blob: c6e9e0550117e45a6c8cc75179d2a0b5b151e4d5 [file] [log] [blame]
//===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "AArch64TargetTransformInfo.h"
#include "AArch64ExpandImm.h"
#include "AArch64PerfectShuffle.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/Analysis/IVDescriptors.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/CodeGen/CostTable.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/InstCombine/InstCombiner.h"
#include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
#include <algorithm>
#include <optional>
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "aarch64tti"
static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix",
cl::init(true), cl::Hidden);
static cl::opt<unsigned> SVEGatherOverhead("sve-gather-overhead", cl::init(10),
cl::Hidden);
static cl::opt<unsigned> SVEScatterOverhead("sve-scatter-overhead",
cl::init(10), cl::Hidden);
namespace {
class TailFoldingKind {
private:
uint8_t Bits = 0; // Currently defaults to disabled.
public:
enum TailFoldingOpts {
TFDisabled = 0x0,
TFReductions = 0x01,
TFRecurrences = 0x02,
TFSimple = 0x80,
TFAll = TFReductions | TFRecurrences | TFSimple
};
void operator=(const std::string &Val) {
if (Val.empty())
return;
SmallVector<StringRef, 6> TailFoldTypes;
StringRef(Val).split(TailFoldTypes, '+', -1, false);
for (auto TailFoldType : TailFoldTypes) {
if (TailFoldType == "disabled")
Bits = 0;
else if (TailFoldType == "all")
Bits = TFAll;
else if (TailFoldType == "default")
Bits = 0; // Currently defaults to never tail-folding.
else if (TailFoldType == "simple")
add(TFSimple);
else if (TailFoldType == "reductions")
add(TFReductions);
else if (TailFoldType == "recurrences")
add(TFRecurrences);
else if (TailFoldType == "noreductions")
remove(TFReductions);
else if (TailFoldType == "norecurrences")
remove(TFRecurrences);
else {
errs()
<< "invalid argument " << TailFoldType.str()
<< " to -sve-tail-folding=; each element must be one of: disabled, "
"all, default, simple, reductions, noreductions, recurrences, "
"norecurrences\n";
}
}
}
operator uint8_t() const { return Bits; }
void add(uint8_t Flag) { Bits |= Flag; }
void remove(uint8_t Flag) { Bits &= ~Flag; }
};
} // namespace
TailFoldingKind TailFoldingKindLoc;
cl::opt<TailFoldingKind, true, cl::parser<std::string>> SVETailFolding(
"sve-tail-folding",
cl::desc(
"Control the use of vectorisation using tail-folding for SVE:"
"\ndisabled No loop types will vectorize using tail-folding"
"\ndefault Uses the default tail-folding settings for the target "
"CPU"
"\nall All legal loop types will vectorize using tail-folding"
"\nsimple Use tail-folding for simple loops (not reductions or "
"recurrences)"
"\nreductions Use tail-folding for loops containing reductions"
"\nrecurrences Use tail-folding for loops containing fixed order "
"recurrences"),
cl::location(TailFoldingKindLoc));
// Experimental option that will only be fully functional when the
// code-generator is changed to use SVE instead of NEON for all fixed-width
// operations.
static cl::opt<bool> EnableFixedwidthAutovecInStreamingMode(
"enable-fixedwidth-autovec-in-streaming-mode", cl::init(false), cl::Hidden);
// Experimental option that will only be fully functional when the cost-model
// and code-generator have been changed to avoid using scalable vector
// instructions that are not legal in streaming SVE mode.
static cl::opt<bool> EnableScalableAutovecInStreamingMode(
"enable-scalable-autovec-in-streaming-mode", cl::init(false), cl::Hidden);
bool AArch64TTIImpl::areInlineCompatible(const Function *Caller,
const Function *Callee) const {
SMEAttrs CallerAttrs(*Caller);
SMEAttrs CalleeAttrs(*Callee);
if (CallerAttrs.requiresSMChange(CalleeAttrs,
/*BodyOverridesInterface=*/true) ||
CallerAttrs.requiresLazySave(CalleeAttrs) ||
CalleeAttrs.hasNewZAInterface())
return false;
const TargetMachine &TM = getTLI()->getTargetMachine();
const FeatureBitset &CallerBits =
TM.getSubtargetImpl(*Caller)->getFeatureBits();
const FeatureBitset &CalleeBits =
TM.getSubtargetImpl(*Callee)->getFeatureBits();
// Inline a callee if its target-features are a subset of the callers
// target-features.
return (CallerBits & CalleeBits) == CalleeBits;
}
bool AArch64TTIImpl::shouldMaximizeVectorBandwidth(
TargetTransformInfo::RegisterKind K) const {
assert(K != TargetTransformInfo::RGK_Scalar);
return K == TargetTransformInfo::RGK_FixedWidthVector;
}
/// Calculate the cost of materializing a 64-bit value. This helper
/// method might only calculate a fraction of a larger immediate. Therefore it
/// is valid to return a cost of ZERO.
InstructionCost AArch64TTIImpl::getIntImmCost(int64_t Val) {
// Check if the immediate can be encoded within an instruction.
if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
return 0;
if (Val < 0)
Val = ~Val;
// Calculate how many moves we will need to materialize this constant.
SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
AArch64_IMM::expandMOVImm(Val, 64, Insn);
return Insn.size();
}
/// Calculate the cost of materializing the given constant.
InstructionCost AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind) {
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
if (BitSize == 0)
return ~0U;
// Sign-extend all constants to a multiple of 64-bit.
APInt ImmVal = Imm;
if (BitSize & 0x3f)
ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
// Split the constant into 64-bit chunks and calculate the cost for each
// chunk.
InstructionCost Cost = 0;
for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
int64_t Val = Tmp.getSExtValue();
Cost += getIntImmCost(Val);
}
// We need at least one instruction to materialze the constant.
return std::max<InstructionCost>(1, Cost);
}
InstructionCost AArch64TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind,
Instruction *Inst) {
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
// There is no cost model for constants with a bit size of 0. Return TCC_Free
// here, so that constant hoisting will ignore this constant.
if (BitSize == 0)
return TTI::TCC_Free;
unsigned ImmIdx = ~0U;
switch (Opcode) {
default:
return TTI::TCC_Free;
case Instruction::GetElementPtr:
// Always hoist the base address of a GetElementPtr.
if (Idx == 0)
return 2 * TTI::TCC_Basic;
return TTI::TCC_Free;
case Instruction::Store:
ImmIdx = 0;
break;
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::ICmp:
ImmIdx = 1;
break;
// Always return TCC_Free for the shift value of a shift instruction.
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
if (Idx == 1)
return TTI::TCC_Free;
break;
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::IntToPtr:
case Instruction::PtrToInt:
case Instruction::BitCast:
case Instruction::PHI:
case Instruction::Call:
case Instruction::Select:
case Instruction::Ret:
case Instruction::Load:
break;
}
if (Idx == ImmIdx) {
int NumConstants = (BitSize + 63) / 64;
InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
return (Cost <= NumConstants * TTI::TCC_Basic)
? static_cast<int>(TTI::TCC_Free)
: Cost;
}
return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
}
InstructionCost
AArch64TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind) {
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
// There is no cost model for constants with a bit size of 0. Return TCC_Free
// here, so that constant hoisting will ignore this constant.
if (BitSize == 0)
return TTI::TCC_Free;
// Most (all?) AArch64 intrinsics do not support folding immediates into the
// selected instruction, so we compute the materialization cost for the
// immediate directly.
if (IID >= Intrinsic::aarch64_addg && IID <= Intrinsic::aarch64_udiv)
return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
switch (IID) {
default:
return TTI::TCC_Free;
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::usub_with_overflow:
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow:
if (Idx == 1) {
int NumConstants = (BitSize + 63) / 64;
InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
return (Cost <= NumConstants * TTI::TCC_Basic)
? static_cast<int>(TTI::TCC_Free)
: Cost;
}
break;
case Intrinsic::experimental_stackmap:
if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
return TTI::TCC_Free;
break;
case Intrinsic::experimental_patchpoint_void:
case Intrinsic::experimental_patchpoint_i64:
if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
return TTI::TCC_Free;
break;
case Intrinsic::experimental_gc_statepoint:
if ((Idx < 5) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
return TTI::TCC_Free;
break;
}
return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
}
TargetTransformInfo::PopcntSupportKind
AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
if (TyWidth == 32 || TyWidth == 64)
return TTI::PSK_FastHardware;
// TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
return TTI::PSK_Software;
}
InstructionCost
AArch64TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
TTI::TargetCostKind CostKind) {
auto *RetTy = ICA.getReturnType();
switch (ICA.getID()) {
case Intrinsic::umin:
case Intrinsic::umax:
case Intrinsic::smin:
case Intrinsic::smax: {
static const auto ValidMinMaxTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16,
MVT::v8i16, MVT::v2i32, MVT::v4i32};
auto LT = getTypeLegalizationCost(RetTy);
// v2i64 types get converted to cmp+bif hence the cost of 2
if (LT.second == MVT::v2i64)
return LT.first * 2;
if (any_of(ValidMinMaxTys, [&LT](MVT M) { return M == LT.second; }))
return LT.first;
break;
}
case Intrinsic::sadd_sat:
case Intrinsic::ssub_sat:
case Intrinsic::uadd_sat:
case Intrinsic::usub_sat: {
static const auto ValidSatTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16,
MVT::v8i16, MVT::v2i32, MVT::v4i32,
MVT::v2i64};
auto LT = getTypeLegalizationCost(RetTy);
// This is a base cost of 1 for the vadd, plus 3 extract shifts if we
// need to extend the type, as it uses shr(qadd(shl, shl)).
unsigned Instrs =
LT.second.getScalarSizeInBits() == RetTy->getScalarSizeInBits() ? 1 : 4;
if (any_of(ValidSatTys, [&LT](MVT M) { return M == LT.second; }))
return LT.first * Instrs;
break;
}
case Intrinsic::abs: {
static const auto ValidAbsTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16,
MVT::v8i16, MVT::v2i32, MVT::v4i32,
MVT::v2i64};
auto LT = getTypeLegalizationCost(RetTy);
if (any_of(ValidAbsTys, [&LT](MVT M) { return M == LT.second; }))
return LT.first;
break;
}
case Intrinsic::experimental_stepvector: {
InstructionCost Cost = 1; // Cost of the `index' instruction
auto LT = getTypeLegalizationCost(RetTy);
// Legalisation of illegal vectors involves an `index' instruction plus
// (LT.first - 1) vector adds.
if (LT.first > 1) {
Type *LegalVTy = EVT(LT.second).getTypeForEVT(RetTy->getContext());
InstructionCost AddCost =
getArithmeticInstrCost(Instruction::Add, LegalVTy, CostKind);
Cost += AddCost * (LT.first - 1);
}
return Cost;
}
case Intrinsic::bitreverse: {
static const CostTblEntry BitreverseTbl[] = {
{Intrinsic::bitreverse, MVT::i32, 1},
{Intrinsic::bitreverse, MVT::i64, 1},
{Intrinsic::bitreverse, MVT::v8i8, 1},
{Intrinsic::bitreverse, MVT::v16i8, 1},
{Intrinsic::bitreverse, MVT::v4i16, 2},
{Intrinsic::bitreverse, MVT::v8i16, 2},
{Intrinsic::bitreverse, MVT::v2i32, 2},
{Intrinsic::bitreverse, MVT::v4i32, 2},
{Intrinsic::bitreverse, MVT::v1i64, 2},
{Intrinsic::bitreverse, MVT::v2i64, 2},
};
const auto LegalisationCost = getTypeLegalizationCost(RetTy);
const auto *Entry =
CostTableLookup(BitreverseTbl, ICA.getID(), LegalisationCost.second);
if (Entry) {
// Cost Model is using the legal type(i32) that i8 and i16 will be
// converted to +1 so that we match the actual lowering cost
if (TLI->getValueType(DL, RetTy, true) == MVT::i8 ||
TLI->getValueType(DL, RetTy, true) == MVT::i16)
return LegalisationCost.first * Entry->Cost + 1;
return LegalisationCost.first * Entry->Cost;
}
break;
}
case Intrinsic::ctpop: {
if (!ST->hasNEON()) {
// 32-bit or 64-bit ctpop without NEON is 12 instructions.
return getTypeLegalizationCost(RetTy).first * 12;
}
static const CostTblEntry CtpopCostTbl[] = {
{ISD::CTPOP, MVT::v2i64, 4},
{ISD::CTPOP, MVT::v4i32, 3},
{ISD::CTPOP, MVT::v8i16, 2},
{ISD::CTPOP, MVT::v16i8, 1},
{ISD::CTPOP, MVT::i64, 4},
{ISD::CTPOP, MVT::v2i32, 3},
{ISD::CTPOP, MVT::v4i16, 2},
{ISD::CTPOP, MVT::v8i8, 1},
{ISD::CTPOP, MVT::i32, 5},
};
auto LT = getTypeLegalizationCost(RetTy);
MVT MTy = LT.second;
if (const auto *Entry = CostTableLookup(CtpopCostTbl, ISD::CTPOP, MTy)) {
// Extra cost of +1 when illegal vector types are legalized by promoting
// the integer type.
int ExtraCost = MTy.isVector() && MTy.getScalarSizeInBits() !=
RetTy->getScalarSizeInBits()
? 1
: 0;
return LT.first * Entry->Cost + ExtraCost;
}
break;
}
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::usub_with_overflow:
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow: {
static const CostTblEntry WithOverflowCostTbl[] = {
{Intrinsic::sadd_with_overflow, MVT::i8, 3},
{Intrinsic::uadd_with_overflow, MVT::i8, 3},
{Intrinsic::sadd_with_overflow, MVT::i16, 3},
{Intrinsic::uadd_with_overflow, MVT::i16, 3},
{Intrinsic::sadd_with_overflow, MVT::i32, 1},
{Intrinsic::uadd_with_overflow, MVT::i32, 1},
{Intrinsic::sadd_with_overflow, MVT::i64, 1},
{Intrinsic::uadd_with_overflow, MVT::i64, 1},
{Intrinsic::ssub_with_overflow, MVT::i8, 3},
{Intrinsic::usub_with_overflow, MVT::i8, 3},
{Intrinsic::ssub_with_overflow, MVT::i16, 3},
{Intrinsic::usub_with_overflow, MVT::i16, 3},
{Intrinsic::ssub_with_overflow, MVT::i32, 1},
{Intrinsic::usub_with_overflow, MVT::i32, 1},
{Intrinsic::ssub_with_overflow, MVT::i64, 1},
{Intrinsic::usub_with_overflow, MVT::i64, 1},
{Intrinsic::smul_with_overflow, MVT::i8, 5},
{Intrinsic::umul_with_overflow, MVT::i8, 4},
{Intrinsic::smul_with_overflow, MVT::i16, 5},
{Intrinsic::umul_with_overflow, MVT::i16, 4},
{Intrinsic::smul_with_overflow, MVT::i32, 2}, // eg umull;tst
{Intrinsic::umul_with_overflow, MVT::i32, 2}, // eg umull;cmp sxtw
{Intrinsic::smul_with_overflow, MVT::i64, 3}, // eg mul;smulh;cmp
{Intrinsic::umul_with_overflow, MVT::i64, 3}, // eg mul;umulh;cmp asr
};
EVT MTy = TLI->getValueType(DL, RetTy->getContainedType(0), true);
if (MTy.isSimple())
if (const auto *Entry = CostTableLookup(WithOverflowCostTbl, ICA.getID(),
MTy.getSimpleVT()))
return Entry->Cost;
break;
}
case Intrinsic::fptosi_sat:
case Intrinsic::fptoui_sat: {
if (ICA.getArgTypes().empty())
break;
bool IsSigned = ICA.getID() == Intrinsic::fptosi_sat;
auto LT = getTypeLegalizationCost(ICA.getArgTypes()[0]);
EVT MTy = TLI->getValueType(DL, RetTy);
// Check for the legal types, which are where the size of the input and the
// output are the same, or we are using cvt f64->i32 or f32->i64.
