blob: bec07d99038011d8cf264e963444abd2201e7229 [file] [log] [blame]
//===-- SIShrinkInstructions.cpp - Shrink Instructions --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
/// The pass tries to use the 32-bit encoding for instructions when possible.
//===----------------------------------------------------------------------===//
//
#include "AMDGPU.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#define DEBUG_TYPE "si-shrink-instructions"
STATISTIC(NumInstructionsShrunk,
"Number of 64-bit instruction reduced to 32-bit.");
STATISTIC(NumLiteralConstantsFolded,
"Number of literal constants folded into 32-bit instructions.");
using namespace llvm;
namespace {
class SIShrinkInstructions : public MachineFunctionPass {
MachineFunction *MF;
MachineRegisterInfo *MRI;
const GCNSubtarget *ST;
const SIInstrInfo *TII;
const SIRegisterInfo *TRI;
public:
static char ID;
public:
SIShrinkInstructions() : MachineFunctionPass(ID) {
}
bool foldImmediates(MachineInstr &MI, bool TryToCommute = true) const;
bool shouldShrinkTrue16(MachineInstr &MI) const;
bool isKImmOperand(const MachineOperand &Src) const;
bool isKUImmOperand(const MachineOperand &Src) const;
bool isKImmOrKUImmOperand(const MachineOperand &Src, bool &IsUnsigned) const;
bool isReverseInlineImm(const MachineOperand &Src, int32_t &ReverseImm) const;
void copyExtraImplicitOps(MachineInstr &NewMI, MachineInstr &MI) const;
void shrinkScalarCompare(MachineInstr &MI) const;
void shrinkMIMG(MachineInstr &MI) const;
void shrinkMadFma(MachineInstr &MI) const;
bool shrinkScalarLogicOp(MachineInstr &MI) const;
bool tryReplaceDeadSDST(MachineInstr &MI) const;
bool instAccessReg(iterator_range<MachineInstr::const_mop_iterator> &&R,
Register Reg, unsigned SubReg) const;
bool instReadsReg(const MachineInstr *MI, unsigned Reg,
unsigned SubReg) const;
bool instModifiesReg(const MachineInstr *MI, unsigned Reg,
unsigned SubReg) const;
TargetInstrInfo::RegSubRegPair getSubRegForIndex(Register Reg, unsigned Sub,
unsigned I) const;
void dropInstructionKeepingImpDefs(MachineInstr &MI) const;
MachineInstr *matchSwap(MachineInstr &MovT) const;
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override { return "SI Shrink Instructions"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
} // End anonymous namespace.
INITIALIZE_PASS(SIShrinkInstructions, DEBUG_TYPE,
"SI Shrink Instructions", false, false)
char SIShrinkInstructions::ID = 0;
FunctionPass *llvm::createSIShrinkInstructionsPass() {
return new SIShrinkInstructions();
}
/// This function checks \p MI for operands defined by a move immediate
/// instruction and then folds the literal constant into the instruction if it
/// can. This function assumes that \p MI is a VOP1, VOP2, or VOPC instructions.
bool SIShrinkInstructions::foldImmediates(MachineInstr &MI,
bool TryToCommute) const {
assert(TII->isVOP1(MI) || TII->isVOP2(MI) || TII->isVOPC(MI));
int Src0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0);
// Try to fold Src0
MachineOperand &Src0 = MI.getOperand(Src0Idx);
if (Src0.isReg()) {
Register Reg = Src0.getReg();
if (Reg.isVirtual()) {
MachineInstr *Def = MRI->getUniqueVRegDef(Reg);
if (Def && Def->isMoveImmediate()) {
MachineOperand &MovSrc = Def->getOperand(1);
bool ConstantFolded = false;
if (TII->isOperandLegal(MI, Src0Idx, &MovSrc)) {
if (MovSrc.isImm() &&
(isInt<32>(MovSrc.getImm()) || isUInt<32>(MovSrc.getImm()))) {
Src0.ChangeToImmediate(MovSrc.getImm());
ConstantFolded = true;
} else if (MovSrc.isFI()) {
Src0.ChangeToFrameIndex(MovSrc.getIndex());
ConstantFolded = true;
} else if (MovSrc.isGlobal()) {
Src0.ChangeToGA(MovSrc.getGlobal(), MovSrc.getOffset(),
MovSrc.getTargetFlags());
ConstantFolded = true;
}
}
if (ConstantFolded) {
if (MRI->use_nodbg_empty(Reg))
Def->eraseFromParent();
++NumLiteralConstantsFolded;
return true;
}
}
}
}
// We have failed to fold src0, so commute the instruction and try again.
if (TryToCommute && MI.isCommutable()) {
if (TII->commuteInstruction(MI)) {
if (foldImmediates(MI, false))
return true;
// Commute back.
