blob: 4d3423592353ee491bb1986d15b49c11810ae37d [file] [log] [blame]
//===- AMDGPUBaseInfo.h - Top level definitions for AMDGPU ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_AMDGPU_UTILS_AMDGPUBASEINFO_H
#define LLVM_LIB_TARGET_AMDGPU_UTILS_AMDGPUBASEINFO_H
#include "SIDefines.h"
#include "llvm/ADT/FloatingPointMode.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/Support/Alignment.h"
#include <array>
#include <functional>
#include <utility>
struct amd_kernel_code_t;
namespace llvm {
struct Align;
class Argument;
class Function;
class GCNSubtarget;
class GlobalValue;
class MCInstrInfo;
class MCRegisterClass;
class MCRegisterInfo;
class MCSubtargetInfo;
class StringRef;
class Triple;
class raw_ostream;
namespace amdhsa {
struct kernel_descriptor_t;
}
namespace AMDGPU {
struct IsaVersion;
/// \returns HSA OS ABI Version identification.
std::optional<uint8_t> getHsaAbiVersion(const MCSubtargetInfo *STI);
/// \returns True if HSA OS ABI Version identification is 2,
/// false otherwise.
bool isHsaAbiVersion2(const MCSubtargetInfo *STI);
/// \returns True if HSA OS ABI Version identification is 3,
/// false otherwise.
bool isHsaAbiVersion3(const MCSubtargetInfo *STI);
/// \returns True if HSA OS ABI Version identification is 4,
/// false otherwise.
bool isHsaAbiVersion4(const MCSubtargetInfo *STI);
/// \returns True if HSA OS ABI Version identification is 5,
/// false otherwise.
bool isHsaAbiVersion5(const MCSubtargetInfo *STI);
/// \returns True if HSA OS ABI Version identification is 3 and above,
/// false otherwise.
bool isHsaAbiVersion3AndAbove(const MCSubtargetInfo *STI);
/// \returns The offset of the multigrid_sync_arg argument from implicitarg_ptr
unsigned getMultigridSyncArgImplicitArgPosition();
/// \returns The offset of the hostcall pointer argument from implicitarg_ptr
unsigned getHostcallImplicitArgPosition();
unsigned getDefaultQueueImplicitArgPosition();
unsigned getCompletionActionImplicitArgPosition();
/// \returns Code object version.
unsigned getAmdhsaCodeObjectVersion();
struct GcnBufferFormatInfo {
unsigned Format;
unsigned BitsPerComp;
unsigned NumComponents;
unsigned NumFormat;
unsigned DataFormat;
};
struct MAIInstInfo {
uint16_t Opcode;
bool is_dgemm;
bool is_gfx940_xdl;
};
#define GET_MIMGBaseOpcode_DECL
#define GET_MIMGDim_DECL
#define GET_MIMGEncoding_DECL
#define GET_MIMGLZMapping_DECL
#define GET_MIMGMIPMapping_DECL
#define GET_MIMGBiASMapping_DECL
#define GET_MAIInstInfoTable_DECL
#include "AMDGPUGenSearchableTables.inc"
namespace IsaInfo {
enum {
// The closed Vulkan driver sets 96, which limits the wave count to 8 but
// doesn't spill SGPRs as much as when 80 is set.
FIXED_NUM_SGPRS_FOR_INIT_BUG = 96,
TRAP_NUM_SGPRS = 16
};
enum class TargetIDSetting {
Unsupported,
Any,
Off,
On
};
class AMDGPUTargetID {
private:
const MCSubtargetInfo &STI;
TargetIDSetting XnackSetting;
TargetIDSetting SramEccSetting;
public:
explicit AMDGPUTargetID(const MCSubtargetInfo &STI);
~AMDGPUTargetID() = default;
/// \return True if the current xnack setting is not "Unsupported".
bool isXnackSupported() const {
return XnackSetting != TargetIDSetting::Unsupported;
}
/// \returns True if the current xnack setting is "On" or "Any".
bool isXnackOnOrAny() const {
return XnackSetting == TargetIDSetting::On ||
XnackSetting == TargetIDSetting::Any;
}
/// \returns True if current xnack setting is "On" or "Off",
/// false otherwise.
bool isXnackOnOrOff() const {
return getXnackSetting() == TargetIDSetting::On ||
getXnackSetting() == TargetIDSetting::Off;
}
/// \returns The current xnack TargetIDSetting, possible options are
/// "Unsupported", "Any", "Off", and "On".
TargetIDSetting getXnackSetting() const {
return XnackSetting;
}
/// Sets xnack setting to \p NewXnackSetting.
void setXnackSetting(TargetIDSetting NewXnackSetting) {
XnackSetting = NewXnackSetting;
}
/// \return True if the current sramecc setting is not "Unsupported".
bool isSramEccSupported() const {
return SramEccSetting != TargetIDSetting::Unsupported;
}
/// \returns True if the current sramecc setting is "On" or "Any".
bool isSramEccOnOrAny() const {
return SramEccSetting == TargetIDSetting::On ||
SramEccSetting == TargetIDSetting::Any;
}
/// \returns True if current sramecc setting is "On" or "Off",
/// false otherwise.
bool isSramEccOnOrOff() const {
return getSramEccSetting() == TargetIDSetting::On ||
getSramEccSetting() == TargetIDSetting::Off;
}
/// \returns The current sramecc TargetIDSetting, possible options are
/// "Unsupported", "Any", "Off", and "On".