if ((LT.second == MVT::f32 || LT.second == MVT::f64 ||
LT.second == MVT::v2f32 || LT.second == MVT::v4f32 ||
LT.second == MVT::v2f64) &&
(LT.second.getScalarSizeInBits() == MTy.getScalarSizeInBits() ||
(LT.second == MVT::f64 && MTy == MVT::i32) ||
(LT.second == MVT::f32 && MTy == MVT::i64)))
return LT.first;
// Similarly for fp16 sizes
if (ST->hasFullFP16() &&
((LT.second == MVT::f16 && MTy == MVT::i32) ||
((LT.second == MVT::v4f16 || LT.second == MVT::v8f16) &&
(LT.second.getScalarSizeInBits() == MTy.getScalarSizeInBits()))))
return LT.first;
// Otherwise we use a legal convert followed by a min+max
if ((LT.second.getScalarType() == MVT::f32 ||
LT.second.getScalarType() == MVT::f64 ||
(ST->hasFullFP16() && LT.second.getScalarType() == MVT::f16)) &&
LT.second.getScalarSizeInBits() >= MTy.getScalarSizeInBits()) {
Type *LegalTy =
Type::getIntNTy(RetTy->getContext(), LT.second.getScalarSizeInBits());
if (LT.second.isVector())
LegalTy = VectorType::get(LegalTy, LT.second.getVectorElementCount());
InstructionCost Cost = 1;
IntrinsicCostAttributes Attrs1(IsSigned ? Intrinsic::smin : Intrinsic::umin,
LegalTy, {LegalTy, LegalTy});
Cost += getIntrinsicInstrCost(Attrs1, CostKind);
IntrinsicCostAttributes Attrs2(IsSigned ? Intrinsic::smax : Intrinsic::umax,
LegalTy, {LegalTy, LegalTy});
Cost += getIntrinsicInstrCost(Attrs2, CostKind);
return LT.first * Cost;
}
break;
}
default:
break;
}
return BaseT::getIntrinsicInstrCost(ICA, CostKind);
}
/// The function will remove redundant reinterprets casting in the presence
/// of the control flow
static std::optional<Instruction *> processPhiNode(InstCombiner &IC,
IntrinsicInst &II) {
SmallVector<Instruction *, 32> Worklist;
auto RequiredType = II.getType();
auto *PN = dyn_cast<PHINode>(II.getArgOperand(0));
assert(PN && "Expected Phi Node!");
// Don't create a new Phi unless we can remove the old one.
if (!PN->hasOneUse())
return std::nullopt;
for (Value *IncValPhi : PN->incoming_values()) {
auto *Reinterpret = dyn_cast<IntrinsicInst>(IncValPhi);
if (!Reinterpret ||
Reinterpret->getIntrinsicID() !=
Intrinsic::aarch64_sve_convert_to_svbool ||
RequiredType != Reinterpret->getArgOperand(0)->getType())
return std::nullopt;
}
// Create the new Phi
LLVMContext &Ctx = PN->getContext();
IRBuilder<> Builder(Ctx);
Builder.SetInsertPoint(PN);
PHINode *NPN = Builder.CreatePHI(RequiredType, PN->getNumIncomingValues());
Worklist.push_back(PN);
for (unsigned I = 0; I < PN->getNumIncomingValues(); I++) {
auto *Reinterpret = cast<Instruction>(PN->getIncomingValue(I));
NPN->addIncoming(Reinterpret->getOperand(0), PN->getIncomingBlock(I));
Worklist.push_back(Reinterpret);
}
// Cleanup Phi Node and reinterprets
return IC.replaceInstUsesWith(II, NPN);
}
// (from_svbool (binop (to_svbool pred) (svbool_t _) (svbool_t _))))
// => (binop (pred) (from_svbool _) (from_svbool _))
//
// The above transformation eliminates a `to_svbool` in the predicate
// operand of bitwise operation `binop` by narrowing the vector width of
// the operation. For example, it would convert a `<vscale x 16 x i1>
// and` into a `<vscale x 4 x i1> and`. This is profitable because
// to_svbool must zero the new lanes during widening, whereas
// from_svbool is free.
static std::optional<Instruction *>
tryCombineFromSVBoolBinOp(InstCombiner &IC, IntrinsicInst &II) {
auto BinOp = dyn_cast<IntrinsicInst>(II.getOperand(0));
if (!BinOp)
return std::nullopt;
auto IntrinsicID = BinOp->getIntrinsicID();
switch (IntrinsicID) {
case Intrinsic::aarch64_sve_and_z:
case Intrinsic::aarch64_sve_bic_z:
case Intrinsic::aarch64_sve_eor_z:
case Intrinsic::aarch64_sve_nand_z:
case Intrinsic::aarch64_sve_nor_z:
case Intrinsic::aarch64_sve_orn_z:
case Intrinsic::aarch64_sve_orr_z:
break;
default:
return std::nullopt;
}
auto BinOpPred = BinOp->getOperand(0);
auto BinOpOp1 = BinOp->getOperand(1);
auto BinOpOp2 = BinOp->getOperand(2);
auto PredIntr = dyn_cast<IntrinsicInst>(BinOpPred);
if (!PredIntr ||
PredIntr->getIntrinsicID() != Intrinsic::aarch64_sve_convert_to_svbool)
return std::nullopt;
auto PredOp = PredIntr->getOperand(0);
auto PredOpTy = cast<VectorType>(PredOp->getType());
if (PredOpTy != II.getType())
return std::nullopt;
IRBuilder<> Builder(II.getContext());
Builder.SetInsertPoint(&II);
SmallVector<Value *> NarrowedBinOpArgs = {PredOp};
auto NarrowBinOpOp1 = Builder.CreateIntrinsic(
Intrinsic::aarch64_sve_convert_from_svbool, {PredOpTy}, {BinOpOp1});
NarrowedBinOpArgs.push_back(NarrowBinOpOp1);
if (BinOpOp1 == BinOpOp2)
NarrowedBinOpArgs.push_back(NarrowBinOpOp1);
else
NarrowedBinOpArgs.push_back(Builder.CreateIntrinsic(
Intrinsic::aarch64_sve_convert_from_svbool, {PredOpTy}, {BinOpOp2}));
auto NarrowedBinOp =
Builder.CreateIntrinsic(IntrinsicID, {PredOpTy}, NarrowedBinOpArgs);
return IC.replaceInstUsesWith(II, NarrowedBinOp);
}
static std::optional<Instruction *>
instCombineConvertFromSVBool(InstCombiner &IC, IntrinsicInst &II) {
// If the reinterpret instruction operand is a PHI Node
if (isa<PHINode>(II.getArgOperand(0)))
return processPhiNode(IC, II);
if (auto BinOpCombine = tryCombineFromSVBoolBinOp(IC, II))
return BinOpCombine;
SmallVector<Instruction *, 32> CandidatesForRemoval;
Value *Cursor = II.getOperand(0), *EarliestReplacement = nullptr;
const auto *IVTy = cast<VectorType>(II.getType());
// Walk the chain of conversions.
while (Cursor) {
// If the type of the cursor has fewer lanes than the final result, zeroing
// must take place, which breaks the equivalence chain.
const auto *CursorVTy = cast<VectorType>(Cursor->getType());
if (CursorVTy->getElementCount().getKnownMinValue() <
IVTy->getElementCount().getKnownMinValue())
break;
// If the cursor has the same type as I, it is a viable replacement.
if (Cursor->getType() == IVTy)
EarliestReplacement = Cursor;
auto *IntrinsicCursor = dyn_cast<IntrinsicInst>(Cursor);
// If this is not an SVE conversion intrinsic, this is the end of the chain.
if (!IntrinsicCursor || !(IntrinsicCursor->getIntrinsicID() ==
Intrinsic::aarch64_sve_convert_to_svbool ||
IntrinsicCursor->getIntrinsicID() ==
Intrinsic::aarch64_sve_convert_from_svbool))
break;
CandidatesForRemoval.insert(CandidatesForRemoval.begin(), IntrinsicCursor);
Cursor = IntrinsicCursor->getOperand(0);
}
// If no viable replacement in the conversion chain was found, there is
// nothing to do.
if (!EarliestReplacement)
return std::nullopt;
return IC.replaceInstUsesWith(II, EarliestReplacement);
}
static std::optional<Instruction *> instCombineSVESel(InstCombiner &IC,
IntrinsicInst &II) {
IRBuilder<> Builder(&II);
auto Select = Builder.CreateSelect(II.getOperand(0), II.getOperand(1),
II.getOperand(2));
return IC.replaceInstUsesWith(II, Select);
}
static std::optional<Instruction *> instCombineSVEDup(InstCombiner &IC,
IntrinsicInst &II) {
IntrinsicInst *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(1));
if (!Pg)
return std::nullopt;
if (Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
return std::nullopt;
const auto PTruePattern =
cast<ConstantInt>(Pg->getOperand(0))->getZExtValue();
if (PTruePattern != AArch64SVEPredPattern::vl1)
return std::nullopt;
// The intrinsic is inserting into lane zero so use an insert instead.
auto *IdxTy = Type::getInt64Ty(II.getContext());
auto *Insert = InsertElementInst::Create(
II.getArgOperand(0), II.getArgOperand(2), ConstantInt::get(IdxTy, 0));
Insert->insertBefore(&II);
Insert->takeName(&II);
return IC.replaceInstUsesWith(II, Insert);
}
static std::optional<Instruction *> instCombineSVEDupX(InstCombiner &IC,
IntrinsicInst &II) {
// Replace DupX with a regular IR splat.
IRBuilder<> Builder(II.getContext());
Builder.SetInsertPoint(&II);
auto *RetTy = cast<ScalableVectorType>(II.getType());
Value *Splat =
Builder.CreateVectorSplat(RetTy->getElementCount(), II.getArgOperand(0));
Splat->takeName(&II);
return IC.replaceInstUsesWith(II, Splat);
}
static std::optional<Instruction *> instCombineSVECmpNE(InstCombiner &IC,
IntrinsicInst &II) {
LLVMContext &Ctx = II.getContext();
IRBuilder<> Builder(Ctx);
Builder.SetInsertPoint(&II);
// Check that the predicate is all active
auto *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(0));
if (!Pg || Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
return std::nullopt;
const auto PTruePattern =
cast<ConstantInt>(Pg->getOperand(0))->getZExtValue();
if (PTruePattern != AArch64SVEPredPattern::all)
return std::nullopt;
// Check that we have a compare of zero..
auto *SplatValue =
dyn_cast_or_null<ConstantInt>(getSplatValue(II.getArgOperand(2)));
if (!SplatValue || !SplatValue->isZero())
return std::nullopt;
// ..against a dupq
auto *DupQLane = dyn_cast<IntrinsicInst>(II.getArgOperand(1));
if (!DupQLane ||
DupQLane->getIntrinsicID() != Intrinsic::aarch64_sve_dupq_lane)
return std::nullopt;
// Where the dupq is a lane 0 replicate of a vector insert
if (!cast<ConstantInt>(DupQLane->getArgOperand(1))->isZero())
return std::nullopt;
auto *VecIns = dyn_cast<IntrinsicInst>(DupQLane->getArgOperand(0));
if (!VecIns || VecIns->getIntrinsicID() != Intrinsic::vector_insert)
return std::nullopt;
// Where the vector insert is a fixed constant vector insert into undef at
// index zero
if (!isa<UndefValue>(VecIns->getArgOperand(0)))
return std::nullopt;
if (!cast<ConstantInt>(VecIns->getArgOperand(2))->isZero())
return std::nullopt;
auto *ConstVec = dyn_cast<Constant>(VecIns->getArgOperand(1));
if (!ConstVec)
return std::nullopt;
auto *VecTy = dyn_cast<FixedVectorType>(ConstVec->getType());
auto *OutTy = dyn_cast<ScalableVectorType>(II.getType());
if (!VecTy || !OutTy || VecTy->getNumElements() != OutTy->getMinNumElements())
return std::nullopt;
unsigned NumElts = VecTy->getNumElements();
unsigned PredicateBits = 0;
// Expand intrinsic operands to a 16-bit byte level predicate
for (unsigned I = 0; I < NumElts; ++I) {
auto *Arg = dyn_cast<ConstantInt>(ConstVec->getAggregateElement(I));
if (!Arg)
return std::nullopt;
if (!Arg->isZero())
PredicateBits |= 1 << (I * (16 / NumElts));
}
// If all bits are zero bail early with an empty predicate
if (PredicateBits == 0) {
auto *PFalse = Constant::getNullValue(II.getType());
PFalse->takeName(&II);
return IC.replaceInstUsesWith(II, PFalse);
}
// Calculate largest predicate type used (where byte predicate is largest)
unsigned Mask = 8;
for (unsigned I = 0; I < 16; ++I)
if ((PredicateBits & (1 << I)) != 0)
Mask |= (I % 8);
unsigned PredSize = Mask & -Mask;
auto *PredType = ScalableVectorType::get(
Type::getInt1Ty(Ctx), AArch64::SVEBitsPerBlock / (PredSize * 8));
// Ensure all relevant bits are set
for (unsigned I = 0; I < 16; I += PredSize)
if ((PredicateBits & (1 << I)) == 0)
return std::nullopt;
auto *PTruePat =
ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all);
auto *PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue,
{PredType}, {PTruePat});
auto *ConvertToSVBool = Builder.CreateIntrinsic(
Intrinsic::aarch64_sve_convert_to_svbool, {PredType}, {PTrue});
auto *ConvertFromSVBool =
Builder.CreateIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool,
{II.getType()}, {ConvertToSVBool});
ConvertFromSVBool->takeName(&II);
return IC.replaceInstUsesWith(II, ConvertFromSVBool);
}
static std::optional<Instruction *> instCombineSVELast(InstCombiner &IC,
IntrinsicInst &II) {
IRBuilder<> Builder(II.getContext());
Builder.SetInsertPoint(&II);
Value *Pg = II.getArgOperand(0);
Value *Vec = II.getArgOperand(1);
auto IntrinsicID = II.getIntrinsicID();
bool IsAfter = IntrinsicID == Intrinsic::aarch64_sve_lasta;
// lastX(splat(X)) --> X
if (auto *SplatVal = getSplatValue(Vec))
return IC.replaceInstUsesWith(II, SplatVal);
// If x and/or y is a splat value then:
// lastX (binop (x, y)) --> binop(lastX(x), lastX(y))
Value *LHS, *RHS;
if (match(Vec, m_OneUse(m_BinOp(m_Value(LHS), m_Value(RHS))))) {
if (isSplatValue(LHS) || isSplatValue(RHS)) {
auto *OldBinOp = cast<BinaryOperator>(Vec);
auto OpC = OldBinOp->getOpcode();
auto *NewLHS =
Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, LHS});
auto *NewRHS =
Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, RHS});
auto *NewBinOp = BinaryOperator::CreateWithCopiedFlags(
OpC, NewLHS, NewRHS, OldBinOp, OldBinOp->getName(), &II);
return IC.replaceInstUsesWith(II, NewBinOp);
}
}
auto *C = dyn_cast<Constant>(Pg);
if (IsAfter && C && C->isNullValue()) {
// The intrinsic is extracting lane 0 so use an extract instead.
auto *IdxTy = Type::getInt64Ty(II.getContext());
auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, 0));
Extract->insertBefore(&II);
Extract->takeName(&II);
return IC.replaceInstUsesWith(II, Extract);
}
auto *IntrPG = dyn_cast<IntrinsicInst>(Pg);
if (!IntrPG)
return std::nullopt;
if (IntrPG->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
return std::nullopt;
const auto PTruePattern =
cast<ConstantInt>(IntrPG->getOperand(0))->getZExtValue();
// Can the intrinsic's predicate be converted to a known constant index?
unsigned MinNumElts = getNumElementsFromSVEPredPattern(PTruePattern);
if (!MinNumElts)
return std::nullopt;
unsigned Idx = MinNumElts - 1;
// Increment the index if extracting the element after the last active
// predicate element.
if (IsAfter)
++Idx;
// Ignore extracts whose index is larger than the known minimum vector
// length. NOTE: This is an artificial constraint where we prefer to
// maintain what the user asked for until an alternative is proven faster.
auto *PgVTy = cast<ScalableVectorType>(Pg->getType());
if (Idx >= PgVTy->getMinNumElements())
return std::nullopt;
// The intrinsic is extracting a fixed lane so use an extract instead.
auto *IdxTy = Type::getInt64Ty(II.getContext());
auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, Idx));
Extract->insertBefore(&II);
Extract->takeName(&II);
return IC.replaceInstUsesWith(II, Extract);
}
static std::optional<Instruction *> instCombineSVECondLast(InstCombiner &IC,
IntrinsicInst &II) {
// The SIMD&FP variant of CLAST[AB] is significantly faster than the scalar
// integer variant across a variety of micro-architectures. Replace scalar
// integer CLAST[AB] intrinsic with optimal SIMD&FP variant. A simple
// bitcast-to-fp + clast[ab] + bitcast-to-int will cost a cycle or two more
// depending on the micro-architecture, but has been observed as generally
// being faster, particularly when the CLAST[AB] op is a loop-carried
// dependency.
