blob: 7a4af1af33d636b4846cc34a21c2cfb9d885bd7d [file] [log] [blame]
//===-- AMDGPUTargetStreamer.cpp - Mips Target Streamer Methods -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file provides AMDGPU specific target streamer methods.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUTargetStreamer.h"
#include "AMDGPUPTNote.h"
#include "AMDKernelCodeT.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "Utils/AMDKernelCodeTUtils.h"
#include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCELFStreamer.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/AMDGPUMetadata.h"
#include "llvm/Support/AMDHSAKernelDescriptor.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/TargetParser.h"
using namespace llvm;
using namespace llvm::AMDGPU;
//===----------------------------------------------------------------------===//
// AMDGPUTargetStreamer
//===----------------------------------------------------------------------===//
static void convertIsaVersionV2(uint32_t &Major, uint32_t &Minor,
uint32_t &Stepping, bool Sramecc, bool Xnack) {
if (Major == 9 && Minor == 0) {
switch (Stepping) {
case 0:
case 2:
case 4:
case 6:
if (Xnack)
Stepping++;
}
}
}
bool AMDGPUTargetStreamer::EmitHSAMetadataV2(StringRef HSAMetadataString) {
HSAMD::Metadata HSAMetadata;
if (HSAMD::fromString(HSAMetadataString, HSAMetadata))
return false;
return EmitHSAMetadata(HSAMetadata);
}
bool AMDGPUTargetStreamer::EmitHSAMetadataV3(StringRef HSAMetadataString) {
msgpack::Document HSAMetadataDoc;
if (!HSAMetadataDoc.fromYAML(HSAMetadataString))
return false;
return EmitHSAMetadata(HSAMetadataDoc, false);
}
StringRef AMDGPUTargetStreamer::getArchNameFromElfMach(unsigned ElfMach) {
AMDGPU::GPUKind AK;
switch (ElfMach) {
default: llvm_unreachable("Unhandled ELF::EF_AMDGPU type");
case ELF::EF_AMDGPU_MACH_R600_R600: AK = GK_R600; break;
case ELF::EF_AMDGPU_MACH_R600_R630: AK = GK_R630; break;
case ELF::EF_AMDGPU_MACH_R600_RS880: AK = GK_RS880; break;
case ELF::EF_AMDGPU_MACH_R600_RV670: AK = GK_RV670; break;
case ELF::EF_AMDGPU_MACH_R600_RV710: AK = GK_RV710; break;
case ELF::EF_AMDGPU_MACH_R600_RV730: AK = GK_RV730; break;
case ELF::EF_AMDGPU_MACH_R600_RV770: AK = GK_RV770; break;
case ELF::EF_AMDGPU_MACH_R600_CEDAR: AK = GK_CEDAR; break;
case ELF::EF_AMDGPU_MACH_R600_CYPRESS: AK = GK_CYPRESS; break;
case ELF::EF_AMDGPU_MACH_R600_JUNIPER: AK = GK_JUNIPER; break;
case ELF::EF_AMDGPU_MACH_R600_REDWOOD: AK = GK_REDWOOD; break;
case ELF::EF_AMDGPU_MACH_R600_SUMO: AK = GK_SUMO; break;
case ELF::EF_AMDGPU_MACH_R600_BARTS: AK = GK_BARTS; break;
case ELF::EF_AMDGPU_MACH_R600_CAICOS: AK = GK_CAICOS; break;
case ELF::EF_AMDGPU_MACH_R600_CAYMAN: AK = GK_CAYMAN; break;
case ELF::EF_AMDGPU_MACH_R600_TURKS: AK = GK_TURKS; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX600: AK = GK_GFX600; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX601: AK = GK_GFX601; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX602: AK = GK_GFX602; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX700: AK = GK_GFX700; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX701: AK = GK_GFX701; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX702: AK = GK_GFX702; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX703: AK = GK_GFX703; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX704: AK = GK_GFX704; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX705: AK = GK_GFX705; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX801: AK = GK_GFX801; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX802: AK = GK_GFX802; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX803: AK = GK_GFX803; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX805: AK = GK_GFX805; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX810: AK = GK_GFX810; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX900: AK = GK_GFX900; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX902: AK = GK_GFX902; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX904: AK = GK_GFX904; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX906: AK = GK_GFX906; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX908: AK = GK_GFX908; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX909: AK = GK_GFX909; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX90A: AK = GK_GFX90A; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX90C: AK = GK_GFX90C; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX940: AK = GK_GFX940; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1010: AK = GK_GFX1010; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1011: AK = GK_GFX1011; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1012: AK = GK_GFX1012; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1013: AK = GK_GFX1013; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1030: AK = GK_GFX1030; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1031: AK = GK_GFX1031; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1032: AK = GK_GFX1032; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1033: AK = GK_GFX1033; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1034: AK = GK_GFX1034; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1035: AK = GK_GFX1035; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1036: AK = GK_GFX1036; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1100: AK = GK_GFX1100; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1101: AK = GK_GFX1101; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1102: AK = GK_GFX1102; break;