TargetIDSetting getSramEccSetting() const {
return SramEccSetting;
}
/// Sets sramecc setting to \p NewSramEccSetting.
void setSramEccSetting(TargetIDSetting NewSramEccSetting) {
SramEccSetting = NewSramEccSetting;
}
void setTargetIDFromFeaturesString(StringRef FS);
void setTargetIDFromTargetIDStream(StringRef TargetID);
/// \returns String representation of an object.
std::string toString() const;
};
/// \returns Wavefront size for given subtarget \p STI.
unsigned getWavefrontSize(const MCSubtargetInfo *STI);
/// \returns Local memory size in bytes for given subtarget \p STI.
unsigned getLocalMemorySize(const MCSubtargetInfo *STI);
/// \returns Maximum addressable local memory size in bytes for given subtarget
/// \p STI.
unsigned getAddressableLocalMemorySize(const MCSubtargetInfo *STI);
/// \returns Number of execution units per compute unit for given subtarget \p
/// STI.
unsigned getEUsPerCU(const MCSubtargetInfo *STI);
/// \returns Maximum number of work groups per compute unit for given subtarget
/// \p STI and limited by given \p FlatWorkGroupSize.
unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
unsigned FlatWorkGroupSize);
/// \returns Minimum number of waves per execution unit for given subtarget \p
/// STI.
unsigned getMinWavesPerEU(const MCSubtargetInfo *STI);
/// \returns Maximum number of waves per execution unit for given subtarget \p
/// STI without any kind of limitation.
unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI);
/// \returns Number of waves per execution unit required to support the given \p
/// FlatWorkGroupSize.
unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI,
unsigned FlatWorkGroupSize);
/// \returns Minimum flat work group size for given subtarget \p STI.
unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI);
/// \returns Maximum flat work group size for given subtarget \p STI.
unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI);
/// \returns Number of waves per work group for given subtarget \p STI and
/// \p FlatWorkGroupSize.
unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
unsigned FlatWorkGroupSize);
/// \returns SGPR allocation granularity for given subtarget \p STI.
unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI);
/// \returns SGPR encoding granularity for given subtarget \p STI.
unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI);
/// \returns Total number of SGPRs for given subtarget \p STI.
unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI);
/// \returns Addressable number of SGPRs for given subtarget \p STI.
unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI);
/// \returns Minimum number of SGPRs that meets the given number of waves per
/// execution unit requirement for given subtarget \p STI.
unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU);
/// \returns Maximum number of SGPRs that meets the given number of waves per
/// execution unit requirement for given subtarget \p STI.
unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
bool Addressable);
/// \returns Number of extra SGPRs implicitly required by given subtarget \p
/// STI when the given special registers are used.
unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
bool FlatScrUsed, bool XNACKUsed);
/// \returns Number of extra SGPRs implicitly required by given subtarget \p
/// STI when the given special registers are used. XNACK is inferred from
/// \p STI.
unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
bool FlatScrUsed);
/// \returns Number of SGPR blocks needed for given subtarget \p STI when
/// \p NumSGPRs are used. \p NumSGPRs should already include any special
/// register counts.
unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs);
/// \returns VGPR allocation granularity for given subtarget \p STI.
///
/// For subtargets which support it, \p EnableWavefrontSize32 should match
/// the ENABLE_WAVEFRONT_SIZE32 kernel descriptor field.
unsigned
getVGPRAllocGranule(const MCSubtargetInfo *STI,
std::optional<bool> EnableWavefrontSize32 = std::nullopt);
/// \returns VGPR encoding granularity for given subtarget \p STI.
///
/// For subtargets which support it, \p EnableWavefrontSize32 should match
/// the ENABLE_WAVEFRONT_SIZE32 kernel descriptor field.
unsigned getVGPREncodingGranule(
const MCSubtargetInfo *STI,
std::optional<bool> EnableWavefrontSize32 = std::nullopt);
/// \returns Total number of VGPRs for given subtarget \p STI.
unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI);
/// \returns Addressable number of VGPRs for given subtarget \p STI.
unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI);
/// \returns Minimum number of VGPRs that meets given number of waves per
/// execution unit requirement for given subtarget \p STI.
unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU);
/// \returns Maximum number of VGPRs that meets given number of waves per
/// execution unit requirement for given subtarget \p STI.
unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU);
/// \returns Number of waves reachable for a given \p NumVGPRs usage for given
/// subtarget \p STI.
unsigned getNumWavesPerEUWithNumVGPRs(const MCSubtargetInfo *STI,
unsigned NumVGPRs);
/// \returns Number of VGPR blocks needed for given subtarget \p STI when
/// \p NumVGPRs are used.
///
/// For subtargets which support it, \p EnableWavefrontSize32 should match the
/// ENABLE_WAVEFRONT_SIZE32 kernel descriptor field.
unsigned
getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs,
std::optional<bool> EnableWavefrontSize32 = std::nullopt);
} // end namespace IsaInfo
LLVM_READONLY
int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIdx);
LLVM_READONLY
inline bool hasNamedOperand(uint64_t Opcode, uint64_t NamedIdx) {
return getNamedOperandIdx(Opcode, NamedIdx) != -1;
}
LLVM_READONLY
int getSOPPWithRelaxation(uint16_t Opcode);
struct MIMGBaseOpcodeInfo {
MIMGBaseOpcode BaseOpcode;
