "' out of range");
Results.push_back(DAG.getUNDEF(VT));
Results.push_back(N->getOperand(0));
break;
}
Results.push_back(DAG.getNode(
ISD::TRUNCATE, DL, VT,
DAG.getNode(LoongArchISD::CSRWR, DL, GRLenVT, Op0,
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2),
DAG.getConstant(Imm, DL, GRLenVT))));
Results.push_back(N->getOperand(0));
break;
}
case Intrinsic::loongarch_csrxchg_w: {
unsigned Imm = cast<ConstantSDNode>(N->getOperand(4))->getZExtValue();
if (!isUInt<14>(Imm)) {
DAG.getContext()->emitError("argument to '" + Name + "' out of range");
Results.push_back(DAG.getUNDEF(VT));
Results.push_back(N->getOperand(0));
break;
}
Results.push_back(DAG.getNode(
ISD::TRUNCATE, DL, VT,
DAG.getNode(
LoongArchISD::CSRXCHG, DL, GRLenVT, Op0,
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2),
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3)),
DAG.getConstant(Imm, DL, GRLenVT))));
Results.push_back(N->getOperand(0));
break;
}
#define IOCSRRD_CASE(NAME, NODE) \
case Intrinsic::loongarch_##NAME: { \
Results.push_back(DAG.getNode( \
ISD::TRUNCATE, DL, N->getValueType(0), \
DAG.getNode(LoongArchISD::NODE, DL, MVT::i64, Op0, \
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2)))); \
Results.push_back(N->getOperand(0)); \
break; \
}
IOCSRRD_CASE(iocsrrd_b, IOCSRRD_B);
IOCSRRD_CASE(iocsrrd_h, IOCSRRD_H);
IOCSRRD_CASE(iocsrrd_w, IOCSRRD_W);
#undef IOCSRRD_CASE
case Intrinsic::loongarch_cpucfg: {
Results.push_back(DAG.getNode(
ISD::TRUNCATE, DL, VT,
DAG.getNode(LoongArchISD::CPUCFG, DL, GRLenVT, Op0,
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2))));
Results.push_back(Op0);
break;
}
case Intrinsic::loongarch_lddir_d: {
if (!Subtarget.is64Bit()) {
DAG.getContext()->emitError(N->getOperationName(0) +
" requires target: loongarch64");
Results.push_back(DAG.getUNDEF(VT));
Results.push_back(Op0);
break;
}
break;
}
}
break;
}
case ISD::READ_REGISTER: {
if (Subtarget.is64Bit())
DAG.getContext()->emitError(
"On LA64, only 64-bit registers can be read.");
else
DAG.getContext()->emitError(
"On LA32, only 32-bit registers can be read.");
Results.push_back(DAG.getUNDEF(VT));
Results.push_back(N->getOperand(0));
break;
}
}
}
static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const LoongArchSubtarget &Subtarget) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
SDValue FirstOperand = N->getOperand(0);
SDValue SecondOperand = N->getOperand(1);
unsigned FirstOperandOpc = FirstOperand.getOpcode();
EVT ValTy = N->getValueType(0);
SDLoc DL(N);
uint64_t lsb, msb;
unsigned SMIdx, SMLen;
ConstantSDNode *CN;
SDValue NewOperand;
MVT GRLenVT = Subtarget.getGRLenVT();
// Op's second operand must be a shifted mask.
if (!(CN = dyn_cast<ConstantSDNode>(SecondOperand)) ||
!isShiftedMask_64(CN->getZExtValue(), SMIdx, SMLen))
return SDValue();
if (FirstOperandOpc == ISD::SRA || FirstOperandOpc == ISD::SRL) {
// Pattern match BSTRPICK.
// $dst = and ((sra or srl) $src , lsb), (2**len - 1)
// => BSTRPICK $dst, $src, msb, lsb
// where msb = lsb + len - 1
// The second operand of the shift must be an immediate.
if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))))
return SDValue();
lsb = CN->getZExtValue();
// Return if the shifted mask does not start at bit 0 or the sum of its
// length and lsb exceeds the word's size.
if (SMIdx != 0 || lsb + SMLen > ValTy.getSizeInBits())
return SDValue();
NewOperand = FirstOperand.getOperand(0);
} else {
// Pattern match BSTRPICK.
// $dst = and $src, (2**len- 1) , if len > 12
// => BSTRPICK $dst, $src, msb, lsb
// where lsb = 0 and msb = len - 1
// If the mask is <= 0xfff, andi can be used instead.
if (CN->getZExtValue() <= 0xfff)
return SDValue();
// Return if the mask doesn't start at position 0.
if (SMIdx)
return SDValue();
lsb = 0;
NewOperand = FirstOperand;
}
msb = lsb + SMLen - 1;
return DAG.getNode(LoongArchISD::BSTRPICK, DL, ValTy, NewOperand,
DAG.getConstant(msb, DL, GRLenVT),
DAG.getConstant(lsb, DL, GRLenVT));
}
static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const LoongArchSubtarget &Subtarget) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
// $dst = srl (and $src, Mask), Shamt
// =>
// BSTRPICK $dst, $src, MaskIdx+MaskLen-1, Shamt
// when Mask is a shifted mask, and MaskIdx <= Shamt <= MaskIdx+MaskLen-1
//
SDValue FirstOperand = N->getOperand(0);
ConstantSDNode *CN;
EVT ValTy = N->getValueType(0);
SDLoc DL(N);
MVT GRLenVT = Subtarget.getGRLenVT();
unsigned MaskIdx, MaskLen;
uint64_t Shamt;
// The first operand must be an AND and the second operand of the AND must be
// a shifted mask.
if (FirstOperand.getOpcode() != ISD::AND ||
!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))) ||
!isShiftedMask_64(CN->getZExtValue(), MaskIdx, MaskLen))
return SDValue();
// The second operand (shift amount) must be an immediate.
