blob: ab6acf085e7bcdeadb7303f4a6d7f3eaa037eaf2 [file] [log] [blame]
//===-- lib/MC/XCOFFObjectWriter.cpp - XCOFF file writer ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements XCOFF object file writer information.
//
//===----------------------------------------------------------------------===//
#include "llvm/BinaryFormat/XCOFF.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCFixupKindInfo.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSectionXCOFF.h"
#include "llvm/MC/MCSymbolXCOFF.h"
#include "llvm/MC/MCValue.h"
#include "llvm/MC/MCXCOFFObjectWriter.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <deque>
#include <map>
using namespace llvm;
// An XCOFF object file has a limited set of predefined sections. The most
// important ones for us (right now) are:
// .text --> contains program code and read-only data.
// .data --> contains initialized data, function descriptors, and the TOC.
// .bss --> contains uninitialized data.
// Each of these sections is composed of 'Control Sections'. A Control Section
// is more commonly referred to as a csect. A csect is an indivisible unit of
// code or data, and acts as a container for symbols. A csect is mapped
// into a section based on its storage-mapping class, with the exception of
// XMC_RW which gets mapped to either .data or .bss based on whether it's
// explicitly initialized or not.
//
// We don't represent the sections in the MC layer as there is nothing
// interesting about them at at that level: they carry information that is
// only relevant to the ObjectWriter, so we materialize them in this class.
namespace {
constexpr unsigned DefaultSectionAlign = 4;
constexpr int16_t MaxSectionIndex = INT16_MAX;
// Packs the csect's alignment and type into a byte.
uint8_t getEncodedType(const MCSectionXCOFF *);
struct XCOFFRelocation {
uint32_t SymbolTableIndex;
uint32_t FixupOffsetInCsect;
uint8_t SignAndSize;
uint8_t Type;
};
// Wrapper around an MCSymbolXCOFF.
struct Symbol {
const MCSymbolXCOFF *const MCSym;
uint32_t SymbolTableIndex;
XCOFF::VisibilityType getVisibilityType() const {
return MCSym->getVisibilityType();
}
XCOFF::StorageClass getStorageClass() const {
return MCSym->getStorageClass();
}
StringRef getSymbolTableName() const { return MCSym->getSymbolTableName(); }
Symbol(const MCSymbolXCOFF *MCSym) : MCSym(MCSym), SymbolTableIndex(-1) {}
};
// Wrapper for an MCSectionXCOFF.
// It can be a Csect or debug section or DWARF section and so on.
struct XCOFFSection {
const MCSectionXCOFF *const MCSec;
uint32_t SymbolTableIndex;
uint64_t Address;
uint64_t Size;
SmallVector<Symbol, 1> Syms;
SmallVector<XCOFFRelocation, 1> Relocations;
StringRef getSymbolTableName() const { return MCSec->getSymbolTableName(); }
XCOFF::VisibilityType getVisibilityType() const {
return MCSec->getVisibilityType();
}
XCOFFSection(const MCSectionXCOFF *MCSec)
: MCSec(MCSec), SymbolTableIndex(-1), Address(-1), Size(0) {}
};
// Type to be used for a container representing a set of csects with
// (approximately) the same storage mapping class. For example all the csects
// with a storage mapping class of `xmc_pr` will get placed into the same
// container.
using CsectGroup = std::deque<XCOFFSection>;
using CsectGroups = std::deque<CsectGroup *>;
// The basic section entry defination. This Section represents a section entry
// in XCOFF section header table.
struct SectionEntry {
char Name[XCOFF::NameSize];
// The physical/virtual address of the section. For an object file these
// values are equivalent, except for in the overflow section header, where
// the physical address specifies the number of relocation entries and the
// virtual address specifies the number of line number entries.
// TODO: Divide Address into PhysicalAddress and VirtualAddress when line
// number entries are supported.
uint64_t Address;
uint64_t Size;
uint64_t FileOffsetToData;
uint64_t FileOffsetToRelocations;
uint32_t RelocationCount;
int32_t Flags;
int16_t Index;
// XCOFF has special section numbers for symbols:
// -2 Specifies N_DEBUG, a special symbolic debugging symbol.
// -1 Specifies N_ABS, an absolute symbol. The symbol has a value but is not
// relocatable.
// 0 Specifies N_UNDEF, an undefined external symbol.
// Therefore, we choose -3 (N_DEBUG - 1) to represent a section index that
// hasn't been initialized.
static constexpr int16_t UninitializedIndex =
XCOFF::ReservedSectionNum::N_DEBUG - 1;
SectionEntry(StringRef N, int32_t Flags)
: Name(), Address(0), Size(0), FileOffsetToData(0),
FileOffsetToRelocations(0), RelocationCount(0), Flags(Flags),
Index(UninitializedIndex) {
assert(N.size() <= XCOFF::NameSize && "section name too long");
memcpy(Name, N.data(), N.size());
}
virtual void reset() {
Address = 0;
Size = 0;
FileOffsetToData = 0;
FileOffsetToRelocations = 0;
RelocationCount = 0;
Index = UninitializedIndex;
}
virtual ~SectionEntry() = default;
};
// Represents the data related to a section excluding the csects that make up
// the raw data of the section. The csects are stored separately as not all
// sections contain csects, and some sections contain csects which are better
// stored separately, e.g. the .data section containing read-write, descriptor,
// TOCBase and TOC-entry csects.
struct CsectSectionEntry : public SectionEntry {
// Virtual sections do not need storage allocated in the object file.
const bool IsVirtual;
// This is a section containing csect groups.
CsectGroups Groups;
CsectSectionEntry(StringRef N, XCOFF::SectionTypeFlags Flags, bool IsVirtual,
CsectGroups Groups)
: SectionEntry(N, Flags), IsVirtual(IsVirtual), Groups(Groups) {
assert(N.size() <= XCOFF::NameSize && "section name too long");
memcpy(Name, N.data(), N.size());
}
void reset() override {
SectionEntry::reset();
// Clear any csects we have stored.
for (auto *Group : Groups)
Group->clear();
}
virtual ~CsectSectionEntry() = default;
};
struct DwarfSectionEntry : public SectionEntry {
// For DWARF section entry.
std::unique_ptr<XCOFFSection> DwarfSect;
// For DWARF section, we must use real size in the section header. MemorySize
// is for the size the DWARF section occupies including paddings.
uint32_t MemorySize;
DwarfSectionEntry(StringRef N, int32_t Flags,
std::unique_ptr<XCOFFSection> Sect)
: SectionEntry(N, Flags | XCOFF::STYP_DWARF), DwarfSect(std::move(Sect)),
MemorySize(0) {
assert(DwarfSect->MCSec->isDwarfSect() &&
"This should be a DWARF section!");
assert(N.size() <= XCOFF::NameSize && "section name too long");
memcpy(Name, N.data(), N.size());
}
DwarfSectionEntry(DwarfSectionEntry &&s) = default;
virtual ~DwarfSectionEntry() = default;
};
struct ExceptionTableEntry {
const MCSymbol *Trap;
uint64_t TrapAddress;
unsigned Lang;
unsigned Reason;
ExceptionTableEntry(const MCSymbol *Trap, unsigned Lang, unsigned Reason)
: Trap(Trap), Lang(Lang), Reason(Reason) {}
};
struct ExceptionInfo {
const MCSymbol *FunctionSymbol;
unsigned FunctionSize;
std::vector<ExceptionTableEntry> Entries;
};
struct ExceptionSectionEntry : public SectionEntry {
std::map<const StringRef, ExceptionInfo> ExceptionTable;
bool isDebugEnabled = false;
ExceptionSectionEntry(StringRef N, int32_t Flags)
: SectionEntry(N, Flags | XCOFF::STYP_EXCEPT) {
assert(N.size() <= XCOFF::NameSize && "Section too long.");
memcpy(Name, N.data(), N.size());
}
virtual ~ExceptionSectionEntry() = default;
};
class XCOFFObjectWriter : public MCObjectWriter {
uint32_t SymbolTableEntryCount = 0;
uint64_t SymbolTableOffset = 0;
uint16_t SectionCount = 0;
uint32_t PaddingsBeforeDwarf = 0;
std::vector<std::pair<std::string, size_t>> FileNames;
bool HasVisibility = false;
support::endian::Writer W;
std::unique_ptr<MCXCOFFObjectTargetWriter> TargetObjectWriter;
StringTableBuilder Strings;
const uint64_t MaxRawDataSize =
TargetObjectWriter->is64Bit() ? UINT64_MAX : UINT32_MAX;
// Maps the MCSection representation to its corresponding XCOFFSection
// wrapper. Needed for finding the XCOFFSection to insert an MCSymbol into
// from its containing MCSectionXCOFF.
