blob: b2a433dd3db9ebbaa2d8e42759f77ac55027961e [file] [log] [blame]
//===- SIMachineFunctionInfo.cpp - SI Machine Function Info ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "SIMachineFunctionInfo.h"
#include "AMDGPUTargetMachine.h"
#include "AMDGPUSubtarget.h"
#include "SIRegisterInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MIRParser/MIParser.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
#include <cassert>
#include <optional>
#include <vector>
#define MAX_LANES 64
using namespace llvm;
const GCNTargetMachine &getTM(const GCNSubtarget *STI) {
const SITargetLowering *TLI = STI->getTargetLowering();
return static_cast<const GCNTargetMachine &>(TLI->getTargetMachine());
}
SIMachineFunctionInfo::SIMachineFunctionInfo(const Function &F,
const GCNSubtarget *STI)
: AMDGPUMachineFunction(F, *STI),
Mode(F),
GWSResourcePSV(getTM(STI)),
PrivateSegmentBuffer(false),
DispatchPtr(false),
QueuePtr(false),
KernargSegmentPtr(false),
DispatchID(false),
FlatScratchInit(false),
WorkGroupIDX(false),
WorkGroupIDY(false),
WorkGroupIDZ(false),
WorkGroupInfo(false),
LDSKernelId(false),
PrivateSegmentWaveByteOffset(false),
WorkItemIDX(false),
WorkItemIDY(false),
WorkItemIDZ(false),
ImplicitBufferPtr(false),
ImplicitArgPtr(false),
GITPtrHigh(0xffffffff),
HighBitsOf32BitAddress(0) {
const GCNSubtarget &ST = *static_cast<const GCNSubtarget *>(STI);
FlatWorkGroupSizes = ST.getFlatWorkGroupSizes(F);
WavesPerEU = ST.getWavesPerEU(F);
Occupancy = ST.computeOccupancy(F, getLDSSize());
CallingConv::ID CC = F.getCallingConv();
// FIXME: Should have analysis or something rather than attribute to detect
// calls.
const bool HasCalls = F.hasFnAttribute("amdgpu-calls");
const bool IsKernel = CC == CallingConv::AMDGPU_KERNEL ||
CC == CallingConv::SPIR_KERNEL;
if (IsKernel) {
if (!F.arg_empty() || ST.getImplicitArgNumBytes(F) != 0)
KernargSegmentPtr = true;
WorkGroupIDX = true;
WorkItemIDX = true;
} else if (CC == CallingConv::AMDGPU_PS) {
PSInputAddr = AMDGPU::getInitialPSInputAddr(F);
}
MayNeedAGPRs = ST.hasMAIInsts();
if (!isEntryFunction()) {
if (CC != CallingConv::AMDGPU_Gfx)
ArgInfo = AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
// TODO: Pick a high register, and shift down, similar to a kernel.
FrameOffsetReg = AMDGPU::SGPR33;
StackPtrOffsetReg = AMDGPU::SGPR32;
if (!ST.enableFlatScratch()) {
// Non-entry functions have no special inputs for now, other registers
// required for scratch access.
ScratchRSrcReg = AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3;
ArgInfo.PrivateSegmentBuffer =
ArgDescriptor::createRegister(ScratchRSrcReg);
}
if (!F.hasFnAttribute("amdgpu-no-implicitarg-ptr"))
ImplicitArgPtr = true;
} else {
ImplicitArgPtr = false;
MaxKernArgAlign = std::max(ST.getAlignmentForImplicitArgPtr(),
MaxKernArgAlign);
if (ST.hasGFX90AInsts() &&
ST.getMaxNumVGPRs(F) <= AMDGPU::VGPR_32RegClass.getNumRegs() &&
!mayUseAGPRs(F))
MayNeedAGPRs = false; // We will select all MAI with VGPR operands.