IRBuilder<> Builder(II.getContext());
Builder.SetInsertPoint(&II);
Value *Pg = II.getArgOperand(0);
Value *Fallback = II.getArgOperand(1);
Value *Vec = II.getArgOperand(2);
Type *Ty = II.getType();
if (!Ty->isIntegerTy())
return std::nullopt;
Type *FPTy;
switch (cast<IntegerType>(Ty)->getBitWidth()) {
default:
return std::nullopt;
case 16:
FPTy = Builder.getHalfTy();
break;
case 32:
FPTy = Builder.getFloatTy();
break;
case 64:
FPTy = Builder.getDoubleTy();
break;
}
Value *FPFallBack = Builder.CreateBitCast(Fallback, FPTy);
auto *FPVTy = VectorType::get(
FPTy, cast<VectorType>(Vec->getType())->getElementCount());
Value *FPVec = Builder.CreateBitCast(Vec, FPVTy);
auto *FPII = Builder.CreateIntrinsic(II.getIntrinsicID(), {FPVec->getType()},
{Pg, FPFallBack, FPVec});
Value *FPIItoInt = Builder.CreateBitCast(FPII, II.getType());
return IC.replaceInstUsesWith(II, FPIItoInt);
}
static std::optional<Instruction *> instCombineRDFFR(InstCombiner &IC,
IntrinsicInst &II) {
LLVMContext &Ctx = II.getContext();
IRBuilder<> Builder(Ctx);
Builder.SetInsertPoint(&II);
// Replace rdffr with predicated rdffr.z intrinsic, so that optimizePTestInstr
// can work with RDFFR_PP for ptest elimination.
auto *AllPat =
ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all);
auto *PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue,
{II.getType()}, {AllPat});
auto *RDFFR =
Builder.CreateIntrinsic(Intrinsic::aarch64_sve_rdffr_z, {}, {PTrue});
RDFFR->takeName(&II);
return IC.replaceInstUsesWith(II, RDFFR);
}
static std::optional<Instruction *>
instCombineSVECntElts(InstCombiner &IC, IntrinsicInst &II, unsigned NumElts) {
const auto Pattern = cast<ConstantInt>(II.getArgOperand(0))->getZExtValue();
if (Pattern == AArch64SVEPredPattern::all) {
LLVMContext &Ctx = II.getContext();
IRBuilder<> Builder(Ctx);
Builder.SetInsertPoint(&II);
Constant *StepVal = ConstantInt::get(II.getType(), NumElts);
auto *VScale = Builder.CreateVScale(StepVal);
VScale->takeName(&II);
return IC.replaceInstUsesWith(II, VScale);
}
unsigned MinNumElts = getNumElementsFromSVEPredPattern(Pattern);
return MinNumElts && NumElts >= MinNumElts
? std::optional<Instruction *>(IC.replaceInstUsesWith(
II, ConstantInt::get(II.getType(), MinNumElts)))
: std::nullopt;
}
static std::optional<Instruction *> instCombineSVEPTest(InstCombiner &IC,
IntrinsicInst &II) {
Value *PgVal = II.getArgOperand(0);
Value *OpVal = II.getArgOperand(1);
IRBuilder<> Builder(II.getContext());
Builder.SetInsertPoint(&II);
// PTEST_<FIRST|LAST>(X, X) is equivalent to PTEST_ANY(X, X).
// Later optimizations prefer this form.
if (PgVal == OpVal &&
(II.getIntrinsicID() == Intrinsic::aarch64_sve_ptest_first ||
II.getIntrinsicID() == Intrinsic::aarch64_sve_ptest_last)) {
Value *Ops[] = {PgVal, OpVal};
Type *Tys[] = {PgVal->getType()};
auto *PTest =
Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptest_any, Tys, Ops);
PTest->takeName(&II);
return IC.replaceInstUsesWith(II, PTest);
}
IntrinsicInst *Pg = dyn_cast<IntrinsicInst>(PgVal);
IntrinsicInst *Op = dyn_cast<IntrinsicInst>(OpVal);
if (!Pg || !Op)
return std::nullopt;
Intrinsic::ID OpIID = Op->getIntrinsicID();
if (Pg->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool &&
OpIID == Intrinsic::aarch64_sve_convert_to_svbool &&
Pg->getArgOperand(0)->getType() == Op->getArgOperand(0)->getType()) {
Value *Ops[] = {Pg->getArgOperand(0), Op->getArgOperand(0)};
Type *Tys[] = {Pg->getArgOperand(0)->getType()};
auto *PTest = Builder.CreateIntrinsic(II.getIntrinsicID(), Tys, Ops);
PTest->takeName(&II);
return IC.replaceInstUsesWith(II, PTest);
}
// Transform PTEST_ANY(X=OP(PG,...), X) -> PTEST_ANY(PG, X)).
// Later optimizations may rewrite sequence to use the flag-setting variant
// of instruction X to remove PTEST.
if ((Pg == Op) && (II.getIntrinsicID() == Intrinsic::aarch64_sve_ptest_any) &&
((OpIID == Intrinsic::aarch64_sve_brka_z) ||
(OpIID == Intrinsic::aarch64_sve_brkb_z) ||
(OpIID == Intrinsic::aarch64_sve_brkpa_z) ||
(OpIID == Intrinsic::aarch64_sve_brkpb_z) ||
(OpIID == Intrinsic::aarch64_sve_rdffr_z) ||
(OpIID == Intrinsic::aarch64_sve_and_z) ||
(OpIID == Intrinsic::aarch64_sve_bic_z) ||
(OpIID == Intrinsic::aarch64_sve_eor_z) ||
(OpIID == Intrinsic::aarch64_sve_nand_z) ||
(OpIID == Intrinsic::aarch64_sve_nor_z) ||
(OpIID == Intrinsic::aarch64_sve_orn_z) ||
(OpIID == Intrinsic::aarch64_sve_orr_z))) {
Value *Ops[] = {Pg->getArgOperand(0), Pg};
Type *Tys[] = {Pg->getType()};
auto *PTest = Builder.CreateIntrinsic(II.getIntrinsicID(), Tys, Ops);
PTest->takeName(&II);
return IC.replaceInstUsesWith(II, PTest);
}
return std::nullopt;
}
template <Intrinsic::ID MulOpc, typename Intrinsic::ID FuseOpc>
static std::optional<Instruction *>
instCombineSVEVectorFuseMulAddSub(InstCombiner &IC, IntrinsicInst &II,
bool MergeIntoAddendOp) {
Value *P = II.getOperand(0);
Value *MulOp0, *MulOp1, *AddendOp, *Mul;
if (MergeIntoAddendOp) {
AddendOp = II.getOperand(1);
Mul = II.getOperand(2);
} else {
AddendOp = II.getOperand(2);
Mul = II.getOperand(1);
}
if (!match(Mul, m_Intrinsic<MulOpc>(m_Specific(P), m_Value(MulOp0),
m_Value(MulOp1))))
return std::nullopt;
if (!Mul->hasOneUse())
return std::nullopt;
Instruction *FMFSource = nullptr;
if (II.getType()->isFPOrFPVectorTy()) {
llvm::FastMathFlags FAddFlags = II.getFastMathFlags();
// Stop the combine when the flags on the inputs differ in case dropping
// flags would lead to us missing out on more beneficial optimizations.
if (FAddFlags != cast<CallInst>(Mul)->getFastMathFlags())
return std::nullopt;
if (!FAddFlags.allowContract())
return std::nullopt;
FMFSource = &II;
}
IRBuilder<> Builder(II.getContext());
Builder.SetInsertPoint(&II);
CallInst *Res;
if (MergeIntoAddendOp)
Res = Builder.CreateIntrinsic(FuseOpc, {II.getType()},
{P, AddendOp, MulOp0, MulOp1}, FMFSource);
else
Res = Builder.CreateIntrinsic(FuseOpc, {II.getType()},
{P, MulOp0, MulOp1, AddendOp}, FMFSource);
return IC.replaceInstUsesWith(II, Res);
}
static bool isAllActivePredicate(Value *Pred) {
// Look through convert.from.svbool(convert.to.svbool(...) chain.
Value *UncastedPred;
if (match(Pred, m_Intrinsic<Intrinsic::aarch64_sve_convert_from_svbool>(
m_Intrinsic<Intrinsic::aarch64_sve_convert_to_svbool>(
m_Value(UncastedPred)))))
// If the predicate has the same or less lanes than the uncasted
// predicate then we know the casting has no effect.
if (cast<ScalableVectorType>(Pred->getType())->getMinNumElements() <=
cast<ScalableVectorType>(UncastedPred->getType())->getMinNumElements())
Pred = UncastedPred;
return match(Pred, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>(
m_ConstantInt<AArch64SVEPredPattern::all>()));
}
static std::optional<Instruction *>
instCombineSVELD1(InstCombiner &IC, IntrinsicInst &II, const DataLayout &DL) {
IRBuilder<> Builder(II.getContext());
Builder.SetInsertPoint(&II);
Value *Pred = II.getOperand(0);
Value *PtrOp = II.getOperand(1);
Type *VecTy = II.getType();
Value *VecPtr = Builder.CreateBitCast(PtrOp, VecTy->getPointerTo());
if (isAllActivePredicate(Pred)) {
LoadInst *Load = Builder.CreateLoad(VecTy, VecPtr);
Load->copyMetadata(II);
return IC.replaceInstUsesWith(II, Load);
}
CallInst *MaskedLoad =
Builder.CreateMaskedLoad(VecTy, VecPtr, PtrOp->getPointerAlignment(DL),
Pred, ConstantAggregateZero::get(VecTy));
MaskedLoad->copyMetadata(II);
return IC.replaceInstUsesWith(II, MaskedLoad);
}
static std::optional<Instruction *>
instCombineSVEST1(InstCombiner &IC, IntrinsicInst &II, const DataLayout &DL) {
IRBuilder<> Builder(II.getContext());
Builder.SetInsertPoint(&II);
Value *VecOp = II.getOperand(0);
Value *Pred = II.getOperand(1);
Value *PtrOp = II.getOperand(2);
Value *VecPtr =
Builder.CreateBitCast(PtrOp, VecOp->getType()->getPointerTo());
if (isAllActivePredicate(Pred)) {
StoreInst *Store = Builder.CreateStore(VecOp, VecPtr);
Store->copyMetadata(II);
return IC.eraseInstFromFunction(II);
}
CallInst *MaskedStore = Builder.CreateMaskedStore(
VecOp, VecPtr, PtrOp->getPointerAlignment(DL), Pred);
MaskedStore->copyMetadata(II);
return IC.eraseInstFromFunction(II);
}
static Instruction::BinaryOps intrinsicIDToBinOpCode(unsigned Intrinsic) {
switch (Intrinsic) {
case Intrinsic::aarch64_sve_fmul:
return Instruction::BinaryOps::FMul;
case Intrinsic::aarch64_sve_fadd:
return Instruction::BinaryOps::FAdd;
case Intrinsic::aarch64_sve_fsub:
return Instruction::BinaryOps::FSub;
default:
return Instruction::BinaryOpsEnd;
}
}
static std::optional<Instruction *>
instCombineSVEVectorBinOp(InstCombiner &IC, IntrinsicInst &II) {
auto *OpPredicate = II.getOperand(0);
auto BinOpCode = intrinsicIDToBinOpCode(II.getIntrinsicID());
if (BinOpCode == Instruction::BinaryOpsEnd ||
!match(OpPredicate, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>(
m_ConstantInt<AArch64SVEPredPattern::all>())))
return std::nullopt;
IRBuilder<> Builder(II.getContext());
Builder.SetInsertPoint(&II);
Builder.setFastMathFlags(II.getFastMathFlags());
auto BinOp =
Builder.CreateBinOp(BinOpCode, II.getOperand(1), II.getOperand(2));
return IC.replaceInstUsesWith(II, BinOp);
}
static std::optional<Instruction *> instCombineSVEVectorAdd(InstCombiner &IC,
IntrinsicInst &II) {
if (auto FMLA =
instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
Intrinsic::aarch64_sve_fmla>(IC, II,
true))
return FMLA;
if (auto MLA = instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_mul,
Intrinsic::aarch64_sve_mla>(
IC, II, true))
return MLA;
if (auto FMAD =
instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
Intrinsic::aarch64_sve_fmad>(IC, II,
false))
return FMAD;
if (auto MAD = instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_mul,
Intrinsic::aarch64_sve_mad>(
IC, II, false))
return MAD;
return instCombineSVEVectorBinOp(IC, II);
}
static std::optional<Instruction *> instCombineSVEVectorSub(InstCombiner &IC,
IntrinsicInst &II) {
if (auto FMLS =
instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
Intrinsic::aarch64_sve_fmls>(IC, II,
true))
return FMLS;
if (auto MLS = instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_mul,
Intrinsic::aarch64_sve_mls>(
IC, II, true))
return MLS;
if (auto FMSB =
instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
Intrinsic::aarch64_sve_fnmsb>(
IC, II, false))
return FMSB;
return instCombineSVEVectorBinOp(IC, II);
}
static std::optional<Instruction *> instCombineSVEVectorMul(InstCombiner &IC,
IntrinsicInst &II) {
auto *OpPredicate = II.getOperand(0);
auto *OpMultiplicand = II.getOperand(1);
auto *OpMultiplier = II.getOperand(2);
IRBuilder<> Builder(II.getContext());
Builder.SetInsertPoint(&II);
// Return true if a given instruction is a unit splat value, false otherwise.
auto IsUnitSplat = [](auto *I) {
auto *SplatValue = getSplatValue(I);
if (!SplatValue)
return false;
return match(SplatValue, m_FPOne()) || match(SplatValue, m_One());
};
// Return true if a given instruction is an aarch64_sve_dup intrinsic call
// with a unit splat value, false otherwise.
auto IsUnitDup = [](auto *I) {
auto *IntrI = dyn_cast<IntrinsicInst>(I);
if (!IntrI || IntrI->getIntrinsicID() != Intrinsic::aarch64_sve_dup)
return false;
auto *SplatValue = IntrI->getOperand(2);
return match(SplatValue, m_FPOne()) || match(SplatValue, m_One());
};
if (IsUnitSplat(OpMultiplier)) {
// [f]mul pg %n, (dupx 1) => %n
OpMultiplicand->takeName(&II);
return IC.replaceInstUsesWith(II, OpMultiplicand);
} else if (IsUnitDup(OpMultiplier)) {
// [f]mul pg %n, (dup pg 1) => %n
auto *DupInst = cast<IntrinsicInst>(OpMultiplier);
auto *DupPg = DupInst->getOperand(1);
// TODO: this is naive. The optimization is still valid if DupPg
// 'encompasses' OpPredicate, not only if they're the same predicate.
if (OpPredicate == DupPg) {
OpMultiplicand->takeName(&II);
return IC.replaceInstUsesWith(II, OpMultiplicand);
}
}
return instCombineSVEVectorBinOp(IC, II);
}
static std::optional<Instruction *> instCombineSVEUnpack(InstCombiner &IC,
IntrinsicInst &II) {
IRBuilder<> Builder(II.getContext());
Builder.SetInsertPoint(&II);
Value *UnpackArg = II.getArgOperand(0);
auto *RetTy = cast<ScalableVectorType>(II.getType());
bool IsSigned = II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpkhi ||
II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpklo;
// Hi = uunpkhi(splat(X)) --> Hi = splat(extend(X))
// Lo = uunpklo(splat(X)) --> Lo = splat(extend(X))
if (auto *ScalarArg = getSplatValue(UnpackArg)) {
ScalarArg =
Builder.CreateIntCast(ScalarArg, RetTy->getScalarType(), IsSigned);
Value *NewVal =
Builder.CreateVectorSplat(RetTy->getElementCount(), ScalarArg);
NewVal->takeName(&II);
return IC.replaceInstUsesWith(II, NewVal);
}
return std::nullopt;
}
static std::optional<Instruction *> instCombineSVETBL(InstCombiner &IC,
IntrinsicInst &II) {
auto *OpVal = II.getOperand(0);
auto *OpIndices = II.getOperand(1);
VectorType *VTy = cast<VectorType>(II.getType());
// Check whether OpIndices is a constant splat value < minimal element count
// of result.
auto *SplatValue = dyn_cast_or_null<ConstantInt>(getSplatValue(OpIndices));
if (!SplatValue ||
SplatValue->getValue().uge(VTy->getElementCount().getKnownMinValue()))
return std::nullopt;
// Convert sve_tbl(OpVal sve_dup_x(SplatValue)) to
// splat_vector(extractelement(OpVal, SplatValue)) for further optimization.