DenseMap<const MCSectionXCOFF *, XCOFFSection *> SectionMap;
// Maps the MCSymbol representation to its corrresponding symbol table index.
// Needed for relocation.
DenseMap<const MCSymbol *, uint32_t> SymbolIndexMap;
// CsectGroups. These store the csects which make up different parts of
// the sections. Should have one for each set of csects that get mapped into
// the same section and get handled in a 'similar' way.
CsectGroup UndefinedCsects;
CsectGroup ProgramCodeCsects;
CsectGroup ReadOnlyCsects;
CsectGroup DataCsects;
CsectGroup FuncDSCsects;
CsectGroup TOCCsects;
CsectGroup BSSCsects;
CsectGroup TDataCsects;
CsectGroup TBSSCsects;
// The Predefined sections.
CsectSectionEntry Text;
CsectSectionEntry Data;
CsectSectionEntry BSS;
CsectSectionEntry TData;
CsectSectionEntry TBSS;
// All the XCOFF sections, in the order they will appear in the section header
// table.
std::array<CsectSectionEntry *const, 5> Sections{
{&Text, &Data, &BSS, &TData, &TBSS}};
std::vector<DwarfSectionEntry> DwarfSections;
std::vector<SectionEntry> OverflowSections;
ExceptionSectionEntry ExceptionSection;
CsectGroup &getCsectGroup(const MCSectionXCOFF *MCSec);
void reset() override;
void executePostLayoutBinding(MCAssembler &, const MCAsmLayout &) override;
void recordRelocation(MCAssembler &, const MCAsmLayout &, const MCFragment *,
const MCFixup &, MCValue, uint64_t &) override;
uint64_t writeObject(MCAssembler &, const MCAsmLayout &) override;
bool is64Bit() const { return TargetObjectWriter->is64Bit(); }
bool nameShouldBeInStringTable(const StringRef &);
void writeSymbolName(const StringRef &);
void writeSymbolEntryForCsectMemberLabel(const Symbol &SymbolRef,
const XCOFFSection &CSectionRef,
int16_t SectionIndex,
uint64_t SymbolOffset);
void writeSymbolEntryForControlSection(const XCOFFSection &CSectionRef,
int16_t SectionIndex,
XCOFF::StorageClass StorageClass);
void writeSymbolEntryForDwarfSection(const XCOFFSection &DwarfSectionRef,
int16_t SectionIndex);
void writeFileHeader();
void writeAuxFileHeader();
void writeSectionHeader(const SectionEntry *Sec);
void writeSectionHeaderTable();
void writeSections(const MCAssembler &Asm, const MCAsmLayout &Layout);
void writeSectionForControlSectionEntry(const MCAssembler &Asm,
const MCAsmLayout &Layout,
const CsectSectionEntry &CsectEntry,
uint64_t &CurrentAddressLocation);
void writeSectionForDwarfSectionEntry(const MCAssembler &Asm,
const MCAsmLayout &Layout,
const DwarfSectionEntry &DwarfEntry,
uint64_t &CurrentAddressLocation);
void writeSectionForExceptionSectionEntry(
const MCAssembler &Asm, const MCAsmLayout &Layout,
ExceptionSectionEntry &ExceptionEntry, uint64_t &CurrentAddressLocation);
void writeSymbolTable(const MCAsmLayout &Layout);
void writeSymbolAuxDwarfEntry(uint64_t LengthOfSectionPortion,
uint64_t NumberOfRelocEnt = 0);
void writeSymbolAuxCsectEntry(uint64_t SectionOrLength,
uint8_t SymbolAlignmentAndType,
uint8_t StorageMappingClass);
void writeSymbolAuxFunctionEntry(uint32_t EntryOffset, uint32_t FunctionSize,
uint64_t LineNumberPointer,
uint32_t EndIndex);
void writeSymbolAuxExceptionEntry(uint64_t EntryOffset, uint32_t FunctionSize,
uint32_t EndIndex);
void writeSymbolEntry(StringRef SymbolName, uint64_t Value,
int16_t SectionNumber, uint16_t SymbolType,
uint8_t StorageClass, uint8_t NumberOfAuxEntries = 1);
void writeRelocations();
void writeRelocation(XCOFFRelocation Reloc, const XCOFFSection &Section);
// Called after all the csects and symbols have been processed by
// `executePostLayoutBinding`, this function handles building up the majority
// of the structures in the object file representation. Namely:
// *) Calculates physical/virtual addresses, raw-pointer offsets, and section
// sizes.
// *) Assigns symbol table indices.
// *) Builds up the section header table by adding any non-empty sections to
// `Sections`.
void assignAddressesAndIndices(const MCAsmLayout &);
// Called after relocations are recorded.
void finalizeSectionInfo();
void finalizeRelocationInfo(SectionEntry *Sec, uint64_t RelCount);
void calcOffsetToRelocations(SectionEntry *Sec, uint64_t &RawPointer);
void addExceptionEntry(const MCSymbol *Symbol, const MCSymbol *Trap,
unsigned LanguageCode, unsigned ReasonCode,
unsigned FunctionSize, bool hasDebug) override;
bool hasExceptionSection() {
return !ExceptionSection.ExceptionTable.empty();
}
unsigned getExceptionSectionSize();
unsigned getExceptionOffset(const MCSymbol *Symbol);
size_t auxiliaryHeaderSize() const {
// 64-bit object files have no auxiliary header.
return HasVisibility && !is64Bit() ? XCOFF::AuxFileHeaderSizeShort : 0;
}
public:
XCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
raw_pwrite_stream &OS);
void writeWord(uint64_t Word) {
is64Bit() ? W.write<uint64_t>(Word) : W.write<uint32_t>(Word);
}
};
XCOFFObjectWriter::XCOFFObjectWriter(
std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW, raw_pwrite_stream &OS)
: W(OS, support::big), TargetObjectWriter(std::move(MOTW)),
Strings(StringTableBuilder::XCOFF),
Text(".text", XCOFF::STYP_TEXT, /* IsVirtual */ false,
CsectGroups{&ProgramCodeCsects, &ReadOnlyCsects}),
Data(".data", XCOFF::STYP_DATA, /* IsVirtual */ false,
CsectGroups{&DataCsects, &FuncDSCsects, &TOCCsects}),
BSS(".bss", XCOFF::STYP_BSS, /* IsVirtual */ true,
CsectGroups{&BSSCsects}),
TData(".tdata", XCOFF::STYP_TDATA, /* IsVirtual */ false,
CsectGroups{&TDataCsects}),
TBSS(".tbss", XCOFF::STYP_TBSS, /* IsVirtual */ true,
CsectGroups{&TBSSCsects}),
ExceptionSection(".except", XCOFF::STYP_EXCEPT) {}
void XCOFFObjectWriter::reset() {
// Clear the mappings we created.
