blob: 7098824dbe4b9fb224c736292ec81bdd3fee5a43 [file] [log] [blame]
#include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/UniqueVector.h"
#include "llvm/Analysis/Interval.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/PrintPasses.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <assert.h>
#include <cstdint>
#include <optional>
#include <sstream>
#include <unordered_map>
using namespace llvm;
#define DEBUG_TYPE "debug-ata"
STATISTIC(NumDefsScanned, "Number of dbg locs that get scanned for removal");
STATISTIC(NumDefsRemoved, "Number of dbg locs removed");
STATISTIC(NumWedgesScanned, "Number of dbg wedges scanned");
STATISTIC(NumWedgesChanged, "Number of dbg wedges changed");
static cl::opt<unsigned>
MaxNumBlocks("debug-ata-max-blocks", cl::init(10000),
cl::desc("Maximum num basic blocks before debug info dropped"),
cl::Hidden);
/// Option for debugging the pass, determines if the memory location fragment
/// filling happens after generating the variable locations.
static cl::opt<bool> EnableMemLocFragFill("mem-loc-frag-fill", cl::init(true),
cl::Hidden);
/// Print the results of the analysis. Respects -filter-print-funcs.
static cl::opt<bool> PrintResults("print-debug-ata", cl::init(false),
cl::Hidden);
// Implicit conversions are disabled for enum class types, so unfortunately we
// need to create a DenseMapInfo wrapper around the specified underlying type.
template <> struct llvm::DenseMapInfo<VariableID> {
using Wrapped = DenseMapInfo<unsigned>;
static inline VariableID getEmptyKey() {
return static_cast<VariableID>(Wrapped::getEmptyKey());
}
static inline VariableID getTombstoneKey() {
return static_cast<VariableID>(Wrapped::getTombstoneKey());
}
static unsigned getHashValue(const VariableID &Val) {
return Wrapped::getHashValue(static_cast<unsigned>(Val));
}
static bool isEqual(const VariableID &LHS, const VariableID &RHS) {
return LHS == RHS;
}
};
/// Helper class to build FunctionVarLocs, since that class isn't easy to
/// modify. TODO: There's not a great deal of value in the split, it could be
/// worth merging the two classes.
class FunctionVarLocsBuilder {
friend FunctionVarLocs;
UniqueVector<DebugVariable> Variables;
// Use an unordered_map so we don't invalidate iterators after
// insert/modifications.
std::unordered_map<const Instruction *, SmallVector<VarLocInfo>>
VarLocsBeforeInst;
SmallVector<VarLocInfo> SingleLocVars;
public:
/// Find or insert \p V and return the ID.
VariableID insertVariable(DebugVariable V) {
return static_cast<VariableID>(Variables.insert(V));
}
/// Get a variable from its \p ID.
const DebugVariable &getVariable(VariableID ID) const {
return Variables[static_cast<unsigned>(ID)];
}
/// Return ptr to wedge of defs or nullptr if no defs come just before /p
/// Before.
const SmallVectorImpl<VarLocInfo> *getWedge(const Instruction *Before) const {
auto R = VarLocsBeforeInst.find(Before);
if (R == VarLocsBeforeInst.end())
return nullptr;
return &R->second;
}
/// Replace the defs that come just before /p Before with /p Wedge.
void setWedge(const Instruction *Before, SmallVector<VarLocInfo> &&Wedge) {
VarLocsBeforeInst[Before] = std::move(Wedge);
}
/// Add a def for a variable that is valid for its lifetime.
void addSingleLocVar(DebugVariable Var, DIExpression *Expr, DebugLoc DL,
Value *V) {
VarLocInfo VarLoc;
VarLoc.VariableID = insertVariable(Var);
VarLoc.Expr = Expr;
VarLoc.DL = DL;
VarLoc.V = V;
SingleLocVars.emplace_back(VarLoc);
}
/// Add a def to the wedge of defs just before /p Before.
void addVarLoc(Instruction *Before, DebugVariable Var, DIExpression *Expr,
DebugLoc DL, Value *V) {
VarLocInfo VarLoc;
VarLoc.VariableID = insertVariable(Var);
VarLoc.Expr = Expr;
VarLoc.DL = DL;
VarLoc.V = V;
VarLocsBeforeInst[Before].emplace_back(VarLoc);
}
};
void FunctionVarLocs::print(raw_ostream &OS, const Function &Fn) const {
// Print the variable table first. TODO: Sorting by variable could make the
// output more stable?
unsigned Counter = -1;
OS << "=== Variables ===\n";
for (const DebugVariable &V : Variables) {
++Counter;
// Skip first entry because it is a dummy entry.
if (Counter == 0) {
continue;
}
OS << "[" << Counter << "] " << V.getVariable()->getName();
if (auto F = V.getFragment())
OS << " bits [" << F->OffsetInBits << ", "
<< F->OffsetInBits + F->SizeInBits << ")";
if (const auto *IA = V.getInlinedAt())
OS << " inlined-at " << *IA;
OS << "\n";
}
auto PrintLoc = [&OS](const VarLocInfo &Loc) {
OS << "DEF Var=[" << (unsigned)Loc.VariableID << "]"
<< " Expr=" << *Loc.Expr << " V=" << *Loc.V << "\n";
};
// Print the single location variables.