}
bool isAmdHsaOrMesa = ST.isAmdHsaOrMesa(F);
if (isAmdHsaOrMesa && !ST.enableFlatScratch())
PrivateSegmentBuffer = true;
else if (ST.isMesaGfxShader(F))
ImplicitBufferPtr = true;
if (!AMDGPU::isGraphics(CC)) {
if (IsKernel || !F.hasFnAttribute("amdgpu-no-workgroup-id-x"))
WorkGroupIDX = true;
if (!F.hasFnAttribute("amdgpu-no-workgroup-id-y"))
WorkGroupIDY = true;
if (!F.hasFnAttribute("amdgpu-no-workgroup-id-z"))
WorkGroupIDZ = true;
if (IsKernel || !F.hasFnAttribute("amdgpu-no-workitem-id-x"))
WorkItemIDX = true;
if (!F.hasFnAttribute("amdgpu-no-workitem-id-y") &&
ST.getMaxWorkitemID(F, 1) != 0)
WorkItemIDY = true;
if (!F.hasFnAttribute("amdgpu-no-workitem-id-z") &&
ST.getMaxWorkitemID(F, 2) != 0)
WorkItemIDZ = true;
if (!F.hasFnAttribute("amdgpu-no-dispatch-ptr"))
DispatchPtr = true;
if (!F.hasFnAttribute("amdgpu-no-queue-ptr"))
QueuePtr = true;
if (!F.hasFnAttribute("amdgpu-no-dispatch-id"))
DispatchID = true;
if (!IsKernel && !F.hasFnAttribute("amdgpu-no-lds-kernel-id"))
LDSKernelId = true;
}
// FIXME: This attribute is a hack, we just need an analysis on the function
// to look for allocas.
bool HasStackObjects = F.hasFnAttribute("amdgpu-stack-objects");
// TODO: This could be refined a lot. The attribute is a poor way of
// detecting calls or stack objects that may require it before argument
// lowering.
if (ST.hasFlatAddressSpace() && isEntryFunction() &&
(isAmdHsaOrMesa || ST.enableFlatScratch()) &&
(HasCalls || HasStackObjects || ST.enableFlatScratch()) &&
!ST.flatScratchIsArchitected()) {
FlatScratchInit = true;
}
if (isEntryFunction()) {
// X, XY, and XYZ are the only supported combinations, so make sure Y is
// enabled if Z is.
if (WorkItemIDZ)
WorkItemIDY = true;
if (!ST.flatScratchIsArchitected()) {
PrivateSegmentWaveByteOffset = true;
// HS and GS always have the scratch wave offset in SGPR5 on GFX9.
if (ST.getGeneration() >= AMDGPUSubtarget::GFX9 &&
(CC == CallingConv::AMDGPU_HS || CC == CallingConv::AMDGPU_GS))
ArgInfo.PrivateSegmentWaveByteOffset =
ArgDescriptor::createRegister(AMDGPU::SGPR5);
}
}
Attribute A = F.getFnAttribute("amdgpu-git-ptr-high");
StringRef S = A.getValueAsString();
if (!S.empty())
S.consumeInteger(0, GITPtrHigh);
A = F.getFnAttribute("amdgpu-32bit-address-high-bits");
S = A.getValueAsString();
if (!S.empty())
S.consumeInteger(0, HighBitsOf32BitAddress);
// On GFX908, in order to guarantee copying between AGPRs, we need a scratch
// VGPR available at all times. For now, reserve highest available VGPR. After
// RA, shift it to the lowest available unused VGPR if the one exist.
if (ST.hasMAIInsts() && !ST.hasGFX90AInsts()) {
VGPRForAGPRCopy =
AMDGPU::VGPR_32RegClass.getRegister(ST.getMaxNumVGPRs(F) - 1);
}
}
MachineFunctionInfo *SIMachineFunctionInfo::clone(
BumpPtrAllocator &Allocator, MachineFunction &DestMF,
const DenseMap<MachineBasicBlock *, MachineBasicBlock *> &Src2DstMBB)
const {
return DestMF.cloneInfo<SIMachineFunctionInfo>(*this);
}
void SIMachineFunctionInfo::limitOccupancy(const MachineFunction &MF) {
limitOccupancy(getMaxWavesPerEU());
const GCNSubtarget& ST = MF.getSubtarget<GCNSubtarget>();
limitOccupancy(ST.getOccupancyWithLocalMemSize(getLDSSize(),
MF.getFunction()));
}
Register SIMachineFunctionInfo::addPrivateSegmentBuffer(
const SIRegisterInfo &TRI) {
ArgInfo.PrivateSegmentBuffer =
ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SGPR_128RegClass));
NumUserSGPRs += 4;
return ArgInfo.PrivateSegmentBuffer.getRegister();
}
Register SIMachineFunctionInfo::addDispatchPtr(const SIRegisterInfo &TRI) {
ArgInfo.DispatchPtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
NumUserSGPRs += 2;
return ArgInfo.DispatchPtr.getRegister();
}