SymbolIndexMap.clear();
SectionMap.clear();
UndefinedCsects.clear();
// Reset any sections we have written to, and empty the section header table.
for (auto *Sec : Sections)
Sec->reset();
for (auto &DwarfSec : DwarfSections)
DwarfSec.reset();
for (auto &OverflowSec : OverflowSections)
OverflowSec.reset();
ExceptionSection.reset();
// Reset states in XCOFFObjectWriter.
SymbolTableEntryCount = 0;
SymbolTableOffset = 0;
SectionCount = 0;
PaddingsBeforeDwarf = 0;
Strings.clear();
MCObjectWriter::reset();
}
CsectGroup &XCOFFObjectWriter::getCsectGroup(const MCSectionXCOFF *MCSec) {
switch (MCSec->getMappingClass()) {
case XCOFF::XMC_PR:
assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
"Only an initialized csect can contain program code.");
return ProgramCodeCsects;
case XCOFF::XMC_RO:
assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
"Only an initialized csect can contain read only data.");
return ReadOnlyCsects;
case XCOFF::XMC_RW:
if (XCOFF::XTY_CM == MCSec->getCSectType())
return BSSCsects;
if (XCOFF::XTY_SD == MCSec->getCSectType())
return DataCsects;
report_fatal_error("Unhandled mapping of read-write csect to section.");
case XCOFF::XMC_DS:
return FuncDSCsects;
case XCOFF::XMC_BS:
assert(XCOFF::XTY_CM == MCSec->getCSectType() &&
"Mapping invalid csect. CSECT with bss storage class must be "
"common type.");
return BSSCsects;
case XCOFF::XMC_TL:
assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
"Mapping invalid csect. CSECT with tdata storage class must be "
"an initialized csect.");
return TDataCsects;
case XCOFF::XMC_UL:
assert(XCOFF::XTY_CM == MCSec->getCSectType() &&
"Mapping invalid csect. CSECT with tbss storage class must be "
"an uninitialized csect.");
return TBSSCsects;
case XCOFF::XMC_TC0:
assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
"Only an initialized csect can contain TOC-base.");
assert(TOCCsects.empty() &&
"We should have only one TOC-base, and it should be the first csect "
"in this CsectGroup.");
return TOCCsects;
case XCOFF::XMC_TC:
case XCOFF::XMC_TE:
case XCOFF::XMC_TD:
assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
"Only an initialized csect can contain TC entry.");
assert(!TOCCsects.empty() &&
"We should at least have a TOC-base in this CsectGroup.");
return TOCCsects;
default:
report_fatal_error("Unhandled mapping of csect to section.");
}
}
static MCSectionXCOFF *getContainingCsect(const MCSymbolXCOFF *XSym) {
if (XSym->isDefined())
return cast<MCSectionXCOFF>(XSym->getFragment()->getParent());
return XSym->getRepresentedCsect();
}
void XCOFFObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
const MCAsmLayout &Layout) {
for (const auto &S : Asm) {
const auto *MCSec = cast<const MCSectionXCOFF>(&S);
assert(SectionMap.find(MCSec) == SectionMap.end() &&
"Cannot add a section twice.");
// If the name does not fit in the storage provided in the symbol table
// entry, add it to the string table.
if (nameShouldBeInStringTable(MCSec->getSymbolTableName()))
Strings.add(MCSec->getSymbolTableName());
if (MCSec->isCsect()) {
// A new control section. Its CsectSectionEntry should already be staticly
// generated as Text/Data/BSS/TDATA/TBSS. Add this section to the group of
// the CsectSectionEntry.
assert(XCOFF::XTY_ER != MCSec->getCSectType() &&
"An undefined csect should not get registered.");
CsectGroup &Group = getCsectGroup(MCSec);
Group.emplace_back(MCSec);
SectionMap[MCSec] = &Group.back();
} else if (MCSec->isDwarfSect()) {
// A new DwarfSectionEntry.
std::unique_ptr<XCOFFSection> DwarfSec =
std::make_unique<XCOFFSection>(MCSec);
SectionMap[MCSec] = DwarfSec.get();
DwarfSectionEntry SecEntry(MCSec->getName(),
*MCSec->getDwarfSubtypeFlags(),
std::move(DwarfSec));
DwarfSections.push_back(std::move(SecEntry));
} else
llvm_unreachable("unsupport section type!");
}
for (const MCSymbol &S : Asm.symbols()) {
// Nothing to do for temporary symbols.
if (S.isTemporary())
continue;
const MCSymbolXCOFF *XSym = cast<MCSymbolXCOFF>(&S);
const MCSectionXCOFF *ContainingCsect = getContainingCsect(XSym);
if (XSym->getVisibilityType() != XCOFF::SYM_V_UNSPECIFIED)
HasVisibility = true;
if (ContainingCsect->getCSectType() == XCOFF::XTY_ER) {
// Handle undefined symbol.
UndefinedCsects.emplace_back(ContainingCsect);
SectionMap[ContainingCsect] = &UndefinedCsects.back();
if (nameShouldBeInStringTable(ContainingCsect->getSymbolTableName()))
Strings.add(ContainingCsect->getSymbolTableName());
continue;
}
// If the symbol is the csect itself, we don't need to put the symbol
// into csect's Syms.
if (XSym == ContainingCsect->getQualNameSymbol())
continue;
// Only put a label into the symbol table when it is an external label.
if (!XSym->isExternal())
continue;
assert(SectionMap.find(ContainingCsect) != SectionMap.end() &&
"Expected containing csect to exist in map");
XCOFFSection *Csect = SectionMap[ContainingCsect];
// Lookup the containing csect and add the symbol to it.
assert(Csect->MCSec->isCsect() && "only csect is supported now!");
Csect->Syms.emplace_back(XSym);
// If the name does not fit in the storage provided in the symbol table
// entry, add it to the string table.
if (nameShouldBeInStringTable(XSym->getSymbolTableName()))
Strings.add(XSym->getSymbolTableName());
}
FileNames = Asm.getFileNames();
// Emit ".file" as the source file name when there is no file name.
if (FileNames.empty())
FileNames.emplace_back(".file", 0);
for (const std::pair<std::string, size_t> &F : FileNames) {
if (nameShouldBeInStringTable(F.first))
Strings.add(F.first);
}
Strings.finalize();
assignAddressesAndIndices(Layout);
}
void XCOFFObjectWriter::recordRelocation(MCAssembler &Asm,
const MCAsmLayout &Layout,
const MCFragment *Fragment,
const MCFixup &Fixup, MCValue Target,
uint64_t &FixedValue) {
auto getIndex = [this](const MCSymbol *Sym,
const MCSectionXCOFF *ContainingCsect) {
// If we could not find the symbol directly in SymbolIndexMap, this symbol
// could either be a temporary symbol or an undefined symbol. In this case,
// we would need to have the relocation reference its csect instead.
return SymbolIndexMap.find(Sym) != SymbolIndexMap.end()
? SymbolIndexMap[Sym]
: SymbolIndexMap[ContainingCsect->getQualNameSymbol()];
};
auto getVirtualAddress =
[this, &Layout](const MCSymbol *Sym,
const MCSectionXCOFF *ContainingSect) -> uint64_t {
// A DWARF section.
if (ContainingSect->isDwarfSect())
return Layout.getSymbolOffset(*Sym);
// A csect.
if (!Sym->isDefined())
return SectionMap[ContainingSect]->Address;
// A label.
assert(Sym->isDefined() && "not a valid object that has address!");
return SectionMap[ContainingSect]->Address + Layout.getSymbolOffset(*Sym);
};
const MCSymbol *const SymA = &Target.getSymA()->getSymbol();
MCAsmBackend &Backend = Asm.getBackend();
bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
MCFixupKindInfo::FKF_IsPCRel;
uint8_t Type;
uint8_t SignAndSize;
std::tie(Type, SignAndSize) =
TargetObjectWriter->getRelocTypeAndSignSize(Target, Fixup, IsPCRel);
const MCSectionXCOFF *SymASec = getContainingCsect(cast<MCSymbolXCOFF>(SymA));
assert(SectionMap.find(SymASec) != SectionMap.end() &&
"Expected containing csect to exist in map.");
const uint32_t Index = getIndex(SymA, SymASec);
if (Type == XCOFF::RelocationType::R_POS ||
Type == XCOFF::RelocationType::R_TLS)
// The FixedValue should be symbol's virtual address in this object file
// plus any constant value that we might get.