bool Store;
bool Atomic;
bool AtomicX2;
bool Sampler;
bool Gather4;
uint8_t NumExtraArgs;
bool Gradients;
bool G16;
bool Coordinates;
bool LodOrClampOrMip;
bool HasD16;
bool MSAA;
bool BVH;
};
LLVM_READONLY
const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc);
LLVM_READONLY
const MIMGBaseOpcodeInfo *getMIMGBaseOpcodeInfo(unsigned BaseOpcode);
struct MIMGDimInfo {
MIMGDim Dim;
uint8_t NumCoords;
uint8_t NumGradients;
bool MSAA;
bool DA;
uint8_t Encoding;
const char *AsmSuffix;
};
LLVM_READONLY
const MIMGDimInfo *getMIMGDimInfo(unsigned DimEnum);
LLVM_READONLY
const MIMGDimInfo *getMIMGDimInfoByEncoding(uint8_t DimEnc);
LLVM_READONLY
const MIMGDimInfo *getMIMGDimInfoByAsmSuffix(StringRef AsmSuffix);
struct MIMGLZMappingInfo {
MIMGBaseOpcode L;
MIMGBaseOpcode LZ;
};
struct MIMGMIPMappingInfo {
MIMGBaseOpcode MIP;
MIMGBaseOpcode NONMIP;
};
struct MIMGBiasMappingInfo {
MIMGBaseOpcode Bias;
MIMGBaseOpcode NoBias;
};
struct MIMGOffsetMappingInfo {
MIMGBaseOpcode Offset;
MIMGBaseOpcode NoOffset;
};
struct MIMGG16MappingInfo {
MIMGBaseOpcode G;
MIMGBaseOpcode G16;
};
LLVM_READONLY
const MIMGLZMappingInfo *getMIMGLZMappingInfo(unsigned L);
struct WMMAOpcodeMappingInfo {
unsigned Opcode2Addr;
unsigned Opcode3Addr;
};
LLVM_READONLY
const MIMGMIPMappingInfo *getMIMGMIPMappingInfo(unsigned MIP);
LLVM_READONLY
const MIMGBiasMappingInfo *getMIMGBiasMappingInfo(unsigned Bias);
LLVM_READONLY
const MIMGOffsetMappingInfo *getMIMGOffsetMappingInfo(unsigned Offset);
LLVM_READONLY
const MIMGG16MappingInfo *getMIMGG16MappingInfo(unsigned G);
LLVM_READONLY
int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
unsigned VDataDwords, unsigned VAddrDwords);
LLVM_READONLY
int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels);
LLVM_READONLY
unsigned getAddrSizeMIMGOp(const MIMGBaseOpcodeInfo *BaseOpcode,
const MIMGDimInfo *Dim, bool IsA16,
bool IsG16Supported);
struct MIMGInfo {
uint16_t Opcode;
uint16_t BaseOpcode;
uint8_t MIMGEncoding;
uint8_t VDataDwords;
uint8_t VAddrDwords;
uint8_t VAddrOperands;
};
LLVM_READONLY
const MIMGInfo *getMIMGInfo(unsigned Opc);
LLVM_READONLY
int getMTBUFBaseOpcode(unsigned Opc);
LLVM_READONLY
int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements);
LLVM_READONLY
int getMTBUFElements(unsigned Opc);
LLVM_READONLY
bool getMTBUFHasVAddr(unsigned Opc);
LLVM_READONLY
bool getMTBUFHasSrsrc(unsigned Opc);
LLVM_READONLY
bool getMTBUFHasSoffset(unsigned Opc);
LLVM_READONLY
int getMUBUFBaseOpcode(unsigned Opc);
LLVM_READONLY
int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements);
LLVM_READONLY
int getMUBUFElements(unsigned Opc);
LLVM_READONLY
bool getMUBUFHasVAddr(unsigned Opc);
LLVM_READONLY
bool getMUBUFHasSrsrc(unsigned Opc);
LLVM_READONLY
bool getMUBUFHasSoffset(unsigned Opc);
LLVM_READONLY
bool getMUBUFIsBufferInv(unsigned Opc);
LLVM_READONLY
bool getSMEMIsBuffer(unsigned Opc);
LLVM_READONLY
bool getVOP1IsSingle(unsigned Opc);
LLVM_READONLY
bool getVOP2IsSingle(unsigned Opc);
LLVM_READONLY
bool getVOP3IsSingle(unsigned Opc);
LLVM_READONLY
bool isVOPC64DPP(unsigned Opc);
/// Returns true if MAI operation is a double precision GEMM.
LLVM_READONLY
bool getMAIIsDGEMM(unsigned Opc);
LLVM_READONLY
bool getMAIIsGFX940XDL(unsigned Opc);
struct CanBeVOPD {
bool X;
bool Y;
};
LLVM_READONLY
CanBeVOPD getCanBeVOPD(unsigned Opc);
LLVM_READONLY
const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp,
uint8_t NumComponents,
uint8_t NumFormat,
const MCSubtargetInfo &STI);
LLVM_READONLY
const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format,
const MCSubtargetInfo &STI);
LLVM_READONLY
int getMCOpcode(uint16_t Opcode, unsigned Gen);
LLVM_READONLY
unsigned getVOPDOpcode(unsigned Opc);
LLVM_READONLY
int getVOPDFull(unsigned OpX, unsigned OpY);
LLVM_READONLY
bool isVOPD(unsigned Opc);
LLVM_READNONE
bool isMAC(unsigned Opc);
LLVM_READNONE
bool isPermlane16(unsigned Opc);
namespace VOPD {
enum Component : unsigned {
DST = 0,
SRC0,
SRC1,
SRC2,
DST_NUM = 1,
MAX_SRC_NUM = 3,
MAX_OPR_NUM = DST_NUM + MAX_SRC_NUM
};
// Number of VGPR banks per VOPD component operand.
constexpr unsigned BANKS_NUM[] = {2, 4, 4, 2};
enum ComponentIndex : unsigned { X = 0, Y = 1 };
constexpr unsigned COMPONENTS[] = {ComponentIndex::X, ComponentIndex::Y};
constexpr unsigned COMPONENTS_NUM = 2;
// Properties of VOPD components.
class ComponentProps {
private:
unsigned SrcOperandsNum = 0;
std::optional<unsigned> MandatoryLiteralIdx;
bool HasSrc2Acc = false;
public:
ComponentProps() = default;
ComponentProps(const MCInstrDesc &OpDesc);
// Return the total number of src operands this component has.
unsigned getCompSrcOperandsNum() const { return SrcOperandsNum; }
// Return the number of src operands of this component visible to the parser.
unsigned getCompParsedSrcOperandsNum() const {
return SrcOperandsNum - HasSrc2Acc;
}
// Return true iif this component has a mandatory literal.
bool hasMandatoryLiteral() const { return MandatoryLiteralIdx.has_value(); }
// If this component has a mandatory literal, return component operand
// index of this literal (i.e. either Component::SRC1 or Component::SRC2).
unsigned getMandatoryLiteralCompOperandIndex() const {
assert(hasMandatoryLiteral());
return *MandatoryLiteralIdx;
}
// Return true iif this component has operand
// with component index CompSrcIdx and this operand may be a register.
bool hasRegSrcOperand(unsigned CompSrcIdx) const {
assert(CompSrcIdx < Component::MAX_SRC_NUM);
return SrcOperandsNum > CompSrcIdx && !hasMandatoryLiteralAt(CompSrcIdx);
}
// Return true iif this component has tied src2.
bool hasSrc2Acc() const { return HasSrc2Acc; }
private:
bool hasMandatoryLiteralAt(unsigned CompSrcIdx) const {
assert(CompSrcIdx < Component::MAX_SRC_NUM);
return hasMandatoryLiteral() &&
*MandatoryLiteralIdx == Component::DST_NUM + CompSrcIdx;
}
};
enum ComponentKind : unsigned {
SINGLE = 0, // A single VOP1 or VOP2 instruction which may be used in VOPD.