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1103: AK = GK_GFX1103; break;
case ELF::EF_AMDGPU_MACH_NONE: AK = GK_NONE; break;
}
StringRef GPUName = getArchNameAMDGCN(AK);
if (GPUName != "")
return GPUName;
return getArchNameR600(AK);
}
unsigned AMDGPUTargetStreamer::getElfMach(StringRef GPU) {
AMDGPU::GPUKind AK = parseArchAMDGCN(GPU);
if (AK == AMDGPU::GPUKind::GK_NONE)
AK = parseArchR600(GPU);
switch (AK) {
case GK_R600: return ELF::EF_AMDGPU_MACH_R600_R600;
case GK_R630: return ELF::EF_AMDGPU_MACH_R600_R630;
case GK_RS880: return ELF::EF_AMDGPU_MACH_R600_RS880;
case GK_RV670: return ELF::EF_AMDGPU_MACH_R600_RV670;
case GK_RV710: return ELF::EF_AMDGPU_MACH_R600_RV710;
case GK_RV730: return ELF::EF_AMDGPU_MACH_R600_RV730;
case GK_RV770: return ELF::EF_AMDGPU_MACH_R600_RV770;
case GK_CEDAR: return ELF::EF_AMDGPU_MACH_R600_CEDAR;
case GK_CYPRESS: return ELF::EF_AMDGPU_MACH_R600_CYPRESS;
case GK_JUNIPER: return ELF::EF_AMDGPU_MACH_R600_JUNIPER;
case GK_REDWOOD: return ELF::EF_AMDGPU_MACH_R600_REDWOOD;
case GK_SUMO: return ELF::EF_AMDGPU_MACH_R600_SUMO;
case GK_BARTS: return ELF::EF_AMDGPU_MACH_R600_BARTS;
case GK_CAICOS: return ELF::EF_AMDGPU_MACH_R600_CAICOS;
case GK_CAYMAN: return ELF::EF_AMDGPU_MACH_R600_CAYMAN;
case GK_TURKS: return ELF::EF_AMDGPU_MACH_R600_TURKS;
case GK_GFX600: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX600;
case GK_GFX601: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX601;
case GK_GFX602: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX602;
case GK_GFX700: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX700;
case GK_GFX701: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX701;
case GK_GFX702: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX702;
case GK_GFX703: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX703;
case GK_GFX704: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX704;
case GK_GFX705: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX705;
case GK_GFX801: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX801;
case GK_GFX802: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX802;
case GK_GFX803: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX803;
case GK_GFX805: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX805;
case GK_GFX810: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX810;
case GK_GFX900: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX900;
case GK_GFX902: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX902;
case GK_GFX904: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX904;
case GK_GFX906: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX906;
case GK_GFX908: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX908;
case GK_GFX909: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX909;
case GK_GFX90A: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX90A;
case GK_GFX90C: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX90C;
case GK_GFX940: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX940;
case GK_GFX1010: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX1010;
case GK_GFX1011: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX1011;
case GK_GFX1012: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX1012;
case GK_GFX1013: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX1013;
case GK_GFX1030: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX1030;
case GK_GFX1031: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX1031;
case GK_GFX1032: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX1032;
case GK_GFX1033: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX1033;
case GK_GFX1034: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX1034;
case GK_GFX1035: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX1035;
case GK_GFX1036: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX1036;
case GK_GFX1100: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX1100;
case GK_GFX1101: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX1101;
case GK_GFX1102: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX1102;
case GK_GFX1103: return ELF::EF_AMDGPU_MACH_AMDGCN_GFX1103;
case GK_NONE: return ELF::EF_AMDGPU_MACH_NONE;
}
llvm_unreachable("unknown GPU");
}
//===----------------------------------------------------------------------===//
// AMDGPUTargetAsmStreamer
//===----------------------------------------------------------------------===//
AMDGPUTargetAsmStreamer::AMDGPUTargetAsmStreamer(MCStreamer &S,
formatted_raw_ostream &OS)
: AMDGPUTargetStreamer(S), OS(OS) { }
// A hook for emitting stuff at the end.
// We use it for emitting the accumulated PAL metadata as directives.
// The PAL metadata is reset after it is emitted.
void AMDGPUTargetAsmStreamer::finish() {
std::string S;
getPALMetadata()->toString(S);
OS << S;
// Reset the pal metadata so its data will not affect a compilation that
// reuses this object.