IRBuilder<> Builder(II.getContext());
Builder.SetInsertPoint(&II);
auto *Extract = Builder.CreateExtractElement(OpVal, SplatValue);
auto *VectorSplat =
Builder.CreateVectorSplat(VTy->getElementCount(), Extract);
VectorSplat->takeName(&II);
return IC.replaceInstUsesWith(II, VectorSplat);
}
static std::optional<Instruction *> instCombineSVEZip(InstCombiner &IC,
IntrinsicInst &II) {
// zip1(uzp1(A, B), uzp2(A, B)) --> A
// zip2(uzp1(A, B), uzp2(A, B)) --> B
Value *A, *B;
if (match(II.getArgOperand(0),
m_Intrinsic<Intrinsic::aarch64_sve_uzp1>(m_Value(A), m_Value(B))) &&
match(II.getArgOperand(1), m_Intrinsic<Intrinsic::aarch64_sve_uzp2>(
m_Specific(A), m_Specific(B))))
return IC.replaceInstUsesWith(
II, (II.getIntrinsicID() == Intrinsic::aarch64_sve_zip1 ? A : B));
return std::nullopt;
}
static std::optional<Instruction *>
instCombineLD1GatherIndex(InstCombiner &IC, IntrinsicInst &II) {
Value *Mask = II.getOperand(0);
Value *BasePtr = II.getOperand(1);
Value *Index = II.getOperand(2);
Type *Ty = II.getType();
Value *PassThru = ConstantAggregateZero::get(Ty);
// Contiguous gather => masked load.
// (sve.ld1.gather.index Mask BasePtr (sve.index IndexBase 1))
// => (masked.load (gep BasePtr IndexBase) Align Mask zeroinitializer)
Value *IndexBase;
if (match(Index, m_Intrinsic<Intrinsic::aarch64_sve_index>(
m_Value(IndexBase), m_SpecificInt(1)))) {
IRBuilder<> Builder(II.getContext());
Builder.SetInsertPoint(&II);
Align Alignment =
BasePtr->getPointerAlignment(II.getModule()->getDataLayout());
Type *VecPtrTy = PointerType::getUnqual(Ty);
Value *Ptr = Builder.CreateGEP(cast<VectorType>(Ty)->getElementType(),
BasePtr, IndexBase);
Ptr = Builder.CreateBitCast(Ptr, VecPtrTy);
CallInst *MaskedLoad =
Builder.CreateMaskedLoad(Ty, Ptr, Alignment, Mask, PassThru);
MaskedLoad->takeName(&II);
return IC.replaceInstUsesWith(II, MaskedLoad);
}
return std::nullopt;
}
static std::optional<Instruction *>
instCombineST1ScatterIndex(InstCombiner &IC, IntrinsicInst &II) {
Value *Val = II.getOperand(0);
Value *Mask = II.getOperand(1);
Value *BasePtr = II.getOperand(2);
Value *Index = II.getOperand(3);
Type *Ty = Val->getType();
// Contiguous scatter => masked store.
// (sve.st1.scatter.index Value Mask BasePtr (sve.index IndexBase 1))
// => (masked.store Value (gep BasePtr IndexBase) Align Mask)
Value *IndexBase;
if (match(Index, m_Intrinsic<Intrinsic::aarch64_sve_index>(
m_Value(IndexBase), m_SpecificInt(1)))) {
IRBuilder<> Builder(II.getContext());
Builder.SetInsertPoint(&II);
Align Alignment =
BasePtr->getPointerAlignment(II.getModule()->getDataLayout());
Value *Ptr = Builder.CreateGEP(cast<VectorType>(Ty)->getElementType(),
BasePtr, IndexBase);
Type *VecPtrTy = PointerType::getUnqual(Ty);
Ptr = Builder.CreateBitCast(Ptr, VecPtrTy);
(void)Builder.CreateMaskedStore(Val, Ptr, Alignment, Mask);
return IC.eraseInstFromFunction(II);
}
return std::nullopt;
}
static std::optional<Instruction *> instCombineSVESDIV(InstCombiner &IC,
IntrinsicInst &II) {
IRBuilder<> Builder(II.getContext());
Builder.SetInsertPoint(&II);
Type *Int32Ty = Builder.getInt32Ty();
Value *Pred = II.getOperand(0);
Value *Vec = II.getOperand(1);
Value *DivVec = II.getOperand(2);
Value *SplatValue = getSplatValue(DivVec);
ConstantInt *SplatConstantInt = dyn_cast_or_null<ConstantInt>(SplatValue);
if (!SplatConstantInt)
return std::nullopt;
APInt Divisor = SplatConstantInt->getValue();
if (Divisor.isPowerOf2()) {
Constant *DivisorLog2 = ConstantInt::get(Int32Ty, Divisor.logBase2());
auto ASRD = Builder.CreateIntrinsic(
Intrinsic::aarch64_sve_asrd, {II.getType()}, {Pred, Vec, DivisorLog2});
return IC.replaceInstUsesWith(II, ASRD);
}
if (Divisor.isNegatedPowerOf2()) {
Divisor.negate();
Constant *DivisorLog2 = ConstantInt::get(Int32Ty, Divisor.logBase2());
auto ASRD = Builder.CreateIntrinsic(
Intrinsic::aarch64_sve_asrd, {II.getType()}, {Pred, Vec, DivisorLog2});
auto NEG = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_neg,
{ASRD->getType()}, {ASRD, Pred, ASRD});
return IC.replaceInstUsesWith(II, NEG);
}
return std::nullopt;
}
bool SimplifyValuePattern(SmallVector<Value *> &Vec, bool AllowPoison) {
size_t VecSize = Vec.size();
if (VecSize == 1)
return true;
if (!isPowerOf2_64(VecSize))
return false;
size_t HalfVecSize = VecSize / 2;
for (auto LHS = Vec.begin(), RHS = Vec.begin() + HalfVecSize;
RHS != Vec.end(); LHS++, RHS++) {
if (*LHS != nullptr && *RHS != nullptr) {
if (*LHS == *RHS)
continue;
else
return false;
}
if (!AllowPoison)
return false;
if (*LHS == nullptr && *RHS != nullptr)
*LHS = *RHS;
}
Vec.resize(HalfVecSize);
SimplifyValuePattern(Vec, AllowPoison);
return true;
}
// Try to simplify dupqlane patterns like dupqlane(f32 A, f32 B, f32 A, f32 B)
// to dupqlane(f64(C)) where C is A concatenated with B
static std::optional<Instruction *> instCombineSVEDupqLane(InstCombiner &IC,
IntrinsicInst &II) {
Value *CurrentInsertElt = nullptr, *Default = nullptr;
if (!match(II.getOperand(0),
m_Intrinsic<Intrinsic::vector_insert>(
m_Value(Default), m_Value(CurrentInsertElt), m_Value())) ||
!isa<FixedVectorType>(CurrentInsertElt->getType()))
return std::nullopt;
auto IIScalableTy = cast<ScalableVectorType>(II.getType());
// Insert the scalars into a container ordered by InsertElement index
SmallVector<Value *> Elts(IIScalableTy->getMinNumElements(), nullptr);
while (auto InsertElt = dyn_cast<InsertElementInst>(CurrentInsertElt)) {
auto Idx = cast<ConstantInt>(InsertElt->getOperand(2));
Elts[Idx->getValue().getZExtValue()] = InsertElt->getOperand(1);
CurrentInsertElt = InsertElt->getOperand(0);
}
bool AllowPoison =
isa<PoisonValue>(CurrentInsertElt) && isa<PoisonValue>(Default);
if (!SimplifyValuePattern(Elts, AllowPoison))
return std::nullopt;
// Rebuild the simplified chain of InsertElements. e.g. (a, b, a, b) as (a, b)
IRBuilder<> Builder(II.getContext());
Builder.SetInsertPoint(&II);
Value *InsertEltChain = PoisonValue::get(CurrentInsertElt->getType());
for (size_t I = 0; I < Elts.size(); I++) {
if (Elts[I] == nullptr)
continue;
InsertEltChain = Builder.CreateInsertElement(InsertEltChain, Elts[I],
Builder.getInt64(I));
}
if (InsertEltChain == nullptr)
return std::nullopt;
// Splat the simplified sequence, e.g. (f16 a, f16 b, f16 c, f16 d) as one i64
// value or (f16 a, f16 b) as one i32 value. This requires an InsertSubvector
// be bitcast to a type wide enough to fit the sequence, be splatted, and then
// be narrowed back to the original type.
unsigned PatternWidth = IIScalableTy->getScalarSizeInBits() * Elts.size();
unsigned PatternElementCount = IIScalableTy->getScalarSizeInBits() *
IIScalableTy->getMinNumElements() /
PatternWidth;
IntegerType *WideTy = Builder.getIntNTy(PatternWidth);
auto *WideScalableTy = ScalableVectorType::get(WideTy, PatternElementCount);
auto *WideShuffleMaskTy =
ScalableVectorType::get(Builder.getInt32Ty(), PatternElementCount);
auto ZeroIdx = ConstantInt::get(Builder.getInt64Ty(), APInt(64, 0));
auto InsertSubvector = Builder.CreateInsertVector(
II.getType(), PoisonValue::get(II.getType()), InsertEltChain, ZeroIdx);
auto WideBitcast =
Builder.CreateBitOrPointerCast(InsertSubvector, WideScalableTy);
auto WideShuffleMask = ConstantAggregateZero::get(WideShuffleMaskTy);
auto WideShuffle = Builder.CreateShuffleVector(
WideBitcast, PoisonValue::get(WideScalableTy), WideShuffleMask);
auto NarrowBitcast =
Builder.CreateBitOrPointerCast(WideShuffle, II.getType());
return IC.replaceInstUsesWith(II, NarrowBitcast);
}
static std::optional<Instruction *> instCombineMaxMinNM(InstCombiner &IC,
IntrinsicInst &II) {
Value *A = II.getArgOperand(0);
Value *B = II.getArgOperand(1);
if (A == B)
return IC.replaceInstUsesWith(II, A);
return std::nullopt;
}
static std::optional<Instruction *> instCombineSVESrshl(InstCombiner &IC,
IntrinsicInst &II) {
IRBuilder<> Builder(&II);
Value *Pred = II.getOperand(0);
Value *Vec = II.getOperand(1);
Value *Shift = II.getOperand(2);
// Convert SRSHL into the simpler LSL intrinsic when fed by an ABS intrinsic.
Value *AbsPred, *MergedValue;
if (!match(Vec, m_Intrinsic<Intrinsic::aarch64_sve_sqabs>(
m_Value(MergedValue), m_Value(AbsPred), m_Value())) &&
!match(Vec, m_Intrinsic<Intrinsic::aarch64_sve_abs>(
m_Value(MergedValue), m_Value(AbsPred), m_Value())))
return std::nullopt;
// Transform is valid if any of the following are true:
// * The ABS merge value is an undef or non-negative
// * The ABS predicate is all active
// * The ABS predicate and the SRSHL predicates are the same
if (!isa<UndefValue>(MergedValue) && !match(MergedValue, m_NonNegative()) &&
AbsPred != Pred && !isAllActivePredicate(AbsPred))
return std::nullopt;
// Only valid when the shift amount is non-negative, otherwise the rounding
// behaviour of SRSHL cannot be ignored.
if (!match(Shift, m_NonNegative()))
return std::nullopt;
auto LSL = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_lsl, {II.getType()},
{Pred, Vec, Shift});
return IC.replaceInstUsesWith(II, LSL);
}
std::optional<Instruction *>
AArch64TTIImpl::instCombineIntrinsic(InstCombiner &IC,
IntrinsicInst &II) const {
Intrinsic::ID IID = II.getIntrinsicID();
switch (IID) {
default:
break;
case Intrinsic::aarch64_neon_fmaxnm:
case Intrinsic::aarch64_neon_fminnm:
return instCombineMaxMinNM(IC, II);
case Intrinsic::aarch64_sve_convert_from_svbool:
return instCombineConvertFromSVBool(IC, II);
case Intrinsic::aarch64_sve_dup:
return instCombineSVEDup(IC, II);
case Intrinsic::aarch64_sve_dup_x:
return instCombineSVEDupX(IC, II);
case Intrinsic::aarch64_sve_cmpne:
case Intrinsic::aarch64_sve_cmpne_wide:
return instCombineSVECmpNE(IC, II);
case Intrinsic::aarch64_sve_rdffr:
return instCombineRDFFR(IC, II);
case Intrinsic::aarch64_sve_lasta:
case Intrinsic::aarch64_sve_lastb:
return instCombineSVELast(IC, II);
case Intrinsic::aarch64_sve_clasta_n:
case Intrinsic::aarch64_sve_clastb_n:
return instCombineSVECondLast(IC, II);
case Intrinsic::aarch64_sve_cntd:
return instCombineSVECntElts(IC, II, 2);
case Intrinsic::aarch64_sve_cntw:
return instCombineSVECntElts(IC, II, 4);
case Intrinsic::aarch64_sve_cnth:
return instCombineSVECntElts(IC, II, 8);
case Intrinsic::aarch64_sve_cntb:
return instCombineSVECntElts(IC, II, 16);
case Intrinsic::aarch64_sve_ptest_any:
case Intrinsic::aarch64_sve_ptest_first:
case Intrinsic::aarch64_sve_ptest_last:
return instCombineSVEPTest(IC, II);
case Intrinsic::aarch64_sve_mul:
case Intrinsic::aarch64_sve_fmul:
return instCombineSVEVectorMul(IC, II);
case Intrinsic::aarch64_sve_fadd:
case Intrinsic::aarch64_sve_add:
return instCombineSVEVectorAdd(IC, II);
case Intrinsic::aarch64_sve_fsub:
case Intrinsic::aarch64_sve_sub:
return instCombineSVEVectorSub(IC, II);
case Intrinsic::aarch64_sve_tbl:
return instCombineSVETBL(IC, II);
case Intrinsic::aarch64_sve_uunpkhi:
case Intrinsic::aarch64_sve_uunpklo:
case Intrinsic::aarch64_sve_sunpkhi:
case Intrinsic::aarch64_sve_sunpklo:
return instCombineSVEUnpack(IC, II);
case Intrinsic::aarch64_sve_zip1:
case Intrinsic::aarch64_sve_zip2:
return instCombineSVEZip(IC, II);
case Intrinsic::aarch64_sve_ld1_gather_index:
return instCombineLD1GatherIndex(IC, II);
case Intrinsic::aarch64_sve_st1_scatter_index:
return instCombineST1ScatterIndex(IC, II);
case Intrinsic::aarch64_sve_ld1:
return instCombineSVELD1(IC, II, DL);
case Intrinsic::aarch64_sve_st1:
return instCombineSVEST1(IC, II, DL);
case Intrinsic::aarch64_sve_sdiv:
return instCombineSVESDIV(IC, II);
case Intrinsic::aarch64_sve_sel:
return instCombineSVESel(IC, II);
case Intrinsic::aarch64_sve_srshl:
return instCombineSVESrshl(IC, II);
case Intrinsic::aarch64_sve_dupq_lane:
return instCombineSVEDupqLane(IC, II);
}
return std::nullopt;
}
std::optional<Value *> AArch64TTIImpl::simplifyDemandedVectorEltsIntrinsic(
InstCombiner &IC, IntrinsicInst &II, APInt OrigDemandedElts,
APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3,
std::function<void(Instruction *, unsigned, APInt, APInt &)>
SimplifyAndSetOp) const {
switch (II.getIntrinsicID()) {
default:
break;
case Intrinsic::aarch64_neon_fcvtxn:
case Intrinsic::aarch64_neon_rshrn:
case Intrinsic::aarch64_neon_sqrshrn:
case Intrinsic::aarch64_neon_sqrshrun:
case Intrinsic::aarch64_neon_sqshrn:
case Intrinsic::aarch64_neon_sqshrun:
case Intrinsic::aarch64_neon_sqxtn:
case Intrinsic::aarch64_neon_sqxtun:
case Intrinsic::aarch64_neon_uqrshrn:
case Intrinsic::aarch64_neon_uqshrn:
case Intrinsic::aarch64_neon_uqxtn:
SimplifyAndSetOp(&II, 0, OrigDemandedElts, UndefElts);
break;
}
return std::nullopt;
}
TypeSize
AArch64TTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
switch (K) {
case TargetTransformInfo::RGK_Scalar:
return TypeSize::getFixed(64);
case TargetTransformInfo::RGK_FixedWidthVector:
if (!ST->isStreamingSVEModeDisabled() &&
!EnableFixedwidthAutovecInStreamingMode)
return TypeSize::getFixed(0);
if (ST->hasSVE())
return TypeSize::getFixed(
std::max(ST->getMinSVEVectorSizeInBits(), 128u));
return TypeSize::getFixed(ST->hasNEON() ? 128 : 0);
case TargetTransformInfo::RGK_ScalableVector:
if (!ST->isStreamingSVEModeDisabled() && !EnableScalableAutovecInStreamingMode)
return TypeSize::getScalable(0);
return TypeSize::getScalable(ST->hasSVE() ? 128 : 0);
}
llvm_unreachable("Unsupported register kind");
}
bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode,
ArrayRef<const Value *> Args) {
// A helper that returns a vector type from the given type. The number of
// elements in type Ty determines the vector width.