TII->commuteInstruction(MI);
}
}
return false;
}
/// Do not shrink the instruction if its registers are not expressible in the
/// shrunk encoding.
bool SIShrinkInstructions::shouldShrinkTrue16(MachineInstr &MI) const {
for (unsigned I = 0, E = MI.getNumExplicitOperands(); I != E; ++I) {
const MachineOperand &MO = MI.getOperand(I);
if (MO.isReg()) {
Register Reg = MO.getReg();
assert(!Reg.isVirtual() && "Prior checks should ensure we only shrink "
"True16 Instructions post-RA");
if (AMDGPU::VGPR_32RegClass.contains(Reg) &&
!AMDGPU::VGPR_32_Lo128RegClass.contains(Reg))
return false;
}
}
return true;
}
bool SIShrinkInstructions::isKImmOperand(const MachineOperand &Src) const {
return isInt<16>(Src.getImm()) &&
!TII->isInlineConstant(*Src.getParent(),
Src.getParent()->getOperandNo(&Src));
}
bool SIShrinkInstructions::isKUImmOperand(const MachineOperand &Src) const {
return isUInt<16>(Src.getImm()) &&
!TII->isInlineConstant(*Src.getParent(),
Src.getParent()->getOperandNo(&Src));
}
bool SIShrinkInstructions::isKImmOrKUImmOperand(const MachineOperand &Src,
bool &IsUnsigned) const {
if (isInt<16>(Src.getImm())) {
IsUnsigned = false;
return !TII->isInlineConstant(Src);
}
if (isUInt<16>(Src.getImm())) {
IsUnsigned = true;
return !TII->isInlineConstant(Src);
}
return false;
}
/// \returns true if the constant in \p Src should be replaced with a bitreverse
/// of an inline immediate.
bool SIShrinkInstructions::isReverseInlineImm(const MachineOperand &Src,
int32_t &ReverseImm) const {
if (!isInt<32>(Src.getImm()) || TII->isInlineConstant(Src))
return false;
ReverseImm = reverseBits<int32_t>(static_cast<int32_t>(Src.getImm()));
return ReverseImm >= -16 && ReverseImm <= 64;
}
/// Copy implicit register operands from specified instruction to this
/// instruction that are not part of the instruction definition.
void SIShrinkInstructions::copyExtraImplicitOps(MachineInstr &NewMI,
MachineInstr &MI) const {
MachineFunction &MF = *MI.getMF();
for (unsigned i = MI.getDesc().getNumOperands() +
MI.getDesc().implicit_uses().size() +
MI.getDesc().implicit_defs().size(),
e = MI.getNumOperands();
i != e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
NewMI.addOperand(MF, MO);
}
}
void SIShrinkInstructions::shrinkScalarCompare(MachineInstr &MI) const {
// cmpk instructions do scc = dst <cc op> imm16, so commute the instruction to
// get constants on the RHS.
if (!MI.getOperand(0).isReg())
TII->commuteInstruction(MI, false, 0, 1);
// cmpk requires src0 to be a register
const MachineOperand &Src0 = MI.getOperand(0);
if (!Src0.isReg())
return;
const MachineOperand &Src1 = MI.getOperand(1);
if (!Src1.isImm())
return;
int SOPKOpc = AMDGPU::getSOPKOp(MI.getOpcode());
if (SOPKOpc == -1)
return;
// eq/ne is special because the imm16 can be treated as signed or unsigned,
// and initially selected to the unsigned versions.
if (SOPKOpc == AMDGPU::S_CMPK_EQ_U32 || SOPKOpc == AMDGPU::S_CMPK_LG_U32) {
bool HasUImm;
if (isKImmOrKUImmOperand(Src1, HasUImm)) {
if (!HasUImm) {
SOPKOpc = (SOPKOpc == AMDGPU::S_CMPK_EQ_U32) ?
AMDGPU::S_CMPK_EQ_I32 : AMDGPU::S_CMPK_LG_I32;
}
MI.setDesc(TII->get(SOPKOpc));
}
return;
}
const MCInstrDesc &NewDesc = TII->get(SOPKOpc);
if ((TII->sopkIsZext(SOPKOpc) && isKUImmOperand(Src1)) ||
(!TII->sopkIsZext(SOPKOpc) && isKImmOperand(Src1))) {
MI.setDesc(NewDesc);
}
}
// Shrink NSA encoded instructions with contiguous VGPRs to non-NSA encoding.