getPALMetadata()->reset();
}
void AMDGPUTargetAsmStreamer::EmitDirectiveAMDGCNTarget() {
OS << "\t.amdgcn_target \"" << getTargetID()->toString() << "\"\n";
}
void AMDGPUTargetAsmStreamer::EmitDirectiveHSACodeObjectVersion(
uint32_t Major, uint32_t Minor) {
OS << "\t.hsa_code_object_version " <<
Twine(Major) << "," << Twine(Minor) << '\n';
}
void
AMDGPUTargetAsmStreamer::EmitDirectiveHSACodeObjectISAV2(uint32_t Major,
uint32_t Minor,
uint32_t Stepping,
StringRef VendorName,
StringRef ArchName) {
convertIsaVersionV2(Major, Minor, Stepping, TargetID->isSramEccOnOrAny(), TargetID->isXnackOnOrAny());
OS << "\t.hsa_code_object_isa " << Twine(Major) << "," << Twine(Minor) << ","
<< Twine(Stepping) << ",\"" << VendorName << "\",\"" << ArchName << "\"\n";
}
void
AMDGPUTargetAsmStreamer::EmitAMDKernelCodeT(const amd_kernel_code_t &Header) {
OS << "\t.amd_kernel_code_t\n";
dumpAmdKernelCode(&Header, OS, "\t\t");
OS << "\t.end_amd_kernel_code_t\n";
}
void AMDGPUTargetAsmStreamer::EmitAMDGPUSymbolType(StringRef SymbolName,
unsigned Type) {
switch (Type) {
default: llvm_unreachable("Invalid AMDGPU symbol type");
case ELF::STT_AMDGPU_HSA_KERNEL:
OS << "\t.amdgpu_hsa_kernel " << SymbolName << '\n' ;
break;
}
}
void AMDGPUTargetAsmStreamer::emitAMDGPULDS(MCSymbol *Symbol, unsigned Size,
Align Alignment) {
OS << "\t.amdgpu_lds " << Symbol->getName() << ", " << Size << ", "
<< Alignment.value() << '\n';
}
bool AMDGPUTargetAsmStreamer::EmitISAVersion() {
OS << "\t.amd_amdgpu_isa \"" << getTargetID()->toString() << "\"\n";
return true;
}
bool AMDGPUTargetAsmStreamer::EmitHSAMetadata(
const AMDGPU::HSAMD::Metadata &HSAMetadata) {
std::string HSAMetadataString;
if (HSAMD::toString(HSAMetadata, HSAMetadataString))
return false;
OS << '\t' << HSAMD::AssemblerDirectiveBegin << '\n';
OS << HSAMetadataString << '\n';
OS << '\t' << HSAMD::AssemblerDirectiveEnd << '\n';
return true;
}
bool AMDGPUTargetAsmStreamer::EmitHSAMetadata(
msgpack::Document &HSAMetadataDoc, bool Strict) {
HSAMD::V3::MetadataVerifier Verifier(Strict);
if (!Verifier.verify(HSAMetadataDoc.getRoot()))
return false;
std::string HSAMetadataString;
raw_string_ostream StrOS(HSAMetadataString);
HSAMetadataDoc.toYAML(StrOS);
OS << '\t' << HSAMD::V3::AssemblerDirectiveBegin << '\n';
OS << StrOS.str() << '\n';
OS << '\t' << HSAMD::V3::AssemblerDirectiveEnd << '\n';
return true;
}
bool AMDGPUTargetAsmStreamer::EmitCodeEnd(const MCSubtargetInfo &STI) {
const uint32_t Encoded_s_code_end = 0xbf9f0000;
const uint32_t Encoded_s_nop = 0xbf800000;
uint32_t Encoded_pad = Encoded_s_code_end;
// Instruction cache line size in bytes.
const unsigned Log2CacheLineSize = AMDGPU::isGFX11Plus(STI) ? 7 : 6;
const unsigned CacheLineSize = 1u << Log2CacheLineSize;
// Extra padding amount in bytes to support prefetch mode 3.