if (!(CN = dyn_cast<ConstantSDNode>(N->getOperand(1))))
return SDValue();
Shamt = CN->getZExtValue();
if (MaskIdx <= Shamt && Shamt <= MaskIdx + MaskLen - 1)
return DAG.getNode(LoongArchISD::BSTRPICK, DL, ValTy,
FirstOperand->getOperand(0),
DAG.getConstant(MaskIdx + MaskLen - 1, DL, GRLenVT),
DAG.getConstant(Shamt, DL, GRLenVT));
return SDValue();
}
static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const LoongArchSubtarget &Subtarget) {
MVT GRLenVT = Subtarget.getGRLenVT();
EVT ValTy = N->getValueType(0);
SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
ConstantSDNode *CN0, *CN1;
SDLoc DL(N);
unsigned ValBits = ValTy.getSizeInBits();
unsigned MaskIdx0, MaskLen0, MaskIdx1, MaskLen1;
unsigned Shamt;
bool SwapAndRetried = false;
if (DCI.isBeforeLegalizeOps())
return SDValue();
if (ValBits != 32 && ValBits != 64)
return SDValue();
Retry:
// 1st pattern to match BSTRINS:
// R = or (and X, mask0), (and (shl Y, lsb), mask1)
// where mask1 = (2**size - 1) << lsb, mask0 = ~mask1
// =>
// R = BSTRINS X, Y, msb, lsb (where msb = lsb + size - 1)
if (N0.getOpcode() == ISD::AND &&
(CN0 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) &&
isShiftedMask_64(~CN0->getSExtValue(), MaskIdx0, MaskLen0) &&
N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL &&
(CN1 = dyn_cast<ConstantSDNode>(N1.getOperand(1))) &&
isShiftedMask_64(CN1->getZExtValue(), MaskIdx1, MaskLen1) &&
MaskIdx0 == MaskIdx1 && MaskLen0 == MaskLen1 &&
(CN1 = dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(1))) &&
(Shamt = CN1->getZExtValue()) == MaskIdx0 &&
(MaskIdx0 + MaskLen0 <= ValBits)) {
LLVM_DEBUG(dbgs() << "Perform OR combine: match pattern 1\n");
return DAG.getNode(LoongArchISD::BSTRINS, DL, ValTy, N0.getOperand(0),
N1.getOperand(0).getOperand(0),
DAG.getConstant((MaskIdx0 + MaskLen0 - 1), DL, GRLenVT),
DAG.getConstant(MaskIdx0, DL, GRLenVT));
}
// 2nd pattern to match BSTRINS:
// R = or (and X, mask0), (shl (and Y, mask1), lsb)
// where mask1 = (2**size - 1), mask0 = ~(mask1 << lsb)
// =>
// R = BSTRINS X, Y, msb, lsb (where msb = lsb + size - 1)
if (N0.getOpcode() == ISD::AND &&
(CN0 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) &&
isShiftedMask_64(~CN0->getSExtValue(), MaskIdx0, MaskLen0) &&
N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::AND &&
(CN1 = dyn_cast<ConstantSDNode>(N1.getOperand(1))) &&
(Shamt = CN1->getZExtValue()) == MaskIdx0 &&
(CN1 = dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(1))) &&
isShiftedMask_64(CN1->getZExtValue(), MaskIdx1, MaskLen1) &&
MaskLen0 == MaskLen1 && MaskIdx1 == 0 &&
(MaskIdx0 + MaskLen0 <= ValBits)) {
LLVM_DEBUG(dbgs() << "Perform OR combine: match pattern 2\n");
return DAG.getNode(LoongArchISD::BSTRINS, DL, ValTy, N0.getOperand(0),
N1.getOperand(0).getOperand(0),
DAG.getConstant((MaskIdx0 + MaskLen0 - 1), DL, GRLenVT),
DAG.getConstant(MaskIdx0, DL, GRLenVT));
}
// 3rd pattern to match BSTRINS:
// R = or (and X, mask0), (and Y, mask1)
// where ~mask0 = (2**size - 1) << lsb, mask0 & mask1 = 0
// =>
// R = BSTRINS X, (shr (and Y, mask1), lsb), msb, lsb
// where msb = lsb + size - 1
if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND &&
(CN0 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) &&
isShiftedMask_64(~CN0->getSExtValue(), MaskIdx0, MaskLen0) &&
(MaskIdx0 + MaskLen0 <= 64) &&
(CN1 = dyn_cast<ConstantSDNode>(N1->getOperand(1))) &&
(CN1->getSExtValue() & CN0->getSExtValue()) == 0) {
LLVM_DEBUG(dbgs() << "Perform OR combine: match pattern 3\n");
return DAG.getNode(LoongArchISD::BSTRINS, DL, ValTy, N0.getOperand(0),
DAG.getNode(ISD::SRL, DL, N1->getValueType(0), N1,
DAG.getConstant(MaskIdx0, DL, GRLenVT)),
DAG.getConstant(ValBits == 32
? (MaskIdx0 + (MaskLen0 & 31) - 1)
: (MaskIdx0 + MaskLen0 - 1),
DL, GRLenVT),
DAG.getConstant(MaskIdx0, DL, GRLenVT));
}
// 4th pattern to match BSTRINS:
// R = or (and X, mask), (shl Y, shamt)
// where mask = (2**shamt - 1)
// =>
// R = BSTRINS X, Y, ValBits - 1, shamt
// where ValBits = 32 or 64
if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::SHL &&
(CN0 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) &&
isShiftedMask_64(CN0->getZExtValue(), MaskIdx0, MaskLen0) &&
MaskIdx0 == 0 && (CN1 = dyn_cast<ConstantSDNode>(N1.getOperand(1))) &&
(Shamt = CN1->getZExtValue()) == MaskLen0 &&
(MaskIdx0 + MaskLen0 <= ValBits)) {
LLVM_DEBUG(dbgs() << "Perform OR combine: match pattern 4\n");
return DAG.getNode(LoongArchISD::BSTRINS, DL, ValTy, N0.getOperand(0),
N1.getOperand(0),
DAG.getConstant((ValBits - 1), DL, GRLenVT),
DAG.getConstant(Shamt, DL, GRLenVT));
}
// 5th pattern to match BSTRINS:
// R = or (and X, mask), const
// where ~mask = (2**size - 1) << lsb, mask & const = 0
// =>
// R = BSTRINS X, (const >> lsb), msb, lsb
// where msb = lsb + size - 1
if (N0.getOpcode() == ISD::AND &&
(CN0 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) &&
isShiftedMask_64(~CN0->getSExtValue(), MaskIdx0, MaskLen0) &&
(CN1 = dyn_cast<ConstantSDNode>(N1)) &&
(CN1->getSExtValue() & CN0->getSExtValue()) == 0) {
LLVM_DEBUG(dbgs() << "Perform OR combine: match pattern 5\n");
return DAG.getNode(
LoongArchISD::BSTRINS, DL, ValTy, N0.getOperand(0),
DAG.getConstant(CN1->getSExtValue() >> MaskIdx0, DL, ValTy),
DAG.getConstant((MaskIdx0 + MaskLen0 - 1), DL, GRLenVT),
DAG.getConstant(MaskIdx0, DL, GRLenVT));
}
// 6th pattern.
// a = b | ((c & mask) << shamt), where all positions in b to be overwritten
// by the incoming bits are known to be zero.
// =>
// a = BSTRINS b, c, shamt + MaskLen - 1, shamt
//
// Note that the 1st pattern is a special situation of the 6th, i.e. the 6th
// pattern is more common than the 1st. So we put the 1st before the 6th in
// order to match as many nodes as possible.
ConstantSDNode *CNMask, *CNShamt;
unsigned MaskIdx, MaskLen;
if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::AND &&
(CNMask = dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(1))) &&
isShiftedMask_64(CNMask->getZExtValue(), MaskIdx, MaskLen) &&
MaskIdx == 0 && (CNShamt = dyn_cast<ConstantSDNode>(N1.getOperand(1))) &&
CNShamt->getZExtValue() + MaskLen <= ValBits) {
Shamt = CNShamt->getZExtValue();
APInt ShMask(ValBits, CNMask->getZExtValue() << Shamt);
if (ShMask.isSubsetOf(DAG.computeKnownBits(N0).Zero)) {
LLVM_DEBUG(dbgs() << "Perform OR combine: match pattern 6\n");
return DAG.getNode(LoongArchISD::BSTRINS, DL, ValTy, N0,
N1.getOperand(0).getOperand(0),
DAG.getConstant(Shamt + MaskLen - 1, DL, GRLenVT),
DAG.getConstant(Shamt, DL, GRLenVT));
}
}
// 7th pattern.
// a = b | ((c << shamt) & shifted_mask), where all positions in b to be
// overwritten by the incoming bits are known to be zero.
// =>
// a = BSTRINS b, c, MaskIdx + MaskLen - 1, MaskIdx
//
// Similarly, the 7th pattern is more common than the 2nd. So we put the 2nd
// before the 7th in order to match as many nodes as possible.
if (N1.getOpcode() == ISD::AND &&
(CNMask = dyn_cast<ConstantSDNode>(N1.getOperand(1))) &&
isShiftedMask_64(CNMask->getZExtValue(), MaskIdx, MaskLen) &&
N1.getOperand(0).getOpcode() == ISD::SHL &&
(CNShamt = dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(1))) &&
CNShamt->getZExtValue() == MaskIdx) {
APInt ShMask(ValBits, CNMask->getZExtValue());
if (ShMask.isSubsetOf(DAG.computeKnownBits(N0).Zero)) {
LLVM_DEBUG(dbgs() << "Perform OR combine: match pattern 7\n");
return DAG.getNode(LoongArchISD::BSTRINS, DL, ValTy, N0,
N1.getOperand(0).getOperand(0),
DAG.getConstant(MaskIdx + MaskLen - 1, DL, GRLenVT),
DAG.getConstant(MaskIdx, DL, GRLenVT));
}
}
// (or a, b) and (or b, a) are equivalent, so swap the operands and retry.
if (!SwapAndRetried) {
std::swap(N0, N1);
SwapAndRetried = true;
goto Retry;
}
SwapAndRetried = false;
Retry2:
// 8th pattern.
// a = b | (c & shifted_mask), where all positions in b to be overwritten by
// the incoming bits are known to be zero.