FixedValue = getVirtualAddress(SymA, SymASec) + Target.getConstant();
else if (Type == XCOFF::RelocationType::R_TLSM)
// The FixedValue should always be zero since the region handle is only
// known at load time.
FixedValue = 0;
else if (Type == XCOFF::RelocationType::R_TOC ||
Type == XCOFF::RelocationType::R_TOCL) {
// For non toc-data external symbols, R_TOC type relocation will relocate to
// data symbols that have XCOFF::XTY_SD type csect. For toc-data external
// symbols, R_TOC type relocation will relocate to data symbols that have
// XCOFF_ER type csect. For XCOFF_ER kind symbols, there will be no TOC
// entry for them, so the FixedValue should always be 0.
if (SymASec->getCSectType() == XCOFF::XTY_ER) {
FixedValue = 0;
} else {
// The FixedValue should be the TOC entry offset from the TOC-base plus
// any constant offset value.
const int64_t TOCEntryOffset = SectionMap[SymASec]->Address -
TOCCsects.front().Address +
Target.getConstant();
if (Type == XCOFF::RelocationType::R_TOC && !isInt<16>(TOCEntryOffset))
report_fatal_error("TOCEntryOffset overflows in small code model mode");
FixedValue = TOCEntryOffset;
}
} else if (Type == XCOFF::RelocationType::R_RBR) {
MCSectionXCOFF *ParentSec = cast<MCSectionXCOFF>(Fragment->getParent());
assert((SymASec->getMappingClass() == XCOFF::XMC_PR &&
ParentSec->getMappingClass() == XCOFF::XMC_PR) &&
"Only XMC_PR csect may have the R_RBR relocation.");
// The address of the branch instruction should be the sum of section
// address, fragment offset and Fixup offset.
uint64_t BRInstrAddress = SectionMap[ParentSec]->Address +
Layout.getFragmentOffset(Fragment) +
Fixup.getOffset();
// The FixedValue should be the difference between SymA csect address and BR
// instr address plus any constant value.
FixedValue =
SectionMap[SymASec]->Address - BRInstrAddress + Target.getConstant();
}
assert((Fixup.getOffset() <=
MaxRawDataSize - Layout.getFragmentOffset(Fragment)) &&
"Fragment offset + fixup offset is overflowed.");
uint32_t FixupOffsetInCsect =
Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
XCOFFRelocation Reloc = {Index, FixupOffsetInCsect, SignAndSize, Type};
MCSectionXCOFF *RelocationSec = cast<MCSectionXCOFF>(Fragment->getParent());
assert(SectionMap.find(RelocationSec) != SectionMap.end() &&
"Expected containing csect to exist in map.");
SectionMap[RelocationSec]->Relocations.push_back(Reloc);
if (!Target.getSymB())
return;
const MCSymbol *const SymB = &Target.getSymB()->getSymbol();
if (SymA == SymB)
report_fatal_error("relocation for opposite term is not yet supported");
const MCSectionXCOFF *SymBSec = getContainingCsect(cast<MCSymbolXCOFF>(SymB));
assert(SectionMap.find(SymBSec) != SectionMap.end() &&
"Expected containing csect to exist in map.");
if (SymASec == SymBSec)
report_fatal_error(
"relocation for paired relocatable term is not yet supported");
assert(Type == XCOFF::RelocationType::R_POS &&
"SymA must be R_POS here if it's not opposite term or paired "
"relocatable term.");
const uint32_t IndexB = getIndex(SymB, SymBSec);
// SymB must be R_NEG here, given the general form of Target(MCValue) is
// "SymbolA - SymbolB + imm64".
const uint8_t TypeB = XCOFF::RelocationType::R_NEG;
XCOFFRelocation RelocB = {IndexB, FixupOffsetInCsect, SignAndSize, TypeB};
SectionMap[RelocationSec]->Relocations.push_back(RelocB);
// We already folded "SymbolA + imm64" above when Type is R_POS for SymbolA,
// now we just need to fold "- SymbolB" here.
FixedValue -= getVirtualAddress(SymB, SymBSec);
}
void XCOFFObjectWriter::writeSections(const MCAssembler &Asm,
const MCAsmLayout &Layout) {
uint64_t CurrentAddressLocation = 0;
for (const auto *Section : Sections)
writeSectionForControlSectionEntry(Asm, Layout, *Section,
CurrentAddressLocation);
for (const auto &DwarfSection : DwarfSections)
writeSectionForDwarfSectionEntry(Asm, Layout, DwarfSection,
CurrentAddressLocation);
writeSectionForExceptionSectionEntry(Asm, Layout, ExceptionSection,
CurrentAddressLocation);
}
uint64_t XCOFFObjectWriter::writeObject(MCAssembler &Asm,
const MCAsmLayout &Layout) {
// We always emit a timestamp of 0 for reproducibility, so ensure incremental
// linking is not enabled, in case, like with Windows COFF, such a timestamp
// is incompatible with incremental linking of XCOFF.
if (Asm.isIncrementalLinkerCompatible())
report_fatal_error("Incremental linking not supported for XCOFF.");
finalizeSectionInfo();
uint64_t StartOffset = W.OS.tell();
writeFileHeader();
writeAuxFileHeader();
writeSectionHeaderTable();
writeSections(Asm, Layout);
writeRelocations();
writeSymbolTable(Layout);
// Write the string table.
Strings.write(W.OS);
return W.OS.tell() - StartOffset;
}
bool XCOFFObjectWriter::nameShouldBeInStringTable(const StringRef &SymbolName) {
return SymbolName.size() > XCOFF::NameSize || is64Bit();
}
void XCOFFObjectWriter::writeSymbolName(const StringRef &SymbolName) {
// Magic, Offset or SymbolName.