COMPONENT_X, // A VOPD instruction, X component.
COMPONENT_Y, // A VOPD instruction, Y component.
MAX = COMPONENT_Y
};
// Interface functions of this class map VOPD component operand indices
// to indices of operands in MachineInstr/MCInst or parsed operands array.
//
// Note that this class operates with 3 kinds of indices:
// - VOPD component operand indices (Component::DST, Component::SRC0, etc.);
// - MC operand indices (they refer operands in a MachineInstr/MCInst);
// - parsed operand indices (they refer operands in parsed operands array).
//
// For SINGLE components mapping between these indices is trivial.
// But things get more complicated for COMPONENT_X and
// COMPONENT_Y because these components share the same
// MachineInstr/MCInst and the same parsed operands array.
// Below is an example of component operand to parsed operand
// mapping for the following instruction:
//
// v_dual_add_f32 v255, v4, v5 :: v_dual_mov_b32 v6, v1
//
// PARSED COMPONENT PARSED
// COMPONENT OPERANDS OPERAND INDEX OPERAND INDEX
// -------------------------------------------------------------------
// "v_dual_add_f32" 0
// v_dual_add_f32 v255 0 (DST) --> 1
// v4 1 (SRC0) --> 2
// v5 2 (SRC1) --> 3
// "::" 4
// "v_dual_mov_b32" 5
// v_dual_mov_b32 v6 0 (DST) --> 6
// v1 1 (SRC0) --> 7
// -------------------------------------------------------------------
//
class ComponentLayout {
private:
// Regular MachineInstr/MCInst operands are ordered as follows:
// dst, src0 [, other src operands]
// VOPD MachineInstr/MCInst operands are ordered as follows:
// dstX, dstY, src0X [, other OpX operands], src0Y [, other OpY operands]
// Each ComponentKind has operand indices defined below.
static constexpr unsigned MC_DST_IDX[] = {0, 0, 1};
static constexpr unsigned FIRST_MC_SRC_IDX[] = {1, 2, 2 /* + OpX.MCSrcNum */};
// Parsed operands of regular instructions are ordered as follows:
// Mnemo dst src0 [vsrc1 ...]
// Parsed VOPD operands are ordered as follows:
// OpXMnemo dstX src0X [vsrc1X|imm vsrc1X|vsrc1X imm] '::'
// OpYMnemo dstY src0Y [vsrc1Y|imm vsrc1Y|vsrc1Y imm]
// Each ComponentKind has operand indices defined below.
static constexpr unsigned PARSED_DST_IDX[] = {1, 1,
4 /* + OpX.ParsedSrcNum */};
static constexpr unsigned FIRST_PARSED_SRC_IDX[] = {
2, 2, 5 /* + OpX.ParsedSrcNum */};
private:
const ComponentKind Kind;
const ComponentProps PrevComp;
public:
// Create layout for COMPONENT_X or SINGLE component.
ComponentLayout(ComponentKind Kind) : Kind(Kind) {
assert(Kind == ComponentKind::SINGLE || Kind == ComponentKind::COMPONENT_X);
}
// Create layout for COMPONENT_Y which depends on COMPONENT_X layout.
ComponentLayout(const ComponentProps &OpXProps)
: Kind(ComponentKind::COMPONENT_Y), PrevComp(OpXProps) {}
public:
// Return the index of dst operand in MCInst operands.
unsigned getIndexOfDstInMCOperands() const { return MC_DST_IDX[Kind]; }
// Return the index of the specified src operand in MCInst operands.
unsigned getIndexOfSrcInMCOperands(unsigned CompSrcIdx) const {
assert(CompSrcIdx < Component::MAX_SRC_NUM);
return FIRST_MC_SRC_IDX[Kind] + getPrevCompSrcNum() + CompSrcIdx;
}
// Return the index of dst operand in the parsed operands array.
unsigned getIndexOfDstInParsedOperands() const {
return PARSED_DST_IDX[Kind] + getPrevCompParsedSrcNum();
}
// Return the index of the specified src operand in the parsed operands array.
unsigned getIndexOfSrcInParsedOperands(unsigned CompSrcIdx) const {
assert(CompSrcIdx < Component::MAX_SRC_NUM);
return FIRST_PARSED_SRC_IDX[Kind] + getPrevCompParsedSrcNum() + CompSrcIdx;
}
private:
unsigned getPrevCompSrcNum() const {
return PrevComp.getCompSrcOperandsNum();
}
unsigned getPrevCompParsedSrcNum() const {
return PrevComp.getCompParsedSrcOperandsNum();
}
};
// Layout and properties of VOPD components.
class ComponentInfo : public ComponentLayout, public ComponentProps {
public:
// Create ComponentInfo for COMPONENT_X or SINGLE component.
ComponentInfo(const MCInstrDesc &OpDesc,
ComponentKind Kind = ComponentKind::SINGLE)
: ComponentLayout(Kind), ComponentProps(OpDesc) {}
// Create ComponentInfo for COMPONENT_Y which depends on COMPONENT_X layout.
ComponentInfo(const MCInstrDesc &OpDesc, const ComponentProps &OpXProps)
: ComponentLayout(OpXProps), ComponentProps(OpDesc) {}
// Map component operand index to parsed operand index.
// Return 0 if the specified operand does not exist.
unsigned getIndexInParsedOperands(unsigned CompOprIdx) const;
};
// Properties of VOPD instructions.
class InstInfo {
private:
const ComponentInfo CompInfo[COMPONENTS_NUM];
public:
using RegIndices = std::array<unsigned, Component::MAX_OPR_NUM>;
InstInfo(const MCInstrDesc &OpX, const MCInstrDesc &OpY)
: CompInfo{OpX, OpY} {}
InstInfo(const ComponentInfo &OprInfoX, const ComponentInfo &OprInfoY)
: CompInfo{OprInfoX, OprInfoY} {}
const ComponentInfo &operator[](size_t ComponentIdx) const {
assert(ComponentIdx < COMPONENTS_NUM);
return CompInfo[ComponentIdx];
}
// Check VOPD operands constraints.