// =>
// a = BSTRINS b, c >> MaskIdx, MaskIdx + MaskLen - 1, MaskIdx
//
// Similarly, the 8th pattern is more common than the 4th and 5th patterns. So
// we put it here in order to match as many nodes as possible or generate less
// instructions.
if (N1.getOpcode() == ISD::AND &&
(CNMask = dyn_cast<ConstantSDNode>(N1.getOperand(1))) &&
isShiftedMask_64(CNMask->getZExtValue(), MaskIdx, MaskLen)) {
APInt ShMask(ValBits, CNMask->getZExtValue());
if (ShMask.isSubsetOf(DAG.computeKnownBits(N0).Zero)) {
LLVM_DEBUG(dbgs() << "Perform OR combine: match pattern 8\n");
return DAG.getNode(LoongArchISD::BSTRINS, DL, ValTy, N0,
DAG.getNode(ISD::SRL, DL, N1->getValueType(0),
N1->getOperand(0),
DAG.getConstant(MaskIdx, DL, GRLenVT)),
DAG.getConstant(MaskIdx + MaskLen - 1, DL, GRLenVT),
DAG.getConstant(MaskIdx, DL, GRLenVT));
}
}
// Swap N0/N1 and retry.
if (!SwapAndRetried) {
std::swap(N0, N1);
SwapAndRetried = true;
goto Retry2;
}
return SDValue();
}
// Combine (loongarch_bitrev_w (loongarch_revb_2w X)) to loongarch_bitrev_4b.
static SDValue performBITREV_WCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const LoongArchSubtarget &Subtarget) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
SDValue Src = N->getOperand(0);
if (Src.getOpcode() != LoongArchISD::REVB_2W)
return SDValue();
return DAG.getNode(LoongArchISD::BITREV_4B, SDLoc(N), N->getValueType(0),
Src.getOperand(0));
}
SDValue LoongArchTargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
switch (N->getOpcode()) {
default:
break;
case ISD::AND:
return performANDCombine(N, DAG, DCI, Subtarget);
case ISD::OR:
return performORCombine(N, DAG, DCI, Subtarget);
case ISD::SRL:
return performSRLCombine(N, DAG, DCI, Subtarget);
case LoongArchISD::BITREV_W:
return performBITREV_WCombine(N, DAG, DCI, Subtarget);
}
return SDValue();
}
static MachineBasicBlock *insertDivByZeroTrap(MachineInstr &MI,
MachineBasicBlock *MBB) {
if (!ZeroDivCheck)
return MBB;
// Build instructions:
// MBB:
// div(or mod) $dst, $dividend, $divisor
// bnez $divisor, SinkMBB
// BreakMBB:
// break 7 // BRK_DIVZERO
// SinkMBB:
// fallthrough
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
MachineFunction::iterator It = ++MBB->getIterator();
MachineFunction *MF = MBB->getParent();
auto BreakMBB = MF->CreateMachineBasicBlock(LLVM_BB);
auto SinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MF->insert(It, BreakMBB);
MF->insert(It, SinkMBB);
// Transfer the remainder of MBB and its successor edges to SinkMBB.
SinkMBB->splice(SinkMBB->end(), MBB, std::next(MI.getIterator()), MBB->end());
SinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
const TargetInstrInfo &TII = *MF->getSubtarget().getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
MachineOperand &Divisor = MI.getOperand(2);
Register DivisorReg = Divisor.getReg();
// MBB:
BuildMI(MBB, DL, TII.get(LoongArch::BNEZ))
.addReg(DivisorReg, getKillRegState(Divisor.isKill()))
.addMBB(SinkMBB);
MBB->addSuccessor(BreakMBB);
MBB->addSuccessor(SinkMBB);
// BreakMBB:
// See linux header file arch/loongarch/include/uapi/asm/break.h for the
// definition of BRK_DIVZERO.
BuildMI(BreakMBB, DL, TII.get(LoongArch::BREAK)).addImm(7 /*BRK_DIVZERO*/);
BreakMBB->addSuccessor(SinkMBB);
// Clear Divisor's kill flag.
Divisor.setIsKill(false);
return SinkMBB;
}
MachineBasicBlock *LoongArchTargetLowering::EmitInstrWithCustomInserter(
MachineInstr &MI, MachineBasicBlock *BB) const {
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
switch (MI.getOpcode()) {
default:
llvm_unreachable("Unexpected instr type to insert");
case LoongArch::DIV_W:
case LoongArch::DIV_WU:
case LoongArch::MOD_W:
case LoongArch::MOD_WU:
case LoongArch::DIV_D:
case LoongArch::DIV_DU:
case LoongArch::MOD_D:
case LoongArch::MOD_DU:
return insertDivByZeroTrap(MI, BB);
break;
case LoongArch::WRFCSR: {
BuildMI(*BB, MI, DL, TII->get(LoongArch::MOVGR2FCSR),
LoongArch::FCSR0 + MI.getOperand(0).getImm())
.addReg(MI.getOperand(1).getReg());
MI.eraseFromParent();
return BB;
}
case LoongArch::RDFCSR: {
MachineInstr *ReadFCSR =
BuildMI(*BB, MI, DL, TII->get(LoongArch::MOVFCSR2GR),
MI.getOperand(0).getReg())
.addReg(LoongArch::FCSR0 + MI.getOperand(1).getImm());
ReadFCSR->getOperand(1).setIsUndef();
MI.eraseFromParent();
return BB;
}
}
}
const char *LoongArchTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch ((LoongArchISD::NodeType)Opcode) {
case LoongArchISD::FIRST_NUMBER:
break;
#define NODE_NAME_CASE(node) \
case LoongArchISD::node: \
return "LoongArchISD::" #node;
// TODO: Add more target-dependent nodes later.
NODE_NAME_CASE(CALL)
NODE_NAME_CASE(RET)
NODE_NAME_CASE(TAIL)
NODE_NAME_CASE(SLL_W)
NODE_NAME_CASE(SRA_W)
NODE_NAME_CASE(SRL_W)
NODE_NAME_CASE(BSTRINS)
NODE_NAME_CASE(BSTRPICK)
NODE_NAME_CASE(MOVGR2FR_W_LA64)
NODE_NAME_CASE(MOVFR2GR_S_LA64)
NODE_NAME_CASE(FTINT)
NODE_NAME_CASE(REVB_2H)
NODE_NAME_CASE(REVB_2W)
NODE_NAME_CASE(BITREV_4B)
NODE_NAME_CASE(BITREV_W)
NODE_NAME_CASE(ROTR_W)
NODE_NAME_CASE(ROTL_W)
NODE_NAME_CASE(CLZ_W)
NODE_NAME_CASE(CTZ_W)
NODE_NAME_CASE(DBAR)
NODE_NAME_CASE(IBAR)
NODE_NAME_CASE(BREAK)
NODE_NAME_CASE(SYSCALL)
NODE_NAME_CASE(CRC_W_B_W)
NODE_NAME_CASE(CRC_W_H_W)
NODE_NAME_CASE(CRC_W_W_W)
NODE_NAME_CASE(CRC_W_D_W)
NODE_NAME_CASE(CRCC_W_B_W)
NODE_NAME_CASE(CRCC_W_H_W)
NODE_NAME_CASE(CRCC_W_W_W)
NODE_NAME_CASE(CRCC_W_D_W)
NODE_NAME_CASE(CSRRD)
NODE_NAME_CASE(CSRWR)
NODE_NAME_CASE(CSRXCHG)
NODE_NAME_CASE(IOCSRRD_B)
NODE_NAME_CASE(IOCSRRD_H)
NODE_NAME_CASE(IOCSRRD_W)
NODE_NAME_CASE(IOCSRRD_D)
NODE_NAME_CASE(IOCSRWR_B)
NODE_NAME_CASE(IOCSRWR_H)
NODE_NAME_CASE(IOCSRWR_W)
NODE_NAME_CASE(IOCSRWR_D)
NODE_NAME_CASE(CPUCFG)
NODE_NAME_CASE(MOVGR2FCSR)
NODE_NAME_CASE(MOVFCSR2GR)
NODE_NAME_CASE(CACOP_D)
NODE_NAME_CASE(CACOP_W)
}
#undef NODE_NAME_CASE
return nullptr;
}
//===----------------------------------------------------------------------===//
// Calling Convention Implementation
//===----------------------------------------------------------------------===//
// Eight general-purpose registers a0-a7 used for passing integer arguments,
// with a0-a1 reused to return values. Generally, the GPRs are used to pass
// fixed-point arguments, and floating-point arguments when no FPR is available
// or with soft float ABI.