unsigned FillSize = 3 * CacheLineSize;
if (AMDGPU::isGFX90A(STI)) {
Encoded_pad = Encoded_s_nop;
FillSize = 16 * CacheLineSize;
}
OS << "\t.p2alignl " << Log2CacheLineSize << ", " << Encoded_pad << '\n';
OS << "\t.fill " << (FillSize / 4) << ", 4, " << Encoded_pad << '\n';
return true;
}
void AMDGPUTargetAsmStreamer::EmitAmdhsaKernelDescriptor(
const MCSubtargetInfo &STI, StringRef KernelName,
const amdhsa::kernel_descriptor_t &KD, uint64_t NextVGPR, uint64_t NextSGPR,
bool ReserveVCC, bool ReserveFlatScr) {
IsaVersion IVersion = getIsaVersion(STI.getCPU());
OS << "\t.amdhsa_kernel " << KernelName << '\n';
#define PRINT_FIELD(STREAM, DIRECTIVE, KERNEL_DESC, MEMBER_NAME, FIELD_NAME) \
STREAM << "\t\t" << DIRECTIVE << " " \
<< AMDHSA_BITS_GET(KERNEL_DESC.MEMBER_NAME, FIELD_NAME) << '\n';
OS << "\t\t.amdhsa_group_segment_fixed_size " << KD.group_segment_fixed_size
<< '\n';
OS << "\t\t.amdhsa_private_segment_fixed_size "
<< KD.private_segment_fixed_size << '\n';
OS << "\t\t.amdhsa_kernarg_size " << KD.kernarg_size << '\n';
PRINT_FIELD(OS, ".amdhsa_user_sgpr_count", KD,
compute_pgm_rsrc2,
amdhsa::COMPUTE_PGM_RSRC2_USER_SGPR_COUNT);
if (!hasArchitectedFlatScratch(STI))
PRINT_FIELD(
OS, ".amdhsa_user_sgpr_private_segment_buffer", KD,
kernel_code_properties,
amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
PRINT_FIELD(OS, ".amdhsa_user_sgpr_dispatch_ptr", KD,
kernel_code_properties,
amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
PRINT_FIELD(OS, ".amdhsa_user_sgpr_queue_ptr", KD,
kernel_code_properties,
amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
PRINT_FIELD(OS, ".amdhsa_user_sgpr_kernarg_segment_ptr", KD,
kernel_code_properties,
amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
PRINT_FIELD(OS, ".amdhsa_user_sgpr_dispatch_id", KD,
kernel_code_properties,
amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
if (!hasArchitectedFlatScratch(STI))
PRINT_FIELD(OS, ".amdhsa_user_sgpr_flat_scratch_init", KD,
kernel_code_properties,
amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
PRINT_FIELD(OS, ".amdhsa_user_sgpr_private_segment_size", KD,
kernel_code_properties,
amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
if (IVersion.Major >= 10)
PRINT_FIELD(OS, ".amdhsa_wavefront_size32", KD,
kernel_code_properties,
amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
if (AMDGPU::getAmdhsaCodeObjectVersion() >= 5)
PRINT_FIELD(OS, ".amdhsa_uses_dynamic_stack", KD, kernel_code_properties,
amdhsa::KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
PRINT_FIELD(OS,
(hasArchitectedFlatScratch(STI)
? ".amdhsa_enable_private_segment"
: ".amdhsa_system_sgpr_private_segment_wavefront_offset"),
KD, compute_pgm_rsrc2,
amdhsa::COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
PRINT_FIELD(OS, ".amdhsa_system_sgpr_workgroup_id_x", KD,
compute_pgm_rsrc2,
amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
PRINT_FIELD(OS, ".amdhsa_system_sgpr_workgroup_id_y", KD,
compute_pgm_rsrc2,
amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
PRINT_FIELD(OS, ".amdhsa_system_sgpr_workgroup_id_z", KD,
compute_pgm_rsrc2,
amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
PRINT_FIELD(OS, ".amdhsa_system_sgpr_workgroup_info", KD,
compute_pgm_rsrc2,
amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
PRINT_FIELD(OS, ".amdhsa_system_vgpr_workitem_id", KD,
compute_pgm_rsrc2,
amdhsa::COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
// These directives are required.
OS << "\t\t.amdhsa_next_free_vgpr " << NextVGPR << '\n';
OS << "\t\t.amdhsa_next_free_sgpr " << NextSGPR << '\n';
if (AMDGPU::isGFX90A(STI))
OS << "\t\t.amdhsa_accum_offset " <<
(AMDHSA_BITS_GET(KD.compute_pgm_rsrc3,
amdhsa::COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4
<< '\n';
if (!ReserveVCC)
OS << "\t\t.amdhsa_reserve_vcc " << ReserveVCC << '\n';
if (IVersion.Major >= 7 && !ReserveFlatScr && !hasArchitectedFlatScratch(STI))
OS << "\t\t.amdhsa_reserve_flat_scratch " << ReserveFlatScr << '\n';
if (std::optional<uint8_t> HsaAbiVer = getHsaAbiVersion(&STI)) {
switch (*HsaAbiVer) {
default:
break;
case ELF::ELFABIVERSION_AMDGPU_HSA_V2:
break;
case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
if (getTargetID()->isXnackSupported())
OS << "\t\t.amdhsa_reserve_xnack_mask " << getTargetID()->isXnackOnOrAny() << '\n';
break;
}
}
PRINT_FIELD(OS, ".amdhsa_float_round_mode_32", KD,
compute_pgm_rsrc1,
amdhsa::COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
PRINT_FIELD(OS, ".amdhsa_float_round_mode_16_64", KD,
compute_pgm_rsrc1,
amdhsa::COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
PRINT_FIELD(OS, ".amdhsa_float_denorm_mode_32", KD,
compute_pgm_rsrc1,
amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
PRINT_FIELD(OS, ".amdhsa_float_denorm_mode_16_64", KD,