if (nameShouldBeInStringTable(SymbolName)) {
W.write<int32_t>(0);
W.write<uint32_t>(Strings.getOffset(SymbolName));
} else {
char Name[XCOFF::NameSize + 1];
std::strncpy(Name, SymbolName.data(), XCOFF::NameSize);
ArrayRef<char> NameRef(Name, XCOFF::NameSize);
W.write(NameRef);
}
}
void XCOFFObjectWriter::writeSymbolEntry(StringRef SymbolName, uint64_t Value,
int16_t SectionNumber,
uint16_t SymbolType,
uint8_t StorageClass,
uint8_t NumberOfAuxEntries) {
if (is64Bit()) {
W.write<uint64_t>(Value);
W.write<uint32_t>(Strings.getOffset(SymbolName));
} else {
writeSymbolName(SymbolName);
W.write<uint32_t>(Value);
}
W.write<int16_t>(SectionNumber);
W.write<uint16_t>(SymbolType);
W.write<uint8_t>(StorageClass);
W.write<uint8_t>(NumberOfAuxEntries);
}
void XCOFFObjectWriter::writeSymbolAuxCsectEntry(uint64_t SectionOrLength,
uint8_t SymbolAlignmentAndType,
uint8_t StorageMappingClass) {
W.write<uint32_t>(is64Bit() ? Lo_32(SectionOrLength) : SectionOrLength);
W.write<uint32_t>(0); // ParameterHashIndex
W.write<uint16_t>(0); // TypeChkSectNum
W.write<uint8_t>(SymbolAlignmentAndType);
W.write<uint8_t>(StorageMappingClass);
if (is64Bit()) {
W.write<uint32_t>(Hi_32(SectionOrLength));
W.OS.write_zeros(1); // Reserved
W.write<uint8_t>(XCOFF::AUX_CSECT);
} else {
W.write<uint32_t>(0); // StabInfoIndex
W.write<uint16_t>(0); // StabSectNum
}
}
void XCOFFObjectWriter::writeSymbolAuxDwarfEntry(
uint64_t LengthOfSectionPortion, uint64_t NumberOfRelocEnt) {
writeWord(LengthOfSectionPortion);
if (!is64Bit())
W.OS.write_zeros(4); // Reserved
writeWord(NumberOfRelocEnt);
if (is64Bit()) {
W.OS.write_zeros(1); // Reserved
W.write<uint8_t>(XCOFF::AUX_SECT);
} else {
W.OS.write_zeros(6); // Reserved
}
}
void XCOFFObjectWriter::writeSymbolEntryForCsectMemberLabel(
const Symbol &SymbolRef, const XCOFFSection &CSectionRef,
int16_t SectionIndex, uint64_t SymbolOffset) {
assert(SymbolOffset <= MaxRawDataSize - CSectionRef.Address &&
"Symbol address overflowed.");
auto Entry = ExceptionSection.ExceptionTable.find(SymbolRef.MCSym->getName());
if (Entry != ExceptionSection.ExceptionTable.end()) {
writeSymbolEntry(SymbolRef.getSymbolTableName(),
CSectionRef.Address + SymbolOffset, SectionIndex,
// In the old version of the 32-bit XCOFF interpretation,
// symbols may require bit 10 (0x0020) to be set if the
// symbol is a function, otherwise the bit should be 0.
is64Bit() ? SymbolRef.getVisibilityType()
: SymbolRef.getVisibilityType() | 0x0020,
SymbolRef.getStorageClass(),
(is64Bit() && ExceptionSection.isDebugEnabled) ? 3 : 2);
if (is64Bit() && ExceptionSection.isDebugEnabled) {
// On 64 bit with debugging enabled, we have a csect, exception, and
// function auxilliary entries, so we must increment symbol index by 4.
writeSymbolAuxExceptionEntry(
ExceptionSection.FileOffsetToData +
getExceptionOffset(Entry->second.FunctionSymbol),
Entry->second.FunctionSize,
SymbolIndexMap[Entry->second.FunctionSymbol] + 4);
}
// For exception section entries, csect and function auxilliary entries
// must exist. On 64-bit there is also an exception auxilliary entry.
writeSymbolAuxFunctionEntry(
ExceptionSection.FileOffsetToData +
getExceptionOffset(Entry->second.FunctionSymbol),
Entry->second.FunctionSize, 0,
(is64Bit() && ExceptionSection.isDebugEnabled)
? SymbolIndexMap[Entry->second.FunctionSymbol] + 4
: SymbolIndexMap[Entry->second.FunctionSymbol] + 3);
} else {
writeSymbolEntry(SymbolRef.getSymbolTableName(),
CSectionRef.Address + SymbolOffset, SectionIndex,
SymbolRef.getVisibilityType(),
SymbolRef.getStorageClass());
}
writeSymbolAuxCsectEntry(CSectionRef.SymbolTableIndex, XCOFF::XTY_LD,
CSectionRef.MCSec->getMappingClass());
}
void XCOFFObjectWriter::writeSymbolEntryForDwarfSection(
const XCOFFSection &DwarfSectionRef, int16_t SectionIndex) {
assert(DwarfSectionRef.MCSec->isDwarfSect() && "Not a DWARF section!");
writeSymbolEntry(DwarfSectionRef.getSymbolTableName(), /*Value=*/0,
SectionIndex, /*SymbolType=*/0, XCOFF::C_DWARF);
writeSymbolAuxDwarfEntry(DwarfSectionRef.Size);
}
void XCOFFObjectWriter::writeSymbolEntryForControlSection(
const XCOFFSection &CSectionRef, int16_t SectionIndex,
XCOFF::StorageClass StorageClass) {
writeSymbolEntry(CSectionRef.getSymbolTableName(), CSectionRef.Address,
SectionIndex, CSectionRef.getVisibilityType(), StorageClass);
writeSymbolAuxCsectEntry(CSectionRef.Size, getEncodedType(CSectionRef.MCSec),
CSectionRef.MCSec->getMappingClass());
}
void XCOFFObjectWriter::writeSymbolAuxFunctionEntry(uint32_t EntryOffset,
uint32_t FunctionSize,
uint64_t LineNumberPointer,
uint32_t EndIndex) {
if (is64Bit())
writeWord(LineNumberPointer);
else
W.write<uint32_t>(EntryOffset);
W.write<uint32_t>(FunctionSize);
if (!is64Bit())
writeWord(LineNumberPointer);
W.write<uint32_t>(EndIndex);
if (is64Bit()) {
W.OS.write_zeros(1);
W.write<uint8_t>(XCOFF::AUX_FCN);
} else {
W.OS.write_zeros(2);
}
}
void XCOFFObjectWriter::writeSymbolAuxExceptionEntry(uint64_t EntryOffset,
uint32_t FunctionSize,
uint32_t EndIndex) {
assert(is64Bit() && "Exception auxilliary entries are 64-bit only.");
W.write<uint64_t>(EntryOffset);
W.write<uint32_t>(FunctionSize);
W.write<uint32_t>(EndIndex);
W.OS.write_zeros(1); // Pad (unused)
W.write<uint8_t>(XCOFF::AUX_EXCEPT);
}
void XCOFFObjectWriter::writeFileHeader() {
W.write<uint16_t>(is64Bit() ? XCOFF::XCOFF64 : XCOFF::XCOFF32);
W.write<uint16_t>(SectionCount);
W.write<int32_t>(0); // TimeStamp
writeWord(SymbolTableOffset);
if (is64Bit()) {
W.write<uint16_t>(auxiliaryHeaderSize());
W.write<uint16_t>(0); // Flags
W.write<int32_t>(SymbolTableEntryCount);
} else {
W.write<int32_t>(SymbolTableEntryCount);
W.write<uint16_t>(auxiliaryHeaderSize());
W.write<uint16_t>(0); // Flags
}
}
void XCOFFObjectWriter::writeAuxFileHeader() {
if (!auxiliaryHeaderSize())
return;
W.write<uint16_t>(0); // Magic
W.write<uint16_t>(
XCOFF::NEW_XCOFF_INTERPRET); // Version. The new interpretation of the
// n_type field in the symbol table entry is
// used in XCOFF32.