const MCPhysReg ArgGPRs[] = {LoongArch::R4, LoongArch::R5, LoongArch::R6,
LoongArch::R7, LoongArch::R8, LoongArch::R9,
LoongArch::R10, LoongArch::R11};
// Eight floating-point registers fa0-fa7 used for passing floating-point
// arguments, and fa0-fa1 are also used to return values.
const MCPhysReg ArgFPR32s[] = {LoongArch::F0, LoongArch::F1, LoongArch::F2,
LoongArch::F3, LoongArch::F4, LoongArch::F5,
LoongArch::F6, LoongArch::F7};
// FPR32 and FPR64 alias each other.
const MCPhysReg ArgFPR64s[] = {
LoongArch::F0_64, LoongArch::F1_64, LoongArch::F2_64, LoongArch::F3_64,
LoongArch::F4_64, LoongArch::F5_64, LoongArch::F6_64, LoongArch::F7_64};
// Pass a 2*GRLen argument that has been split into two GRLen values through
// registers or the stack as necessary.
static bool CC_LoongArchAssign2GRLen(unsigned GRLen, CCState &State,
CCValAssign VA1, ISD::ArgFlagsTy ArgFlags1,
unsigned ValNo2, MVT ValVT2, MVT LocVT2,
ISD::ArgFlagsTy ArgFlags2) {
unsigned GRLenInBytes = GRLen / 8;
if (Register Reg = State.AllocateReg(ArgGPRs)) {
// At least one half can be passed via register.
State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
VA1.getLocVT(), CCValAssign::Full));
} else {
// Both halves must be passed on the stack, with proper alignment.
Align StackAlign =
std::max(Align(GRLenInBytes), ArgFlags1.getNonZeroOrigAlign());
State.addLoc(
CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
State.AllocateStack(GRLenInBytes, StackAlign),
VA1.getLocVT(), CCValAssign::Full));
State.addLoc(CCValAssign::getMem(
ValNo2, ValVT2, State.AllocateStack(GRLenInBytes, Align(GRLenInBytes)),
LocVT2, CCValAssign::Full));
return false;
}
if (Register Reg = State.AllocateReg(ArgGPRs)) {
// The second half can also be passed via register.
State.addLoc(
CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
} else {
// The second half is passed via the stack, without additional alignment.
State.addLoc(CCValAssign::getMem(
ValNo2, ValVT2, State.AllocateStack(GRLenInBytes, Align(GRLenInBytes)),
LocVT2, CCValAssign::Full));
}
return false;
}
// Implements the LoongArch calling convention. Returns true upon failure.
static bool CC_LoongArch(const DataLayout &DL, LoongArchABI::ABI ABI,
unsigned ValNo, MVT ValVT,
CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
CCState &State, bool IsFixed, bool IsRet,
Type *OrigTy) {
unsigned GRLen = DL.getLargestLegalIntTypeSizeInBits();
assert((GRLen == 32 || GRLen == 64) && "Unspport GRLen");
MVT GRLenVT = GRLen == 32 ? MVT::i32 : MVT::i64;
MVT LocVT = ValVT;
// Any return value split into more than two values can't be returned
// directly.
if (IsRet && ValNo > 1)
return true;
// If passing a variadic argument, or if no FPR is available.
bool UseGPRForFloat = true;
switch (ABI) {
default:
llvm_unreachable("Unexpected ABI");
case LoongArchABI::ABI_ILP32S:
case LoongArchABI::ABI_LP64S:
case LoongArchABI::ABI_ILP32F:
case LoongArchABI::ABI_LP64F:
report_fatal_error("Unimplemented ABI");
break;
case LoongArchABI::ABI_ILP32D:
case LoongArchABI::ABI_LP64D:
UseGPRForFloat = !IsFixed;
break;
}
// FPR32 and FPR64 alias each other.
if (State.getFirstUnallocated(ArgFPR32s) == std::size(ArgFPR32s))
UseGPRForFloat = true;
if (UseGPRForFloat && ValVT == MVT::f32) {
LocVT = GRLenVT;
LocInfo = CCValAssign::BCvt;
} else if (UseGPRForFloat && GRLen == 64 && ValVT == MVT::f64) {
LocVT = MVT::i64;
LocInfo = CCValAssign::BCvt;
} else if (UseGPRForFloat && GRLen == 32 && ValVT == MVT::f64) {
// TODO: Handle passing f64 on LA32 with D feature.
report_fatal_error("Passing f64 with GPR on LA32 is undefined");
}
// If this is a variadic argument, the LoongArch calling convention requires
// that it is assigned an 'even' or 'aligned' register if it has (2*GRLen)/8
// byte alignment. An aligned register should be used regardless of whether
// the original argument was split during legalisation or not. The argument
// will not be passed by registers if the original type is larger than
// 2*GRLen, so the register alignment rule does not apply.
unsigned TwoGRLenInBytes = (2 * GRLen) / 8;
if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoGRLenInBytes &&
DL.getTypeAllocSize(OrigTy) == TwoGRLenInBytes) {
unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
// Skip 'odd' register if necessary.
if (RegIdx != std::size(ArgGPRs) && RegIdx % 2 == 1)
State.AllocateReg(ArgGPRs);
}
SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
State.getPendingArgFlags();
assert(PendingLocs.size() == PendingArgFlags.size() &&
"PendingLocs and PendingArgFlags out of sync");
// Split arguments might be passed indirectly, so keep track of the pending
// values.
if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
LocVT = GRLenVT;
LocInfo = CCValAssign::Indirect;
PendingLocs.push_back(
CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
PendingArgFlags.push_back(ArgFlags);
if (!ArgFlags.isSplitEnd()) {
return false;
}
}
// If the split argument only had two elements, it should be passed directly
// in registers or on the stack.
if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
PendingLocs.size() <= 2) {
assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
// Apply the normal calling convention rules to the first half of the
// split argument.
CCValAssign VA = PendingLocs[0];
ISD::ArgFlagsTy AF = PendingArgFlags[0];
PendingLocs.clear();
PendingArgFlags.clear();
return CC_LoongArchAssign2GRLen(GRLen, State, VA, AF, ValNo, ValVT, LocVT,
ArgFlags);
}
// Allocate to a register if possible, or else a stack slot.
Register Reg;
unsigned StoreSizeBytes = GRLen / 8;
Align StackAlign = Align(GRLen / 8);
if (ValVT == MVT::f32 && !UseGPRForFloat)
Reg = State.AllocateReg(ArgFPR32s);
else if (ValVT == MVT::f64 && !UseGPRForFloat)
Reg = State.AllocateReg(ArgFPR64s);
else
Reg = State.AllocateReg(ArgGPRs);
unsigned StackOffset =
Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
// If we reach this point and PendingLocs is non-empty, we must be at the
// end of a split argument that must be passed indirectly.
if (!PendingLocs.empty()) {
assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
for (auto &It : PendingLocs) {
if (Reg)
It.convertToReg(Reg);
else
It.convertToMem(StackOffset);
State.addLoc(It);
}
PendingLocs.clear();
PendingArgFlags.clear();
return false;
}
assert((!UseGPRForFloat || LocVT == GRLenVT) &&
"Expected an GRLenVT at this stage");
if (Reg) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
// When a floating-point value is passed on the stack, no bit-cast is needed.