compute_pgm_rsrc1,
amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
PRINT_FIELD(OS, ".amdhsa_dx10_clamp", KD,
compute_pgm_rsrc1,
amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
PRINT_FIELD(OS, ".amdhsa_ieee_mode", KD,
compute_pgm_rsrc1,
amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
if (IVersion.Major >= 9)
PRINT_FIELD(OS, ".amdhsa_fp16_overflow", KD,
compute_pgm_rsrc1,
amdhsa::COMPUTE_PGM_RSRC1_FP16_OVFL);
if (AMDGPU::isGFX90A(STI))
PRINT_FIELD(OS, ".amdhsa_tg_split", KD,
compute_pgm_rsrc3,
amdhsa::COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT);
if (IVersion.Major >= 10) {
PRINT_FIELD(OS, ".amdhsa_workgroup_processor_mode", KD,
compute_pgm_rsrc1,
amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE);
PRINT_FIELD(OS, ".amdhsa_memory_ordered", KD,
compute_pgm_rsrc1,
amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED);
PRINT_FIELD(OS, ".amdhsa_forward_progress", KD,
compute_pgm_rsrc1,
amdhsa::COMPUTE_PGM_RSRC1_FWD_PROGRESS);
PRINT_FIELD(OS, ".amdhsa_shared_vgpr_count", KD, compute_pgm_rsrc3,
amdhsa::COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT);
}
PRINT_FIELD(
OS, ".amdhsa_exception_fp_ieee_invalid_op", KD,
compute_pgm_rsrc2,
amdhsa::COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
PRINT_FIELD(OS, ".amdhsa_exception_fp_denorm_src", KD,
compute_pgm_rsrc2,
amdhsa::COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
PRINT_FIELD(
OS, ".amdhsa_exception_fp_ieee_div_zero", KD,
compute_pgm_rsrc2,
amdhsa::COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
PRINT_FIELD(OS, ".amdhsa_exception_fp_ieee_overflow", KD,
compute_pgm_rsrc2,
amdhsa::COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
PRINT_FIELD(OS, ".amdhsa_exception_fp_ieee_underflow", KD,
compute_pgm_rsrc2,
amdhsa::COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
PRINT_FIELD(OS, ".amdhsa_exception_fp_ieee_inexact", KD,
compute_pgm_rsrc2,
amdhsa::COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
PRINT_FIELD(OS, ".amdhsa_exception_int_div_zero", KD,
compute_pgm_rsrc2,
amdhsa::COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
#undef PRINT_FIELD
OS << "\t.end_amdhsa_kernel\n";
}
//===----------------------------------------------------------------------===//
// AMDGPUTargetELFStreamer
//===----------------------------------------------------------------------===//
AMDGPUTargetELFStreamer::AMDGPUTargetELFStreamer(MCStreamer &S,
const MCSubtargetInfo &STI)
: AMDGPUTargetStreamer(S), STI(STI), Streamer(S) {}
MCELFStreamer &AMDGPUTargetELFStreamer::getStreamer() {
return static_cast<MCELFStreamer &>(Streamer);
}
// A hook for emitting stuff at the end.
// We use it for emitting the accumulated PAL metadata as a .note record.
// The PAL metadata is reset after it is emitted.
void AMDGPUTargetELFStreamer::finish() {
MCAssembler &MCA = getStreamer().getAssembler();
MCA.setELFHeaderEFlags(getEFlags());
std::string Blob;
const char *Vendor = getPALMetadata()->getVendor();
unsigned Type = getPALMetadata()->getType();
getPALMetadata()->toBlob(Type, Blob);
if (Blob.empty())
return;
EmitNote(Vendor, MCConstantExpr::create(Blob.size(), getContext()), Type,
[&](MCELFStreamer &OS) { OS.emitBytes(Blob); });
// Reset the pal metadata so its data will not affect a compilation that
// reuses this object.
getPALMetadata()->reset();
}
void AMDGPUTargetELFStreamer::EmitNote(
StringRef Name, const MCExpr *DescSZ, unsigned NoteType,
function_ref<void(MCELFStreamer &)> EmitDesc) {
auto &S = getStreamer();
auto &Context = S.getContext();
auto NameSZ = Name.size() + 1;
unsigned NoteFlags = 0;
// TODO Apparently, this is currently needed for OpenCL as mentioned in
// https://reviews.llvm.org/D74995
if (STI.getTargetTriple().getOS() == Triple::AMDHSA)
NoteFlags = ELF::SHF_ALLOC;
S.pushSection();
S.switchSection(
Context.getELFSection(ElfNote::SectionName, ELF::SHT_NOTE, NoteFlags));
S.emitInt32(NameSZ); // namesz
S.emitValue(DescSZ, 4); // descz
S.emitInt32(NoteType); // type
S.emitBytes(Name); // name
S.emitValueToAlignment(Align(4), 0, 1, 0); // padding 0
EmitDesc(S); // desc
S.emitValueToAlignment(Align(4), 0, 1, 0); // padding 0
S.popSection();
}
unsigned AMDGPUTargetELFStreamer::getEFlags() {
switch (STI.getTargetTriple().getArch()) {
default:
llvm_unreachable("Unsupported Arch");
case Triple::r600:
return getEFlagsR600();
case Triple::amdgcn:
return getEFlagsAMDGCN();
}
}
unsigned AMDGPUTargetELFStreamer::getEFlagsR600() {
assert(STI.getTargetTriple().getArch() == Triple::r600);
return getElfMach(STI.getCPU());
}
unsigned AMDGPUTargetELFStreamer::getEFlagsAMDGCN() {
assert(STI.getTargetTriple().getArch() == Triple::amdgcn);
switch (STI.getTargetTriple().getOS()) {
default:
// TODO: Why are some tests have "mingw" listed as OS?