void SIShrinkInstructions::shrinkMIMG(MachineInstr &MI) const {
const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
if (!Info)
return;
uint8_t NewEncoding;
switch (Info->MIMGEncoding) {
case AMDGPU::MIMGEncGfx10NSA:
NewEncoding = AMDGPU::MIMGEncGfx10Default;
break;
case AMDGPU::MIMGEncGfx11NSA:
NewEncoding = AMDGPU::MIMGEncGfx11Default;
break;
default:
return;
}
int VAddr0Idx =
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
unsigned NewAddrDwords = Info->VAddrDwords;
const TargetRegisterClass *RC;
if (Info->VAddrDwords == 2) {
RC = &AMDGPU::VReg_64RegClass;
} else if (Info->VAddrDwords == 3) {
RC = &AMDGPU::VReg_96RegClass;
} else if (Info->VAddrDwords == 4) {
RC = &AMDGPU::VReg_128RegClass;
} else if (Info->VAddrDwords == 5) {
RC = &AMDGPU::VReg_160RegClass;
} else if (Info->VAddrDwords == 6) {
RC = &AMDGPU::VReg_192RegClass;
} else if (Info->VAddrDwords == 7) {
RC = &AMDGPU::VReg_224RegClass;
} else if (Info->VAddrDwords == 8) {
RC = &AMDGPU::VReg_256RegClass;
} else if (Info->VAddrDwords == 9) {
RC = &AMDGPU::VReg_288RegClass;
} else if (Info->VAddrDwords == 10) {
RC = &AMDGPU::VReg_320RegClass;
} else if (Info->VAddrDwords == 11) {
RC = &AMDGPU::VReg_352RegClass;
} else if (Info->VAddrDwords == 12) {
RC = &AMDGPU::VReg_384RegClass;
} else {
RC = &AMDGPU::VReg_512RegClass;
NewAddrDwords = 16;
}
unsigned VgprBase = 0;
unsigned NextVgpr = 0;
bool IsUndef = true;
bool IsKill = NewAddrDwords == Info->VAddrDwords;
for (unsigned Idx = 0; Idx < Info->VAddrOperands; ++Idx) {
const MachineOperand &Op = MI.getOperand(VAddr0Idx + Idx);
unsigned Vgpr = TRI->getHWRegIndex(Op.getReg());
unsigned Dwords = TRI->getRegSizeInBits(Op.getReg(), *MRI) / 32;
assert(Dwords > 0 && "Un-implemented for less than 32 bit regs");
if (Idx == 0) {
VgprBase = Vgpr;
NextVgpr = Vgpr + Dwords;
} else if (Vgpr == NextVgpr) {
NextVgpr = Vgpr + Dwords;
} else {
return;
}
if (!Op.isUndef())
IsUndef = false;
if (!Op.isKill())
IsKill = false;
}
if (VgprBase + NewAddrDwords > 256)
return;
// Further check for implicit tied operands - this may be present if TFE is
// enabled
int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
int LWEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::lwe);
unsigned TFEVal = (TFEIdx == -1) ? 0 : MI.getOperand(TFEIdx).getImm();
unsigned LWEVal = (LWEIdx == -1) ? 0 : MI.getOperand(LWEIdx).getImm();
int ToUntie = -1;
if (TFEVal || LWEVal) {
// TFE/LWE is enabled so we need to deal with an implicit tied operand
for (unsigned i = LWEIdx + 1, e = MI.getNumOperands(); i != e; ++i) {
if (MI.getOperand(i).isReg() && MI.getOperand(i).isTied() &&
MI.getOperand(i).isImplicit()) {
// This is the tied operand
assert(
ToUntie == -1 &&
"found more than one tied implicit operand when expecting only 1");
ToUntie = i;
MI.untieRegOperand(ToUntie);
}
}
}
unsigned NewOpcode = AMDGPU::getMIMGOpcode(Info->BaseOpcode, NewEncoding,
Info->VDataDwords, NewAddrDwords);
MI.setDesc(TII->get(NewOpcode));
MI.getOperand(VAddr0Idx).setReg(RC->getRegister(VgprBase));
MI.getOperand(VAddr0Idx).setIsUndef(IsUndef);
MI.getOperand(VAddr0Idx).setIsKill(IsKill);
for (int i = 1; i < Info->VAddrOperands; ++i)
MI.removeOperand(VAddr0Idx + 1);
if (ToUntie >= 0) {
MI.tieOperands(
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata),
ToUntie - (Info->VAddrOperands - 1));
}
}
// Shrink MAD to MADAK/MADMK and FMA to FMAAK/FMAMK.
void SIShrinkInstructions::shrinkMadFma(MachineInstr &MI) const {
// Pre-GFX10 VOP3 instructions like MAD/FMA cannot take a literal operand so
// there is no reason to try to shrink them.
if (!ST->hasVOP3Literal())
return;
// There is no advantage to doing this pre-RA.