OS << "=== Single location vars ===\n";
for (auto It = single_locs_begin(), End = single_locs_end(); It != End;
++It) {
PrintLoc(*It);
}
// Print the non-single-location defs in line with IR.
OS << "=== In-line variable defs ===";
for (const BasicBlock &BB : Fn) {
OS << "\n" << BB.getName() << ":\n";
for (const Instruction &I : BB) {
for (auto It = locs_begin(&I), End = locs_end(&I); It != End; ++It) {
PrintLoc(*It);
}
OS << I << "\n";
}
}
}
void FunctionVarLocs::init(FunctionVarLocsBuilder &Builder) {
// Add the single-location variables first.
for (const auto &VarLoc : Builder.SingleLocVars)
VarLocRecords.emplace_back(VarLoc);
// Mark the end of the section.
SingleVarLocEnd = VarLocRecords.size();
// Insert a contiguous block of VarLocInfos for each instruction, mapping it
// to the start and end position in the vector with VarLocsBeforeInst.
for (auto &P : Builder.VarLocsBeforeInst) {
unsigned BlockStart = VarLocRecords.size();
for (const VarLocInfo &VarLoc : P.second)
VarLocRecords.emplace_back(VarLoc);
unsigned BlockEnd = VarLocRecords.size();
// Record the start and end indices.
if (BlockEnd != BlockStart)
VarLocsBeforeInst[P.first] = {BlockStart, BlockEnd};
}
// Copy the Variables vector from the builder's UniqueVector.
assert(Variables.empty() && "Expect clear before init");
// UniqueVectors IDs are one-based (which means the VarLocInfo VarID values
// are one-based) so reserve an extra and insert a dummy.
Variables.reserve(Builder.Variables.size() + 1);
Variables.push_back(DebugVariable(nullptr, std::nullopt, nullptr));
Variables.append(Builder.Variables.begin(), Builder.Variables.end());
}
void FunctionVarLocs::clear() {
Variables.clear();
VarLocRecords.clear();
VarLocsBeforeInst.clear();
SingleVarLocEnd = 0;
}
/// Walk backwards along constant GEPs and bitcasts to the base storage from \p
/// Start as far as possible. Prepend \Expression with the offset and append it
/// with a DW_OP_deref that haes been implicit until now. Returns the walked-to
/// value and modified expression.
static std::pair<Value *, DIExpression *>
walkToAllocaAndPrependOffsetDeref(const DataLayout &DL, Value *Start,
DIExpression *Expression) {
APInt OffsetInBytes(DL.getTypeSizeInBits(Start->getType()), false);
Value *End =
Start->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetInBytes);
SmallVector<uint64_t, 3> Ops;
if (OffsetInBytes.getBoolValue()) {
Ops = {dwarf::DW_OP_plus_uconst, OffsetInBytes.getZExtValue()};
Expression = DIExpression::prependOpcodes(
Expression, Ops, /*StackValue=*/false, /*EntryValue=*/false);
}
Expression = DIExpression::append(Expression, {dwarf::DW_OP_deref});
return {End, Expression};
}
/// Extract the offset used in \p DIExpr. Returns std::nullopt if the expression
/// doesn't explicitly describe a memory location with DW_OP_deref or if the
/// expression is too complex to interpret.
static std::optional<int64_t>
getDerefOffsetInBytes(const DIExpression *DIExpr) {
int64_t Offset = 0;
const unsigned NumElements = DIExpr->getNumElements();
const auto Elements = DIExpr->getElements();
unsigned NextElement = 0;
// Extract the offset.
if (NumElements > 2 && Elements[0] == dwarf::DW_OP_plus_uconst) {
Offset = Elements[1];
NextElement = 2;
} else if (NumElements > 3 && Elements[0] == dwarf::DW_OP_constu) {
NextElement = 3;
if (Elements[2] == dwarf::DW_OP_plus)
Offset = Elements[1];
else if (Elements[2] == dwarf::DW_OP_minus)
Offset = -Elements[1];
else
return std::nullopt;
}
// If that's all there is it means there's no deref.
if (NextElement >= NumElements)
return std::nullopt;
// Check the next element is DW_OP_deref - otherwise this is too complex or
// isn't a deref expression.
if (Elements[NextElement] != dwarf::DW_OP_deref)
return std::nullopt;
// Check the final operation is either the DW_OP_deref or is a fragment.
if (NumElements == NextElement + 1)
return Offset; // Ends with deref.
else if (NumElements == NextElement + 3 &&
Elements[NextElement] == dwarf::DW_OP_LLVM_fragment)
return Offset; // Ends with deref + fragment.