if (ValVT.isFloatingPoint()) {
LocVT = ValVT;
LocInfo = CCValAssign::Full;
}
State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
return false;
}
void LoongArchTargetLowering::analyzeInputArgs(
MachineFunction &MF, CCState &CCInfo,
const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
LoongArchCCAssignFn Fn) const {
FunctionType *FType = MF.getFunction().getFunctionType();
for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
MVT ArgVT = Ins[i].VT;
Type *ArgTy = nullptr;
if (IsRet)
ArgTy = FType->getReturnType();
else if (Ins[i].isOrigArg())
ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
LoongArchABI::ABI ABI =
MF.getSubtarget<LoongArchSubtarget>().getTargetABI();
if (Fn(MF.getDataLayout(), ABI, i, ArgVT, CCValAssign::Full, Ins[i].Flags,
CCInfo, /*IsFixed=*/true, IsRet, ArgTy)) {
LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
<< EVT(ArgVT).getEVTString() << '\n');
llvm_unreachable("");
}
}
}
void LoongArchTargetLowering::analyzeOutputArgs(
MachineFunction &MF, CCState &CCInfo,
const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
CallLoweringInfo *CLI, LoongArchCCAssignFn Fn) const {
for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
MVT ArgVT = Outs[i].VT;
Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
LoongArchABI::ABI ABI =
MF.getSubtarget<LoongArchSubtarget>().getTargetABI();
if (Fn(MF.getDataLayout(), ABI, i, ArgVT, CCValAssign::Full, Outs[i].Flags,
CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) {
LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
<< EVT(ArgVT).getEVTString() << "\n");
llvm_unreachable("");
}
}
}
// Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
// values.
static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
const CCValAssign &VA, const SDLoc &DL) {
switch (VA.getLocInfo()) {
default:
llvm_unreachable("Unexpected CCValAssign::LocInfo");
case CCValAssign::Full:
case CCValAssign::Indirect:
break;
case CCValAssign::BCvt:
if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
Val = DAG.getNode(LoongArchISD::MOVGR2FR_W_LA64, DL, MVT::f32, Val);
else
Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
break;
}
return Val;
}
static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
const CCValAssign &VA, const SDLoc &DL,
const LoongArchTargetLowering &TLI) {
MachineFunction &MF = DAG.getMachineFunction();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
EVT LocVT = VA.getLocVT();
SDValue Val;
const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
Register VReg = RegInfo.createVirtualRegister(RC);
RegInfo.addLiveIn(VA.getLocReg(), VReg);
Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
return convertLocVTToValVT(DAG, Val, VA, DL);
}
// The caller is responsible for loading the full value if the argument is
// passed with CCValAssign::Indirect.
static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
const CCValAssign &VA, const SDLoc &DL) {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
EVT ValVT = VA.getValVT();
int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
/*IsImmutable=*/true);
SDValue FIN = DAG.getFrameIndex(
FI, MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)));
ISD::LoadExtType ExtType;
switch (VA.getLocInfo()) {
default:
llvm_unreachable("Unexpected CCValAssign::LocInfo");
case CCValAssign::Full:
case CCValAssign::Indirect:
case CCValAssign::BCvt:
ExtType = ISD::NON_EXTLOAD;
break;
}
return DAG.getExtLoad(
ExtType, DL, VA.getLocVT(), Chain, FIN,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
}
static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
const CCValAssign &VA, const SDLoc &DL) {
EVT LocVT = VA.getLocVT();
switch (VA.getLocInfo()) {
default:
llvm_unreachable("Unexpected CCValAssign::LocInfo");
case CCValAssign::Full:
break;
case CCValAssign::BCvt:
if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
Val = DAG.getNode(LoongArchISD::MOVFR2GR_S_LA64, DL, MVT::i64, Val);
else
Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
break;
}
return Val;
}
static bool CC_LoongArch_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State) {
if (LocVT == MVT::i32 || LocVT == MVT::i64) {
// Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, SpLim
// s0 s1 s2 s3 s4 s5 s6 s7 s8
static const MCPhysReg GPRList[] = {
LoongArch::R23, LoongArch::R24, LoongArch::R25, LoongArch::R26, LoongArch::R27,
LoongArch::R28, LoongArch::R29, LoongArch::R30, LoongArch::R31};
if (unsigned Reg = State.AllocateReg(GPRList)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
if (LocVT == MVT::f32) {
// Pass in STG registers: F1, F2, F3, F4
// fs0,fs1,fs2,fs3
static const MCPhysReg FPR32List[] = {LoongArch::F24, LoongArch::F25,
LoongArch::F26, LoongArch::F27};
if (unsigned Reg = State.AllocateReg(FPR32List)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
if (LocVT == MVT::f64) {
// Pass in STG registers: D1, D2, D3, D4
// fs4,fs5,fs6,fs7
static const MCPhysReg FPR64List[] = {LoongArch::F28_64, LoongArch::F29_64,
LoongArch::F30_64, LoongArch::F31_64};
if (unsigned Reg = State.AllocateReg(FPR64List)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
report_fatal_error("No registers left in GHC calling convention");
return true;
}
// Transform physical registers into virtual registers.
SDValue LoongArchTargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
switch (CallConv) {
default:
llvm_unreachable("Unsupported calling convention");
case CallingConv::C:
case CallingConv::Fast:
break;
case CallingConv::GHC:
if (!MF.getSubtarget().getFeatureBits()[LoongArch::FeatureBasicF] ||
!MF.getSubtarget().getFeatureBits()[LoongArch::FeatureBasicD])
report_fatal_error(
"GHC calling convention requires the F and D extensions");
}
EVT PtrVT = getPointerTy(DAG.getDataLayout());
MVT GRLenVT = Subtarget.getGRLenVT();
unsigned GRLenInBytes = Subtarget.getGRLen() / 8;
// Used with varargs to acumulate store chains.
std::vector<SDValue> OutChains;
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign> ArgLocs;
CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
if (CallConv == CallingConv::GHC)
CCInfo.AnalyzeFormalArguments(Ins, CC_LoongArch_GHC);
else
analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, CC_LoongArch);
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
SDValue ArgValue;
if (VA.isRegLoc())
ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
else
ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
if (VA.getLocInfo() == CCValAssign::Indirect) {
// If the original argument was split and passed by reference, we need to
// load all parts of it here (using the same address).
InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
MachinePointerInfo()));
unsigned ArgIndex = Ins[i].OrigArgIndex;
unsigned ArgPartOffset = Ins[i].PartOffset;
assert(ArgPartOffset == 0);
while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
CCValAssign &PartVA = ArgLocs[i + 1];
unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
MachinePointerInfo()));
++i;
}
continue;
}
InVals.push_back(ArgValue);
}
if (IsVarArg) {
ArrayRef<MCPhysReg> ArgRegs = ArrayRef(ArgGPRs);
unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
const TargetRegisterClass *RC = &LoongArch::GPRRegClass;
MachineFrameInfo &MFI = MF.getFrameInfo();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
auto *LoongArchFI = MF.getInfo<LoongArchMachineFunctionInfo>();
// Offset of the first variable argument from stack pointer, and size of
// the vararg save area. For now, the varargs save area is either zero or
// large enough to hold a0-a7.
int VaArgOffset, VarArgsSaveSize;
// If all registers are allocated, then all varargs must be passed on the
// stack and we don't need to save any argregs.
if (ArgRegs.size() == Idx) {
VaArgOffset = CCInfo.getNextStackOffset();
VarArgsSaveSize = 0;
} else {
VarArgsSaveSize = GRLenInBytes * (ArgRegs.size() - Idx);
VaArgOffset = -VarArgsSaveSize;
}
// Record the frame index of the first variable argument
// which is a value necessary to VASTART.
int FI = MFI.CreateFixedObject(GRLenInBytes, VaArgOffset, true);
LoongArchFI->setVarArgsFrameIndex(FI);
// If saving an odd number of registers then create an extra stack slot to
// ensure that the frame pointer is 2*GRLen-aligned, which in turn ensures
// offsets to even-numbered registered remain 2*GRLen-aligned.
if (Idx % 2) {
MFI.CreateFixedObject(GRLenInBytes, VaArgOffset - (int)GRLenInBytes,
true);
VarArgsSaveSize += GRLenInBytes;
}
// Copy the integer registers that may have been used for passing varargs
// to the vararg save area.