if (!MF->getProperties().hasProperty(
MachineFunctionProperties::Property::NoVRegs))
return;
if (TII->hasAnyModifiersSet(MI))
return;
const unsigned Opcode = MI.getOpcode();
MachineOperand &Src0 = *TII->getNamedOperand(MI, AMDGPU::OpName::src0);
MachineOperand &Src1 = *TII->getNamedOperand(MI, AMDGPU::OpName::src1);
MachineOperand &Src2 = *TII->getNamedOperand(MI, AMDGPU::OpName::src2);
unsigned NewOpcode = AMDGPU::INSTRUCTION_LIST_END;
bool Swap;
// Detect "Dst = VSrc * VGPR + Imm" and convert to AK form.
if (Src2.isImm() && !TII->isInlineConstant(Src2)) {
if (Src1.isReg() && TRI->isVGPR(*MRI, Src1.getReg()))
Swap = false;
else if (Src0.isReg() && TRI->isVGPR(*MRI, Src0.getReg()))
Swap = true;
else
return;
switch (Opcode) {
default:
llvm_unreachable("Unexpected mad/fma opcode!");
case AMDGPU::V_MAD_F32_e64:
NewOpcode = AMDGPU::V_MADAK_F32;
break;
case AMDGPU::V_FMA_F32_e64:
NewOpcode = AMDGPU::V_FMAAK_F32;
break;
case AMDGPU::V_MAD_F16_e64:
NewOpcode = AMDGPU::V_MADAK_F16;
break;
case AMDGPU::V_FMA_F16_e64:
case AMDGPU::V_FMA_F16_gfx9_e64:
NewOpcode = ST->hasTrue16BitInsts() ? AMDGPU::V_FMAAK_F16_t16
: AMDGPU::V_FMAAK_F16;
break;
}
}
// Detect "Dst = VSrc * Imm + VGPR" and convert to MK form.
if (Src2.isReg() && TRI->isVGPR(*MRI, Src2.getReg())) {
if (Src1.isImm() && !TII->isInlineConstant(Src1))
Swap = false;
else if (Src0.isImm() && !TII->isInlineConstant(Src0))
Swap = true;
else
return;
switch (Opcode) {
default:
llvm_unreachable("Unexpected mad/fma opcode!");
case AMDGPU::V_MAD_F32_e64:
NewOpcode = AMDGPU::V_MADMK_F32;
break;
case AMDGPU::V_FMA_F32_e64:
NewOpcode = AMDGPU::V_FMAMK_F32;
break;
case AMDGPU::V_MAD_F16_e64:
NewOpcode = AMDGPU::V_MADMK_F16;
break;
case AMDGPU::V_FMA_F16_e64:
case AMDGPU::V_FMA_F16_gfx9_e64:
NewOpcode = ST->hasTrue16BitInsts() ? AMDGPU::V_FMAMK_F16_t16
: AMDGPU::V_FMAMK_F16;
break;
}
}
if (NewOpcode == AMDGPU::INSTRUCTION_LIST_END)
return;
if (AMDGPU::isTrue16Inst(NewOpcode) && !shouldShrinkTrue16(MI))
return;
if (Swap) {
// Swap Src0 and Src1 by building a new instruction.
BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(NewOpcode),
MI.getOperand(0).getReg())
.add(Src1)
.add(Src0)
.add(Src2)
.setMIFlags(MI.getFlags());
MI.eraseFromParent();
} else {
TII->removeModOperands(MI);
MI.setDesc(TII->get(NewOpcode));
}
}
/// Attempt to shink AND/OR/XOR operations requiring non-inlineable literals.
/// For AND or OR, try using S_BITSET{0,1} to clear or set bits.
/// If the inverse of the immediate is legal, use ANDN2, ORN2 or
/// XNOR (as a ^ b == ~(a ^ ~b)).