// llvm_unreachable("Unsupported OS");
case Triple::UnknownOS:
return getEFlagsUnknownOS();
case Triple::AMDHSA:
return getEFlagsAMDHSA();
case Triple::AMDPAL:
return getEFlagsAMDPAL();
case Triple::Mesa3D:
return getEFlagsMesa3D();
}
}
unsigned AMDGPUTargetELFStreamer::getEFlagsUnknownOS() {
// TODO: Why are some tests have "mingw" listed as OS?
// assert(STI.getTargetTriple().getOS() == Triple::UnknownOS);
return getEFlagsV3();
}
unsigned AMDGPUTargetELFStreamer::getEFlagsAMDHSA() {
assert(STI.getTargetTriple().getOS() == Triple::AMDHSA);
if (std::optional<uint8_t> HsaAbiVer = getHsaAbiVersion(&STI)) {
switch (*HsaAbiVer) {
case ELF::ELFABIVERSION_AMDGPU_HSA_V2:
case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
return getEFlagsV3();
case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
return getEFlagsV4();
}
}
llvm_unreachable("HSA OS ABI Version identification must be defined");
}
unsigned AMDGPUTargetELFStreamer::getEFlagsAMDPAL() {
assert(STI.getTargetTriple().getOS() == Triple::AMDPAL);
return getEFlagsV3();
}
unsigned AMDGPUTargetELFStreamer::getEFlagsMesa3D() {
assert(STI.getTargetTriple().getOS() == Triple::Mesa3D);
return getEFlagsV3();
}
unsigned AMDGPUTargetELFStreamer::getEFlagsV3() {
unsigned EFlagsV3 = 0;
// mach.
EFlagsV3 |= getElfMach(STI.getCPU());
// xnack.
if (getTargetID()->isXnackOnOrAny())
EFlagsV3 |= ELF::EF_AMDGPU_FEATURE_XNACK_V3;
// sramecc.
if (getTargetID()->isSramEccOnOrAny())
EFlagsV3 |= ELF::EF_AMDGPU_FEATURE_SRAMECC_V3;
return EFlagsV3;
}
unsigned AMDGPUTargetELFStreamer::getEFlagsV4() {
unsigned EFlagsV4 = 0;
// mach.
EFlagsV4 |= getElfMach(STI.getCPU());
// xnack.
switch (getTargetID()->getXnackSetting()) {
case AMDGPU::IsaInfo::TargetIDSetting::Unsupported:
EFlagsV4 |= ELF::EF_AMDGPU_FEATURE_XNACK_UNSUPPORTED_V4;
break;
case AMDGPU::IsaInfo::TargetIDSetting::Any:
EFlagsV4 |= ELF::EF_AMDGPU_FEATURE_XNACK_ANY_V4;
break;
case AMDGPU::IsaInfo::TargetIDSetting::Off:
EFlagsV4 |= ELF::EF_AMDGPU_FEATURE_XNACK_OFF_V4;
break;
case AMDGPU::IsaInfo::TargetIDSetting::On:
EFlagsV4 |= ELF::EF_AMDGPU_FEATURE_XNACK_ON_V4;
break;
}
// sramecc.