Register SIMachineFunctionInfo::addQueuePtr(const SIRegisterInfo &TRI) {
ArgInfo.QueuePtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
NumUserSGPRs += 2;
return ArgInfo.QueuePtr.getRegister();
}
Register SIMachineFunctionInfo::addKernargSegmentPtr(const SIRegisterInfo &TRI) {
ArgInfo.KernargSegmentPtr
= ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
NumUserSGPRs += 2;
return ArgInfo.KernargSegmentPtr.getRegister();
}
Register SIMachineFunctionInfo::addDispatchID(const SIRegisterInfo &TRI) {
ArgInfo.DispatchID = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
NumUserSGPRs += 2;
return ArgInfo.DispatchID.getRegister();
}
Register SIMachineFunctionInfo::addFlatScratchInit(const SIRegisterInfo &TRI) {
ArgInfo.FlatScratchInit = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
NumUserSGPRs += 2;
return ArgInfo.FlatScratchInit.getRegister();
}
Register SIMachineFunctionInfo::addImplicitBufferPtr(const SIRegisterInfo &TRI) {
ArgInfo.ImplicitBufferPtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
NumUserSGPRs += 2;
return ArgInfo.ImplicitBufferPtr.getRegister();
}
Register SIMachineFunctionInfo::addLDSKernelId() {
ArgInfo.LDSKernelId = ArgDescriptor::createRegister(getNextUserSGPR());
NumUserSGPRs += 1;
return ArgInfo.LDSKernelId.getRegister();
}
void SIMachineFunctionInfo::allocateWWMSpill(MachineFunction &MF, Register VGPR,
uint64_t Size, Align Alignment) {
// Skip if it is an entry function or the register is already added.
if (isEntryFunction() || WWMSpills.count(VGPR))
return;
WWMSpills.insert(std::make_pair(
VGPR, MF.getFrameInfo().CreateSpillStackObject(Size, Alignment)));
}
// Separate out the callee-saved and scratch registers.
void SIMachineFunctionInfo::splitWWMSpillRegisters(
MachineFunction &MF,
SmallVectorImpl<std::pair<Register, int>> &CalleeSavedRegs,
SmallVectorImpl<std::pair<Register, int>> &ScratchRegs) const {
const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs();
for (auto &Reg : WWMSpills) {
if (isCalleeSavedReg(CSRegs, Reg.first))
CalleeSavedRegs.push_back(Reg);
else
ScratchRegs.push_back(Reg);
}
}
bool SIMachineFunctionInfo::isCalleeSavedReg(const MCPhysReg *CSRegs,
MCPhysReg Reg) const {
for (unsigned I = 0; CSRegs[I]; ++I) {
if (CSRegs[I] == Reg)
return true;
}
return false;
}
bool SIMachineFunctionInfo::allocateVGPRForSGPRSpills(MachineFunction &MF,
int FI,
unsigned LaneIndex) {
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
const SIRegisterInfo *TRI = ST.getRegisterInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
Register LaneVGPR;
if (!LaneIndex) {
LaneVGPR = TRI->findUnusedRegister(MRI, &AMDGPU::VGPR_32RegClass, MF);
if (LaneVGPR == AMDGPU::NoRegister) {
// We have no VGPRs left for spilling SGPRs. Reset because we will not
// partially spill the SGPR to VGPRs.
SGPRSpillToVGPRLanes.erase(FI);
return false;
}
SpillVGPRs.push_back(LaneVGPR);
// Add this register as live-in to all blocks to avoid machine verifier
// complaining about use of an undefined physical register.
for (MachineBasicBlock &BB : MF)
BB.addLiveIn(LaneVGPR);
} else {
LaneVGPR = SpillVGPRs.back();
}
SGPRSpillToVGPRLanes[FI].push_back(
SIRegisterInfo::SpilledReg(LaneVGPR, LaneIndex));
return true;
}
bool SIMachineFunctionInfo::allocateVGPRForPrologEpilogSGPRSpills(
MachineFunction &MF, int FI, unsigned LaneIndex) {
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
const SIRegisterInfo *TRI = ST.getRegisterInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
Register LaneVGPR;
if (!LaneIndex) {
LaneVGPR = TRI->findUnusedRegister(MRI, &AMDGPU::VGPR_32RegClass, MF);
if (LaneVGPR == AMDGPU::NoRegister) {
// We have no VGPRs left for spilling SGPRs. Reset because we will not
// partially spill the SGPR to VGPRs.