// GetRegIdx(Component, MCOperandIdx) must return a VGPR register index
// for the specified component and MC operand. The callback must return 0
// if the operand is not a register or not a VGPR.
bool hasInvalidOperand(
std::function<unsigned(unsigned, unsigned)> GetRegIdx) const {
return getInvalidCompOperandIndex(GetRegIdx).has_value();
}
// Check VOPD operands constraints.
// Return the index of an invalid component operand, if any.
std::optional<unsigned> getInvalidCompOperandIndex(
std::function<unsigned(unsigned, unsigned)> GetRegIdx) const;
private:
RegIndices
getRegIndices(unsigned ComponentIdx,
std::function<unsigned(unsigned, unsigned)> GetRegIdx) const;
};
} // namespace VOPD
LLVM_READONLY
std::pair<unsigned, unsigned> getVOPDComponents(unsigned VOPDOpcode);
LLVM_READONLY
// Get properties of 2 single VOP1/VOP2 instructions
// used as components to create a VOPD instruction.
VOPD::InstInfo getVOPDInstInfo(const MCInstrDesc &OpX, const MCInstrDesc &OpY);
LLVM_READONLY
// Get properties of VOPD X and Y components.
VOPD::InstInfo
getVOPDInstInfo(unsigned VOPDOpcode, const MCInstrInfo *InstrInfo);
LLVM_READONLY
bool isTrue16Inst(unsigned Opc);
LLVM_READONLY
unsigned mapWMMA2AddrTo3AddrOpcode(unsigned Opc);
LLVM_READONLY
unsigned mapWMMA3AddrTo2AddrOpcode(unsigned Opc);
void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
const MCSubtargetInfo *STI);
amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
const MCSubtargetInfo *STI);
bool isGroupSegment(const GlobalValue *GV);
bool isGlobalSegment(const GlobalValue *GV);
bool isReadOnlySegment(const GlobalValue *GV);
/// \returns True if constants should be emitted to .text section for given
/// target triple \p TT, false otherwise.
bool shouldEmitConstantsToTextSection(const Triple &TT);
/// \returns Integer value requested using \p F's \p Name attribute.
///
/// \returns \p Default if attribute is not present.
///
/// \returns \p Default and emits error if requested value cannot be converted
/// to integer.
int getIntegerAttribute(const Function &F, StringRef Name, int Default);
/// \returns A pair of integer values requested using \p F's \p Name attribute
/// in "first[,second]" format ("second" is optional unless \p OnlyFirstRequired
/// is false).
///
/// \returns \p Default if attribute is not present.
///
/// \returns \p Default and emits error if one of the requested values cannot be
/// converted to integer, or \p OnlyFirstRequired is false and "second" value is
/// not present.
std::pair<int, int> getIntegerPairAttribute(const Function &F,
StringRef Name,
std::pair<int, int> Default,
bool OnlyFirstRequired = false);
/// Represents the counter values to wait for in an s_waitcnt instruction.
///
/// Large values (including the maximum possible integer) can be used to
/// represent "don't care" waits.
struct Waitcnt {
unsigned VmCnt = ~0u;
unsigned ExpCnt = ~0u;
unsigned LgkmCnt = ~0u;
unsigned VsCnt = ~0u;
Waitcnt() = default;
Waitcnt(unsigned VmCnt, unsigned ExpCnt, unsigned LgkmCnt, unsigned VsCnt)
: VmCnt(VmCnt), ExpCnt(ExpCnt), LgkmCnt(LgkmCnt), VsCnt(VsCnt) {}
static Waitcnt allZero(bool HasVscnt) {
return Waitcnt(0, 0, 0, HasVscnt ? 0 : ~0u);
}
static Waitcnt allZeroExceptVsCnt() { return Waitcnt(0, 0, 0, ~0u); }
bool hasWait() const {
return VmCnt != ~0u || ExpCnt != ~0u || LgkmCnt != ~0u || VsCnt != ~0u;
}
bool hasWaitExceptVsCnt() const {
return VmCnt != ~0u || ExpCnt != ~0u || LgkmCnt != ~0u;
}
bool hasWaitVsCnt() const {
return VsCnt != ~0u;
}
bool dominates(const Waitcnt &Other) const {
return VmCnt <= Other.VmCnt && ExpCnt <= Other.ExpCnt &&
LgkmCnt <= Other.LgkmCnt && VsCnt <= Other.VsCnt;
}
Waitcnt combined(const Waitcnt &Other) const {
return Waitcnt(std::min(VmCnt, Other.VmCnt), std::min(ExpCnt, Other.ExpCnt),
std::min(LgkmCnt, Other.LgkmCnt),
std::min(VsCnt, Other.VsCnt));
}
};
/// \returns Vmcnt bit mask for given isa \p Version.
unsigned getVmcntBitMask(const IsaVersion &Version);
/// \returns Expcnt bit mask for given isa \p Version.
unsigned getExpcntBitMask(const IsaVersion &Version);
/// \returns Lgkmcnt bit mask for given isa \p Version.
unsigned getLgkmcntBitMask(const IsaVersion &Version);
/// \returns Waitcnt bit mask for given isa \p Version.
unsigned getWaitcntBitMask(const IsaVersion &Version);
/// \returns Decoded Vmcnt from given \p Waitcnt for given isa \p Version.
unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt);
/// \returns Decoded Expcnt from given \p Waitcnt for given isa \p Version.
unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt);
/// \returns Decoded Lgkmcnt from given \p Waitcnt for given isa \p Version.
unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt);
/// Decodes Vmcnt, Expcnt and Lgkmcnt from given \p Waitcnt for given isa
/// \p Version, and writes decoded values into \p Vmcnt, \p Expcnt and
/// \p Lgkmcnt respectively.