auto toVectorTy = [&](Type *ArgTy) {
return VectorType::get(ArgTy->getScalarType(),
cast<VectorType>(DstTy)->getElementCount());
};
// Exit early if DstTy is not a vector type whose elements are at least
// 16-bits wide. SVE doesn't generally have the same set of instructions to
// perform an extend with the add/sub/mul. There are SMULLB style
// instructions, but they operate on top/bottom, requiring some sort of lane
// interleaving to be used with zext/sext.
if (!useNeonVector(DstTy) || DstTy->getScalarSizeInBits() < 16)
return false;
// Determine if the operation has a widening variant. We consider both the
// "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the
// instructions.
//
// TODO: Add additional widening operations (e.g., shl, etc.) once we
// verify that their extending operands are eliminated during code
// generation.
switch (Opcode) {
case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2).
case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2).
case Instruction::Mul: // SMULL(2), UMULL(2)
break;
default:
return false;
}
// To be a widening instruction (either the "wide" or "long" versions), the
// second operand must be a sign- or zero extend.
if (Args.size() != 2 ||
(!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])))
return false;
auto *Extend = cast<CastInst>(Args[1]);
auto *Arg0 = dyn_cast<CastInst>(Args[0]);
// A mul only has a mull version (not like addw). Both operands need to be
// extending and the same type.
if (Opcode == Instruction::Mul &&
(!Arg0 || Arg0->getOpcode() != Extend->getOpcode() ||
Arg0->getOperand(0)->getType() != Extend->getOperand(0)->getType()))
return false;
// Legalize the destination type and ensure it can be used in a widening
// operation.
auto DstTyL = getTypeLegalizationCost(DstTy);
unsigned DstElTySize = DstTyL.second.getScalarSizeInBits();
if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits())
return false;
// Legalize the source type and ensure it can be used in a widening
// operation.
auto *SrcTy = toVectorTy(Extend->getSrcTy());
auto SrcTyL = getTypeLegalizationCost(SrcTy);
unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits();
if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits())
return false;
// Get the total number of vector elements in the legalized types.
InstructionCost NumDstEls =
DstTyL.first * DstTyL.second.getVectorMinNumElements();
InstructionCost NumSrcEls =
SrcTyL.first * SrcTyL.second.getVectorMinNumElements();
// Return true if the legalized types have the same number of vector elements
// and the destination element type size is twice that of the source type.
return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize;
}
InstructionCost AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
Type *Src,
TTI::CastContextHint CCH,
TTI::TargetCostKind CostKind,
const Instruction *I) {
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
// If the cast is observable, and it is used by a widening instruction (e.g.,
// uaddl, saddw, etc.), it may be free.
if (I && I->hasOneUser()) {
auto *SingleUser = cast<Instruction>(*I->user_begin());
SmallVector<const Value *, 4> Operands(SingleUser->operand_values());
if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) {
// If the cast is the second operand, it is free. We will generate either
// a "wide" or "long" version of the widening instruction.
if (I == SingleUser->getOperand(1))
return 0;
// If the cast is not the second operand, it will be free if it looks the
// same as the second operand. In this case, we will generate a "long"
// version of the widening instruction.
if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1)))
if (I->getOpcode() == unsigned(Cast->getOpcode()) &&
cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy())
return 0;
}
}
// TODO: Allow non-throughput costs that aren't binary.
auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
if (CostKind != TTI::TCK_RecipThroughput)
return Cost == 0 ? 0 : 1;
return Cost;
};
EVT SrcTy = TLI->getValueType(DL, Src);
EVT DstTy = TLI->getValueType(DL, Dst);
if (!SrcTy.isSimple() || !DstTy.isSimple())
return AdjustCost(
BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
static const TypeConversionCostTblEntry
ConversionTbl[] = {
{ ISD::TRUNCATE, MVT::v2i8, MVT::v2i64, 1}, // xtn
{ ISD::TRUNCATE, MVT::v2i16, MVT::v2i64, 1}, // xtn
{ ISD::TRUNCATE, MVT::v2i32, MVT::v2i64, 1}, // xtn
{ ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 1}, // xtn
{ ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 3}, // 2 xtn + 1 uzp1
{ ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1}, // xtn
{ ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2}, // 1 uzp1 + 1 xtn
{ ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1}, // 1 uzp1
{ ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 1}, // 1 xtn
{ ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2}, // 1 uzp1 + 1 xtn
{ ISD::TRUNCATE, MVT::v8i8, MVT::v8i64, 4}, // 3 x uzp1 + xtn
{ ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 1}, // 1 uzp1
{ ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 3}, // 3 x uzp1
{ ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 2}, // 2 x uzp1
{ ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 1}, // uzp1
{ ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 3}, // (2 + 1) x uzp1
{ ISD::TRUNCATE, MVT::v16i8, MVT::v16i64, 7}, // (4 + 2 + 1) x uzp1
{ ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 2}, // 2 x uzp1
{ ISD::TRUNCATE, MVT::v16i16, MVT::v16i64, 6}, // (4 + 2) x uzp1
{ ISD::TRUNCATE, MVT::v16i32, MVT::v16i64, 4}, // 4 x uzp1
// Truncations on nxvmiN
{ ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i16, 1 },
{ ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i32, 1 },
{ ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i64, 1 },
{ ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i16, 1 },
{ ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i32, 1 },
{ ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i64, 2 },
{ ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i16, 1 },
{ ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i32, 3 },
{ ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i64, 5 },
{ ISD::TRUNCATE, MVT::nxv16i1, MVT::nxv16i8, 1 },
{ ISD::TRUNCATE, MVT::nxv2i16, MVT::nxv2i32, 1 },
{ ISD::TRUNCATE, MVT::nxv2i32, MVT::nxv2i64, 1 },
{ ISD::TRUNCATE, MVT::nxv4i16, MVT::nxv4i32, 1 },
{ ISD::TRUNCATE, MVT::nxv4i32, MVT::nxv4i64, 2 },
{ ISD::TRUNCATE, MVT::nxv8i16, MVT::nxv8i32, 3 },
{ ISD::TRUNCATE, MVT::nxv8i32, MVT::nxv8i64, 6 },
// The number of shll instructions for the extension.
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
{ ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
{ ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
{ ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
{ ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
{ ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
{ ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
{ ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
{ ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
// LowerVectorINT_TO_FP:
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
// Complex: to v2f32
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
// Complex: to v4f32
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 },
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
// Complex: to v8f32
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 },
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 },
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
// Complex: to v16f32
{ ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
{ ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
// Complex: to v2f64
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
// Complex: to v4f64
{ ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 4 },
{ ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 4 },
// LowerVectorFP_TO_INT
{ ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
{ ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
{ ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
{ ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
{ ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
{ ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
// Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
{ ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
{ ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
{ ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 },
{ ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
{ ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
{ ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 },
// Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
{ ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
{ ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 },
{ ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
{ ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 },
// Complex, from nxv2f32.
{ ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f32, 1 },
{ ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f32, 1 },
{ ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f32, 1 },
{ ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f32, 1 },
{ ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f32, 1 },
{ ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f32, 1 },
{ ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f32, 1 },
{ ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f32, 1 },
// Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
{ ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
{ ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
{ ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 },
{ ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
{ ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
{ ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 },
// Complex, from nxv2f64.
{ ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f64, 1 },
{ ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f64, 1 },
{ ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f64, 1 },
{ ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f64, 1 },
{ ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f64, 1 },
{ ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f64, 1 },
{ ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f64, 1 },
{ ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f64, 1 },
// Complex, from nxv4f32.
{ ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f32, 4 },
{ ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f32, 1 },
{ ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f32, 1 },
{ ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f32, 1 },
{ ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f32, 4 },
{ ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f32, 1 },
{ ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f32, 1 },
{ ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f32, 1 },
// Complex, from nxv8f64. Illegal -> illegal conversions not required.
{ ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f64, 7 },
{ ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f64, 7 },
{ ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f64, 7 },
{ ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f64, 7 },
// Complex, from nxv4f64. Illegal -> illegal conversions not required.
{ ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f64, 3 },
{ ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f64, 3 },
{ ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f64, 3 },
{ ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f64, 3 },
{ ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f64, 3 },
{ ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f64, 3 },
// Complex, from nxv8f32. Illegal -> illegal conversions not required.
{ ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f32, 3 },
{ ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f32, 3 },
{ ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f32, 3 },
{ ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f32, 3 },
// Complex, from nxv8f16.
{ ISD::FP_TO_SINT, MVT::nxv8i64, MVT::nxv8f16, 10 },
{ ISD::FP_TO_SINT, MVT::nxv8i32, MVT::nxv8f16, 4 },
{ ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f16, 1 },
{ ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f16, 1 },
{ ISD::FP_TO_UINT, MVT::nxv8i64, MVT::nxv8f16, 10 },
{ ISD::FP_TO_UINT, MVT::nxv8i32, MVT::nxv8f16, 4 },
{ ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f16, 1 },
{ ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f16, 1 },
// Complex, from nxv4f16.
{ ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f16, 4 },
{ ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f16, 1 },
{ ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f16, 1 },
{ ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f16, 1 },
{ ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f16, 4 },
{ ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f16, 1 },
{ ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f16, 1 },
{ ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f16, 1 },
// Complex, from nxv2f16.
{ ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f16, 1 },
{ ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f16, 1 },
{ ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f16, 1 },
{ ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f16, 1 },
{ ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f16, 1 },
{ ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f16, 1 },
{ ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f16, 1 },
{ ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f16, 1 },
// Truncate from nxvmf32 to nxvmf16.
{ ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f32, 1 },
{ ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f32, 1 },
{ ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f32, 3 },
// Truncate from nxvmf64 to nxvmf16.
{ ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f64, 1 },
{ ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f64, 3 },
{ ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f64, 7 },
// Truncate from nxvmf64 to nxvmf32.
{ ISD::FP_ROUND, MVT::nxv2f32, MVT::nxv2f64, 1 },
{ ISD::FP_ROUND, MVT::nxv4f32, MVT::nxv4f64, 3 },
{ ISD::FP_ROUND, MVT::nxv8f32, MVT::nxv8f64, 6 },
// Extend from nxvmf16 to nxvmf32.
{ ISD::FP_EXTEND, MVT::nxv2f32, MVT::nxv2f16, 1},
{ ISD::FP_EXTEND, MVT::nxv4f32, MVT::nxv4f16, 1},
{ ISD::FP_EXTEND, MVT::nxv8f32, MVT::nxv8f16, 2},
// Extend from nxvmf16 to nxvmf64.
{ ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f16, 1},
{ ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f16, 2},
{ ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f16, 4},
// Extend from nxvmf32 to nxvmf64.
{ ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f32, 1},
{ ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f32, 2},
{ ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f32, 6},
// Bitcasts from float to integer
{ ISD::BITCAST, MVT::nxv2f16, MVT::nxv2i16, 0 },
{ ISD::BITCAST, MVT::nxv4f16, MVT::nxv4i16, 0 },
{ ISD::BITCAST, MVT::nxv2f32, MVT::nxv2i32, 0 },
// Bitcasts from integer to float
{ ISD::BITCAST, MVT::nxv2i16, MVT::nxv2f16, 0 },
{ ISD::BITCAST, MVT::nxv4i16, MVT::nxv4f16, 0 },
{ ISD::BITCAST, MVT::nxv2i32, MVT::nxv2f32, 0 },
};
if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD,
DstTy.getSimpleVT(),
SrcTy.getSimpleVT()))
return AdjustCost(Entry->Cost);
static const TypeConversionCostTblEntry FP16Tbl[] = {
{ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f16, 1}, // fcvtzs
{ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f16, 1},
{ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f16, 1}, // fcvtzs
{ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f16, 1},
{ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f16, 2}, // fcvtl+fcvtzs
{ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f16, 2},
{ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f16, 2}, // fcvtzs+xtn
{ISD::FP_TO_UINT, MVT::v8i8, MVT::v8f16, 2},
{ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f16, 1}, // fcvtzs
{ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f16, 1},
{ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f16, 4}, // 2*fcvtl+2*fcvtzs
{ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f16, 4},
{ISD::FP_TO_SINT, MVT::v16i8, MVT::v16f16, 3}, // 2*fcvtzs+xtn
{ISD::FP_TO_UINT, MVT::v16i8, MVT::v16f16, 3},
{ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f16, 2}, // 2*fcvtzs
{ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f16, 2},
{ISD::FP_TO_SINT, MVT::v16i32, MVT::v16f16, 8}, // 4*fcvtl+4*fcvtzs
{ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f16, 8},
{ISD::UINT_TO_FP, MVT::v8f16, MVT::v8i8, 2}, // ushll + ucvtf
{ISD::SINT_TO_FP, MVT::v8f16, MVT::v8i8, 2}, // sshll + scvtf
{ISD::UINT_TO_FP, MVT::v16f16, MVT::v16i8, 4}, // 2 * ushl(2) + 2 * ucvtf
{ISD::SINT_TO_FP, MVT::v16f16, MVT::v16i8, 4}, // 2 * sshl(2) + 2 * scvtf
};
if (ST->hasFullFP16())
if (const auto *Entry = ConvertCostTableLookup(
FP16Tbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
return AdjustCost(Entry->Cost);
return AdjustCost(
BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
}
InstructionCost AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode,
Type *Dst,
VectorType *VecTy,
unsigned Index) {
// Make sure we were given a valid extend opcode.
assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) &&
"Invalid opcode");
// We are extending an element we extract from a vector, so the source type
// of the extend is the element type of the vector.
auto *Src = VecTy->getElementType();
// Sign- and zero-extends are for integer types only.
assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type");
// Get the cost for the extract. We compute the cost (if any) for the extend
// below.