/// \returns true if the caller should continue the machine function iterator
bool SIShrinkInstructions::shrinkScalarLogicOp(MachineInstr &MI) const {
unsigned Opc = MI.getOpcode();
const MachineOperand *Dest = &MI.getOperand(0);
MachineOperand *Src0 = &MI.getOperand(1);
MachineOperand *Src1 = &MI.getOperand(2);
MachineOperand *SrcReg = Src0;
MachineOperand *SrcImm = Src1;
if (!SrcImm->isImm() ||
AMDGPU::isInlinableLiteral32(SrcImm->getImm(), ST->hasInv2PiInlineImm()))
return false;
uint32_t Imm = static_cast<uint32_t>(SrcImm->getImm());
uint32_t NewImm = 0;
if (Opc == AMDGPU::S_AND_B32) {
if (isPowerOf2_32(~Imm)) {
NewImm = countTrailingOnes(Imm);
Opc = AMDGPU::S_BITSET0_B32;
} else if (AMDGPU::isInlinableLiteral32(~Imm, ST->hasInv2PiInlineImm())) {
NewImm = ~Imm;
Opc = AMDGPU::S_ANDN2_B32;
}
} else if (Opc == AMDGPU::S_OR_B32) {
if (isPowerOf2_32(Imm)) {
NewImm = countTrailingZeros(Imm);
Opc = AMDGPU::S_BITSET1_B32;
} else if (AMDGPU::isInlinableLiteral32(~Imm, ST->hasInv2PiInlineImm())) {
NewImm = ~Imm;
Opc = AMDGPU::S_ORN2_B32;
}
} else if (Opc == AMDGPU::S_XOR_B32) {
if (AMDGPU::isInlinableLiteral32(~Imm, ST->hasInv2PiInlineImm())) {
NewImm = ~Imm;
Opc = AMDGPU::S_XNOR_B32;
}
} else {
llvm_unreachable("unexpected opcode");
}
if (NewImm != 0) {
if (Dest->getReg().isVirtual() && SrcReg->isReg()) {
MRI->setRegAllocationHint(Dest->getReg(), 0, SrcReg->getReg());
MRI->setRegAllocationHint(SrcReg->getReg(), 0, Dest->getReg());
return true;
}
if (SrcReg->isReg() && SrcReg->getReg() == Dest->getReg()) {
const bool IsUndef = SrcReg->isUndef();
const bool IsKill = SrcReg->isKill();
MI.setDesc(TII->get(Opc));
if (Opc == AMDGPU::S_BITSET0_B32 ||
Opc == AMDGPU::S_BITSET1_B32) {
Src0->ChangeToImmediate(NewImm);
// Remove the immediate and add the tied input.
MI.getOperand(2).ChangeToRegister(Dest->getReg(), /*IsDef*/ false,
/*isImp*/ false, IsKill,
/*isDead*/ false, IsUndef);
MI.tieOperands(0, 2);
} else {
SrcImm->setImm(NewImm);
}
}
}
return false;
}
// This is the same as MachineInstr::readsRegister/modifiesRegister except
// it takes subregs into account.
bool SIShrinkInstructions::instAccessReg(
iterator_range<MachineInstr::const_mop_iterator> &&R, Register Reg,
unsigned SubReg) const {
for (const MachineOperand &MO : R) {
if (!MO.isReg())
continue;
if (Reg.isPhysical() && MO.getReg().isPhysical()) {
if (TRI->regsOverlap(Reg, MO.getReg()))
return true;
} else if (MO.getReg() == Reg && Reg.isVirtual()) {
LaneBitmask Overlap = TRI->getSubRegIndexLaneMask(SubReg) &
TRI->getSubRegIndexLaneMask(MO.getSubReg());
if (Overlap.any())
return true;
}
}
return false;
}
bool SIShrinkInstructions::instReadsReg(const MachineInstr *MI, unsigned Reg,
unsigned SubReg) const {
return instAccessReg(MI->uses(), Reg, SubReg);
}
bool SIShrinkInstructions::instModifiesReg(const MachineInstr *MI, unsigned Reg,
unsigned SubReg) const {
return instAccessReg(MI->defs(), Reg, SubReg);
}
TargetInstrInfo::RegSubRegPair
SIShrinkInstructions::getSubRegForIndex(Register Reg, unsigned Sub,
unsigned I) const {
if (TRI->getRegSizeInBits(Reg, *MRI) != 32) {
if (Reg.isPhysical()) {
Reg = TRI->getSubReg(Reg, TRI->getSubRegFromChannel(I));
} else {
Sub = TRI->getSubRegFromChannel(I + TRI->getChannelFromSubReg(Sub));
}
}
return TargetInstrInfo::RegSubRegPair(Reg, Sub);
}
void SIShrinkInstructions::dropInstructionKeepingImpDefs(
MachineInstr &MI) const {
for (unsigned i = MI.getDesc().getNumOperands() +
MI.getDesc().implicit_uses().size() +
MI.getDesc().implicit_defs().size(),
e = MI.getNumOperands();
i != e; ++i) {
const MachineOperand &Op = MI.getOperand(i);
if (!Op.isDef())
continue;
BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(),
TII->get(AMDGPU::IMPLICIT_DEF), Op.getReg());
}
MI.eraseFromParent();
}
// Match:
// mov t, x
// mov x, y
// mov y, t
//
// =>
//
// mov t, x (t is potentially dead and move eliminated)
// v_swap_b32 x, y
//
// Returns next valid instruction pointer if was able to create v_swap_b32.
//
// This shall not be done too early not to prevent possible folding which may
// remove matched moves, and this should preferably be done before RA to
// release saved registers and also possibly after RA which can insert copies
// too.
//
// This is really just a generic peephole that is not a canonical shrinking,
// although requirements match the pass placement and it reduces code size too.