W.write<uint32_t>(Sections[0]->Size); // TextSize
W.write<uint32_t>(Sections[1]->Size); // InitDataSize
W.write<uint32_t>(Sections[2]->Size); // BssDataSize
W.write<uint32_t>(0); // EntryPointAddr
W.write<uint32_t>(Sections[0]->Address); // TextStartAddr
W.write<uint32_t>(Sections[1]->Address); // DataStartAddr
}
void XCOFFObjectWriter::writeSectionHeader(const SectionEntry *Sec) {
bool IsDwarf = (Sec->Flags & XCOFF::STYP_DWARF) != 0;
bool IsOvrflo = (Sec->Flags & XCOFF::STYP_OVRFLO) != 0;
// Nothing to write for this Section.
if (Sec->Index == SectionEntry::UninitializedIndex)
return;
// Write Name.
ArrayRef<char> NameRef(Sec->Name, XCOFF::NameSize);
W.write(NameRef);
// Write the Physical Address and Virtual Address.
// We use 0 for DWARF sections' Physical and Virtual Addresses.
writeWord(IsDwarf ? 0 : Sec->Address);
// Since line number is not supported, we set it to 0 for overflow sections.
writeWord((IsDwarf || IsOvrflo) ? 0 : Sec->Address);
writeWord(Sec->Size);
writeWord(Sec->FileOffsetToData);
writeWord(Sec->FileOffsetToRelocations);
writeWord(0); // FileOffsetToLineNumberInfo. Not supported yet.
if (is64Bit()) {
W.write<uint32_t>(Sec->RelocationCount);
W.write<uint32_t>(0); // NumberOfLineNumbers. Not supported yet.
W.write<int32_t>(Sec->Flags);
W.OS.write_zeros(4);
} else {
// For the overflow section header, s_nreloc provides a reference to the
// primary section header and s_nlnno must have the same value.
// For common section headers, if either of s_nreloc or s_nlnno are set to
// 65535, the other one must also be set to 65535.
W.write<uint16_t>(Sec->RelocationCount);
W.write<uint16_t>((IsOvrflo || Sec->RelocationCount == XCOFF::RelocOverflow)
? Sec->RelocationCount
: 0); // NumberOfLineNumbers. Not supported yet.
W.write<int32_t>(Sec->Flags);
}
}
void XCOFFObjectWriter::writeSectionHeaderTable() {
for (const auto *CsectSec : Sections)
writeSectionHeader(CsectSec);
for (const auto &DwarfSec : DwarfSections)
writeSectionHeader(&DwarfSec);
for (const auto &OverflowSec : OverflowSections)
writeSectionHeader(&OverflowSec);
if (hasExceptionSection())
writeSectionHeader(&ExceptionSection);
}
void XCOFFObjectWriter::writeRelocation(XCOFFRelocation Reloc,
const XCOFFSection &Section) {
if (Section.MCSec->isCsect())
writeWord(Section.Address + Reloc.FixupOffsetInCsect);
else {
// DWARF sections' address is set to 0.
assert(Section.MCSec->isDwarfSect() && "unsupport section type!");
writeWord(Reloc.FixupOffsetInCsect);
}
W.write<uint32_t>(Reloc.SymbolTableIndex);
W.write<uint8_t>(Reloc.SignAndSize);
W.write<uint8_t>(Reloc.Type);
}
void XCOFFObjectWriter::writeRelocations() {
for (const auto *Section : Sections) {
if (Section->Index == SectionEntry::UninitializedIndex)
// Nothing to write for this Section.
continue;
for (const auto *Group : Section->Groups) {
if (Group->empty())
continue;
for (const auto &Csect : *Group) {
for (const auto Reloc : Csect.Relocations)
writeRelocation(Reloc, Csect);
}
}
}
for (const auto &DwarfSection : DwarfSections)
for (const auto &Reloc : DwarfSection.DwarfSect->Relocations)
writeRelocation(Reloc, *DwarfSection.DwarfSect);
}
void XCOFFObjectWriter::writeSymbolTable(const MCAsmLayout &Layout) {
// Write C_FILE symbols.
// The n_name of a C_FILE symbol is the source file's name when no auxiliary
// entries are present.
for (const std::pair<std::string, size_t> &F : FileNames) {
writeSymbolEntry(F.first, /*Value=*/0, XCOFF::ReservedSectionNum::N_DEBUG,
/*SymbolType=*/0, XCOFF::C_FILE,
/*NumberOfAuxEntries=*/0);
}
for (const auto &Csect : UndefinedCsects) {
writeSymbolEntryForControlSection(Csect, XCOFF::ReservedSectionNum::N_UNDEF,
Csect.MCSec->getStorageClass());
}
for (const auto *Section : Sections) {
if (Section->Index == SectionEntry::UninitializedIndex)
// Nothing to write for this Section.
continue;
for (const auto *Group : Section->Groups) {
if (Group->empty())
continue;
const int16_t SectionIndex = Section->Index;
for (const auto &Csect : *Group) {
// Write out the control section first and then each symbol in it.
writeSymbolEntryForControlSection(Csect, SectionIndex,
Csect.MCSec->getStorageClass());
for (const auto &Sym : Csect.Syms)
writeSymbolEntryForCsectMemberLabel(
Sym, Csect, SectionIndex, Layout.getSymbolOffset(*(Sym.MCSym)));
}
}
}
for (const auto &DwarfSection : DwarfSections)
writeSymbolEntryForDwarfSection(*DwarfSection.DwarfSect,
DwarfSection.Index);
}
void XCOFFObjectWriter::finalizeRelocationInfo(SectionEntry *Sec,
uint64_t RelCount) {
// Handles relocation field overflows in an XCOFF32 file. An XCOFF64 file
// may not contain an overflow section header.
if (!is64Bit() && (RelCount >= static_cast<uint32_t>(XCOFF::RelocOverflow))) {
// Generate an overflow section header.
SectionEntry SecEntry(".ovrflo", XCOFF::STYP_OVRFLO);
// This field specifies the file section number of the section header that
// overflowed.
SecEntry.RelocationCount = Sec->Index;
// This field specifies the number of relocation entries actually
// required.
SecEntry.Address = RelCount;
SecEntry.Index = ++SectionCount;
OverflowSections.push_back(std::move(SecEntry));
// The field in the primary section header is always 65535
// (XCOFF::RelocOverflow).
Sec->RelocationCount = XCOFF::RelocOverflow;
} else {
Sec->RelocationCount = RelCount;
}
}
void XCOFFObjectWriter::calcOffsetToRelocations(SectionEntry *Sec,
uint64_t &RawPointer) {
if (!Sec->RelocationCount)
return;
Sec->FileOffsetToRelocations = RawPointer;
uint64_t RelocationSizeInSec = 0;
if (!is64Bit() &&
Sec->RelocationCount == static_cast<uint32_t>(XCOFF::RelocOverflow)) {
// Find its corresponding overflow section.
for (auto &OverflowSec : OverflowSections) {
if (OverflowSec.RelocationCount == static_cast<uint32_t>(Sec->Index)) {
RelocationSizeInSec =
OverflowSec.Address * XCOFF::RelocationSerializationSize32;
// This field must have the same values as in the corresponding
// primary section header.