// Don't bother trying to interpret anything more complex.
return std::nullopt;
}
/// A whole (unfragmented) source variable.
using DebugAggregate = std::pair<const DILocalVariable *, const DILocation *>;
static DebugAggregate getAggregate(const DbgVariableIntrinsic *DII) {
return DebugAggregate(DII->getVariable(), DII->getDebugLoc().getInlinedAt());
}
static DebugAggregate getAggregate(const DebugVariable &Var) {
return DebugAggregate(Var.getVariable(), Var.getInlinedAt());
}
namespace {
/// In dwarf emission, the following sequence
/// 1. dbg.value ... Fragment(0, 64)
/// 2. dbg.value ... Fragment(0, 32)
/// effectively sets Fragment(32, 32) to undef (each def sets all bits not in
/// the intersection of the fragments to having "no location"). This makes
/// sense for implicit location values because splitting the computed values
/// could be troublesome, and is probably quite uncommon. When we convert
/// dbg.assigns to dbg.value+deref this kind of thing is common, and describing
/// a location (memory) rather than a value means we don't need to worry about
/// splitting any values, so we try to recover the rest of the fragment
/// location here.
/// This class performs a(nother) dataflow analysis over the function, adding
/// variable locations so that any bits of a variable with a memory location
/// have that location explicitly reinstated at each subsequent variable
/// location definition that that doesn't overwrite those bits. i.e. after a
/// variable location def, insert new defs for the memory location with
/// fragments for the difference of "all bits currently in memory" and "the
/// fragment of the second def".
class MemLocFragmentFill {
Function &Fn;
FunctionVarLocsBuilder *FnVarLocs;
const DenseSet<DebugAggregate> *VarsWithStackSlot;
// 0 = no memory location.
using BaseAddress = unsigned;
using OffsetInBitsTy = unsigned;
using FragTraits = IntervalMapHalfOpenInfo<OffsetInBitsTy>;
using FragsInMemMap = IntervalMap<
OffsetInBitsTy, BaseAddress,
IntervalMapImpl::NodeSizer<OffsetInBitsTy, BaseAddress>::LeafSize,
FragTraits>;
FragsInMemMap::Allocator IntervalMapAlloc;
using VarFragMap = DenseMap<unsigned, FragsInMemMap>;
/// IDs for memory location base addresses in maps. Use 0 to indicate that
/// there's no memory location.
UniqueVector<Value *> Bases;
UniqueVector<DebugAggregate> Aggregates;
DenseMap<const BasicBlock *, VarFragMap> LiveIn;
DenseMap<const BasicBlock *, VarFragMap> LiveOut;
struct FragMemLoc {
unsigned Var;
unsigned Base;
unsigned OffsetInBits;
unsigned SizeInBits;
DebugLoc DL;
};
using InsertMap = MapVector<Instruction *, SmallVector<FragMemLoc>>;
/// BBInsertBeforeMap holds a description for the set of location defs to be
/// inserted after the analysis is complete. It is updated during the dataflow
/// and the entry for a block is CLEARED each time it is (re-)visited. After
/// the dataflow is complete, each block entry will contain the set of defs
/// calculated during the final (fixed-point) iteration.
DenseMap<const BasicBlock *, InsertMap> BBInsertBeforeMap;
static bool intervalMapsAreEqual(const FragsInMemMap &A,
const FragsInMemMap &B) {
auto AIt = A.begin(), AEnd = A.end();
auto BIt = B.begin(), BEnd = B.end();
for (; AIt != AEnd; ++AIt, ++BIt) {
if (BIt == BEnd)
return false; // B has fewer elements than A.
if (AIt.start() != BIt.start() || AIt.stop() != BIt.stop())
return false; // Interval is different.
if (*AIt != *BIt)
return false; // Value at interval is different.
}
// AIt == AEnd. Check BIt is also now at end.
return BIt == BEnd;
}
static bool varFragMapsAreEqual(const VarFragMap &A, const VarFragMap &B) {
if (A.size() != B.size())
return false;
for (const auto &APair : A) {
auto BIt = B.find(APair.first);
if (BIt == B.end())
return false;
if (!intervalMapsAreEqual(APair.second, BIt->second))
return false;
}
return true;
}
/// Return a string for the value that \p BaseID represents.
std::string toString(unsigned BaseID) {
if (BaseID)
return Bases[BaseID]->getName().str();
else
return "None";
}
/// Format string describing an FragsInMemMap (IntervalMap) interval.
std::string toString(FragsInMemMap::const_iterator It, bool Newline = true) {
std::string String;
std::stringstream S(String);
if (It.valid()) {
S << "[" << It.start() << ", " << It.stop()
<< "): " << toString(It.value());
} else {
S << "invalid iterator (end)";
}
if (Newline)
S << "\n";
return S.str();
};
FragsInMemMap meetFragments(const FragsInMemMap &A, const FragsInMemMap &B) {
FragsInMemMap Result(IntervalMapAlloc);
for (auto AIt = A.begin(), AEnd = A.end(); AIt != AEnd; ++AIt) {
LLVM_DEBUG(dbgs() << "a " << toString(AIt));
// This is basically copied from process() and inverted (process is
// performing something like a union whereas this is more of an
// intersect).