MachineInstr *SIShrinkInstructions::matchSwap(MachineInstr &MovT) const {
assert(MovT.getOpcode() == AMDGPU::V_MOV_B32_e32 ||
MovT.getOpcode() == AMDGPU::COPY);
Register T = MovT.getOperand(0).getReg();
unsigned Tsub = MovT.getOperand(0).getSubReg();
MachineOperand &Xop = MovT.getOperand(1);
if (!Xop.isReg())
return nullptr;
Register X = Xop.getReg();
unsigned Xsub = Xop.getSubReg();
unsigned Size = TII->getOpSize(MovT, 0) / 4;
if (!TRI->isVGPR(*MRI, X))
return nullptr;
const unsigned SearchLimit = 16;
unsigned Count = 0;
bool KilledT = false;
for (auto Iter = std::next(MovT.getIterator()),
E = MovT.getParent()->instr_end();
Iter != E && Count < SearchLimit && !KilledT; ++Iter, ++Count) {
MachineInstr *MovY = &*Iter;
KilledT = MovY->killsRegister(T, TRI);
if ((MovY->getOpcode() != AMDGPU::V_MOV_B32_e32 &&
MovY->getOpcode() != AMDGPU::COPY) ||
!MovY->getOperand(1).isReg() ||
MovY->getOperand(1).getReg() != T ||
MovY->getOperand(1).getSubReg() != Tsub)
continue;
Register Y = MovY->getOperand(0).getReg();
unsigned Ysub = MovY->getOperand(0).getSubReg();
if (!TRI->isVGPR(*MRI, Y))
continue;
MachineInstr *MovX = nullptr;
for (auto IY = MovY->getIterator(), I = std::next(MovT.getIterator());
I != IY; ++I) {
if (instReadsReg(&*I, X, Xsub) || instModifiesReg(&*I, Y, Ysub) ||
instModifiesReg(&*I, T, Tsub) ||
(MovX && instModifiesReg(&*I, X, Xsub))) {
MovX = nullptr;
break;
}
if (!instReadsReg(&*I, Y, Ysub)) {
if (!MovX && instModifiesReg(&*I, X, Xsub)) {
MovX = nullptr;
break;
}
continue;
}
if (MovX ||
(I->getOpcode() != AMDGPU::V_MOV_B32_e32 &&
I->getOpcode() != AMDGPU::COPY) ||
I->getOperand(0).getReg() != X ||
I->getOperand(0).getSubReg() != Xsub) {
MovX = nullptr;
break;
}
if (Size > 1 && (I->getNumImplicitOperands() > (I->isCopy() ? 0U : 1U)))
continue;
MovX = &*I;
}
if (!MovX)
continue;
LLVM_DEBUG(dbgs() << "Matched v_swap_b32:\n" << MovT << *MovX << *MovY);
for (unsigned I = 0; I < Size; ++I) {
TargetInstrInfo::RegSubRegPair X1, Y1;
X1 = getSubRegForIndex(X, Xsub, I);
Y1 = getSubRegForIndex(Y, Ysub, I);
MachineBasicBlock &MBB = *MovT.getParent();
auto MIB = BuildMI(MBB, MovX->getIterator(), MovT.getDebugLoc(),
TII->get(AMDGPU::V_SWAP_B32))
.addDef(X1.Reg, 0, X1.SubReg)
.addDef(Y1.Reg, 0, Y1.SubReg)
.addReg(Y1.Reg, 0, Y1.SubReg)
.addReg(X1.Reg, 0, X1.SubReg).getInstr();
if (MovX->hasRegisterImplicitUseOperand(AMDGPU::EXEC)) {
// Drop implicit EXEC.