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
InstructionCost Cost = getVectorInstrCost(Instruction::ExtractElement, VecTy,
CostKind, Index, nullptr, nullptr);
// Legalize the types.
auto VecLT = getTypeLegalizationCost(VecTy);
auto DstVT = TLI->getValueType(DL, Dst);
auto SrcVT = TLI->getValueType(DL, Src);
// If the resulting type is still a vector and the destination type is legal,
// we may get the extension for free. If not, get the default cost for the
// extend.
if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT))
return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
CostKind);
// The destination type should be larger than the element type. If not, get
// the default cost for the extend.
if (DstVT.getFixedSizeInBits() < SrcVT.getFixedSizeInBits())
return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
CostKind);
switch (Opcode) {
default:
llvm_unreachable("Opcode should be either SExt or ZExt");
// For sign-extends, we only need a smov, which performs the extension
// automatically.
case Instruction::SExt:
return Cost;
// For zero-extends, the extend is performed automatically by a umov unless
// the destination type is i64 and the element type is i8 or i16.
case Instruction::ZExt:
if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u)
return Cost;
}
// If we are unable to perform the extend for free, get the default cost.
return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
CostKind);
}
InstructionCost AArch64TTIImpl::getCFInstrCost(unsigned Opcode,
TTI::TargetCostKind CostKind,
const Instruction *I) {
if (CostKind != TTI::TCK_RecipThroughput)
return Opcode == Instruction::PHI ? 0 : 1;
assert(CostKind == TTI::TCK_RecipThroughput && "unexpected CostKind");
// Branches are assumed to be predicted.
return 0;
}
InstructionCost AArch64TTIImpl::getVectorInstrCostHelper(Type *Val,
unsigned Index,
bool HasRealUse) {
assert(Val->isVectorTy() && "This must be a vector type");
if (Index != -1U) {
// Legalize the type.
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Val);
// This type is legalized to a scalar type.
if (!LT.second.isVector())
return 0;
// The type may be split. For fixed-width vectors we can normalize the
// index to the new type.
if (LT.second.isFixedLengthVector()) {
unsigned Width = LT.second.getVectorNumElements();
Index = Index % Width;
}
// The element at index zero is already inside the vector.
// - For a physical (HasRealUse==true) insert-element or extract-element
// instruction that extracts integers, an explicit FPR -> GPR move is
// needed. So it has non-zero cost.
// - For the rest of cases (virtual instruction or element type is float),
// consider the instruction free.
//
// FIXME:
// If the extract-element and insert-element instructions could be
// simplified away (e.g., could be combined into users by looking at use-def
// context), they have no cost. This is not done in the first place for
// compile-time considerations.
if (Index == 0 && (!HasRealUse || !Val->getScalarType()->isIntegerTy()))
return 0;
}
// All other insert/extracts cost this much.
return ST->getVectorInsertExtractBaseCost();
}
InstructionCost AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
TTI::TargetCostKind CostKind,
unsigned Index, Value *Op0,
Value *Op1) {
return getVectorInstrCostHelper(Val, Index, false /* HasRealUse */);
}
InstructionCost AArch64TTIImpl::getVectorInstrCost(const Instruction &I,
Type *Val,
TTI::TargetCostKind CostKind,
unsigned Index) {
return getVectorInstrCostHelper(Val, Index, true /* HasRealUse */);
}
InstructionCost AArch64TTIImpl::getArithmeticInstrCost(
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
ArrayRef<const Value *> Args,
const Instruction *CxtI) {
// TODO: Handle more cost kinds.
if (CostKind != TTI::TCK_RecipThroughput)
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
Op2Info, Args, CxtI);
// Legalize the type.
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
int ISD = TLI->InstructionOpcodeToISD(Opcode);
switch (ISD) {
default:
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
Op2Info);
case ISD::SDIV:
if (Op2Info.isConstant() && Op2Info.isUniform() && Op2Info.isPowerOf2()) {
// On AArch64, scalar signed division by constants power-of-two are
// normally expanded to the sequence ADD + CMP + SELECT + SRA.
// The OperandValue properties many not be same as that of previous
// operation; conservatively assume OP_None.
InstructionCost Cost = getArithmeticInstrCost(
Instruction::Add, Ty, CostKind,
Op1Info.getNoProps(), Op2Info.getNoProps());
Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind,
Op1Info.getNoProps(), Op2Info.getNoProps());
Cost += getArithmeticInstrCost(
Instruction::Select, Ty, CostKind,
Op1Info.getNoProps(), Op2Info.getNoProps());
Cost += getArithmeticInstrCost(Instruction::AShr, Ty, CostKind,
Op1Info.getNoProps(), Op2Info.getNoProps());
return Cost;
}
[[fallthrough]];
case ISD::UDIV: {
if (Op2Info.isConstant() && Op2Info.isUniform()) {
auto VT = TLI->getValueType(DL, Ty);
if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) {
// Vector signed division by constant are expanded to the
// sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division
// to MULHS + SUB + SRL + ADD + SRL.
InstructionCost MulCost = getArithmeticInstrCost(
Instruction::Mul, Ty, CostKind, Op1Info.getNoProps(), Op2Info.getNoProps());
InstructionCost AddCost = getArithmeticInstrCost(
Instruction::Add, Ty, CostKind, Op1Info.getNoProps(), Op2Info.getNoProps());
InstructionCost ShrCost = getArithmeticInstrCost(
Instruction::AShr, Ty, CostKind, Op1Info.getNoProps(), Op2Info.getNoProps());
return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1;
}
}
InstructionCost Cost = BaseT::getArithmeticInstrCost(
Opcode, Ty, CostKind, Op1Info, Op2Info);
if (Ty->isVectorTy()) {
if (TLI->isOperationLegalOrCustom(ISD, LT.second) && ST->hasSVE()) {
// SDIV/UDIV operations are lowered using SVE, then we can have less
// costs.
if (isa<FixedVectorType>(Ty) && cast<FixedVectorType>(Ty)
->getPrimitiveSizeInBits()
.getFixedValue() < 128) {
EVT VT = TLI->getValueType(DL, Ty);
static const CostTblEntry DivTbl[]{
{ISD::SDIV, MVT::v2i8, 5}, {ISD::SDIV, MVT::v4i8, 8},
{ISD::SDIV, MVT::v8i8, 8}, {ISD::SDIV, MVT::v2i16, 5},
{ISD::SDIV, MVT::v4i16, 5}, {ISD::SDIV, MVT::v2i32, 1},
{ISD::UDIV, MVT::v2i8, 5}, {ISD::UDIV, MVT::v4i8, 8},
{ISD::UDIV, MVT::v8i8, 8}, {ISD::UDIV, MVT::v2i16, 5},
{ISD::UDIV, MVT::v4i16, 5}, {ISD::UDIV, MVT::v2i32, 1}};
const auto *Entry = CostTableLookup(DivTbl, ISD, VT.getSimpleVT());
if (nullptr != Entry)
return Entry->Cost;
}
// For 8/16-bit elements, the cost is higher because the type
// requires promotion and possibly splitting:
if (LT.second.getScalarType() == MVT::i8)
Cost *= 8;
else if (LT.second.getScalarType() == MVT::i16)
Cost *= 4;
return Cost;
} else {
// If one of the operands is a uniform constant then the cost for each
// element is Cost for insertion, extraction and division.
// Insertion cost = 2, Extraction Cost = 2, Division = cost for the
// operation with scalar type
if ((Op1Info.isConstant() && Op1Info.isUniform()) ||
(Op2Info.isConstant() && Op2Info.isUniform())) {
if (auto *VTy = dyn_cast<FixedVectorType>(Ty)) {
InstructionCost DivCost = BaseT::getArithmeticInstrCost(
Opcode, Ty->getScalarType(), CostKind, Op1Info, Op2Info);
return (4 + DivCost) * VTy->getNumElements();
}
}
// On AArch64, without SVE, vector divisions are expanded
// into scalar divisions of each pair of elements.
Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty,
CostKind, Op1Info, Op2Info);
Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, CostKind,
Op1Info, Op2Info);
}
// TODO: if one of the arguments is scalar, then it's not necessary to
// double the cost of handling the vector elements.
Cost += Cost;
}
return Cost;
}
case ISD::MUL:
// When SVE is available, then we can lower the v2i64 operation using
// the SVE mul instruction, which has a lower cost.
if (LT.second == MVT::v2i64 && ST->hasSVE())
return LT.first;
// When SVE is not available, there is no MUL.2d instruction,
// which means mul <2 x i64> is expensive as elements are extracted
// from the vectors and the muls scalarized.
// As getScalarizationOverhead is a bit too pessimistic, we
// estimate the cost for a i64 vector directly here, which is:
// - four 2-cost i64 extracts,
// - two 2-cost i64 inserts, and
// - two 1-cost muls.
// So, for a v2i64 with LT.First = 1 the cost is 14, and for a v4i64 with
// LT.first = 2 the cost is 28. If both operands are extensions it will not
// need to scalarize so the cost can be cheaper (smull or umull).
// so the cost can be cheaper (smull or umull).
if (LT.second != MVT::v2i64 || isWideningInstruction(Ty, Opcode, Args))
return LT.first;
return LT.first * 14;
case ISD::ADD:
case ISD::XOR:
case ISD::OR:
case ISD::AND:
case ISD::SRL:
case ISD::SRA:
case ISD::SHL:
// These nodes are marked as 'custom' for combining purposes only.
// We know that they are legal. See LowerAdd in ISelLowering.
return LT.first;
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FDIV:
case ISD::FNEG:
// These nodes are marked as 'custom' just to lower them to SVE.
// We know said lowering will incur no additional cost.
if (!Ty->getScalarType()->isFP128Ty())
return 2 * LT.first;
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
Op2Info);
}
}
InstructionCost AArch64TTIImpl::getAddressComputationCost(Type *Ty,
ScalarEvolution *SE,
const SCEV *Ptr) {
// Address computations in vectorized code with non-consecutive addresses will
// likely result in more instructions compared to scalar code where the
// computation can more often be merged into the index mode. The resulting
// extra micro-ops can significantly decrease throughput.
unsigned NumVectorInstToHideOverhead = 10;
int MaxMergeDistance = 64;
if (Ty->isVectorTy() && SE &&
!BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
return NumVectorInstToHideOverhead;
// In many cases the address computation is not merged into the instruction
// addressing mode.
return 1;
}
InstructionCost AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
Type *CondTy,
CmpInst::Predicate VecPred,
TTI::TargetCostKind CostKind,
const Instruction *I) {
// TODO: Handle other cost kinds.
if (CostKind != TTI::TCK_RecipThroughput)
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
I);
int ISD = TLI->InstructionOpcodeToISD(Opcode);
// We don't lower some vector selects well that are wider than the register
// width.
if (isa<FixedVectorType>(ValTy) && ISD == ISD::SELECT) {
// We would need this many instructions to hide the scalarization happening.
const int AmortizationCost = 20;
// If VecPred is not set, check if we can get a predicate from the context
// instruction, if its type matches the requested ValTy.
if (VecPred == CmpInst::BAD_ICMP_PREDICATE && I && I->getType() == ValTy) {
CmpInst::Predicate CurrentPred;
if (match(I, m_Select(m_Cmp(CurrentPred, m_Value(), m_Value()), m_Value(),
m_Value())))
VecPred = CurrentPred;
}
// Check if we have a compare/select chain that can be lowered using
// a (F)CMxx & BFI pair.
if (CmpInst::isIntPredicate(VecPred) || VecPred == CmpInst::FCMP_OLE ||
VecPred == CmpInst::FCMP_OLT || VecPred == CmpInst::FCMP_OGT ||
VecPred == CmpInst::FCMP_OGE || VecPred == CmpInst::FCMP_OEQ ||
VecPred == CmpInst::FCMP_UNE) {
static const auto ValidMinMaxTys = {
MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16, MVT::v2i32,
MVT::v4i32, MVT::v2i64, MVT::v2f32, MVT::v4f32, MVT::v2f64};
static const auto ValidFP16MinMaxTys = {MVT::v4f16, MVT::v8f16};
auto LT = getTypeLegalizationCost(ValTy);
if (any_of(ValidMinMaxTys, [&LT](MVT M) { return M == LT.second; }) ||
(ST->hasFullFP16() &&
any_of(ValidFP16MinMaxTys, [&LT](MVT M) { return M == LT.second; })))
return LT.first;
}
static const TypeConversionCostTblEntry
VectorSelectTbl[] = {
{ ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 },
{ ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 },
{ ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 },
{ ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
{ ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
{ ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
};
EVT SelCondTy = TLI->getValueType(DL, CondTy);
EVT SelValTy = TLI->getValueType(DL, ValTy);
if (SelCondTy.isSimple() && SelValTy.isSimple()) {
if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD,
SelCondTy.getSimpleVT(),
SelValTy.getSimpleVT()))
return Entry->Cost;
}
}
// The base case handles scalable vectors fine for now, since it treats the
// cost as 1 * legalization cost.
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
}
AArch64TTIImpl::TTI::MemCmpExpansionOptions
AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
TTI::MemCmpExpansionOptions Options;
if (ST->requiresStrictAlign()) {
// TODO: Add cost modeling for strict align. Misaligned loads expand to
// a bunch of instructions when strict align is enabled.
return Options;
}
Options.AllowOverlappingLoads = true;
Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
Options.NumLoadsPerBlock = Options.MaxNumLoads;
// TODO: Though vector loads usually perform well on AArch64, in some targets
// they may wake up the FP unit, which raises the power consumption. Perhaps
// they could be used with no holds barred (-O3).
Options.LoadSizes = {8, 4, 2, 1};
return Options;
}
bool AArch64TTIImpl::prefersVectorizedAddressing() const {
return ST->hasSVE();
}
InstructionCost
AArch64TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
Align Alignment, unsigned AddressSpace,
TTI::TargetCostKind CostKind) {
if (useNeonVector(Src))
return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
CostKind);
auto LT = getTypeLegalizationCost(Src);
if (!LT.first.isValid())
return InstructionCost::getInvalid();
// The code-generator is currently not able to handle scalable vectors
// of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
// it. This change will be removed when code-generation for these types is
// sufficiently reliable.
if (cast<VectorType>(Src)->getElementCount() == ElementCount::getScalable(1))
return InstructionCost::getInvalid();
return LT.first;
}
static unsigned getSVEGatherScatterOverhead(unsigned Opcode) {
return Opcode == Instruction::Load ? SVEGatherOverhead : SVEScatterOverhead;
}
InstructionCost AArch64TTIImpl::getGatherScatterOpCost(
unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
if (useNeonVector(DataTy))
return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
Alignment, CostKind, I);
auto *VT = cast<VectorType>(DataTy);
auto LT = getTypeLegalizationCost(DataTy);
if (!LT.first.isValid())
return InstructionCost::getInvalid();
// The code-generator is currently not able to handle scalable vectors
// of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
// it. This change will be removed when code-generation for these types is
// sufficiently reliable.
if (cast<VectorType>(DataTy)->getElementCount() ==
ElementCount::getScalable(1))
return InstructionCost::getInvalid();
ElementCount LegalVF = LT.second.getVectorElementCount();
InstructionCost MemOpCost =
getMemoryOpCost(Opcode, VT->getElementType(), Alignment, 0, CostKind,
{TTI::OK_AnyValue, TTI::OP_None}, I);
// Add on an overhead cost for using gathers/scatters.
// TODO: At the moment this is applied unilaterally for all CPUs, but at some
// point we may want a per-CPU overhead.
MemOpCost *= getSVEGatherScatterOverhead(Opcode);
return LT.first * MemOpCost * getMaxNumElements(LegalVF);
}
bool AArch64TTIImpl::useNeonVector(const Type *Ty) const {
return isa<FixedVectorType>(Ty) && !ST->useSVEForFixedLengthVectors();
}
InstructionCost AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty,
MaybeAlign Alignment,
unsigned AddressSpace,
TTI::TargetCostKind CostKind,
TTI::OperandValueInfo OpInfo,
const Instruction *I) {
EVT VT = TLI->getValueType(DL, Ty, true);
// Type legalization can't handle structs
if (VT == MVT::Other)
return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace,
CostKind);
auto LT = getTypeLegalizationCost(Ty);
if (!LT.first.isValid())
return InstructionCost::getInvalid();
// The code-generator is currently not able to handle scalable vectors
// of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
// it. This change will be removed when code-generation for these types is
// sufficiently reliable.
if (auto *VTy = dyn_cast<ScalableVectorType>(Ty))
if (VTy->getElementCount() == ElementCount::getScalable(1))
return InstructionCost::getInvalid();
// TODO: consider latency as well for TCK_SizeAndLatency.
if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency)
return LT.first;
if (CostKind != TTI::TCK_RecipThroughput)
return 1;
if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store &&
LT.second.is128BitVector() && (!Alignment || *Alignment < Align(16))) {
// Unaligned stores are extremely inefficient. We don't split all
// unaligned 128-bit stores because the negative impact that has shown in
// practice on inlined block copy code.