OverflowSec.FileOffsetToRelocations = Sec->FileOffsetToRelocations;
}
}
assert(RelocationSizeInSec && "Overflow section header doesn't exist.");
} else {
RelocationSizeInSec = Sec->RelocationCount *
(is64Bit() ? XCOFF::RelocationSerializationSize64
: XCOFF::RelocationSerializationSize32);
}
RawPointer += RelocationSizeInSec;
if (RawPointer > MaxRawDataSize)
report_fatal_error("Relocation data overflowed this object file.");
}
void XCOFFObjectWriter::finalizeSectionInfo() {
for (auto *Section : Sections) {
if (Section->Index == SectionEntry::UninitializedIndex)
// Nothing to record for this Section.
continue;
uint64_t RelCount = 0;
for (const auto *Group : Section->Groups) {
if (Group->empty())
continue;
for (auto &Csect : *Group)
RelCount += Csect.Relocations.size();
}
finalizeRelocationInfo(Section, RelCount);
}
for (auto &DwarfSection : DwarfSections)
finalizeRelocationInfo(&DwarfSection,
DwarfSection.DwarfSect->Relocations.size());
// Calculate the RawPointer value for all headers.
uint64_t RawPointer =
(is64Bit() ? (XCOFF::FileHeaderSize64 +
SectionCount * XCOFF::SectionHeaderSize64)
: (XCOFF::FileHeaderSize32 +
SectionCount * XCOFF::SectionHeaderSize32)) +
auxiliaryHeaderSize();
// Calculate the file offset to the section data.
for (auto *Sec : Sections) {
if (Sec->Index == SectionEntry::UninitializedIndex || Sec->IsVirtual)
continue;
Sec->FileOffsetToData = RawPointer;
RawPointer += Sec->Size;
if (RawPointer > MaxRawDataSize)
report_fatal_error("Section raw data overflowed this object file.");
}
if (!DwarfSections.empty()) {
RawPointer += PaddingsBeforeDwarf;
for (auto &DwarfSection : DwarfSections) {
DwarfSection.FileOffsetToData = RawPointer;
RawPointer += DwarfSection.MemorySize;
if (RawPointer > MaxRawDataSize)
report_fatal_error("Section raw data overflowed this object file.");
}
}
if (hasExceptionSection()) {
ExceptionSection.FileOffsetToData = RawPointer;
RawPointer += ExceptionSection.Size;
assert(RawPointer <= MaxRawDataSize &&
"Section raw data overflowed this object file.");
}
for (auto *Sec : Sections) {
if (Sec->Index != SectionEntry::UninitializedIndex)
calcOffsetToRelocations(Sec, RawPointer);
}
for (auto &DwarfSec : DwarfSections)
calcOffsetToRelocations(&DwarfSec, RawPointer);
// TODO Error check that the number of symbol table entries fits in 32-bits
// signed ...
if (SymbolTableEntryCount)
SymbolTableOffset = RawPointer;
}
void XCOFFObjectWriter::addExceptionEntry(
const MCSymbol *Symbol, const MCSymbol *Trap, unsigned LanguageCode,
unsigned ReasonCode, unsigned FunctionSize, bool hasDebug) {
// If a module had debug info, debugging is enabled and XCOFF emits the
// exception auxilliary entry.
if (hasDebug)
ExceptionSection.isDebugEnabled = true;
auto Entry = ExceptionSection.ExceptionTable.find(Symbol->getName());
if (Entry != ExceptionSection.ExceptionTable.end()) {
Entry->second.Entries.push_back(
ExceptionTableEntry(Trap, LanguageCode, ReasonCode));
return;
}
ExceptionInfo NewEntry;
NewEntry.FunctionSymbol = Symbol;
NewEntry.FunctionSize = FunctionSize;
NewEntry.Entries.push_back(
ExceptionTableEntry(Trap, LanguageCode, ReasonCode));
ExceptionSection.ExceptionTable.insert(
std::pair<const StringRef, ExceptionInfo>(Symbol->getName(), NewEntry));
}
unsigned XCOFFObjectWriter::getExceptionSectionSize() {
unsigned EntryNum = 0;
for (auto it = ExceptionSection.ExceptionTable.begin();
it != ExceptionSection.ExceptionTable.end(); ++it)
// The size() gets +1 to account for the initial entry containing the
// symbol table index.
EntryNum += it->second.Entries.size() + 1;
return EntryNum * (is64Bit() ? XCOFF::ExceptionSectionEntrySize64
: XCOFF::ExceptionSectionEntrySize32);
}
unsigned XCOFFObjectWriter::getExceptionOffset(const MCSymbol *Symbol) {
unsigned EntryNum = 0;
for (auto it = ExceptionSection.ExceptionTable.begin();
it != ExceptionSection.ExceptionTable.end(); ++it) {
if (Symbol == it->second.FunctionSymbol)
break;
EntryNum += it->second.Entries.size() + 1;
}
return EntryNum * (is64Bit() ? XCOFF::ExceptionSectionEntrySize64
: XCOFF::ExceptionSectionEntrySize32);
}
void XCOFFObjectWriter::assignAddressesAndIndices(const MCAsmLayout &Layout) {
// The symbol table starts with all the C_FILE symbols.
uint32_t SymbolTableIndex = FileNames.size();
// Calculate indices for undefined symbols.
for (auto &Csect : UndefinedCsects) {
Csect.Size = 0;
Csect.Address = 0;
Csect.SymbolTableIndex = SymbolTableIndex;
SymbolIndexMap[Csect.MCSec->getQualNameSymbol()] = Csect.SymbolTableIndex;
// 1 main and 1 auxiliary symbol table entry for each contained symbol.
SymbolTableIndex += 2;
}
// The address corrresponds to the address of sections and symbols in the
// object file. We place the shared address 0 immediately after the
// section header table.
uint64_t Address = 0;
// Section indices are 1-based in XCOFF.
int32_t SectionIndex = 1;
bool HasTDataSection = false;
for (auto *Section : Sections) {
const bool IsEmpty =
llvm::all_of(Section->Groups,
[](const CsectGroup *Group) { return Group->empty(); });
if (IsEmpty)
continue;
if (SectionIndex > MaxSectionIndex)
report_fatal_error("Section index overflow!");
Section->Index = SectionIndex++;
SectionCount++;
bool SectionAddressSet = false;
// Reset the starting address to 0 for TData section.
if (Section->Flags == XCOFF::STYP_TDATA) {
Address = 0;
HasTDataSection = true;
}
// Reset the starting address to 0 for TBSS section if the object file does
// not contain TData Section.
if ((Section->Flags == XCOFF::STYP_TBSS) && !HasTDataSection)
Address = 0;
for (auto *Group : Section->Groups) {
if (Group->empty())
continue;
for (auto &Csect : *Group) {
const MCSectionXCOFF *MCSec = Csect.MCSec;
Csect.Address = alignTo(Address, MCSec->getAlign());
Csect.Size = Layout.getSectionAddressSize(MCSec);
Address = Csect.Address + Csect.Size;
Csect.SymbolTableIndex = SymbolTableIndex;
SymbolIndexMap[MCSec->getQualNameSymbol()] = Csect.SymbolTableIndex;
// 1 main and 1 auxiliary symbol table entry for the csect.
SymbolTableIndex += 2;
for (auto &Sym : Csect.Syms) {
bool hasExceptEntry = false;
auto Entry =
ExceptionSection.ExceptionTable.find(Sym.MCSym->getName());
if (Entry != ExceptionSection.ExceptionTable.end()) {
hasExceptEntry = true;
for (auto &TrapEntry : Entry->second.Entries) {
TrapEntry.TrapAddress = Layout.getSymbolOffset(*(Sym.MCSym)) +
TrapEntry.Trap->getOffset();
}
}
Sym.SymbolTableIndex = SymbolTableIndex;
SymbolIndexMap[Sym.MCSym] = Sym.SymbolTableIndex;
// 1 main and 1 auxiliary symbol table entry for each contained
// symbol. For symbols with exception section entries, a function
// auxilliary entry is needed, and on 64-bit XCOFF with debugging
// enabled, an additional exception auxilliary entry is needed.
SymbolTableIndex += 2;
if (hasExceptionSection() && hasExceptEntry) {
if (is64Bit() && ExceptionSection.isDebugEnabled)
SymbolTableIndex += 2;
else
SymbolTableIndex += 1;
}
}
}
if (!SectionAddressSet) {
Section->Address = Group->front().Address;
SectionAddressSet = true;
}
}
// Make sure the address of the next section aligned to
// DefaultSectionAlign.