// There's no work to do if interval `a` overlaps no fragments in map `B`.
if (!B.overlaps(AIt.start(), AIt.stop()))
continue;
// Does StartBit intersect an existing fragment?
auto FirstOverlap = B.find(AIt.start());
assert(FirstOverlap != B.end());
bool IntersectStart = FirstOverlap.start() < AIt.start();
LLVM_DEBUG(dbgs() << "- FirstOverlap " << toString(FirstOverlap, false)
<< ", IntersectStart: " << IntersectStart << "\n");
// Does EndBit intersect an existing fragment?
auto LastOverlap = B.find(AIt.stop());
bool IntersectEnd =
LastOverlap != B.end() && LastOverlap.start() < AIt.stop();
LLVM_DEBUG(dbgs() << "- LastOverlap " << toString(LastOverlap, false)
<< ", IntersectEnd: " << IntersectEnd << "\n");
// Check if both ends of `a` intersect the same interval `b`.
if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) {
// Insert `a` (`a` is contained in `b`) if the values match.
// [ a ]
// [ - b - ]
// -
// [ r ]
LLVM_DEBUG(dbgs() << "- a is contained within "
<< toString(FirstOverlap));
if (*AIt && *AIt == *FirstOverlap)
Result.insert(AIt.start(), AIt.stop(), *AIt);
} else {
// There's an overlap but `a` is not fully contained within
// `b`. Shorten any end-point intersections.
// [ - a - ]
// [ - b - ]
// -
// [ r ]
auto Next = FirstOverlap;
if (IntersectStart) {
LLVM_DEBUG(dbgs() << "- insert intersection of a and "
<< toString(FirstOverlap));
if (*AIt && *AIt == *FirstOverlap)
Result.insert(AIt.start(), FirstOverlap.stop(), *AIt);
++Next;
}
// [ - a - ]
// [ - b - ]
// -
// [ r ]
if (IntersectEnd) {
LLVM_DEBUG(dbgs() << "- insert intersection of a and "
<< toString(LastOverlap));
if (*AIt && *AIt == *LastOverlap)
Result.insert(LastOverlap.start(), AIt.stop(), *AIt);
}
// Insert all intervals in map `B` that are contained within interval
// `a` where the values match.
// [ - - a - - ]
// [ b1 ] [ b2 ]
// -
// [ r1 ] [ r2 ]
while (Next != B.end() && Next.start() < AIt.stop() &&
Next.stop() <= AIt.stop()) {
LLVM_DEBUG(dbgs()
<< "- insert intersection of a and " << toString(Next));
if (*AIt && *AIt == *Next)
Result.insert(Next.start(), Next.stop(), *Next);
++Next;
}
}
}
return Result;
}
/// Meet \p A and \p B, storing the result in \p A.
void meetVars(VarFragMap &A, const VarFragMap &B) {
// Meet A and B.
//
// Result = meet(a, b) for a in A, b in B where Var(a) == Var(b)
for (auto It = A.begin(), End = A.end(); It != End; ++It) {
unsigned AVar = It->first;
FragsInMemMap &AFrags = It->second;
auto BIt = B.find(AVar);
if (BIt == B.end()) {
A.erase(It);
continue; // Var has no bits defined in B.
}
LLVM_DEBUG(dbgs() << "meet fragment maps for "
<< Aggregates[AVar].first->getName() << "\n");
AFrags = meetFragments(AFrags, BIt->second);
}
}
bool meet(const BasicBlock &BB,
const SmallPtrSet<BasicBlock *, 16> &Visited) {
LLVM_DEBUG(dbgs() << "meet block info from preds of " << BB.getName()
<< "\n");
VarFragMap BBLiveIn;
bool FirstMeet = true;
// LiveIn locs for BB is the meet of the already-processed preds' LiveOut
// locs.
for (auto I = pred_begin(&BB), E = pred_end(&BB); I != E; I++) {
// Ignore preds that haven't been processed yet. This is essentially the
// same as initialising all variables to implicit top value (⊤) which is
// the identity value for the meet operation.