MIB->removeOperand(MIB->getNumExplicitOperands());
MIB->copyImplicitOps(*MBB.getParent(), *MovX);
}
}
MovX->eraseFromParent();
dropInstructionKeepingImpDefs(*MovY);
MachineInstr *Next = &*std::next(MovT.getIterator());
if (T.isVirtual() && MRI->use_nodbg_empty(T)) {
dropInstructionKeepingImpDefs(MovT);
} else {
Xop.setIsKill(false);
for (int I = MovT.getNumImplicitOperands() - 1; I >= 0; --I ) {
unsigned OpNo = MovT.getNumExplicitOperands() + I;
const MachineOperand &Op = MovT.getOperand(OpNo);
if (Op.isKill() && TRI->regsOverlap(X, Op.getReg()))
MovT.removeOperand(OpNo);
}
}
return Next;
}
return nullptr;
}
// If an instruction has dead sdst replace it with NULL register on gfx1030+
bool SIShrinkInstructions::tryReplaceDeadSDST(MachineInstr &MI) const {
if (!ST->hasGFX10_3Insts())
return false;
MachineOperand *Op = TII->getNamedOperand(MI, AMDGPU::OpName::sdst);
if (!Op)
return false;
Register SDstReg = Op->getReg();
if (SDstReg.isPhysical() || !MRI->use_nodbg_empty(SDstReg))
return false;
Op->setReg(ST->isWave32() ? AMDGPU::SGPR_NULL : AMDGPU::SGPR_NULL64);
return true;
}
bool SIShrinkInstructions::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(MF.getFunction()))
return false;
this->MF = &MF;
MRI = &MF.getRegInfo();
ST = &MF.getSubtarget<GCNSubtarget>();
TII = ST->getInstrInfo();
TRI = &TII->getRegisterInfo();
unsigned VCCReg = ST->isWave32() ? AMDGPU::VCC_LO : AMDGPU::VCC;
std::vector<unsigned> I1Defs;
for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
BI != BE; ++BI) {
MachineBasicBlock &MBB = *BI;
MachineBasicBlock::iterator I, Next;
for (I = MBB.begin(); I != MBB.end(); I = Next) {
Next = std::next(I);
MachineInstr &MI = *I;
if (MI.getOpcode() == AMDGPU::V_MOV_B32_e32) {
// If this has a literal constant source that is the same as the
// reversed bits of an inline immediate, replace with a bitreverse of
// that constant. This saves 4 bytes in the common case of materializing
// sign bits.
// Test if we are after regalloc. We only want to do this after any
// optimizations happen because this will confuse them.
// XXX - not exactly a check for post-regalloc run.
MachineOperand &Src = MI.getOperand(1);
if (Src.isImm() && MI.getOperand(0).getReg().isPhysical()) {
int32_t ReverseImm;
if (isReverseInlineImm(Src, ReverseImm)) {
MI.setDesc(TII->get(AMDGPU::V_BFREV_B32_e32));
Src.setImm(ReverseImm);
continue;
}
}
}
if (ST->hasSwap() && (MI.getOpcode() == AMDGPU::V_MOV_B32_e32 ||
MI.getOpcode() == AMDGPU::COPY)) {
if (auto *NextMI = matchSwap(MI)) {
Next = NextMI->getIterator();
continue;
}
}
// Try to use S_ADDK_I32 and S_MULK_I32.
if (MI.getOpcode() == AMDGPU::S_ADD_I32 ||
MI.getOpcode() == AMDGPU::S_MUL_I32) {
const MachineOperand *Dest = &MI.getOperand(0);
MachineOperand *Src0 = &MI.getOperand(1);
MachineOperand *Src1 = &MI.getOperand(2);
if (!Src0->isReg() && Src1->isReg()) {
if (TII->commuteInstruction(MI, false, 1, 2))
std::swap(Src0, Src1);
}
// FIXME: This could work better if hints worked with subregisters. If
// we have a vector add of a constant, we usually don't get the correct
// allocation due to the subregister usage.
if (Dest->getReg().isVirtual() && Src0->isReg()) {
MRI->setRegAllocationHint(Dest->getReg(), 0, Src0->getReg());
MRI->setRegAllocationHint(Src0->getReg(), 0, Dest->getReg());
continue;
}
if (Src0->isReg() && Src0->getReg() == Dest->getReg()) {
if (Src1->isImm() && isKImmOperand(*Src1)) {
unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_I32) ?
AMDGPU::S_ADDK_I32 : AMDGPU::S_MULK_I32;
MI.setDesc(TII->get(Opc));
MI.tieOperands(0, 1);
}
}
}
// Try to use s_cmpk_*
if (MI.isCompare() && TII->isSOPC(MI)) {
shrinkScalarCompare(MI);
continue;
}
// Try to use S_MOVK_I32, which will save 4 bytes for small immediates.
if (MI.getOpcode() == AMDGPU::S_MOV_B32) {
const MachineOperand &Dst = MI.getOperand(0);
MachineOperand &Src = MI.getOperand(1);
if (Src.isImm() && Dst.getReg().isPhysical()) {
int32_t ReverseImm;
if (isKImmOperand(Src))
MI.setDesc(TII->get(AMDGPU::S_MOVK_I32));
else if (isReverseInlineImm(Src, ReverseImm)) {
MI.setDesc(TII->get(AMDGPU::S_BREV_B32));
Src.setImm(ReverseImm);
}
}
continue;
}
// Shrink scalar logic operations.