// We make such stores expensive so that we will only vectorize if there
// are 6 other instructions getting vectorized.
const int AmortizationCost = 6;
return LT.first * 2 * AmortizationCost;
}
// Opaque ptr or ptr vector types are i64s and can be lowered to STP/LDPs.
if (Ty->isPtrOrPtrVectorTy())
return LT.first;
// Check truncating stores and extending loads.
if (useNeonVector(Ty) &&
Ty->getScalarSizeInBits() != LT.second.getScalarSizeInBits()) {
// v4i8 types are lowered to scalar a load/store and sshll/xtn.
if (VT == MVT::v4i8)
return 2;
// Otherwise we need to scalarize.
return cast<FixedVectorType>(Ty)->getNumElements() * 2;
}
return LT.first;
}
InstructionCost AArch64TTIImpl::getInterleavedMemoryOpCost(
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
bool UseMaskForCond, bool UseMaskForGaps) {
assert(Factor >= 2 && "Invalid interleave factor");
auto *VecVTy = cast<FixedVectorType>(VecTy);
if (!UseMaskForCond && !UseMaskForGaps &&
Factor <= TLI->getMaxSupportedInterleaveFactor()) {
unsigned NumElts = VecVTy->getNumElements();
auto *SubVecTy =
FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor);
// ldN/stN only support legal vector types of size 64 or 128 in bits.
// Accesses having vector types that are a multiple of 128 bits can be
// matched to more than one ldN/stN instruction.
bool UseScalable;
if (NumElts % Factor == 0 &&
TLI->isLegalInterleavedAccessType(SubVecTy, DL, UseScalable))
return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL, UseScalable);
}
return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
Alignment, AddressSpace, CostKind,
UseMaskForCond, UseMaskForGaps);
}
InstructionCost
AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
InstructionCost Cost = 0;
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
for (auto *I : Tys) {
if (!I->isVectorTy())
continue;
if (I->getScalarSizeInBits() * cast<FixedVectorType>(I)->getNumElements() ==
128)
Cost += getMemoryOpCost(Instruction::Store, I, Align(128), 0, CostKind) +
getMemoryOpCost(Instruction::Load, I, Align(128), 0, CostKind);
}
return Cost;
}
unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) {
return ST->getMaxInterleaveFactor();
}
// For Falkor, we want to avoid having too many strided loads in a loop since
// that can exhaust the HW prefetcher resources. We adjust the unroller
// MaxCount preference below to attempt to ensure unrolling doesn't create too
// many strided loads.
static void
getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE,
TargetTransformInfo::UnrollingPreferences &UP) {
enum { MaxStridedLoads = 7 };
auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) {
int StridedLoads = 0;
// FIXME? We could make this more precise by looking at the CFG and
// e.g. not counting loads in each side of an if-then-else diamond.
for (const auto BB : L->blocks()) {
for (auto &I : *BB) {
LoadInst *LMemI = dyn_cast<LoadInst>(&I);
if (!LMemI)
continue;
Value *PtrValue = LMemI->getPointerOperand();
if (L->isLoopInvariant(PtrValue))
continue;
const SCEV *LSCEV = SE.getSCEV(PtrValue);
const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV);
if (!LSCEVAddRec || !LSCEVAddRec->isAffine())
continue;
// FIXME? We could take pairing of unrolled load copies into account
// by looking at the AddRec, but we would probably have to limit this
// to loops with no stores or other memory optimization barriers.
++StridedLoads;
// We've seen enough strided loads that seeing more won't make a
// difference.
if (StridedLoads > MaxStridedLoads / 2)
return StridedLoads;
}
}
return StridedLoads;
};
int StridedLoads = countStridedLoads(L, SE);
LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads
<< " strided loads\n");
// Pick the largest power of 2 unroll count that won't result in too many
// strided loads.
if (StridedLoads) {
UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads);
LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to "
<< UP.MaxCount << '\n');
}
}
void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
TTI::UnrollingPreferences &UP,
OptimizationRemarkEmitter *ORE) {
// Enable partial unrolling and runtime unrolling.
BaseT::getUnrollingPreferences(L, SE, UP, ORE);
UP.UpperBound = true;
// For inner loop, it is more likely to be a hot one, and the runtime check
// can be promoted out from LICM pass, so the overhead is less, let's try
// a larger threshold to unroll more loops.
if (L->getLoopDepth() > 1)
UP.PartialThreshold *= 2;
// Disable partial & runtime unrolling on -Os.
UP.PartialOptSizeThreshold = 0;
if (ST->getProcFamily() == AArch64Subtarget::Falkor &&
EnableFalkorHWPFUnrollFix)
getFalkorUnrollingPreferences(L, SE, UP);
// Scan the loop: don't unroll loops with calls as this could prevent
// inlining. Don't unroll vector loops either, as they don't benefit much from
// unrolling.
for (auto *BB : L->getBlocks()) {
for (auto &I : *BB) {
// Don't unroll vectorised loop.
if (I.getType()->isVectorTy())
return;
if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
if (!isLoweredToCall(F))
continue;
}
return;
}
}
}
// Enable runtime unrolling for in-order models
// If mcpu is omitted, getProcFamily() returns AArch64Subtarget::Others, so by
// checking for that case, we can ensure that the default behaviour is
// unchanged
if (ST->getProcFamily() != AArch64Subtarget::Others &&
!ST->getSchedModel().isOutOfOrder()) {
UP.Runtime = true;
UP.Partial = true;
UP.UnrollRemainder = true;
UP.DefaultUnrollRuntimeCount = 4;
UP.UnrollAndJam = true;
UP.UnrollAndJamInnerLoopThreshold = 60;
}
}
void AArch64TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
TTI::PeelingPreferences &PP) {
BaseT::getPeelingPreferences(L, SE, PP);
}
Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
Type *ExpectedType) {
switch (Inst->getIntrinsicID()) {
default:
return nullptr;
case Intrinsic::aarch64_neon_st2:
case Intrinsic::aarch64_neon_st3:
case Intrinsic::aarch64_neon_st4: {
// Create a struct type
StructType *ST = dyn_cast<StructType>(ExpectedType);
if (!ST)
return nullptr;
unsigned NumElts = Inst->arg_size() - 1;
if (ST->getNumElements() != NumElts)
return nullptr;
for (unsigned i = 0, e = NumElts; i != e; ++i) {
if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
return nullptr;
}
Value *Res = PoisonValue::get(ExpectedType);
IRBuilder<> Builder(Inst);
for (unsigned i = 0, e = NumElts; i != e; ++i) {
Value *L = Inst->getArgOperand(i);
Res = Builder.CreateInsertValue(Res, L, i);
}
return Res;
}
case Intrinsic::aarch64_neon_ld2:
case Intrinsic::aarch64_neon_ld3:
case Intrinsic::aarch64_neon_ld4:
if (Inst->getType() == ExpectedType)
return Inst;
return nullptr;
}
}
bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
MemIntrinsicInfo &Info) {
switch (Inst->getIntrinsicID()) {
default:
break;
case Intrinsic::aarch64_neon_ld2:
case Intrinsic::aarch64_neon_ld3:
case Intrinsic::aarch64_neon_ld4:
Info.ReadMem = true;
Info.WriteMem = false;
Info.PtrVal = Inst->getArgOperand(0);
break;
case Intrinsic::aarch64_neon_st2:
case Intrinsic::aarch64_neon_st3:
case Intrinsic::aarch64_neon_st4:
Info.ReadMem = false;
Info.WriteMem = true;
Info.PtrVal = Inst->getArgOperand(Inst->arg_size() - 1);
break;
}
switch (Inst->getIntrinsicID()) {
default:
return false;
case Intrinsic::aarch64_neon_ld2:
case Intrinsic::aarch64_neon_st2:
Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
break;
case Intrinsic::aarch64_neon_ld3:
case Intrinsic::aarch64_neon_st3:
Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
break;
case Intrinsic::aarch64_neon_ld4:
case Intrinsic::aarch64_neon_st4:
Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
break;
}
return true;
}
/// See if \p I should be considered for address type promotion. We check if \p
/// I is a sext with right type and used in memory accesses. If it used in a
/// "complex" getelementptr, we allow it to be promoted without finding other
/// sext instructions that sign extended the same initial value. A getelementptr
/// is considered as "complex" if it has more than 2 operands.
bool AArch64TTIImpl::shouldConsiderAddressTypePromotion(
const Instruction &I, bool &AllowPromotionWithoutCommonHeader) {
bool Considerable = false;
AllowPromotionWithoutCommonHeader = false;
if (!isa<SExtInst>(&I))
return false;
Type *ConsideredSExtType =
Type::getInt64Ty(I.getParent()->getParent()->getContext());
if (I.getType() != ConsideredSExtType)
return false;
// See if the sext is the one with the right type and used in at least one
// GetElementPtrInst.
for (const User *U : I.users()) {
if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) {
Considerable = true;
// A getelementptr is considered as "complex" if it has more than 2
// operands. We will promote a SExt used in such complex GEP as we
// expect some computation to be merged if they are done on 64 bits.
if (GEPInst->getNumOperands() > 2) {
AllowPromotionWithoutCommonHeader = true;
break;
}
}
}
return Considerable;
}
bool AArch64TTIImpl::isLegalToVectorizeReduction(
const RecurrenceDescriptor &RdxDesc, ElementCount VF) const {
if (!VF.isScalable())
return true;
Type *Ty = RdxDesc.getRecurrenceType();
if (Ty->isBFloatTy() || !isElementTypeLegalForScalableVector(Ty))
return false;
switch (RdxDesc.getRecurrenceKind()) {
case RecurKind::Add:
case RecurKind::FAdd:
case RecurKind::And:
case RecurKind::Or:
case RecurKind::Xor:
case RecurKind::SMin:
case RecurKind::SMax:
case RecurKind::UMin:
case RecurKind::UMax:
case RecurKind::FMin:
case RecurKind::FMax:
case RecurKind::SelectICmp:
case RecurKind::SelectFCmp:
case RecurKind::FMulAdd:
return true;
default:
return false;
}
}
InstructionCost
AArch64TTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
bool IsUnsigned,
TTI::TargetCostKind CostKind) {
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
if (LT.second.getScalarType() == MVT::f16 && !ST->hasFullFP16())
return BaseT::getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind);
assert((isa<ScalableVectorType>(Ty) == isa<ScalableVectorType>(CondTy)) &&
"Both vector needs to be equally scalable");
InstructionCost LegalizationCost = 0;
if (LT.first > 1) {
Type *LegalVTy = EVT(LT.second).getTypeForEVT(Ty->getContext());
unsigned MinMaxOpcode =
Ty->isFPOrFPVectorTy()
? Intrinsic::maxnum
: (IsUnsigned ? Intrinsic::umin : Intrinsic::smin);
IntrinsicCostAttributes Attrs(MinMaxOpcode, LegalVTy, {LegalVTy, LegalVTy});
LegalizationCost = getIntrinsicInstrCost(Attrs, CostKind) * (LT.first - 1);
}
return LegalizationCost + /*Cost of horizontal reduction*/ 2;
}
InstructionCost AArch64TTIImpl::getArithmeticReductionCostSVE(
unsigned Opcode, VectorType *ValTy, TTI::TargetCostKind CostKind) {
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
InstructionCost LegalizationCost = 0;
if (LT.first > 1) {
Type *LegalVTy = EVT(LT.second).getTypeForEVT(ValTy->getContext());
LegalizationCost = getArithmeticInstrCost(Opcode, LegalVTy, CostKind);
LegalizationCost *= LT.first - 1;
}
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
// Add the final reduction cost for the legal horizontal reduction
switch (ISD) {
case ISD::ADD:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::FADD:
return LegalizationCost + 2;
default:
return InstructionCost::getInvalid();
}
}
InstructionCost
AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
std::optional<FastMathFlags> FMF,
TTI::TargetCostKind CostKind) {
if (TTI::requiresOrderedReduction(FMF)) {
if (auto *FixedVTy = dyn_cast<FixedVectorType>(ValTy)) {
InstructionCost BaseCost =
BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
// Add on extra cost to reflect the extra overhead on some CPUs. We still
// end up vectorizing for more computationally intensive loops.
return BaseCost + FixedVTy->getNumElements();
}
if (Opcode != Instruction::FAdd)
return InstructionCost::getInvalid();
auto *VTy = cast<ScalableVectorType>(ValTy);
InstructionCost Cost =
getArithmeticInstrCost(Opcode, VTy->getScalarType(), CostKind);
Cost *= getMaxNumElements(VTy->getElementCount());
return Cost;
}
if (isa<ScalableVectorType>(ValTy))
return getArithmeticReductionCostSVE(Opcode, ValTy, CostKind);
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
MVT MTy = LT.second;
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
// Horizontal adds can use the 'addv' instruction. We model the cost of these
// instructions as twice a normal vector add, plus 1 for each legalization
// step (LT.first). This is the only arithmetic vector reduction operation for
// which we have an instruction.
// OR, XOR and AND costs should match the codegen from:
// OR: llvm/test/CodeGen/AArch64/reduce-or.ll
// XOR: llvm/test/CodeGen/AArch64/reduce-xor.ll
// AND: llvm/test/CodeGen/AArch64/reduce-and.ll
static const CostTblEntry CostTblNoPairwise[]{
{ISD::ADD, MVT::v8i8, 2},
{ISD::ADD, MVT::v16i8, 2},
{ISD::ADD, MVT::v4i16, 2},
{ISD::ADD, MVT::v8i16, 2},
{ISD::ADD, MVT::v4i32, 2},
{ISD::ADD, MVT::v2i64, 2},
{ISD::OR, MVT::v8i8, 15},
{ISD::OR, MVT::v16i8, 17},
{ISD::OR, MVT::v4i16, 7},
{ISD::OR, MVT::v8i16, 9},
{ISD::OR, MVT::v2i32, 3},
{ISD::OR, MVT::v4i32, 5},
{ISD::OR, MVT::v2i64, 3},
{ISD::XOR, MVT::v8i8, 15},
{ISD::XOR, MVT::v16i8, 17},
{ISD::XOR, MVT::v4i16, 7},
{ISD::XOR, MVT::v8i16, 9},
{ISD::XOR, MVT::v2i32, 3},
{ISD::XOR, MVT::v4i32, 5},
{ISD::XOR, MVT::v2i64, 3},
{ISD::AND, MVT::v8i8, 15},
{ISD::AND, MVT::v16i8, 17},
{ISD::AND, MVT::v4i16, 7},
{ISD::AND, MVT::v8i16, 9},
{ISD::AND, MVT::v2i32, 3},
{ISD::AND, MVT::v4i32, 5},
{ISD::AND, MVT::v2i64, 3},
};
switch (ISD) {
default:
break;
case ISD::ADD:
if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy))
return (LT.first - 1) + Entry->Cost;
break;
case ISD::XOR:
case ISD::AND:
case ISD::OR:
const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy);
if (!Entry)
break;
auto *ValVTy = cast<FixedVectorType>(ValTy);
if (!ValVTy->getElementType()->isIntegerTy(1) &&
MTy.getVectorNumElements() <= ValVTy->getNumElements() &&
isPowerOf2_32(ValVTy->getNumElements())) {
InstructionCost ExtraCost = 0;
if (LT.first != 1) {
// Type needs to be split, so there is an extra cost of LT.first - 1
// arithmetic ops.
auto *Ty = FixedVectorType::get(ValTy->getElementType(),
MTy.getVectorNumElements());
ExtraCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
ExtraCost *= LT.first - 1;
}
return Entry->Cost + ExtraCost;
}
break;
}
return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
}
InstructionCost AArch64TTIImpl::getSpliceCost(VectorType *Tp, int Index) {
static const CostTblEntry ShuffleTbl[] = {
{ TTI::SK_Splice, MVT::nxv16i8, 1 },
{ TTI::SK_Splice, MVT::nxv8i16, 1 },
{ TTI::SK_Splice, MVT::nxv4i32, 1 },
{ TTI::SK_Splice, MVT::nxv2i64, 1 },
{ TTI::SK_Splice, MVT::nxv2f16, 1 },
{ TTI::SK_Splice, MVT::nxv4f16, 1 },
{ TTI::SK_Splice, MVT::nxv8f16, 1 },
{ TTI::SK_Splice, MVT::nxv2bf16, 1 },
{ TTI::SK_Splice, MVT::nxv4bf16, 1 },
{ TTI::SK_Splice, MVT::nxv8bf16, 1 },
{ TTI::SK_Splice, MVT::nxv2f32, 1 },
{ TTI::SK_Splice, MVT::nxv4f32, 1 },
{ TTI::SK_Splice, MVT::nxv2f64, 1 },
};
// The code-generator is currently not able to handle scalable vectors
// of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
// it. This change will be removed when code-generation for these types is
// sufficiently reliable.