PrologEpilogSGPRSpillToVGPRLanes.erase(FI);
return false;
}
allocateWWMSpill(MF, LaneVGPR);
} else {
LaneVGPR = WWMSpills.back().first;
}
PrologEpilogSGPRSpillToVGPRLanes[FI].push_back(
SIRegisterInfo::SpilledReg(LaneVGPR, LaneIndex));
return true;
}
bool SIMachineFunctionInfo::allocateSGPRSpillToVGPRLane(MachineFunction &MF,
int FI,
bool IsPrologEpilog) {
std::vector<SIRegisterInfo::SpilledReg> &SpillLanes =
IsPrologEpilog ? PrologEpilogSGPRSpillToVGPRLanes[FI]
: SGPRSpillToVGPRLanes[FI];
// This has already been allocated.
if (!SpillLanes.empty())
return true;
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
MachineFrameInfo &FrameInfo = MF.getFrameInfo();
unsigned WaveSize = ST.getWavefrontSize();
unsigned Size = FrameInfo.getObjectSize(FI);
unsigned NumLanes = Size / 4;
if (NumLanes > WaveSize)
return false;
assert(Size >= 4 && "invalid sgpr spill size");
assert(ST.getRegisterInfo()->spillSGPRToVGPR() &&
"not spilling SGPRs to VGPRs");
unsigned &NumSpillLanes =
IsPrologEpilog ? NumVGPRPrologEpilogSpillLanes : NumVGPRSpillLanes;
for (unsigned I = 0; I < NumLanes; ++I, ++NumSpillLanes) {
unsigned LaneIndex = (NumSpillLanes % WaveSize);
bool Allocated =
IsPrologEpilog
? allocateVGPRForPrologEpilogSGPRSpills(MF, FI, LaneIndex)
: allocateVGPRForSGPRSpills(MF, FI, LaneIndex);
if (!Allocated) {
NumSpillLanes -= I;
return false;
}
}
return true;
}
/// Reserve AGPRs or VGPRs to support spilling for FrameIndex \p FI.
/// Either AGPR is spilled to VGPR to vice versa.
/// Returns true if a \p FI can be eliminated completely.
bool SIMachineFunctionInfo::allocateVGPRSpillToAGPR(MachineFunction &MF,
int FI,
bool isAGPRtoVGPR) {
MachineRegisterInfo &MRI = MF.getRegInfo();
MachineFrameInfo &FrameInfo = MF.getFrameInfo();
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
assert(ST.hasMAIInsts() && FrameInfo.isSpillSlotObjectIndex(FI));
auto &Spill = VGPRToAGPRSpills[FI];
// This has already been allocated.
if (!Spill.Lanes.empty())
return Spill.FullyAllocated;
unsigned Size = FrameInfo.getObjectSize(FI);
unsigned NumLanes = Size / 4;
Spill.Lanes.resize(NumLanes, AMDGPU::NoRegister);
const TargetRegisterClass &RC =
isAGPRtoVGPR ? AMDGPU::VGPR_32RegClass : AMDGPU::AGPR_32RegClass;
auto Regs = RC.getRegisters();
auto &SpillRegs = isAGPRtoVGPR ? SpillAGPR : SpillVGPR;
const SIRegisterInfo *TRI = ST.getRegisterInfo();
Spill.FullyAllocated = true;
// FIXME: Move allocation logic out of MachineFunctionInfo and initialize
// once.
BitVector OtherUsedRegs;
OtherUsedRegs.resize(TRI->getNumRegs());
const uint32_t *CSRMask =
TRI->getCallPreservedMask(MF, MF.getFunction().getCallingConv());
if (CSRMask)
OtherUsedRegs.setBitsInMask(CSRMask);
// TODO: Should include register tuples, but doesn't matter with current
// usage.