const BasicBlock *Pred = *I;
if (!Visited.count(Pred))
continue;
auto PredLiveOut = LiveOut.find(Pred);
assert(PredLiveOut != LiveOut.end());
if (FirstMeet) {
LLVM_DEBUG(dbgs() << "BBLiveIn = " << Pred->getName() << "\n");
BBLiveIn = PredLiveOut->second;
FirstMeet = false;
} else {
LLVM_DEBUG(dbgs() << "BBLiveIn = meet BBLiveIn, " << Pred->getName()
<< "\n");
meetVars(BBLiveIn, PredLiveOut->second);
}
// An empty set is ⊥ for the intersect-like meet operation. If we've
// already got ⊥ there's no need to run the code - we know the result is
// ⊥ since `meet(a, ⊥) = ⊥`.
if (BBLiveIn.size() == 0)
break;
}
auto CurrentLiveInEntry = LiveIn.find(&BB);
// If there's no LiveIn entry for the block yet, add it.
if (CurrentLiveInEntry == LiveIn.end()) {
LLVM_DEBUG(dbgs() << "change=true (first) on meet on " << BB.getName()
<< "\n");
LiveIn[&BB] = std::move(BBLiveIn);
return /*Changed=*/true;
}
// If the LiveIn set has changed (expensive check) update it and return
// true.
if (!varFragMapsAreEqual(BBLiveIn, CurrentLiveInEntry->second)) {
LLVM_DEBUG(dbgs() << "change=true on meet on " << BB.getName() << "\n");
CurrentLiveInEntry->second = std::move(BBLiveIn);
return /*Changed=*/true;
}
LLVM_DEBUG(dbgs() << "change=false on meet on " << BB.getName() << "\n");
return /*Changed=*/false;
}
void insertMemLoc(BasicBlock &BB, Instruction &Before, unsigned Var,
unsigned StartBit, unsigned EndBit, unsigned Base,
DebugLoc DL) {
assert(StartBit < EndBit && "Cannot create fragment of size <= 0");
if (!Base)
return;
FragMemLoc Loc;
Loc.Var = Var;
Loc.OffsetInBits = StartBit;
Loc.SizeInBits = EndBit - StartBit;
assert(Base && "Expected a non-zero ID for Base address");
Loc.Base = Base;
Loc.DL = DL;
BBInsertBeforeMap[&BB][&Before].push_back(Loc);
LLVM_DEBUG(dbgs() << "Add mem def for " << Aggregates[Var].first->getName()
<< " bits [" << StartBit << ", " << EndBit << ")\n");
}
void addDef(const VarLocInfo &VarLoc, Instruction &Before, BasicBlock &BB,
VarFragMap &LiveSet) {
DebugVariable DbgVar = FnVarLocs->getVariable(VarLoc.VariableID);
if (skipVariable(DbgVar.getVariable()))
return;
// Don't bother doing anything for this variables if we know it's fully
// promoted. We're only interested in variables that (sometimes) live on
// the stack here.
if (!VarsWithStackSlot->count(getAggregate(DbgVar)))
return;
unsigned Var = Aggregates.insert(
DebugAggregate(DbgVar.getVariable(), VarLoc.DL.getInlinedAt()));
// [StartBit: EndBit) are the bits affected by this def.
const DIExpression *DIExpr = VarLoc.Expr;
unsigned StartBit;
unsigned EndBit;
if (auto Frag = DIExpr->getFragmentInfo()) {
StartBit = Frag->OffsetInBits;
EndBit = StartBit + Frag->SizeInBits;
} else {
assert(static_cast<bool>(DbgVar.getVariable()->getSizeInBits()));
StartBit = 0;
EndBit = *DbgVar.getVariable()->getSizeInBits();
}
// We will only fill fragments for simple memory-describing dbg.value
// intrinsics. If the fragment offset is the same as the offset from the
// base pointer, do The Thing, otherwise fall back to normal dbg.value
// behaviour. AssignmentTrackingLowering has generated DIExpressions
// written in terms of the base pointer.
// TODO: Remove this condition since the fragment offset doesn't always
// equal the offset from base pointer (e.g. for a SROA-split variable).
const auto DerefOffsetInBytes = getDerefOffsetInBytes(DIExpr);
const unsigned Base =
DerefOffsetInBytes && *DerefOffsetInBytes * 8 == StartBit
? Bases.insert(VarLoc.V)
: 0;
LLVM_DEBUG(dbgs() << "DEF " << DbgVar.getVariable()->getName() << " ["
<< StartBit << ", " << EndBit << "): " << toString(Base)
<< "\n");
// First of all, any locs that use mem that are disrupted need reinstating.
// Unfortunately, IntervalMap doesn't let us insert intervals that overlap
// with existing intervals so this code involves a lot of fiddling around
// with intervals to do that manually.
auto FragIt = LiveSet.find(Var);
// Check if the variable does not exist in the map.
if (FragIt == LiveSet.end()) {
// Add this variable to the BB map.
auto P = LiveSet.try_emplace(Var, FragsInMemMap(IntervalMapAlloc));
assert(P.second && "Var already in map?");
// Add the interval to the fragment map.