for (unsigned I = Idx; I < ArgRegs.size();
++I, VaArgOffset += GRLenInBytes) {
const Register Reg = RegInfo.createVirtualRegister(RC);
RegInfo.addLiveIn(ArgRegs[I], Reg);
SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, GRLenVT);
FI = MFI.CreateFixedObject(GRLenInBytes, VaArgOffset, true);
SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
MachinePointerInfo::getFixedStack(MF, FI));
cast<StoreSDNode>(Store.getNode())
->getMemOperand()
->setValue((Value *)nullptr);
OutChains.push_back(Store);
}
LoongArchFI->setVarArgsSaveSize(VarArgsSaveSize);
}
// All stores are grouped in one node to allow the matching between
// the size of Ins and InVals. This only happens for vararg functions.
if (!OutChains.empty()) {
OutChains.push_back(Chain);
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
}
return Chain;
}
bool LoongArchTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
return CI->isTailCall();
}
// Check whether the call is eligible for tail call optimization.
bool LoongArchTargetLowering::isEligibleForTailCallOptimization(
CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
const SmallVectorImpl<CCValAssign> &ArgLocs) const {
auto CalleeCC = CLI.CallConv;
auto &Outs = CLI.Outs;
auto &Caller = MF.getFunction();
auto CallerCC = Caller.getCallingConv();
// Do not tail call opt if the stack is used to pass parameters.
if (CCInfo.getNextStackOffset() != 0)
return false;
// Do not tail call opt if any parameters need to be passed indirectly.
for (auto &VA : ArgLocs)
if (VA.getLocInfo() == CCValAssign::Indirect)
return false;
// Do not tail call opt if either caller or callee uses struct return
// semantics.
auto IsCallerStructRet = Caller.hasStructRetAttr();
auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
if (IsCallerStructRet || IsCalleeStructRet)
return false;
// Do not tail call opt if either the callee or caller has a byval argument.
for (auto &Arg : Outs)
if (Arg.Flags.isByVal())
return false;
// The callee has to preserve all registers the caller needs to preserve.
const LoongArchRegisterInfo *TRI = Subtarget.getRegisterInfo();
const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
if (CalleeCC != CallerCC) {
const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
return false;
}
return true;
}
static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
return DAG.getDataLayout().getPrefTypeAlign(
VT.getTypeForEVT(*DAG.getContext()));
}
// Lower a call to a callseq_start + CALL + callseq_end chain, and add input
// and output parameter nodes.
SDValue
LoongArchTargetLowering::LowerCall(CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc &DL = CLI.DL;
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
CallingConv::ID CallConv = CLI.CallConv;
bool IsVarArg = CLI.IsVarArg;
EVT PtrVT = getPointerTy(DAG.getDataLayout());
MVT GRLenVT = Subtarget.getGRLenVT();
bool &IsTailCall = CLI.IsTailCall;
MachineFunction &MF = DAG.getMachineFunction();
// Analyze the operands of the call, assigning locations to each operand.
SmallVector<CCValAssign> ArgLocs;
CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
if (CallConv == CallingConv::GHC)
ArgCCInfo.AnalyzeCallOperands(Outs, CC_LoongArch_GHC);
else
analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, CC_LoongArch);
// Check if it's really possible to do a tail call.
if (IsTailCall)
IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
if (IsTailCall)
++NumTailCalls;
else if (CLI.CB && CLI.CB->isMustTailCall())
report_fatal_error("failed to perform tail call elimination on a call "
"site marked musttail");
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = ArgCCInfo.getNextStackOffset();
// Create local copies for byval args.
SmallVector<SDValue> ByValArgs;
for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
ISD::ArgFlagsTy Flags = Outs[i].Flags;
if (!Flags.isByVal())
continue;
SDValue Arg = OutVals[i];
unsigned Size = Flags.getByValSize();
Align Alignment = Flags.getNonZeroByValAlign();
int FI =
MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
SDValue SizeNode = DAG.getConstant(Size, DL, GRLenVT);
Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
/*IsVolatile=*/false,
/*AlwaysInline=*/false, /*isTailCall=*/IsTailCall,
MachinePointerInfo(), MachinePointerInfo());
ByValArgs.push_back(FIPtr);
}
if (!IsTailCall)
Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
// Copy argument values to their designated locations.
SmallVector<std::pair<Register, SDValue>> RegsToPass;
SmallVector<SDValue> MemOpChains;
SDValue StackPtr;
for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
SDValue ArgValue = OutVals[i];
ISD::ArgFlagsTy Flags = Outs[i].Flags;
// Promote the value if needed.
// For now, only handle fully promoted and indirect arguments.
if (VA.getLocInfo() == CCValAssign::Indirect) {
// Store the argument in a stack slot and pass its address.
Align StackAlign =
std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
getPrefTypeAlign(ArgValue.getValueType(), DAG));
TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
// If the original argument was split and passed by reference, we need to
// store the required parts of it here (and pass just one address).
unsigned ArgIndex = Outs[i].OrigArgIndex;
unsigned ArgPartOffset = Outs[i].PartOffset;
assert(ArgPartOffset == 0);
// Calculate the total size to store. We don't have access to what we're
// actually storing other than performing the loop and collecting the
// info.
SmallVector<std::pair<SDValue, SDValue>> Parts;
while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
SDValue PartValue = OutVals[i + 1];
unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
EVT PartVT = PartValue.getValueType();
StoredSize += PartVT.getStoreSize();
StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
Parts.push_back(std::make_pair(PartValue, Offset));
++i;
}
SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
MemOpChains.push_back(
DAG.getStore(Chain, DL, ArgValue, SpillSlot,
MachinePointerInfo::getFixedStack(MF, FI)));
for (const auto &Part : Parts) {
SDValue PartValue = Part.first;
SDValue PartOffset = Part.second;
SDValue Address =
DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
MemOpChains.push_back(
DAG.getStore(Chain, DL, PartValue, Address,
MachinePointerInfo::getFixedStack(MF, FI)));
}
ArgValue = SpillSlot;
} else {
ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL);
}
// Use local copy if it is a byval arg.
if (Flags.isByVal())
ArgValue = ByValArgs[j++];
if (VA.isRegLoc()) {
// Queue up the argument copies and emit them at the end.
RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
} else {
assert(VA.isMemLoc() && "Argument not register or memory");
assert(!IsTailCall && "Tail call not allowed if stack is used "
"for passing parameters");
// Work out the address of the stack slot.
if (!StackPtr.getNode())
StackPtr = DAG.getCopyFromReg(Chain, DL, LoongArch::R3, PtrVT);
SDValue Address =
DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
// Emit the store.
MemOpChains.push_back(
DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
}
}
// Join the stores, which are independent of one another.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
SDValue Glue;
// Build a sequence of copy-to-reg nodes, chained and glued together.
for (auto &Reg : RegsToPass) {
Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
Glue = Chain.getValue(1);
}
// If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
// TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
// split it and then direct call can be matched by PseudoCALL.
if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
const GlobalValue *GV = S->getGlobal();
unsigned OpFlags =
getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)
? LoongArchII::MO_CALL
: LoongArchII::MO_CALL_PLT;
Callee = DAG.getTargetGlobalAddress(S->getGlobal(), DL, PtrVT, 0, OpFlags);
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
unsigned OpFlags = getTargetMachine().shouldAssumeDSOLocal(
*MF.getFunction().getParent(), nullptr)
? LoongArchII::MO_CALL
: LoongArchII::MO_CALL_PLT;
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
}
// The first call operand is the chain and the second is the target address.
SmallVector<SDValue> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add argument registers to the end of the list so that they are
// known live into the call.
for (auto &Reg : RegsToPass)
Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
if (!IsTailCall) {
// Add a register mask operand representing the call-preserved registers.
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
}
// Glue the call to the argument copies, if any.
if (Glue.getNode())
Ops.push_back(Glue);
// Emit the call.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
if (IsTailCall) {
MF.getFrameInfo().setHasTailCall();
return DAG.getNode(LoongArchISD::TAIL, DL, NodeTys, Ops);
}
Chain = DAG.getNode(LoongArchISD::CALL, DL, NodeTys, Ops);
DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
Glue = Chain.getValue(1);
// Mark the end of the call, which is glued to the call itself.
Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, Glue, DL);
Glue = Chain.getValue(1);
// Assign locations to each value returned by this call.
SmallVector<CCValAssign> RVLocs;
CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_LoongArch);
// Copy all of the result registers out of their specified physreg.
for (auto &VA : RVLocs) {
// Copy the value out.
SDValue RetValue =
DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
// Glue the RetValue to the end of the call sequence.
Chain = RetValue.getValue(1);
Glue = RetValue.getValue(2);
RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL);
InVals.push_back(RetValue);
}
return Chain;
}
bool LoongArchTargetLowering::CanLowerReturn(
CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
SmallVector<CCValAssign> RVLocs;
CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
LoongArchABI::ABI ABI =
MF.getSubtarget<LoongArchSubtarget>().getTargetABI();
if (CC_LoongArch(MF.getDataLayout(), ABI, i, Outs[i].VT, CCValAssign::Full,
Outs[i].Flags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true,
nullptr))
return false;
}
return true;
}
SDValue LoongArchTargetLowering::LowerReturn(
SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
SelectionDAG &DAG) const {
// Stores the assignment of the return value to a location.
SmallVector<CCValAssign> RVLocs;
// Info about the registers and stack slot.
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
nullptr, CC_LoongArch);
if (CallConv == CallingConv::GHC && !RVLocs.empty())
report_fatal_error("GHC functions return void only");
SDValue Glue;
SmallVector<SDValue, 4> RetOps(1, Chain);
// Copy the result values into the output registers.
for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
// Handle a 'normal' return.
SDValue Val = convertValVTToLocVT(DAG, OutVals[i], VA, DL);
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
// Guarantee that all emitted copies are stuck together.
Glue = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
}
RetOps[0] = Chain; // Update chain.
// Add the glue node if we have it.
if (Glue.getNode())
RetOps.push_back(Glue);
return DAG.getNode(LoongArchISD::RET, DL, MVT::Other, RetOps);
}
bool LoongArchTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
bool ForCodeSize) const {
// TODO: Maybe need more checks here after vector extension is supported.
if (VT == MVT::f32 && !Subtarget.hasBasicF())
return false;
if (VT == MVT::f64 && !Subtarget.hasBasicD())
return false;
return (Imm.isZero() || Imm.isExactlyValue(+1.0));
}
bool LoongArchTargetLowering::isCheapToSpeculateCttz(Type *) const {
return true;
}
bool LoongArchTargetLowering::isCheapToSpeculateCtlz(Type *) const {
return true;
}
bool LoongArchTargetLowering::shouldInsertFencesForAtomic(
const Instruction *I) const {
if (!Subtarget.is64Bit())
return isa<LoadInst>(I) || isa<StoreInst>(I);
if (isa<LoadInst>(I))
return true;
// On LA64, atomic store operations with IntegerBitWidth of 32 and 64 do not
// require fences beacuse we can use amswap_db.[w/d].
if (isa<StoreInst>(I)) {
unsigned Size = I->getOperand(0)->getType()->getIntegerBitWidth();
return (Size == 8 || Size == 16);
}
return false;
}
EVT LoongArchTargetLowering::getSetCCResultType(const DataLayout &DL,
LLVMContext &Context,
EVT VT) const {
if (!VT.isVector())
return getPointerTy(DL);
return VT.changeVectorElementTypeToInteger();
}
bool LoongArchTargetLowering::hasAndNot(SDValue Y) const {
// TODO: Support vectors.
return Y.getValueType().isScalarInteger() && !isa<ConstantSDNode>(Y);
}
bool LoongArchTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
const CallInst &I,
MachineFunction &MF,
unsigned Intrinsic) const {
switch (Intrinsic) {
default:
return false;
case Intrinsic::loongarch_masked_atomicrmw_xchg_i32:
case Intrinsic::loongarch_masked_atomicrmw_add_i32:
case Intrinsic::loongarch_masked_atomicrmw_sub_i32:
case Intrinsic::loongarch_masked_atomicrmw_nand_i32:
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::i32;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.align = Align(4);
Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
MachineMemOperand::MOVolatile;
return true;
// TODO: Add more Intrinsics later.
}
}
TargetLowering::AtomicExpansionKind
LoongArchTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
// TODO: Add more AtomicRMWInst that needs to be extended.
// Since floating-point operation requires a non-trivial set of data
// operations, use CmpXChg to expand.
if (AI->isFloatingPointOperation() ||
AI->getOperation() == AtomicRMWInst::UIncWrap ||
AI->getOperation() == AtomicRMWInst::UDecWrap)
return AtomicExpansionKind::CmpXChg;
unsigned Size = AI->getType()->getPrimitiveSizeInBits();
if (Size == 8 || Size == 16)
return AtomicExpansionKind::MaskedIntrinsic;
return AtomicExpansionKind::None;
}
static Intrinsic::ID
getIntrinsicForMaskedAtomicRMWBinOp(unsigned GRLen,
AtomicRMWInst::BinOp BinOp) {
if (GRLen == 64) {
switch (BinOp) {
default:
llvm_unreachable("Unexpected AtomicRMW BinOp");
case AtomicRMWInst::Xchg:
return Intrinsic::loongarch_masked_atomicrmw_xchg_i64;
case AtomicRMWInst::Add:
return Intrinsic::loongarch_masked_atomicrmw_add_i64;
case AtomicRMWInst::Sub:
return Intrinsic::loongarch_masked_atomicrmw_sub_i64;
case AtomicRMWInst::Nand:
return Intrinsic::loongarch_masked_atomicrmw_nand_i64;
case AtomicRMWInst::UMax:
return Intrinsic::loongarch_masked_atomicrmw_umax_i64;
case AtomicRMWInst::UMin:
return Intrinsic::loongarch_masked_atomicrmw_umin_i64;
case AtomicRMWInst::Max:
return Intrinsic::loongarch_masked_atomicrmw_max_i64;
case AtomicRMWInst::Min:
return Intrinsic::loongarch_masked_atomicrmw_min_i64;
// TODO: support other AtomicRMWInst.
}
}
if (GRLen == 32) {
switch (BinOp) {
default:
llvm_unreachable("Unexpected AtomicRMW BinOp");
case AtomicRMWInst::Xchg:
return Intrinsic::loongarch_masked_atomicrmw_xchg_i32;
case AtomicRMWInst::Add:
return Intrinsic::loongarch_masked_atomicrmw_add_i32;
case AtomicRMWInst::Sub:
return Intrinsic::loongarch_masked_atomicrmw_sub_i32;
case AtomicRMWInst::Nand:
return Intrinsic::loongarch_masked_atomicrmw_nand_i32;
// TODO: support other AtomicRMWInst.
}
}
llvm_unreachable("Unexpected GRLen\n");
}
TargetLowering::AtomicExpansionKind
LoongArchTargetLowering::shouldExpandAtomicCmpXchgInIR(
AtomicCmpXchgInst *CI) const {
unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
if (Size == 8 || Size == 16)
return AtomicExpansionKind::MaskedIntrinsic;
return AtomicExpansionKind::None;
}
Value *LoongArchTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
Value *Ordering =
Builder.getIntN(Subtarget.getGRLen(), static_cast<uint64_t>(Ord));
// TODO: Support cmpxchg on LA32.