switch (getTargetID()->getSramEccSetting()) {
case AMDGPU::IsaInfo::TargetIDSetting::Unsupported:
EFlagsV4 |= ELF::EF_AMDGPU_FEATURE_SRAMECC_UNSUPPORTED_V4;
break;
case AMDGPU::IsaInfo::TargetIDSetting::Any:
EFlagsV4 |= ELF::EF_AMDGPU_FEATURE_SRAMECC_ANY_V4;
break;
case AMDGPU::IsaInfo::TargetIDSetting::Off:
EFlagsV4 |= ELF::EF_AMDGPU_FEATURE_SRAMECC_OFF_V4;
break;
case AMDGPU::IsaInfo::TargetIDSetting::On:
EFlagsV4 |= ELF::EF_AMDGPU_FEATURE_SRAMECC_ON_V4;
break;
}
return EFlagsV4;
}
void AMDGPUTargetELFStreamer::EmitDirectiveAMDGCNTarget() {}
void AMDGPUTargetELFStreamer::EmitDirectiveHSACodeObjectVersion(
uint32_t Major, uint32_t Minor) {
EmitNote(ElfNote::NoteNameV2, MCConstantExpr::create(8, getContext()),
ELF::NT_AMD_HSA_CODE_OBJECT_VERSION, [&](MCELFStreamer &OS) {
OS.emitInt32(Major);
OS.emitInt32(Minor);
});
}
void
AMDGPUTargetELFStreamer::EmitDirectiveHSACodeObjectISAV2(uint32_t Major,
uint32_t Minor,
uint32_t Stepping,
StringRef VendorName,
StringRef ArchName) {
uint16_t VendorNameSize = VendorName.size() + 1;
uint16_t ArchNameSize = ArchName.size() + 1;
unsigned DescSZ = sizeof(VendorNameSize) + sizeof(ArchNameSize) +
sizeof(Major) + sizeof(Minor) + sizeof(Stepping) +
VendorNameSize + ArchNameSize;
convertIsaVersionV2(Major, Minor, Stepping, TargetID->isSramEccOnOrAny(), TargetID->isXnackOnOrAny());
EmitNote(ElfNote::NoteNameV2, MCConstantExpr::create(DescSZ, getContext()),
ELF::NT_AMD_HSA_ISA_VERSION, [&](MCELFStreamer &OS) {
OS.emitInt16(VendorNameSize);
OS.emitInt16(ArchNameSize);
OS.emitInt32(Major);
OS.emitInt32(Minor);
OS.emitInt32(Stepping);
OS.emitBytes(VendorName);
OS.emitInt8(0); // NULL terminate VendorName
OS.emitBytes(ArchName);
OS.emitInt8(0); // NULL terminate ArchName
});
}
void
AMDGPUTargetELFStreamer::EmitAMDKernelCodeT(const amd_kernel_code_t &Header) {
MCStreamer &OS = getStreamer();
OS.pushSection();
OS.emitBytes(StringRef((const char*)&Header, sizeof(Header)));
OS.popSection();
}
void AMDGPUTargetELFStreamer::EmitAMDGPUSymbolType(StringRef SymbolName,
unsigned Type) {
MCSymbolELF *Symbol = cast<MCSymbolELF>(
getStreamer().getContext().getOrCreateSymbol(SymbolName));
Symbol->setType(Type);
}
void AMDGPUTargetELFStreamer::emitAMDGPULDS(MCSymbol *Symbol, unsigned Size,
Align Alignment) {
MCSymbolELF *SymbolELF = cast<MCSymbolELF>(Symbol);
SymbolELF->setType(ELF::STT_OBJECT);
if (!SymbolELF->isBindingSet()) {
SymbolELF->setBinding(ELF::STB_GLOBAL);
SymbolELF->setExternal(true);
}
if (SymbolELF->declareCommon(Size, Alignment, true)) {
report_fatal_error("Symbol: " + Symbol->getName() +
" redeclared as different type");
}
SymbolELF->setIndex(ELF::SHN_AMDGPU_LDS);
SymbolELF->setSize(MCConstantExpr::create(Size, getContext()));
}
bool AMDGPUTargetELFStreamer::EmitISAVersion() {
// Create two labels to mark the beginning and end of the desc field
// and a MCExpr to calculate the size of the desc field.
auto &Context = getContext();
auto *DescBegin = Context.createTempSymbol();
auto *DescEnd = Context.createTempSymbol();
auto *DescSZ = MCBinaryExpr::createSub(
MCSymbolRefExpr::create(DescEnd, Context),
MCSymbolRefExpr::create(DescBegin, Context), Context);
EmitNote(ElfNote::NoteNameV2, DescSZ, ELF::NT_AMD_HSA_ISA_NAME,
[&](MCELFStreamer &OS) {
OS.emitLabel(DescBegin);
OS.emitBytes(getTargetID()->toString());
OS.emitLabel(DescEnd);
});
return true;
}
bool AMDGPUTargetELFStreamer::EmitHSAMetadata(msgpack::Document &HSAMetadataDoc,
bool Strict) {
HSAMD::V3::MetadataVerifier Verifier(Strict);
if (!Verifier.verify(HSAMetadataDoc.getRoot()))
return false;
std::string HSAMetadataString;
HSAMetadataDoc.writeToBlob(HSAMetadataString);
// Create two labels to mark the beginning and end of the desc field
// and a MCExpr to calculate the size of the desc field.
auto &Context = getContext();
auto *DescBegin = Context.createTempSymbol();
auto *DescEnd = Context.createTempSymbol();
auto *DescSZ = MCBinaryExpr::createSub(
MCSymbolRefExpr::create(DescEnd, Context),
MCSymbolRefExpr::create(DescBegin, Context), Context);
EmitNote(ElfNote::NoteNameV3, DescSZ, ELF::NT_AMDGPU_METADATA,
[&](MCELFStreamer &OS) {
OS.emitLabel(DescBegin);
OS.emitBytes(HSAMetadataString);
OS.emitLabel(DescEnd);
});
return true;
}
bool AMDGPUTargetELFStreamer::EmitHSAMetadata(
const AMDGPU::HSAMD::Metadata &HSAMetadata) {
std::string HSAMetadataString;
if (HSAMD::toString(HSAMetadata, HSAMetadataString))
return false;
// Create two labels to mark the beginning and end of the desc field
// and a MCExpr to calculate the size of the desc field.