P.first->second.insert(StartBit, EndBit, Base);
return;
}
// The variable has an entry in the map.
FragsInMemMap &FragMap = FragIt->second;
// First check the easy case: the new fragment `f` doesn't overlap with any
// intervals.
if (!FragMap.overlaps(StartBit, EndBit)) {
LLVM_DEBUG(dbgs() << "- No overlaps\n");
FragMap.insert(StartBit, EndBit, Base);
return;
}
// There is at least one overlap.
// Does StartBit intersect an existing fragment?
auto FirstOverlap = FragMap.find(StartBit);
assert(FirstOverlap != FragMap.end());
bool IntersectStart = FirstOverlap.start() < StartBit;
// Does EndBit intersect an existing fragment?
auto LastOverlap = FragMap.find(EndBit);
bool IntersectEnd = LastOverlap.valid() && LastOverlap.start() < EndBit;
// Check if both ends of `f` intersect the same interval `i`.
if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) {
LLVM_DEBUG(dbgs() << "- Intersect single interval @ both ends\n");
// Shorten `i` so that there's space to insert `f`.
// [ f ]
// [ - i - ]
// +
// [ i ][ f ][ i ]
// Save values for use after inserting a new interval.
auto EndBitOfOverlap = FirstOverlap.stop();
unsigned OverlapValue = FirstOverlap.value();
// Shorten the overlapping interval.
FirstOverlap.setStop(StartBit);
insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit,
OverlapValue, VarLoc.DL);
// Insert a new interval to represent the end part.
FragMap.insert(EndBit, EndBitOfOverlap, OverlapValue);
insertMemLoc(BB, Before, Var, EndBit, EndBitOfOverlap, OverlapValue,
VarLoc.DL);
// Insert the new (middle) fragment now there is space.
FragMap.insert(StartBit, EndBit, Base);
} else {
// There's an overlap but `f` may not be fully contained within
// `i`. Shorten any end-point intersections so that we can then
// insert `f`.
// [ - f - ]
// [ - i - ]
// | |
// [ i ]
// Shorten any end-point intersections.
if (IntersectStart) {
LLVM_DEBUG(dbgs() << "- Intersect interval at start\n");
// Split off at the intersection.
FirstOverlap.setStop(StartBit);
insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit,
*FirstOverlap, VarLoc.DL);
}
// [ - f - ]
// [ - i - ]
// | |
// [ i ]
if (IntersectEnd) {
LLVM_DEBUG(dbgs() << "- Intersect interval at end\n");
// Split off at the intersection.
LastOverlap.setStart(EndBit);
insertMemLoc(BB, Before, Var, EndBit, LastOverlap.stop(), *LastOverlap,
VarLoc.DL);
}
LLVM_DEBUG(dbgs() << "- Erase intervals contained within\n");
// FirstOverlap and LastOverlap have been shortened such that they're
// no longer overlapping with [StartBit, EndBit). Delete any overlaps
// that remain (these will be fully contained within `f`).
// [ - f - ] }
// [ - i - ] } Intersection shortening that has happened above.
// | | }
// [ i ] }
// -----------------
// [i2 ] } Intervals fully contained within `f` get erased.
// -----------------
// [ - f - ][ i ] } Completed insertion.
auto It = FirstOverlap;
if (IntersectStart)
++It; // IntersectStart: first overlap has been shortened.
while (It.valid() && It.start() >= StartBit && It.stop() <= EndBit) {
LLVM_DEBUG(dbgs() << "- Erase " << toString(It));
It.erase(); // This increments It after removing the interval.
}
// We've dealt with all the overlaps now!
assert(!FragMap.overlaps(StartBit, EndBit));
LLVM_DEBUG(dbgs() << "- Insert DEF into now-empty space\n");
FragMap.insert(StartBit, EndBit, Base);
}
}
bool skipVariable(const DILocalVariable *V) { return !V->getSizeInBits(); }
void process(BasicBlock &BB, VarFragMap &LiveSet) {
BBInsertBeforeMap[&BB].clear();
for (auto &I : BB) {
if (const auto *Locs = FnVarLocs->getWedge(&I)) {
for (const VarLocInfo &Loc : *Locs) {
addDef(Loc, I, *I.getParent(), LiveSet);
}
}
}
}
public:
MemLocFragmentFill(Function &Fn,
const DenseSet<DebugAggregate> *VarsWithStackSlot)
: Fn(Fn), VarsWithStackSlot(VarsWithStackSlot) {}
/// Add variable locations to \p FnVarLocs so that any bits of a variable
/// with a memory location have that location explicitly reinstated at each
/// subsequent variable location definition that that doesn't overwrite those
/// bits. i.e. after a variable location def, insert new defs for the memory
/// location with fragments for the difference of "all bits currently in
/// memory" and "the fragment of the second def". e.g.