for (MCPhysReg Reg : SpillAGPR)
OtherUsedRegs.set(Reg);
for (MCPhysReg Reg : SpillVGPR)
OtherUsedRegs.set(Reg);
SmallVectorImpl<MCPhysReg>::const_iterator NextSpillReg = Regs.begin();
for (int I = NumLanes - 1; I >= 0; --I) {
NextSpillReg = std::find_if(
NextSpillReg, Regs.end(), [&MRI, &OtherUsedRegs](MCPhysReg Reg) {
return MRI.isAllocatable(Reg) && !MRI.isPhysRegUsed(Reg) &&
!OtherUsedRegs[Reg];
});
if (NextSpillReg == Regs.end()) { // Registers exhausted
Spill.FullyAllocated = false;
break;
}
OtherUsedRegs.set(*NextSpillReg);
SpillRegs.push_back(*NextSpillReg);
MRI.reserveReg(*NextSpillReg, TRI);
Spill.Lanes[I] = *NextSpillReg++;
}
return Spill.FullyAllocated;
}
bool SIMachineFunctionInfo::removeDeadFrameIndices(
MachineFrameInfo &MFI, bool ResetSGPRSpillStackIDs) {
// Remove dead frame indices from function frame. And also make sure to remove
// the frame indices from `SGPRSpillToVGPRLanes` data structure, otherwise, it
// could result in an unexpected side effect and bug, in case of any
// re-mapping of freed frame indices by later pass(es) like "stack slot
// coloring".
for (auto &R : make_early_inc_range(SGPRSpillToVGPRLanes)) {
MFI.RemoveStackObject(R.first);
SGPRSpillToVGPRLanes.erase(R.first);
}
bool HaveSGPRToMemory = false;
if (ResetSGPRSpillStackIDs) {
// All other SGPRs must be allocated on the default stack, so reset the
// stack ID.
for (int I = MFI.getObjectIndexBegin(), E = MFI.getObjectIndexEnd(); I != E;
++I) {
if (!checkIndexInPrologEpilogSGPRSpills(I)) {
if (MFI.getStackID(I) == TargetStackID::SGPRSpill) {
MFI.setStackID(I, TargetStackID::Default);
HaveSGPRToMemory = true;
}
}
}
}
for (auto &R : VGPRToAGPRSpills) {
if (R.second.IsDead)
MFI.RemoveStackObject(R.first);
}
return HaveSGPRToMemory;
}
int SIMachineFunctionInfo::getScavengeFI(MachineFrameInfo &MFI,
const SIRegisterInfo &TRI) {
if (ScavengeFI)
return *ScavengeFI;
if (isEntryFunction()) {
ScavengeFI = MFI.CreateFixedObject(
TRI.getSpillSize(AMDGPU::SGPR_32RegClass), 0, false);
} else {
ScavengeFI = MFI.CreateStackObject(
TRI.getSpillSize(AMDGPU::SGPR_32RegClass),
TRI.getSpillAlign(AMDGPU::SGPR_32RegClass), false);
}
return *ScavengeFI;
}
MCPhysReg SIMachineFunctionInfo::getNextUserSGPR() const {
assert(NumSystemSGPRs == 0 && "System SGPRs must be added after user SGPRs");
return AMDGPU::SGPR0 + NumUserSGPRs;
}
MCPhysReg SIMachineFunctionInfo::getNextSystemSGPR() const {
return AMDGPU::SGPR0 + NumUserSGPRs + NumSystemSGPRs;
}
Register
SIMachineFunctionInfo::getGITPtrLoReg(const MachineFunction &MF) const {
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
if (!ST.isAmdPalOS())
return Register();
Register GitPtrLo = AMDGPU::SGPR0; // Low GIT address passed in
if (ST.hasMergedShaders()) {
switch (MF.getFunction().getCallingConv()) {
case CallingConv::AMDGPU_HS:
case CallingConv::AMDGPU_GS:
// Low GIT address is passed in s8 rather than s0 for an LS+HS or
// ES+GS merged shader on gfx9+.