auto &Context = getContext();
auto *DescBegin = Context.createTempSymbol();
auto *DescEnd = Context.createTempSymbol();
auto *DescSZ = MCBinaryExpr::createSub(
MCSymbolRefExpr::create(DescEnd, Context),
MCSymbolRefExpr::create(DescBegin, Context), Context);
EmitNote(ElfNote::NoteNameV2, DescSZ, ELF::NT_AMD_HSA_METADATA,
[&](MCELFStreamer &OS) {
OS.emitLabel(DescBegin);
OS.emitBytes(HSAMetadataString);
OS.emitLabel(DescEnd);
});
return true;
}
bool AMDGPUTargetELFStreamer::EmitCodeEnd(const MCSubtargetInfo &STI) {
const uint32_t Encoded_s_code_end = 0xbf9f0000;
const uint32_t Encoded_s_nop = 0xbf800000;
uint32_t Encoded_pad = Encoded_s_code_end;
// Instruction cache line size in bytes.
const unsigned Log2CacheLineSize = AMDGPU::isGFX11Plus(STI) ? 7 : 6;
const unsigned CacheLineSize = 1u << Log2CacheLineSize;
// Extra padding amount in bytes to support prefetch mode 3.
unsigned FillSize = 3 * CacheLineSize;
if (AMDGPU::isGFX90A(STI)) {
Encoded_pad = Encoded_s_nop;
FillSize = 16 * CacheLineSize;
}
MCStreamer &OS = getStreamer();
OS.pushSection();
OS.emitValueToAlignment(Align(CacheLineSize), Encoded_pad, 4);
for (unsigned I = 0; I < FillSize; I += 4)
OS.emitInt32(Encoded_pad);
OS.popSection();
return true;
}
void AMDGPUTargetELFStreamer::EmitAmdhsaKernelDescriptor(
const MCSubtargetInfo &STI, StringRef KernelName,
const amdhsa::kernel_descriptor_t &KernelDescriptor, uint64_t NextVGPR,
uint64_t NextSGPR, bool ReserveVCC, bool ReserveFlatScr) {
auto &Streamer = getStreamer();
auto &Context = Streamer.getContext();
MCSymbolELF *KernelCodeSymbol = cast<MCSymbolELF>(
Context.getOrCreateSymbol(Twine(KernelName)));
MCSymbolELF *KernelDescriptorSymbol = cast<MCSymbolELF>(
Context.getOrCreateSymbol(Twine(KernelName) + Twine(".kd")));
// Copy kernel descriptor symbol's binding, other and visibility from the
// kernel code symbol.
KernelDescriptorSymbol->setBinding(KernelCodeSymbol->getBinding());
KernelDescriptorSymbol->setOther(KernelCodeSymbol->getOther());
KernelDescriptorSymbol->setVisibility(KernelCodeSymbol->getVisibility());
// Kernel descriptor symbol's type and size are fixed.
KernelDescriptorSymbol->setType(ELF::STT_OBJECT);
KernelDescriptorSymbol->setSize(
MCConstantExpr::create(sizeof(KernelDescriptor), Context));
// The visibility of the kernel code symbol must be protected or less to allow
// static relocations from the kernel descriptor to be used.
if (KernelCodeSymbol->getVisibility() == ELF::STV_DEFAULT)
KernelCodeSymbol->setVisibility(ELF::STV_PROTECTED);
Streamer.emitLabel(KernelDescriptorSymbol);
Streamer.emitInt32(KernelDescriptor.group_segment_fixed_size);
Streamer.emitInt32(KernelDescriptor.private_segment_fixed_size);
Streamer.emitInt32(KernelDescriptor.kernarg_size);
for (uint8_t Res : KernelDescriptor.reserved0)
Streamer.emitInt8(Res);
// FIXME: Remove the use of VK_AMDGPU_REL64 in the expression below. The
// expression being created is:
// (start of kernel code) - (start of kernel descriptor)
// It implies R_AMDGPU_REL64, but ends up being R_AMDGPU_ABS64.
Streamer.emitValue(MCBinaryExpr::createSub(
MCSymbolRefExpr::create(
KernelCodeSymbol, MCSymbolRefExpr::VK_AMDGPU_REL64, Context),
MCSymbolRefExpr::create(
KernelDescriptorSymbol, MCSymbolRefExpr::VK_None, Context),
Context),
sizeof(KernelDescriptor.kernel_code_entry_byte_offset));
for (uint8_t Res : KernelDescriptor.reserved1)
Streamer.emitInt8(Res);
Streamer.emitInt32(KernelDescriptor.compute_pgm_rsrc3);
Streamer.emitInt32(KernelDescriptor.compute_pgm_rsrc1);
Streamer.emitInt32(KernelDescriptor.compute_pgm_rsrc2);
Streamer.emitInt16(KernelDescriptor.kernel_code_properties);
for (uint8_t Res : KernelDescriptor.reserved2)
Streamer.emitInt8(Res);
}