///
/// \details \p Vmcnt, \p Expcnt and \p Lgkmcnt are decoded as follows:
/// \p Vmcnt = \p Waitcnt[3:0] (pre-gfx9)
/// \p Vmcnt = \p Waitcnt[15:14,3:0] (gfx9,10)
/// \p Vmcnt = \p Waitcnt[15:10] (gfx11+)
/// \p Expcnt = \p Waitcnt[6:4] (pre-gfx11)
/// \p Expcnt = \p Waitcnt[2:0] (gfx11+)
/// \p Lgkmcnt = \p Waitcnt[11:8] (pre-gfx10)
/// \p Lgkmcnt = \p Waitcnt[13:8] (gfx10)
/// \p Lgkmcnt = \p Waitcnt[9:4] (gfx11+)
void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt);
Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded);
/// \returns \p Waitcnt with encoded \p Vmcnt for given isa \p Version.
unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
unsigned Vmcnt);
/// \returns \p Waitcnt with encoded \p Expcnt for given isa \p Version.
unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
unsigned Expcnt);
/// \returns \p Waitcnt with encoded \p Lgkmcnt for given isa \p Version.
unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
unsigned Lgkmcnt);
/// Encodes \p Vmcnt, \p Expcnt and \p Lgkmcnt into Waitcnt for given isa
/// \p Version.
///
/// \details \p Vmcnt, \p Expcnt and \p Lgkmcnt are encoded as follows:
/// Waitcnt[2:0] = \p Expcnt (gfx11+)
/// Waitcnt[3:0] = \p Vmcnt (pre-gfx9)
/// Waitcnt[3:0] = \p Vmcnt[3:0] (gfx9,10)
/// Waitcnt[6:4] = \p Expcnt (pre-gfx11)
/// Waitcnt[9:4] = \p Lgkmcnt (gfx11+)
/// Waitcnt[11:8] = \p Lgkmcnt (pre-gfx10)
/// Waitcnt[13:8] = \p Lgkmcnt (gfx10)
/// Waitcnt[15:10] = \p Vmcnt (gfx11+)
/// Waitcnt[15:14] = \p Vmcnt[5:4] (gfx9,10)
///
/// \returns Waitcnt with encoded \p Vmcnt, \p Expcnt and \p Lgkmcnt for given
/// isa \p Version.
unsigned encodeWaitcnt(const IsaVersion &Version,
unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt);
unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded);
namespace Hwreg {
LLVM_READONLY
int64_t getHwregId(const StringRef Name, const MCSubtargetInfo &STI);
LLVM_READNONE
bool isValidHwreg(int64_t Id);
LLVM_READNONE
bool isValidHwregOffset(int64_t Offset);
LLVM_READNONE
bool isValidHwregWidth(int64_t Width);
LLVM_READNONE
uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width);
LLVM_READNONE
StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI);
void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width);
} // namespace Hwreg
namespace DepCtr {
int getDefaultDepCtrEncoding(const MCSubtargetInfo &STI);
int encodeDepCtr(const StringRef Name, int64_t Val, unsigned &UsedOprMask,
const MCSubtargetInfo &STI);
bool isSymbolicDepCtrEncoding(unsigned Code, bool &HasNonDefaultVal,
const MCSubtargetInfo &STI);
bool decodeDepCtr(unsigned Code, int &Id, StringRef &Name, unsigned &Val,
bool &IsDefault, const MCSubtargetInfo &STI);
} // namespace DepCtr
namespace Exp {
bool getTgtName(unsigned Id, StringRef &Name, int &Index);
LLVM_READONLY
unsigned getTgtId(const StringRef Name);
LLVM_READNONE
bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI);
} // namespace Exp
namespace MTBUFFormat {
LLVM_READNONE
int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt);
void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt);
int64_t getDfmt(const StringRef Name);
StringRef getDfmtName(unsigned Id);
int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI);
StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI);
bool isValidDfmtNfmt(unsigned Val, const MCSubtargetInfo &STI);
bool isValidNfmt(unsigned Val, const MCSubtargetInfo &STI);
int64_t getUnifiedFormat(const StringRef Name, const MCSubtargetInfo &STI);
StringRef getUnifiedFormatName(unsigned Id, const MCSubtargetInfo &STI);
bool isValidUnifiedFormat(unsigned Val, const MCSubtargetInfo &STI);
int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt,
const MCSubtargetInfo &STI);
bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI);
unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI);
} // namespace MTBUFFormat
namespace SendMsg {
LLVM_READONLY
int64_t getMsgId(const StringRef Name, const MCSubtargetInfo &STI);
LLVM_READONLY
int64_t getMsgOpId(int64_t MsgId, const StringRef Name);
LLVM_READNONE
StringRef getMsgName(int64_t MsgId, const MCSubtargetInfo &STI);
LLVM_READNONE
StringRef getMsgOpName(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI);
LLVM_READNONE
bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI);
LLVM_READNONE
bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI,
bool Strict = true);
LLVM_READNONE
bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId,
const MCSubtargetInfo &STI, bool Strict = true);
LLVM_READNONE
bool msgRequiresOp(int64_t MsgId, const MCSubtargetInfo &STI);
LLVM_READNONE
bool msgSupportsStream(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI);
void decodeMsg(unsigned Val, uint16_t &MsgId, uint16_t &OpId,
uint16_t &StreamId, const MCSubtargetInfo &STI);
LLVM_READNONE
uint64_t encodeMsg(uint64_t MsgId,
uint64_t OpId,
uint64_t StreamId);
} // namespace SendMsg
unsigned getInitialPSInputAddr(const Function &F);
bool getHasColorExport(const Function &F);
bool getHasDepthExport(const Function &F);
LLVM_READNONE
bool isShader(CallingConv::ID CC);
LLVM_READNONE
bool isGraphics(CallingConv::ID CC);
LLVM_READNONE
bool isCompute(CallingConv::ID CC);
LLVM_READNONE
bool isEntryFunctionCC(CallingConv::ID CC);
// These functions are considered entrypoints into the current module, i.e. they
// are allowed to be called from outside the current module. This is different
// from isEntryFunctionCC, which is only true for functions that are entered by
// the hardware. Module entry points include all entry functions but also
// include functions that can be called from other functions inside or outside
// the current module. Module entry functions are allowed to allocate LDS.