GitPtrLo = AMDGPU::SGPR8;
return GitPtrLo;
default:
return GitPtrLo;
}
}
return GitPtrLo;
}
static yaml::StringValue regToString(Register Reg,
const TargetRegisterInfo &TRI) {
yaml::StringValue Dest;
{
raw_string_ostream OS(Dest.Value);
OS << printReg(Reg, &TRI);
}
return Dest;
}
static std::optional<yaml::SIArgumentInfo>
convertArgumentInfo(const AMDGPUFunctionArgInfo &ArgInfo,
const TargetRegisterInfo &TRI) {
yaml::SIArgumentInfo AI;
auto convertArg = [&](std::optional<yaml::SIArgument> &A,
const ArgDescriptor &Arg) {
if (!Arg)
return false;
// Create a register or stack argument.
yaml::SIArgument SA = yaml::SIArgument::createArgument(Arg.isRegister());
if (Arg.isRegister()) {
raw_string_ostream OS(SA.RegisterName.Value);
OS << printReg(Arg.getRegister(), &TRI);
} else
SA.StackOffset = Arg.getStackOffset();
// Check and update the optional mask.
if (Arg.isMasked())
SA.Mask = Arg.getMask();
A = SA;
return true;
};
bool Any = false;
Any |= convertArg(AI.PrivateSegmentBuffer, ArgInfo.PrivateSegmentBuffer);
Any |= convertArg(AI.DispatchPtr, ArgInfo.DispatchPtr);
Any |= convertArg(AI.QueuePtr, ArgInfo.QueuePtr);
Any |= convertArg(AI.KernargSegmentPtr, ArgInfo.KernargSegmentPtr);
Any |= convertArg(AI.DispatchID, ArgInfo.DispatchID);
Any |= convertArg(AI.FlatScratchInit, ArgInfo.FlatScratchInit);
Any |= convertArg(AI.LDSKernelId, ArgInfo.LDSKernelId);
Any |= convertArg(AI.PrivateSegmentSize, ArgInfo.PrivateSegmentSize);
Any |= convertArg(AI.WorkGroupIDX, ArgInfo.WorkGroupIDX);
Any |= convertArg(AI.WorkGroupIDY, ArgInfo.WorkGroupIDY);
Any |= convertArg(AI.WorkGroupIDZ, ArgInfo.WorkGroupIDZ);
Any |= convertArg(AI.WorkGroupInfo, ArgInfo.WorkGroupInfo);
Any |= convertArg(AI.PrivateSegmentWaveByteOffset,
ArgInfo.PrivateSegmentWaveByteOffset);
Any |= convertArg(AI.ImplicitArgPtr, ArgInfo.ImplicitArgPtr);
Any |= convertArg(AI.ImplicitBufferPtr, ArgInfo.ImplicitBufferPtr);
Any |= convertArg(AI.WorkItemIDX, ArgInfo.WorkItemIDX);
Any |= convertArg(AI.WorkItemIDY, ArgInfo.WorkItemIDY);
Any |= convertArg(AI.WorkItemIDZ, ArgInfo.WorkItemIDZ);
if (Any)
return AI;
return std::nullopt;
}
yaml::SIMachineFunctionInfo::SIMachineFunctionInfo(
const llvm::SIMachineFunctionInfo &MFI, const TargetRegisterInfo &TRI,
const llvm::MachineFunction &MF)
: ExplicitKernArgSize(MFI.getExplicitKernArgSize()),
MaxKernArgAlign(MFI.getMaxKernArgAlign()), LDSSize(MFI.getLDSSize()),
GDSSize(MFI.getGDSSize()),
DynLDSAlign(MFI.getDynLDSAlign()), IsEntryFunction(MFI.isEntryFunction()),
NoSignedZerosFPMath(MFI.hasNoSignedZerosFPMath()),
MemoryBound(MFI.isMemoryBound()), WaveLimiter(MFI.needsWaveLimiter()),
HasSpilledSGPRs(MFI.hasSpilledSGPRs()),
HasSpilledVGPRs(MFI.hasSpilledVGPRs()),
HighBitsOf32BitAddress(MFI.get32BitAddressHighBits()),
Occupancy(MFI.getOccupancy()),
ScratchRSrcReg(regToString(MFI.getScratchRSrcReg(), TRI)),
FrameOffsetReg(regToString(MFI.getFrameOffsetReg(), TRI)),
StackPtrOffsetReg(regToString(MFI.getStackPtrOffsetReg(), TRI)),
BytesInStackArgArea(MFI.getBytesInStackArgArea()),
ReturnsVoid(MFI.returnsVoid()),
ArgInfo(convertArgumentInfo(MFI.getArgInfo(), TRI)), Mode(MFI.getMode()) {
for (Register Reg : MFI.getWWMReservedRegs())
WWMReservedRegs.push_back(regToString(Reg, TRI));