if (Tp->getElementCount() == ElementCount::getScalable(1))
return InstructionCost::getInvalid();
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
Type *LegalVTy = EVT(LT.second).getTypeForEVT(Tp->getContext());
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
EVT PromotedVT = LT.second.getScalarType() == MVT::i1
? TLI->getPromotedVTForPredicate(EVT(LT.second))
: LT.second;
Type *PromotedVTy = EVT(PromotedVT).getTypeForEVT(Tp->getContext());
InstructionCost LegalizationCost = 0;
if (Index < 0) {
LegalizationCost =
getCmpSelInstrCost(Instruction::ICmp, PromotedVTy, PromotedVTy,
CmpInst::BAD_ICMP_PREDICATE, CostKind) +
getCmpSelInstrCost(Instruction::Select, PromotedVTy, LegalVTy,
CmpInst::BAD_ICMP_PREDICATE, CostKind);
}
// Predicated splice are promoted when lowering. See AArch64ISelLowering.cpp
// Cost performed on a promoted type.
if (LT.second.getScalarType() == MVT::i1) {
LegalizationCost +=
getCastInstrCost(Instruction::ZExt, PromotedVTy, LegalVTy,
TTI::CastContextHint::None, CostKind) +
getCastInstrCost(Instruction::Trunc, LegalVTy, PromotedVTy,
TTI::CastContextHint::None, CostKind);
}
const auto *Entry =
CostTableLookup(ShuffleTbl, TTI::SK_Splice, PromotedVT.getSimpleVT());
assert(Entry && "Illegal Type for Splice");
LegalizationCost += Entry->Cost;
return LegalizationCost * LT.first;
}
InstructionCost AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
VectorType *Tp,
ArrayRef<int> Mask,
TTI::TargetCostKind CostKind,
int Index, VectorType *SubTp,
ArrayRef<const Value *> Args) {
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
// If we have a Mask, and the LT is being legalized somehow, split the Mask
// into smaller vectors and sum the cost of each shuffle.
if (!Mask.empty() && isa<FixedVectorType>(Tp) && LT.second.isVector() &&
Tp->getScalarSizeInBits() == LT.second.getScalarSizeInBits() &&
cast<FixedVectorType>(Tp)->getNumElements() >
LT.second.getVectorNumElements() &&
!Index && !SubTp) {
unsigned TpNumElts = cast<FixedVectorType>(Tp)->getNumElements();
assert(Mask.size() == TpNumElts && "Expected Mask and Tp size to match!");
unsigned LTNumElts = LT.second.getVectorNumElements();
unsigned NumVecs = (TpNumElts + LTNumElts - 1) / LTNumElts;
VectorType *NTp =
VectorType::get(Tp->getScalarType(), LT.second.getVectorElementCount());
InstructionCost Cost;
for (unsigned N = 0; N < NumVecs; N++) {
SmallVector<int> NMask;
// Split the existing mask into chunks of size LTNumElts. Track the source
// sub-vectors to ensure the result has at most 2 inputs.
unsigned Source1, Source2;
unsigned NumSources = 0;
for (unsigned E = 0; E < LTNumElts; E++) {
int MaskElt = (N * LTNumElts + E < TpNumElts) ? Mask[N * LTNumElts + E]
: UndefMaskElem;
if (MaskElt < 0) {
NMask.push_back(UndefMaskElem);
continue;
}
// Calculate which source from the input this comes from and whether it
// is new to us.
unsigned Source = MaskElt / LTNumElts;
if (NumSources == 0) {
Source1 = Source;
NumSources = 1;
} else if (NumSources == 1 && Source != Source1) {
Source2 = Source;
NumSources = 2;
} else if (NumSources >= 2 && Source != Source1 && Source != Source2) {
NumSources++;
}
// Add to the new mask. For the NumSources>2 case these are not correct,
// but are only used for the modular lane number.
if (Source == Source1)
NMask.push_back(MaskElt % LTNumElts);
else if (Source == Source2)
NMask.push_back(MaskElt % LTNumElts + LTNumElts);
else
NMask.push_back(MaskElt % LTNumElts);
}
// If the sub-mask has at most 2 input sub-vectors then re-cost it using
// getShuffleCost. If not then cost it using the worst case.
if (NumSources <= 2)
Cost += getShuffleCost(NumSources <= 1 ? TTI::SK_PermuteSingleSrc
: TTI::SK_PermuteTwoSrc,
NTp, NMask, CostKind, 0, nullptr, Args);
else if (any_of(enumerate(NMask), [&](const auto &ME) {
return ME.value() % LTNumElts == ME.index();
}))
Cost += LTNumElts - 1;
else
Cost += LTNumElts;
}
return Cost;
}
Kind = improveShuffleKindFromMask(Kind, Mask);
// Check for broadcast loads.
if (Kind == TTI::SK_Broadcast) {
bool IsLoad = !Args.empty() && isa<LoadInst>(Args[0]);
if (IsLoad && LT.second.isVector() &&
isLegalBroadcastLoad(Tp->getElementType(),
LT.second.getVectorElementCount()))
return 0; // broadcast is handled by ld1r
}
// If we have 4 elements for the shuffle and a Mask, get the cost straight
// from the perfect shuffle tables.
if (Mask.size() == 4 && Tp->getElementCount() == ElementCount::getFixed(4) &&
(Tp->getScalarSizeInBits() == 16 || Tp->getScalarSizeInBits() == 32) &&
all_of(Mask, [](int E) { return E < 8; }))
return getPerfectShuffleCost(Mask);
if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose ||
Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc ||
Kind == TTI::SK_Reverse || Kind == TTI::SK_Splice) {
static const CostTblEntry ShuffleTbl[] = {
// Broadcast shuffle kinds can be performed with 'dup'.
{TTI::SK_Broadcast, MVT::v8i8, 1},
{TTI::SK_Broadcast, MVT::v16i8, 1},
{TTI::SK_Broadcast, MVT::v4i16, 1},
{TTI::SK_Broadcast, MVT::v8i16, 1},
{TTI::SK_Broadcast, MVT::v2i32, 1},
{TTI::SK_Broadcast, MVT::v4i32, 1},
{TTI::SK_Broadcast, MVT::v2i64, 1},
{TTI::SK_Broadcast, MVT::v2f32, 1},
{TTI::SK_Broadcast, MVT::v4f32, 1},
{TTI::SK_Broadcast, MVT::v2f64, 1},
// Transpose shuffle kinds can be performed with 'trn1/trn2' and
// 'zip1/zip2' instructions.
{TTI::SK_Transpose, MVT::v8i8, 1},
{TTI::SK_Transpose, MVT::v16i8, 1},
{TTI::SK_Transpose, MVT::v4i16, 1},
{TTI::SK_Transpose, MVT::v8i16, 1},
{TTI::SK_Transpose, MVT::v2i32, 1},
{TTI::SK_Transpose, MVT::v4i32, 1},
{TTI::SK_Transpose, MVT::v2i64, 1},
{TTI::SK_Transpose, MVT::v2f32, 1},
{TTI::SK_Transpose, MVT::v4f32, 1},
{TTI::SK_Transpose, MVT::v2f64, 1},
// Select shuffle kinds.
// TODO: handle vXi8/vXi16.
{TTI::SK_Select, MVT::v2i32, 1}, // mov.
{TTI::SK_Select, MVT::v4i32, 2}, // rev+trn (or similar).
{TTI::SK_Select, MVT::v2i64, 1}, // mov.
{TTI::SK_Select, MVT::v2f32, 1}, // mov.
{TTI::SK_Select, MVT::v4f32, 2}, // rev+trn (or similar).
{TTI::SK_Select, MVT::v2f64, 1}, // mov.
// PermuteSingleSrc shuffle kinds.
{TTI::SK_PermuteSingleSrc, MVT::v2i32, 1}, // mov.
{TTI::SK_PermuteSingleSrc, MVT::v4i32, 3}, // perfectshuffle worst case.
{TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // mov.
{TTI::SK_PermuteSingleSrc, MVT::v2f32, 1}, // mov.
{TTI::SK_PermuteSingleSrc, MVT::v4f32, 3}, // perfectshuffle worst case.
{TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // mov.
{TTI::SK_PermuteSingleSrc, MVT::v4i16, 3}, // perfectshuffle worst case.
{TTI::SK_PermuteSingleSrc, MVT::v4f16, 3}, // perfectshuffle worst case.
{TTI::SK_PermuteSingleSrc, MVT::v4bf16, 3}, // same
{TTI::SK_PermuteSingleSrc, MVT::v8i16, 8}, // constpool + load + tbl
{TTI::SK_PermuteSingleSrc, MVT::v8f16, 8}, // constpool + load + tbl
{TTI::SK_PermuteSingleSrc, MVT::v8bf16, 8}, // constpool + load + tbl
{TTI::SK_PermuteSingleSrc, MVT::v8i8, 8}, // constpool + load + tbl
{TTI::SK_PermuteSingleSrc, MVT::v16i8, 8}, // constpool + load + tbl
// Reverse can be lowered with `rev`.
{TTI::SK_Reverse, MVT::v2i32, 1}, // REV64
{TTI::SK_Reverse, MVT::v4i32, 2}, // REV64; EXT
{TTI::SK_Reverse, MVT::v2i64, 1}, // EXT
{TTI::SK_Reverse, MVT::v2f32, 1}, // REV64
{TTI::SK_Reverse, MVT::v4f32, 2}, // REV64; EXT
{TTI::SK_Reverse, MVT::v2f64, 1}, // EXT
{TTI::SK_Reverse, MVT::v8f16, 2}, // REV64; EXT
{TTI::SK_Reverse, MVT::v8i16, 2}, // REV64; EXT
{TTI::SK_Reverse, MVT::v16i8, 2}, // REV64; EXT
{TTI::SK_Reverse, MVT::v4f16, 1}, // REV64
{TTI::SK_Reverse, MVT::v4i16, 1}, // REV64
{TTI::SK_Reverse, MVT::v8i8, 1}, // REV64
// Splice can all be lowered as `ext`.
{TTI::SK_Splice, MVT::v2i32, 1},
{TTI::SK_Splice, MVT::v4i32, 1},
{TTI::SK_Splice, MVT::v2i64, 1},
{TTI::SK_Splice, MVT::v2f32, 1},
{TTI::SK_Splice, MVT::v4f32, 1},
{TTI::SK_Splice, MVT::v2f64, 1},
{TTI::SK_Splice, MVT::v8f16, 1},
{TTI::SK_Splice, MVT::v8bf16, 1},
{TTI::SK_Splice, MVT::v8i16, 1},
{TTI::SK_Splice, MVT::v16i8, 1},
{TTI::SK_Splice, MVT::v4bf16, 1},
{TTI::SK_Splice, MVT::v4f16, 1},
{TTI::SK_Splice, MVT::v4i16, 1},
{TTI::SK_Splice, MVT::v8i8, 1},
// Broadcast shuffle kinds for scalable vectors
{TTI::SK_Broadcast, MVT::nxv16i8, 1},
{TTI::SK_Broadcast, MVT::nxv8i16, 1},
{TTI::SK_Broadcast, MVT::nxv4i32, 1},
{TTI::SK_Broadcast, MVT::nxv2i64, 1},
{TTI::SK_Broadcast, MVT::nxv2f16, 1},
{TTI::SK_Broadcast, MVT::nxv4f16, 1},
{TTI::SK_Broadcast, MVT::nxv8f16, 1},
{TTI::SK_Broadcast, MVT::nxv2bf16, 1},
{TTI::SK_Broadcast, MVT::nxv4bf16, 1},
{TTI::SK_Broadcast, MVT::nxv8bf16, 1},
{TTI::SK_Broadcast, MVT::nxv2f32, 1},
{TTI::SK_Broadcast, MVT::nxv4f32, 1},
{TTI::SK_Broadcast, MVT::nxv2f64, 1},
{TTI::SK_Broadcast, MVT::nxv16i1, 1},
{TTI::SK_Broadcast, MVT::nxv8i1, 1},
{TTI::SK_Broadcast, MVT::nxv4i1, 1},
{TTI::SK_Broadcast, MVT::nxv2i1, 1},
// Handle the cases for vector.reverse with scalable vectors
{TTI::SK_Reverse, MVT::nxv16i8, 1},
{TTI::SK_Reverse, MVT::nxv8i16, 1},
{TTI::SK_Reverse, MVT::nxv4i32, 1},
{TTI::SK_Reverse, MVT::nxv2i64, 1},
{TTI::SK_Reverse, MVT::nxv2f16, 1},
{TTI::SK_Reverse, MVT::nxv4f16, 1},
{TTI::SK_Reverse, MVT::nxv8f16, 1},
{TTI::SK_Reverse, MVT::nxv2bf16, 1},
{TTI::SK_Reverse, MVT::nxv4bf16, 1},
{TTI::SK_Reverse, MVT::nxv8bf16, 1},
{TTI::SK_Reverse, MVT::nxv2f32, 1},
{TTI::SK_Reverse, MVT::nxv4f32, 1},
{TTI::SK_Reverse, MVT::nxv2f64, 1},
{TTI::SK_Reverse, MVT::nxv16i1, 1},
{TTI::SK_Reverse, MVT::nxv8i1, 1},
{TTI::SK_Reverse, MVT::nxv4i1, 1},
{TTI::SK_Reverse, MVT::nxv2i1, 1},
};
if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second))
return LT.first * Entry->Cost;
}
if (Kind == TTI::SK_Splice && isa<ScalableVectorType>(Tp))
return getSpliceCost(Tp, Index);
// Inserting a subvector can often be done with either a D, S or H register
// move, so long as the inserted vector is "aligned".
if (Kind == TTI::SK_InsertSubvector && LT.second.isFixedLengthVector() &&
LT.second.getSizeInBits() <= 128 && SubTp) {
std::pair<InstructionCost, MVT> SubLT = getTypeLegalizationCost(SubTp);
if (SubLT.second.isVector()) {
int NumElts = LT.second.getVectorNumElements();
int NumSubElts = SubLT.second.getVectorNumElements();
if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
return SubLT.first;
}
}
return BaseT::getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp);
}
bool AArch64TTIImpl::preferPredicateOverEpilogue(
Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC,
TargetLibraryInfo *TLI, DominatorTree *DT, LoopVectorizationLegality *LVL,
InterleavedAccessInfo *IAI) {
if (!ST->hasSVE() || TailFoldingKindLoc == TailFoldingKind::TFDisabled)
return false;
// We don't currently support vectorisation with interleaving for SVE - with
// such loops we're better off not using tail-folding. This gives us a chance
// to fall back on fixed-width vectorisation using NEON's ld2/st2/etc.
if (IAI->hasGroups())
return false;
TailFoldingKind Required; // Defaults to 0.
if (LVL->getReductionVars().size())
Required.add(TailFoldingKind::TFReductions);
if (LVL->getFixedOrderRecurrences().size())
Required.add(TailFoldingKind::TFRecurrences);
if (!Required)
Required.add(TailFoldingKind::TFSimple);
return (TailFoldingKindLoc & Required) == Required;
}
InstructionCost
AArch64TTIImpl::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
int64_t BaseOffset, bool HasBaseReg,
int64_t Scale, unsigned AddrSpace) const {
// Scaling factors are not free at all.
// Operands | Rt Latency
// -------------------------------------------
// Rt, [Xn, Xm] | 4
// -------------------------------------------
// Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
// Rt, [Xn, Wm, <extend> #imm] |
TargetLoweringBase::AddrMode AM;
AM.BaseGV = BaseGV;
AM.BaseOffs = BaseOffset;
AM.HasBaseReg = HasBaseReg;
AM.Scale = Scale;
if (getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace))
// Scale represents reg2 * scale, thus account for 1 if
// it is not equal to 0 or 1.
return AM.Scale != 0 && AM.Scale != 1;
return -1;
}