LLVM_READNONE
bool isModuleEntryFunctionCC(CallingConv::ID CC);
bool isKernelCC(const Function *Func);
// FIXME: Remove this when calling conventions cleaned up
LLVM_READNONE
inline bool isKernel(CallingConv::ID CC) {
switch (CC) {
case CallingConv::AMDGPU_KERNEL:
case CallingConv::SPIR_KERNEL:
return true;
default:
return false;
}
}
bool hasXNACK(const MCSubtargetInfo &STI);
bool hasSRAMECC(const MCSubtargetInfo &STI);
bool hasMIMG_R128(const MCSubtargetInfo &STI);
bool hasA16(const MCSubtargetInfo &STI);
bool hasG16(const MCSubtargetInfo &STI);
bool hasPackedD16(const MCSubtargetInfo &STI);
bool isSI(const MCSubtargetInfo &STI);
bool isCI(const MCSubtargetInfo &STI);
bool isVI(const MCSubtargetInfo &STI);
bool isGFX9(const MCSubtargetInfo &STI);
bool isGFX9_GFX10(const MCSubtargetInfo &STI);
bool isGFX8_GFX9_GFX10(const MCSubtargetInfo &STI);
bool isGFX8Plus(const MCSubtargetInfo &STI);
bool isGFX9Plus(const MCSubtargetInfo &STI);
bool isGFX10(const MCSubtargetInfo &STI);
bool isGFX10Plus(const MCSubtargetInfo &STI);
bool isNotGFX10Plus(const MCSubtargetInfo &STI);
bool isGFX10Before1030(const MCSubtargetInfo &STI);
bool isGFX11(const MCSubtargetInfo &STI);
bool isGFX11Plus(const MCSubtargetInfo &STI);
bool isNotGFX11Plus(const MCSubtargetInfo &STI);
bool isGCN3Encoding(const MCSubtargetInfo &STI);
bool isGFX10_AEncoding(const MCSubtargetInfo &STI);
bool isGFX10_BEncoding(const MCSubtargetInfo &STI);
bool hasGFX10_3Insts(const MCSubtargetInfo &STI);
bool isGFX90A(const MCSubtargetInfo &STI);
bool isGFX940(const MCSubtargetInfo &STI);
bool hasArchitectedFlatScratch(const MCSubtargetInfo &STI);
bool hasMAIInsts(const MCSubtargetInfo &STI);
bool hasVOPD(const MCSubtargetInfo &STI);
int getTotalNumVGPRs(bool has90AInsts, int32_t ArgNumAGPR, int32_t ArgNumVGPR);
/// Is Reg - scalar register
bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI);
/// If \p Reg is a pseudo reg, return the correct hardware register given
/// \p STI otherwise return \p Reg.
unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI);
/// Convert hardware register \p Reg to a pseudo register
LLVM_READNONE
unsigned mc2PseudoReg(unsigned Reg);
LLVM_READNONE
bool isInlineValue(unsigned Reg);
/// Is this an AMDGPU specific source operand? These include registers,
/// inline constants, literals and mandatory literals (KImm).
bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo);
/// Is this a KImm operand?
bool isKImmOperand(const MCInstrDesc &Desc, unsigned OpNo);
/// Is this floating-point operand?
bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo);
/// Does this operand support only inlinable literals?
bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo);
/// Get the size in bits of a register from the register class \p RC.
unsigned getRegBitWidth(unsigned RCID);
/// Get the size in bits of a register from the register class \p RC.
unsigned getRegBitWidth(const MCRegisterClass &RC);
/// Get size of register operand
unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
unsigned OpNo);
LLVM_READNONE
inline unsigned getOperandSize(const MCOperandInfo &OpInfo) {
switch (OpInfo.OperandType) {
case AMDGPU::OPERAND_REG_IMM_INT32:
case AMDGPU::OPERAND_REG_IMM_FP32:
case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED:
case AMDGPU::OPERAND_REG_INLINE_C_INT32:
case AMDGPU::OPERAND_REG_INLINE_C_FP32:
case AMDGPU::OPERAND_REG_INLINE_AC_INT32:
case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
case AMDGPU::OPERAND_REG_IMM_V2INT32:
case AMDGPU::OPERAND_REG_IMM_V2FP32:
case AMDGPU::OPERAND_REG_INLINE_C_V2INT32:
case AMDGPU::OPERAND_REG_INLINE_C_V2FP32:
case AMDGPU::OPERAND_KIMM32:
case AMDGPU::OPERAND_KIMM16: // mandatory literal is always size 4
return 4;
case AMDGPU::OPERAND_REG_IMM_INT64:
case AMDGPU::OPERAND_REG_IMM_FP64:
case AMDGPU::OPERAND_REG_INLINE_C_INT64:
case AMDGPU::OPERAND_REG_INLINE_C_FP64:
case AMDGPU::OPERAND_REG_INLINE_AC_FP64:
return 8;
case AMDGPU::OPERAND_REG_IMM_INT16:
case AMDGPU::OPERAND_REG_IMM_FP16:
case AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED:
case AMDGPU::OPERAND_REG_INLINE_C_INT16:
case AMDGPU::OPERAND_REG_INLINE_C_FP16:
case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
case AMDGPU::OPERAND_REG_INLINE_AC_INT16:
case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
case AMDGPU::OPERAND_REG_IMM_V2INT16:
case AMDGPU::OPERAND_REG_IMM_V2FP16:
return 2;
default:
llvm_unreachable("unhandled operand type");
}
}
LLVM_READNONE
inline unsigned getOperandSize(const MCInstrDesc &Desc, unsigned OpNo) {
return getOperandSize(Desc.operands()[OpNo]);
}
/// Is this literal inlinable, and not one of the values intended for floating
/// point values.