if (MFI.getVGPRForAGPRCopy())
VGPRForAGPRCopy = regToString(MFI.getVGPRForAGPRCopy(), TRI);
auto SFI = MFI.getOptionalScavengeFI();
if (SFI)
ScavengeFI = yaml::FrameIndex(*SFI, MF.getFrameInfo());
}
void yaml::SIMachineFunctionInfo::mappingImpl(yaml::IO &YamlIO) {
MappingTraits<SIMachineFunctionInfo>::mapping(YamlIO, *this);
}
bool SIMachineFunctionInfo::initializeBaseYamlFields(
const yaml::SIMachineFunctionInfo &YamlMFI, const MachineFunction &MF,
PerFunctionMIParsingState &PFS, SMDiagnostic &Error, SMRange &SourceRange) {
ExplicitKernArgSize = YamlMFI.ExplicitKernArgSize;
MaxKernArgAlign = YamlMFI.MaxKernArgAlign;
LDSSize = YamlMFI.LDSSize;
GDSSize = YamlMFI.GDSSize;
DynLDSAlign = YamlMFI.DynLDSAlign;
HighBitsOf32BitAddress = YamlMFI.HighBitsOf32BitAddress;
Occupancy = YamlMFI.Occupancy;
IsEntryFunction = YamlMFI.IsEntryFunction;
NoSignedZerosFPMath = YamlMFI.NoSignedZerosFPMath;
MemoryBound = YamlMFI.MemoryBound;
WaveLimiter = YamlMFI.WaveLimiter;
HasSpilledSGPRs = YamlMFI.HasSpilledSGPRs;
HasSpilledVGPRs = YamlMFI.HasSpilledVGPRs;
BytesInStackArgArea = YamlMFI.BytesInStackArgArea;
ReturnsVoid = YamlMFI.ReturnsVoid;
if (YamlMFI.ScavengeFI) {
auto FIOrErr = YamlMFI.ScavengeFI->getFI(MF.getFrameInfo());
if (!FIOrErr) {
// Create a diagnostic for a the frame index.
const MemoryBuffer &Buffer =
*PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID());
Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1,
SourceMgr::DK_Error, toString(FIOrErr.takeError()),
"", std::nullopt, std::nullopt);
SourceRange = YamlMFI.ScavengeFI->SourceRange;
return true;
}
ScavengeFI = *FIOrErr;
} else {
ScavengeFI = std::nullopt;
}
return false;
}
bool SIMachineFunctionInfo::mayUseAGPRs(const Function &F) const {
for (const BasicBlock &BB : F) {
for (const Instruction &I : BB) {
const auto *CB = dyn_cast<CallBase>(&I);
if (!CB)
continue;
if (CB->isInlineAsm()) {
const InlineAsm *IA = dyn_cast<InlineAsm>(CB->getCalledOperand());
for (const auto &CI : IA->ParseConstraints()) {
for (StringRef Code : CI.Codes) {
Code.consume_front("{");
if (Code.startswith("a"))
return true;
}
}
continue;
}
const Function *Callee =
dyn_cast<Function>(CB->getCalledOperand()->stripPointerCasts());
if (!Callee)
return true;
if (Callee->getIntrinsicID() == Intrinsic::not_intrinsic)
return true;
}
}
return false;
}
bool SIMachineFunctionInfo::usesAGPRs(const MachineFunction &MF) const {
if (UsesAGPRs)
return *UsesAGPRs;
if (!mayNeedAGPRs()) {
UsesAGPRs = false;
return false;
}
if (!AMDGPU::isEntryFunctionCC(MF.getFunction().getCallingConv()) ||
MF.getFrameInfo().hasCalls()) {
UsesAGPRs = true;
return true;
}
const MachineRegisterInfo &MRI = MF.getRegInfo();
for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
const Register Reg = Register::index2VirtReg(I);
const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg);
if (RC && SIRegisterInfo::isAGPRClass(RC)) {
UsesAGPRs = true;
return true;
} else if (!RC && !MRI.use_empty(Reg) && MRI.getType(Reg).isValid()) {
// Defer caching UsesAGPRs, function might not yet been regbank selected.
return true;
}
}
for (MCRegister Reg : AMDGPU::AGPR_32RegClass) {
if (MRI.isPhysRegUsed(Reg)) {
UsesAGPRs = true;
return true;
}
}
UsesAGPRs = false;
return false;
}