///
/// Before:
///
/// var x bits 0 to 63: value in memory
/// more instructions
/// var x bits 0 to 31: value is %0
///
/// After:
///
/// var x bits 0 to 63: value in memory
/// more instructions
/// var x bits 0 to 31: value is %0
/// var x bits 32 to 61: value in memory ; <-- new loc def
///
void run(FunctionVarLocsBuilder *FnVarLocs) {
if (!EnableMemLocFragFill)
return;
this->FnVarLocs = FnVarLocs;
// Prepare for traversal.
//
ReversePostOrderTraversal<Function *> RPOT(&Fn);
std::priority_queue<unsigned int, std::vector<unsigned int>,
std::greater<unsigned int>>
Worklist;
std::priority_queue<unsigned int, std::vector<unsigned int>,
std::greater<unsigned int>>
Pending;
DenseMap<unsigned int, BasicBlock *> OrderToBB;
DenseMap<BasicBlock *, unsigned int> BBToOrder;
{ // Init OrderToBB and BBToOrder.
unsigned int RPONumber = 0;
for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
OrderToBB[RPONumber] = *RI;
BBToOrder[*RI] = RPONumber;
Worklist.push(RPONumber);
++RPONumber;
}
LiveIn.init(RPONumber);
LiveOut.init(RPONumber);
}
// Perform the traversal.
//
// This is a standard "intersect of predecessor outs" dataflow problem. To
// solve it, we perform meet() and process() using the two worklist method
// until the LiveIn data for each block becomes unchanging.
//
// This dataflow is essentially working on maps of sets and at each meet we
// intersect the maps and the mapped sets. So, initialized live-in maps
// monotonically decrease in value throughout the dataflow.
SmallPtrSet<BasicBlock *, 16> Visited;
while (!Worklist.empty() || !Pending.empty()) {
// We track what is on the pending worklist to avoid inserting the same
// thing twice. We could avoid this with a custom priority queue, but
// this is probably not worth it.
SmallPtrSet<BasicBlock *, 16> OnPending;
LLVM_DEBUG(dbgs() << "Processing Worklist\n");
while (!Worklist.empty()) {
BasicBlock *BB = OrderToBB[Worklist.top()];
LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n");
Worklist.pop();
bool InChanged = meet(*BB, Visited);
// Always consider LiveIn changed on the first visit.
InChanged |= Visited.insert(BB).second;
if (InChanged) {
LLVM_DEBUG(dbgs()
<< BB->getName() << " has new InLocs, process it\n");
// Mutate a copy of LiveIn while processing BB. Once we've processed
// the terminator LiveSet is the LiveOut set for BB.
// This is an expensive copy!
VarFragMap LiveSet = LiveIn[BB];
// Process the instructions in the block.
process(*BB, LiveSet);
// Relatively expensive check: has anything changed in LiveOut for BB?
if (!varFragMapsAreEqual(LiveOut[BB], LiveSet)) {
LLVM_DEBUG(dbgs() << BB->getName()
<< " has new OutLocs, add succs to worklist: [ ");
LiveOut[BB] = std::move(LiveSet);
for (auto I = succ_begin(BB), E = succ_end(BB); I != E; I++) {
if (OnPending.insert(*I).second) {
LLVM_DEBUG(dbgs() << I->getName() << " ");
Pending.push(BBToOrder[*I]);
}
}
LLVM_DEBUG(dbgs() << "]\n");
}
}
}
Worklist.swap(Pending);
// At this point, pending must be empty, since it was just the empty
// worklist
assert(Pending.empty() && "Pending should be empty");
}
// Insert new location defs.
for (auto Pair : BBInsertBeforeMap) {
InsertMap &Map = Pair.second;
for (auto Pair : Map) {
Instruction *InsertBefore = Pair.first;
assert(InsertBefore && "should never be null");
auto FragMemLocs = Pair.second;
auto &Ctx = Fn.getContext();
for (auto FragMemLoc : FragMemLocs) {
DIExpression *Expr = DIExpression::get(Ctx, std::nullopt);
Expr = *DIExpression::createFragmentExpression(
Expr, FragMemLoc.OffsetInBits, FragMemLoc.SizeInBits);
Expr = DIExpression::prepend(Expr, DIExpression::DerefAfter,
FragMemLoc.OffsetInBits / 8);
DebugVariable Var(Aggregates[FragMemLoc.Var].first, Expr,
FragMemLoc.DL.getInlinedAt());
FnVarLocs->addVarLoc(InsertBefore, Var, Expr, FragMemLoc.DL,
Bases[FragMemLoc.Base]);
}
}
}
}
};
/// AssignmentTrackingLowering encapsulates a dataflow analysis over a function
/// that interprets assignment tracking debug info metadata and stores in IR to
/// create a map of variable locations.
class AssignmentTrackingLowering {
public:
/// The kind of location in use for a variable, where Mem is the stack home,
/// Val is an SSA value or const, and None means that there is not one single
/// kind (either because there are multiple or because there is none; it may
/// prove useful to split this into two values in the future).
