blob: ff34726fdf0286ea1df0094acbdb41266dfaebce [file] [log] [blame]
//===- AMDGPURewriteUndefForPHI.cpp ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file implements the idea to rewrite undef incoming operand for certain
// PHIs in structurized CFG. This pass only works on IR that has gone through
// StructurizedCFG pass, and this pass has some additional limitation that make
// it can only run after SIAnnotateControlFlow.
//
// To achieve optimal code generation for AMDGPU, we assume that divergence
// analysis reports the PHI in join block of divergent branch as uniform if
// it has one unique uniform value plus additional undefined/poisoned incoming
// value. That is to say the later compiler pipeline will ensure such PHI always
// return uniform value and ensure it work correctly. Let's take a look at two
// typical patterns in structured CFG that need to be taken care: (In both
// patterns, block %if terminate with divergent branch.)
//
// Pattern A: Block with undefined incoming value dominates defined predecessor
// %if
// | \
// | %then
// | /
// %endif: %phi = phi [%undef, %if], [%uniform, %then]
//
// Pattern B: Block with defined incoming value dominates undefined predecessor
// %if
// | \
// | %then
// | /
// %endif: %phi = phi [%uniform, %if], [%undef, %then]
//
// For pattern A, by reporting %phi as uniform, the later pipeline need to make
// sure it be handled correctly. The backend usually allocates a scalar register
// and if any thread in a wave takes %then path, the scalar register will get
// the %uniform value.
//
// For pattern B, we will replace the undef operand with the other defined value
// in this pass. So the scalar register allocated for such PHI will get correct
// liveness. Without this transformation, the scalar register may be overwritten
// in the %then block.
//
// Limitation note:
// If the join block of divergent threads is a loop header, the pass cannot
// handle it correctly right now. For below case, the undef in %phi should also
// be rewritten. Currently we depend on SIAnnotateControlFlow to split %header
// block to get a separate join block, then we can rewrite the undef correctly.
// %if
// | \
// | %then
// | /
// -> %header: %phi = phi [%uniform, %if], [%undef, %then], [%uniform2, %header]
// | |
// \---
#include "AMDGPU.h"
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/InitializePasses.h"
using namespace llvm;
#define DEBUG_TYPE "amdgpu-rewrite-undef-for-phi"
namespace {
class AMDGPURewriteUndefForPHI : public FunctionPass {
public:
static char ID;
AMDGPURewriteUndefForPHI() : FunctionPass(ID) {
initializeAMDGPURewriteUndefForPHIPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
StringRef getPassName() const override {
return "AMDGPU Rewrite Undef for PHI";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<LegacyDivergenceAnalysis>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<LegacyDivergenceAnalysis>();
AU.setPreservesCFG();
}
};
} // end anonymous namespace
char AMDGPURewriteUndefForPHI::ID = 0;
INITIALIZE_PASS_BEGIN(AMDGPURewriteUndefForPHI, DEBUG_TYPE,
"Rewrite undef for PHI", false, false)
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(AMDGPURewriteUndefForPHI, DEBUG_TYPE,
"Rewrite undef for PHI", false, false)
bool rewritePHIs(Function &F, LegacyDivergenceAnalysis *DA, DominatorTree *DT) {
bool Changed = false;
SmallVector<PHINode *> ToBeDeleted;
for (auto &BB : F) {
for (auto &PHI : BB.phis()) {
if (DA->isDivergent(&PHI))
continue;
// The unique incoming value except undef/poison for the PHI node.
Value *UniqueDefinedIncoming = nullptr;
// The divergent block with defined incoming value that dominates all
// other block with the same incoming value.
BasicBlock *DominateBB = nullptr;
// Predecessors with undefined incoming value (excluding loop backedge).
SmallVector<BasicBlock *> Undefs;
for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
Value *Incoming = PHI.getIncomingValue(i);
BasicBlock *IncomingBB = PHI.getIncomingBlock(i);
if (Incoming == &PHI)
continue;
if (isa<UndefValue>(Incoming)) {
// Undef from loop backedge will not be replaced.
if (!DT->dominates(&BB, IncomingBB))
Undefs.push_back(IncomingBB);
continue;
}
if (!UniqueDefinedIncoming) {
UniqueDefinedIncoming = Incoming;
DominateBB = IncomingBB;
} else if (Incoming == UniqueDefinedIncoming) {
// Update DominateBB if necessary.
if (DT->dominates(IncomingBB, DominateBB))
DominateBB = IncomingBB;
} else {
UniqueDefinedIncoming = nullptr;
break;
}
}
// We only need to replace the undef for the PHI which is merging
// defined/undefined values from divergent threads.
// TODO: We should still be able to replace undef value if the unique
// value is a Constant.
if (!UniqueDefinedIncoming || Undefs.empty() ||
!DA->isDivergent(DominateBB->getTerminator()))
continue;
// We only replace the undef when DominateBB truly dominates all the
// other predecessors with undefined incoming value. Make sure DominateBB
// dominates BB so that UniqueDefinedIncoming is available in BB and
// afterwards.
if (DT->dominates(DominateBB, &BB) && all_of(Undefs, [&](BasicBlock *UD) {
return DT->dominates(DominateBB, UD);
})) {
PHI.replaceAllUsesWith(UniqueDefinedIncoming);
ToBeDeleted.push_back(&PHI);
Changed = true;
}
}
}
for (auto *PHI : ToBeDeleted)
PHI->eraseFromParent();
return Changed;
}
bool AMDGPURewriteUndefForPHI::runOnFunction(Function &F) {
LegacyDivergenceAnalysis *DA = &getAnalysis<LegacyDivergenceAnalysis>();
DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
return rewritePHIs(F, DA, DT);
}
FunctionPass *llvm::createAMDGPURewriteUndefForPHIPass() {
return new AMDGPURewriteUndefForPHI();
}