if (MI.getOpcode() == AMDGPU::S_AND_B32 ||
MI.getOpcode() == AMDGPU::S_OR_B32 ||
MI.getOpcode() == AMDGPU::S_XOR_B32) {
if (shrinkScalarLogicOp(MI))
continue;
}
if (TII->isMIMG(MI.getOpcode()) &&
ST->getGeneration() >= AMDGPUSubtarget::GFX10 &&
MF.getProperties().hasProperty(
MachineFunctionProperties::Property::NoVRegs)) {
shrinkMIMG(MI);
continue;
}
if (!TII->isVOP3(MI))
continue;
if (MI.getOpcode() == AMDGPU::V_MAD_F32_e64 ||
MI.getOpcode() == AMDGPU::V_FMA_F32_e64 ||
MI.getOpcode() == AMDGPU::V_MAD_F16_e64 ||
MI.getOpcode() == AMDGPU::V_FMA_F16_e64 ||
MI.getOpcode() == AMDGPU::V_FMA_F16_gfx9_e64) {
shrinkMadFma(MI);
continue;
}
if (!TII->hasVALU32BitEncoding(MI.getOpcode())) {
// If there is no chance we will shrink it and use VCC as sdst to get
// a 32 bit form try to replace dead sdst with NULL.
tryReplaceDeadSDST(MI);
continue;
}
if (!TII->canShrink(MI, *MRI)) {
// Try commuting the instruction and see if that enables us to shrink
// it.
if (!MI.isCommutable() || !TII->commuteInstruction(MI) ||
!TII->canShrink(MI, *MRI)) {
tryReplaceDeadSDST(MI);
continue;
}
}
int Op32 = AMDGPU::getVOPe32(MI.getOpcode());
if (TII->isVOPC(Op32)) {
MachineOperand &Op0 = MI.getOperand(0);
if (Op0.isReg()) {
// Exclude VOPCX instructions as these don't explicitly write a
// dst.
Register DstReg = Op0.getReg();
if (DstReg.isVirtual()) {
// VOPC instructions can only write to the VCC register. We can't
// force them to use VCC here, because this is only one register and
// cannot deal with sequences which would require multiple copies of
// VCC, e.g. S_AND_B64 (vcc = V_CMP_...), (vcc = V_CMP_...)
//
// So, instead of forcing the instruction to write to VCC, we
// provide a hint to the register allocator to use VCC and then we
// will run this pass again after RA and shrink it if it outputs to
// VCC.
MRI->setRegAllocationHint(DstReg, 0, VCCReg);
continue;
}
if (DstReg != VCCReg)
continue;
}
}
if (Op32 == AMDGPU::V_CNDMASK_B32_e32) {
// We shrink V_CNDMASK_B32_e64 using regalloc hints like we do for VOPC
// instructions.
const MachineOperand *Src2 =
TII->getNamedOperand(MI, AMDGPU::OpName::src2);
if (!Src2->isReg())
continue;
Register SReg = Src2->getReg();
if (SReg.isVirtual()) {
MRI->setRegAllocationHint(SReg, 0, VCCReg);
continue;
}
if (SReg != VCCReg)
continue;
}
// Check for the bool flag output for instructions like V_ADD_I32_e64.
const MachineOperand *SDst = TII->getNamedOperand(MI,
AMDGPU::OpName::sdst);
if (SDst) {
bool Next = false;
if (SDst->getReg() != VCCReg) {
if (SDst->getReg().isVirtual())
MRI->setRegAllocationHint(SDst->getReg(), 0, VCCReg);
Next = true;
}
// All of the instructions with carry outs also have an SGPR input in
// src2.
const MachineOperand *Src2 = TII->getNamedOperand(MI,
AMDGPU::OpName::src2);
if (Src2 && Src2->getReg() != VCCReg) {
if (Src2->getReg().isVirtual())
MRI->setRegAllocationHint(Src2->getReg(), 0, VCCReg);
Next = true;
}
if (Next)
continue;
}
// Pre-GFX10, shrinking VOP3 instructions pre-RA gave us the chance to
// fold an immediate into the shrunk instruction as a literal operand. In
// GFX10 VOP3 instructions can take a literal operand anyway, so there is
// no advantage to doing this.
if (ST->hasVOP3Literal() &&
!MF.getProperties().hasProperty(
MachineFunctionProperties::Property::NoVRegs))
continue;
if (ST->hasTrue16BitInsts() && AMDGPU::isTrue16Inst(MI.getOpcode()) &&
!shouldShrinkTrue16(MI))
continue;
// We can shrink this instruction
LLVM_DEBUG(dbgs() << "Shrinking " << MI);
MachineInstr *Inst32 = TII->buildShrunkInst(MI, Op32);
++NumInstructionsShrunk;
// Copy extra operands not present in the instruction definition.
copyExtraImplicitOps(*Inst32, MI);
// Copy deadness from the old explicit vcc def to the new implicit def.
if (SDst && SDst->isDead())
Inst32->findRegisterDefOperand(VCCReg)->setIsDead();
MI.eraseFromParent();
foldImmediates(*Inst32);
LLVM_DEBUG(dbgs() << "e32 MI = " << *Inst32 << '\n');
}
}
return false;
}