Intrinsic::ID CmpXchgIntrID = Intrinsic::loongarch_masked_cmpxchg_i64;
CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
Type *Tys[] = {AlignedAddr->getType()};
Function *MaskedCmpXchg =
Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
Value *Result = Builder.CreateCall(
MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
return Result;
}
Value *LoongArchTargetLowering::emitMaskedAtomicRMWIntrinsic(
IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
unsigned GRLen = Subtarget.getGRLen();
Value *Ordering =
Builder.getIntN(GRLen, static_cast<uint64_t>(AI->getOrdering()));
Type *Tys[] = {AlignedAddr->getType()};
Function *LlwOpScwLoop = Intrinsic::getDeclaration(
AI->getModule(),
getIntrinsicForMaskedAtomicRMWBinOp(GRLen, AI->getOperation()), Tys);
if (GRLen == 64) {
Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
}
Value *Result;
// Must pass the shift amount needed to sign extend the loaded value prior
// to performing a signed comparison for min/max. ShiftAmt is the number of
// bits to shift the value into position. Pass GRLen-ShiftAmt-ValWidth, which
// is the number of bits to left+right shift the value in order to
// sign-extend.
if (AI->getOperation() == AtomicRMWInst::Min ||
AI->getOperation() == AtomicRMWInst::Max) {
const DataLayout &DL = AI->getModule()->getDataLayout();
unsigned ValWidth =
DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
Value *SextShamt =
Builder.CreateSub(Builder.getIntN(GRLen, GRLen - ValWidth), ShiftAmt);
Result = Builder.CreateCall(LlwOpScwLoop,
{AlignedAddr, Incr, Mask, SextShamt, Ordering});
} else {
Result =
Builder.CreateCall(LlwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
}
if (GRLen == 64)
Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
return Result;
}
bool LoongArchTargetLowering::isFMAFasterThanFMulAndFAdd(
const MachineFunction &MF, EVT VT) const {
VT = VT.getScalarType();
if (!VT.isSimple())
return false;
switch (VT.getSimpleVT().SimpleTy) {
case MVT::f32:
case MVT::f64:
return true;
default:
break;
}
return false;
}
Register LoongArchTargetLowering::getExceptionPointerRegister(
const Constant *PersonalityFn) const {
return LoongArch::R4;
}
Register LoongArchTargetLowering::getExceptionSelectorRegister(
const Constant *PersonalityFn) const {
return LoongArch::R5;
}
//===----------------------------------------------------------------------===//
// LoongArch Inline Assembly Support
//===----------------------------------------------------------------------===//
LoongArchTargetLowering::ConstraintType
LoongArchTargetLowering::getConstraintType(StringRef Constraint) const {
// LoongArch specific constraints in GCC: config/loongarch/constraints.md
//
// 'f': A floating-point register (if available).
// 'k': A memory operand whose address is formed by a base register and
// (optionally scaled) index register.
// 'l': A signed 16-bit constant.
// 'm': A memory operand whose address is formed by a base register and
// offset that is suitable for use in instructions with the same
// addressing mode as st.w and ld.w.
// 'I': A signed 12-bit constant (for arithmetic instructions).
// 'J': Integer zero.
// 'K': An unsigned 12-bit constant (for logic instructions).
// "ZB": An address that is held in a general-purpose register. The offset is
// zero.
// "ZC": A memory operand whose address is formed by a base register and
// offset that is suitable for use in instructions with the same
// addressing mode as ll.w and sc.w.
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default:
break;
case 'f':
return C_RegisterClass;
case 'l':
case 'I':
case 'J':
case 'K':
return C_Immediate;
case 'k':
return C_Memory;
}
}
if (Constraint == "ZC" || Constraint == "ZB")
return C_Memory;
// 'm' is handled here.
return TargetLowering::getConstraintType(Constraint);
}
unsigned LoongArchTargetLowering::getInlineAsmMemConstraint(
StringRef ConstraintCode) const {
return StringSwitch<unsigned>(ConstraintCode)
.Case("k", InlineAsm::Constraint_k)
.Case("ZB", InlineAsm::Constraint_ZB)
.Case("ZC", InlineAsm::Constraint_ZC)
.Default(TargetLowering::getInlineAsmMemConstraint(ConstraintCode));
}
std::pair<unsigned, const TargetRegisterClass *>
LoongArchTargetLowering::getRegForInlineAsmConstraint(
const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
// First, see if this is a constraint that directly corresponds to a LoongArch
// register class.
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'r':
// TODO: Support fixed vectors up to GRLen?
if (VT.isVector())
break;
return std::make_pair(0U, &LoongArch::GPRRegClass);
case 'f':
if (Subtarget.hasBasicF() && VT == MVT::f32)
return std::make_pair(0U, &LoongArch::FPR32RegClass);
if (Subtarget.hasBasicD() && VT == MVT::f64)
return std::make_pair(0U, &LoongArch::FPR64RegClass);
break;
default:
break;
}
}
// TargetLowering::getRegForInlineAsmConstraint uses the name of the TableGen
// record (e.g. the "R0" in `def R0`) to choose registers for InlineAsm
// constraints while the official register name is prefixed with a '$'. So we
// clip the '$' from the original constraint string (e.g. {$r0} to {r0}.)
// before it being parsed. And TargetLowering::getRegForInlineAsmConstraint is
// case insensitive, so no need to convert the constraint to upper case here.
//
// For now, no need to support ABI names (e.g. `$a0`) as clang will correctly
// decode the usage of register name aliases into their official names. And
// AFAIK, the not yet upstreamed `rustc` for LoongArch will always use
// official register names.
if (Constraint.startswith("{$r") || Constraint.startswith("{$f")) {
bool IsFP = Constraint[2] == 'f';
std::pair<StringRef, StringRef> Temp = Constraint.split('$');
std::pair<unsigned, const TargetRegisterClass *> R;
R = TargetLowering::getRegForInlineAsmConstraint(
TRI, join_items("", Temp.first, Temp.second), VT);
// Match those names to the widest floating point register type available.
if (IsFP) {
unsigned RegNo = R.first;
if (LoongArch::F0 <= RegNo && RegNo <= LoongArch::F31) {
if (Subtarget.hasBasicD() && (VT == MVT::f64 || VT == MVT::Other)) {
unsigned DReg = RegNo - LoongArch::F0 + LoongArch::F0_64;
return std::make_pair(DReg, &LoongArch::FPR64RegClass);
}
}
}
return R;
}
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}
void LoongArchTargetLowering::LowerAsmOperandForConstraint(
SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
SelectionDAG &DAG) const {
// Currently only support length 1 constraints.
if (Constraint.length() == 1) {
switch (Constraint[0]) {
case 'l':
// Validate & create a 16-bit signed immediate operand.
if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
uint64_t CVal = C->getSExtValue();
if (isInt<16>(CVal))
Ops.push_back(
DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getGRLenVT()));
}
return;
case 'I':
// Validate & create a 12-bit signed immediate operand.
if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
uint64_t CVal = C->getSExtValue();
if (isInt<12>(CVal))
Ops.push_back(
DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getGRLenVT()));
}
return;
case 'J':
// Validate & create an integer zero operand.
if (auto *C = dyn_cast<ConstantSDNode>(Op))
if (C->getZExtValue() == 0)
Ops.push_back(
DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getGRLenVT()));
return;
case 'K':
// Validate & create a 12-bit unsigned immediate operand.
if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
uint64_t CVal = C->getZExtValue();
if (isUInt<12>(CVal))
Ops.push_back(
DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getGRLenVT()));
}
return;
default:
break;
}
}
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}
#define GET_REGISTER_MATCHER
#include "LoongArchGenAsmMatcher.inc"
Register
LoongArchTargetLowering::getRegisterByName(const char *RegName, LLT VT,
const MachineFunction &MF) const {
std::pair<StringRef, StringRef> Name = StringRef(RegName).split('$');
std::string NewRegName = Name.second.str();
Register Reg = MatchRegisterAltName(NewRegName);
if (Reg == LoongArch::NoRegister)
Reg = MatchRegisterName(NewRegName);
if (Reg == LoongArch::NoRegister)
report_fatal_error(
Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
if (!ReservedRegs.test(Reg))
report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
StringRef(RegName) + "\"."));
return Reg;
}
bool LoongArchTargetLowering::decomposeMulByConstant(LLVMContext &Context,
EVT VT, SDValue C) const {
// TODO: Support vectors.
if (!VT.isScalarInteger())
return false;
// Omit the optimization if the data size exceeds GRLen.
if (VT.getSizeInBits() > Subtarget.getGRLen())
return false;
// Break MUL into (SLLI + ADD/SUB) or ALSL.
if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
const APInt &Imm = ConstNode->getAPIntValue();
if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
(1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
return true;
}
return false;
}