LLVM_READNONE
inline bool isInlinableIntLiteral(int64_t Literal) {
return Literal >= -16 && Literal <= 64;
}
/// Is this literal inlinable
LLVM_READNONE
bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi);
LLVM_READNONE
bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi);
LLVM_READNONE
bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi);
LLVM_READNONE
bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi);
LLVM_READNONE
bool isInlinableIntLiteralV216(int32_t Literal);
LLVM_READNONE
bool isFoldableLiteralV216(int32_t Literal, bool HasInv2Pi);
bool isArgPassedInSGPR(const Argument *Arg);
LLVM_READONLY
bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST,
int64_t EncodedOffset);
LLVM_READONLY
bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST,
int64_t EncodedOffset,
bool IsBuffer);
/// Convert \p ByteOffset to dwords if the subtarget uses dword SMRD immediate
/// offsets.
uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST, uint64_t ByteOffset);
/// \returns The encoding that will be used for \p ByteOffset in the
/// SMRD offset field, or std::nullopt if it won't fit. On GFX9 and GFX10
/// S_LOAD instructions have a signed offset, on other subtargets it is
/// unsigned. S_BUFFER has an unsigned offset for all subtargets.
std::optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST,
int64_t ByteOffset, bool IsBuffer);
/// \return The encoding that can be used for a 32-bit literal offset in an SMRD
/// instruction. This is only useful on CI.s
std::optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST,
int64_t ByteOffset);
/// For FLAT segment the offset must be positive;
/// MSB is ignored and forced to zero.
///
/// \return The number of bits available for the signed offset field in flat
/// instructions. Note that some forms of the instruction disallow negative
/// offsets.
unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST);
/// \returns true if this offset is small enough to fit in the SMRD
/// offset field. \p ByteOffset should be the offset in bytes and
/// not the encoded offset.
bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset);
bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
const GCNSubtarget *Subtarget,
Align Alignment = Align(4));
LLVM_READNONE
inline bool isLegal64BitDPPControl(unsigned DC) {
return DC >= DPP::ROW_NEWBCAST_FIRST && DC <= DPP::ROW_NEWBCAST_LAST;
}
/// \returns true if the intrinsic is divergent
bool isIntrinsicSourceOfDivergence(unsigned IntrID);
// Track defaults for fields in the MODE register.
struct SIModeRegisterDefaults {
/// Floating point opcodes that support exception flag gathering quiet and
/// propagate signaling NaN inputs per IEEE 754-2008. Min_dx10 and max_dx10
/// become IEEE 754- 2008 compliant due to signaling NaN propagation and
/// quieting.
bool IEEE : 1;
/// Used by the vector ALU to force DX10-style treatment of NaNs: when set,
/// clamp NaN to zero; otherwise, pass NaN through.
bool DX10Clamp : 1;
/// If this is set, neither input or output denormals are flushed for most f32
/// instructions.
DenormalMode FP32Denormals;
/// If this is set, neither input or output denormals are flushed for both f64
/// and f16/v2f16 instructions.
DenormalMode FP64FP16Denormals;
SIModeRegisterDefaults() :
IEEE(true),
DX10Clamp(true),
FP32Denormals(DenormalMode::getIEEE()),
FP64FP16Denormals(DenormalMode::getIEEE()) {}
SIModeRegisterDefaults(const Function &F);
static SIModeRegisterDefaults getDefaultForCallingConv(CallingConv::ID CC) {
SIModeRegisterDefaults Mode;
Mode.IEEE = !AMDGPU::isShader(CC);
return Mode;
}
bool operator ==(const SIModeRegisterDefaults Other) const {
return IEEE == Other.IEEE && DX10Clamp == Other.DX10Clamp &&
FP32Denormals == Other.FP32Denormals &&
FP64FP16Denormals == Other.FP64FP16Denormals;
}
bool allFP32Denormals() const {
return FP32Denormals == DenormalMode::getIEEE();
}
bool allFP64FP16Denormals() const {
return FP64FP16Denormals == DenormalMode::getIEEE();
}
/// Get the encoding value for the FP_DENORM bits of the mode register for the
/// FP32 denormal mode.
uint32_t fpDenormModeSPValue() const {
if (FP32Denormals == DenormalMode::getPreserveSign())
return FP_DENORM_FLUSH_IN_FLUSH_OUT;
if (FP32Denormals.Output == DenormalMode::PreserveSign)
return FP_DENORM_FLUSH_OUT;
if (FP32Denormals.Input == DenormalMode::PreserveSign)
return FP_DENORM_FLUSH_IN;
return FP_DENORM_FLUSH_NONE;
}
/// Get the encoding value for the FP_DENORM bits of the mode register for the
/// FP64/FP16 denormal mode.
uint32_t fpDenormModeDPValue() const {
if (FP64FP16Denormals == DenormalMode::getPreserveSign())
return FP_DENORM_FLUSH_IN_FLUSH_OUT;
if (FP64FP16Denormals.Output == DenormalMode::PreserveSign)
return FP_DENORM_FLUSH_OUT;
if (FP64FP16Denormals.Input == DenormalMode::PreserveSign)
return FP_DENORM_FLUSH_IN;
return FP_DENORM_FLUSH_NONE;
}
/// Returns true if a flag is compatible if it's enabled in the callee, but
/// disabled in the caller.
static bool oneWayCompatible(bool CallerMode, bool CalleeMode) {
return CallerMode == CalleeMode || (!CallerMode && CalleeMode);
}
// FIXME: Inlining should be OK for dx10-clamp, since the caller's mode should
// be able to override.
bool isInlineCompatible(SIModeRegisterDefaults CalleeMode) const {
if (DX10Clamp != CalleeMode.DX10Clamp)
return false;
if (IEEE != CalleeMode.IEEE)
return false;
// Allow inlining denormals enabled into denormals flushed functions.
return oneWayCompatible(FP64FP16Denormals.Input !=
DenormalMode::PreserveSign,
CalleeMode.FP64FP16Denormals.Input !=
DenormalMode::PreserveSign) &&
oneWayCompatible(FP64FP16Denormals.Output !=
DenormalMode::PreserveSign,
CalleeMode.FP64FP16Denormals.Output !=
DenormalMode::PreserveSign) &&
oneWayCompatible(FP32Denormals.Input != DenormalMode::PreserveSign,
CalleeMode.FP32Denormals.Input !=
DenormalMode::PreserveSign) &&
oneWayCompatible(FP32Denormals.Output != DenormalMode::PreserveSign,
CalleeMode.FP32Denormals.Output !=
DenormalMode::PreserveSign);
}
};
} // end namespace AMDGPU
raw_ostream &operator<<(raw_ostream &OS,
const AMDGPU::IsaInfo::TargetIDSetting S);
} // end namespace llvm
#endif // LLVM_LIB_TARGET_AMDGPU_UTILS_AMDGPUBASEINFO_H