Address = alignTo(Address, DefaultSectionAlign);
Section->Size = Address - Section->Address;
}
// Start to generate DWARF sections. Sections other than DWARF section use
// DefaultSectionAlign as the default alignment, while DWARF sections have
// their own alignments. If these two alignments are not the same, we need
// some paddings here and record the paddings bytes for FileOffsetToData
// calculation.
if (!DwarfSections.empty())
PaddingsBeforeDwarf =
alignTo(Address,
(*DwarfSections.begin()).DwarfSect->MCSec->getAlign()) -
Address;
DwarfSectionEntry *LastDwarfSection = nullptr;
for (auto &DwarfSection : DwarfSections) {
assert((SectionIndex <= MaxSectionIndex) && "Section index overflow!");
XCOFFSection &DwarfSect = *DwarfSection.DwarfSect;
const MCSectionXCOFF *MCSec = DwarfSect.MCSec;
// Section index.
DwarfSection.Index = SectionIndex++;
SectionCount++;
// Symbol index.
DwarfSect.SymbolTableIndex = SymbolTableIndex;
SymbolIndexMap[MCSec->getQualNameSymbol()] = DwarfSect.SymbolTableIndex;
// 1 main and 1 auxiliary symbol table entry for the csect.
SymbolTableIndex += 2;
// Section address. Make it align to section alignment.
// We use address 0 for DWARF sections' Physical and Virtual Addresses.
// This address is used to tell where is the section in the final object.
// See writeSectionForDwarfSectionEntry().
DwarfSection.Address = DwarfSect.Address =
alignTo(Address, MCSec->getAlign());
// Section size.
// For DWARF section, we must use the real size which may be not aligned.
DwarfSection.Size = DwarfSect.Size = Layout.getSectionAddressSize(MCSec);
Address = DwarfSection.Address + DwarfSection.Size;
if (LastDwarfSection)
LastDwarfSection->MemorySize =
DwarfSection.Address - LastDwarfSection->Address;
LastDwarfSection = &DwarfSection;
}
if (LastDwarfSection) {
// Make the final DWARF section address align to the default section
// alignment for follow contents.
Address = alignTo(LastDwarfSection->Address + LastDwarfSection->Size,
DefaultSectionAlign);
LastDwarfSection->MemorySize = Address - LastDwarfSection->Address;
}
if (hasExceptionSection()) {
ExceptionSection.Index = SectionIndex++;
SectionCount++;
ExceptionSection.Address = 0;
ExceptionSection.Size = getExceptionSectionSize();
Address += ExceptionSection.Size;
Address = alignTo(Address, DefaultSectionAlign);
}
SymbolTableEntryCount = SymbolTableIndex;
}
void XCOFFObjectWriter::writeSectionForControlSectionEntry(
const MCAssembler &Asm, const MCAsmLayout &Layout,
const CsectSectionEntry &CsectEntry, uint64_t &CurrentAddressLocation) {
// Nothing to write for this Section.
if (CsectEntry.Index == SectionEntry::UninitializedIndex)
return;
// There could be a gap (without corresponding zero padding) between
// sections.
// There could be a gap (without corresponding zero padding) between
// sections.
assert(((CurrentAddressLocation <= CsectEntry.Address) ||
(CsectEntry.Flags == XCOFF::STYP_TDATA) ||
(CsectEntry.Flags == XCOFF::STYP_TBSS)) &&
"CurrentAddressLocation should be less than or equal to section "
"address if the section is not TData or TBSS.");
CurrentAddressLocation = CsectEntry.Address;
// For virtual sections, nothing to write. But need to increase
// CurrentAddressLocation for later sections like DWARF section has a correct
// writing location.
if (CsectEntry.IsVirtual) {
CurrentAddressLocation += CsectEntry.Size;
return;
}
for (const auto &Group : CsectEntry.Groups) {
for (const auto &Csect : *Group) {
if (uint32_t PaddingSize = Csect.Address - CurrentAddressLocation)
W.OS.write_zeros(PaddingSize);
if (Csect.Size)
Asm.writeSectionData(W.OS, Csect.MCSec, Layout);
CurrentAddressLocation = Csect.Address + Csect.Size;
}
}
// The size of the tail padding in a section is the end virtual address of
// the current section minus the the end virtual address of the last csect
// in that section.
if (uint64_t PaddingSize =
CsectEntry.Address + CsectEntry.Size - CurrentAddressLocation) {
W.OS.write_zeros(PaddingSize);
CurrentAddressLocation += PaddingSize;
}
}
void XCOFFObjectWriter::writeSectionForDwarfSectionEntry(
const MCAssembler &Asm, const MCAsmLayout &Layout,
const DwarfSectionEntry &DwarfEntry, uint64_t &CurrentAddressLocation) {
// There could be a gap (without corresponding zero padding) between
// sections. For example DWARF section alignment is bigger than
// DefaultSectionAlign.
assert(CurrentAddressLocation <= DwarfEntry.Address &&
"CurrentAddressLocation should be less than or equal to section "
"address.");
if (uint64_t PaddingSize = DwarfEntry.Address - CurrentAddressLocation)
W.OS.write_zeros(PaddingSize);
if (DwarfEntry.Size)
Asm.writeSectionData(W.OS, DwarfEntry.DwarfSect->MCSec, Layout);
CurrentAddressLocation = DwarfEntry.Address + DwarfEntry.Size;
// DWARF section size is not aligned to DefaultSectionAlign.
// Make sure CurrentAddressLocation is aligned to DefaultSectionAlign.
uint32_t Mod = CurrentAddressLocation % DefaultSectionAlign;
uint32_t TailPaddingSize = Mod ? DefaultSectionAlign - Mod : 0;
if (TailPaddingSize)
W.OS.write_zeros(TailPaddingSize);
CurrentAddressLocation += TailPaddingSize;
}
void XCOFFObjectWriter::writeSectionForExceptionSectionEntry(
const MCAssembler &Asm, const MCAsmLayout &Layout,
ExceptionSectionEntry &ExceptionEntry, uint64_t &CurrentAddressLocation) {
for (auto it = ExceptionEntry.ExceptionTable.begin();
it != ExceptionEntry.ExceptionTable.end(); it++) {
// For every symbol that has exception entries, you must start the entries
// with an initial symbol table index entry
W.write<uint32_t>(SymbolIndexMap[it->second.FunctionSymbol]);
if (is64Bit()) {
// 4-byte padding on 64-bit.
W.OS.write_zeros(4);
}
W.OS.write_zeros(2);
for (auto &TrapEntry : it->second.Entries) {
writeWord(TrapEntry.TrapAddress);
W.write<uint8_t>(TrapEntry.Lang);
W.write<uint8_t>(TrapEntry.Reason);
}
}
CurrentAddressLocation += getExceptionSectionSize();
}
// Takes the log base 2 of the alignment and shifts the result into the 5 most
// significant bits of a byte, then or's in the csect type into the least
// significant 3 bits.
uint8_t getEncodedType(const MCSectionXCOFF *Sec) {
unsigned Log2Align = Log2(Sec->getAlign());
// Result is a number in the range [0, 31] which fits in the 5 least
// significant bits. Shift this value into the 5 most significant bits, and
// bitwise-or in the csect type.
uint8_t EncodedAlign = Log2Align << 3;
return EncodedAlign | Sec->getCSectType();
}
} // end anonymous namespace
std::unique_ptr<MCObjectWriter>
llvm::createXCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
raw_pwrite_stream &OS) {
return std::make_unique<XCOFFObjectWriter>(std::move(MOTW), OS);
}