///
/// LocKind is a join-semilattice with the partial order:
/// None > Mem, Val
///
/// i.e.
/// join(Mem, Mem) = Mem
/// join(Val, Val) = Val
/// join(Mem, Val) = None
/// join(None, Mem) = None
/// join(None, Val) = None
/// join(None, None) = None
///
/// Note: the order is not `None > Val > Mem` because we're using DIAssignID
/// to name assignments and are not tracking the actual stored values.
/// Therefore currently there's no way to ensure that Mem values and Val
/// values are the same. This could be a future extension, though it's not
/// clear that many additional locations would be recovered that way in
/// practice as the likelihood of this sitation arising naturally seems
/// incredibly low.
enum class LocKind { Mem, Val, None };
/// An abstraction of the assignment of a value to a variable or memory
/// location.
///
/// An Assignment is Known or NoneOrPhi. A Known Assignment means we have a
/// DIAssignID ptr that represents it. NoneOrPhi means that we don't (or
/// can't) know the ID of the last assignment that took place.
///
/// The Status of the Assignment (Known or NoneOrPhi) is another
/// join-semilattice. The partial order is:
/// NoneOrPhi > Known {id_0, id_1, ...id_N}
///
/// i.e. for all values x and y where x != y:
/// join(x, x) = x
/// join(x, y) = NoneOrPhi
struct Assignment {
enum S { Known, NoneOrPhi } Status;
/// ID of the assignment. nullptr if Status is not Known.
DIAssignID *ID;
/// The dbg.assign that marks this dbg-def. Mem-defs don't use this field.
/// May be nullptr.
DbgAssignIntrinsic *Source;
bool isSameSourceAssignment(const Assignment &Other) const {
// Don't include Source in the equality check. Assignments are
// defined by their ID, not debug intrinsic(s).
return std::tie(Status, ID) == std::tie(Other.Status, Other.ID);
}
void dump(raw_ostream &OS) {
static const char *LUT[] = {"Known", "NoneOrPhi"};
OS << LUT[Status] << "(id=";
if (ID)
OS << ID;
else
OS << "null";
OS << ", s=";
if (Source)
OS << *Source;
else
OS << "null";
OS << ")";
}
static Assignment make(DIAssignID *ID, DbgAssignIntrinsic *Source) {
return Assignment(Known, ID, Source);
}
static Assignment makeFromMemDef(DIAssignID *ID) {
return Assignment(Known, ID, nullptr);
}
static Assignment makeNoneOrPhi() {
return Assignment(NoneOrPhi, nullptr, nullptr);
}
// Again, need a Top value?
Assignment()
: Status(NoneOrPhi), ID(nullptr), Source(nullptr) {
} // Can we delete this?
Assignment(S Status, DIAssignID *ID, DbgAssignIntrinsic *Source)
: Status(Status), ID(ID), Source(Source) {
// If the Status is Known then we expect there to be an assignment ID.
assert(Status == NoneOrPhi || ID);
}
};
using AssignmentMap = DenseMap<VariableID, Assignment>;
using LocMap = DenseMap<VariableID, LocKind>;
using OverlapMap = DenseMap<VariableID, SmallVector<VariableID, 4>>;
using UntaggedStoreAssignmentMap =
DenseMap<const Instruction *,
SmallVector<std::pair<VariableID, at::AssignmentInfo>>>;
private:
/// Map a variable to the set of variables that it fully contains.
OverlapMap VarContains;
/// Map untagged stores to the variable fragments they assign to. Used by
/// processUntaggedInstruction.
UntaggedStoreAssignmentMap UntaggedStoreVars;
// Machinery to defer inserting dbg.values.
using InsertMap = MapVector<Instruction *, SmallVector<VarLocInfo>>;
InsertMap InsertBeforeMap;
/// Clear the location definitions currently cached for insertion after /p
/// After.
void resetInsertionPoint(Instruction &After);
void emitDbgValue(LocKind Kind, const DbgVariableIntrinsic *Source,
Instruction *After);
static bool mapsAreEqual(const AssignmentMap &A, const AssignmentMap &B) {
if (A.size() != B.size())
return false;
for (const auto &Pair : A) {
VariableID Var = Pair.first;
const Assignment &AV = Pair.second;
auto R = B.find(Var);
// Check if this entry exists in B, otherwise ret false.
if (R == B.end())
return false;
// Check that the assignment value is the same.
if (!AV.isSameSourceAssignment(R->second))
return false;
}
return true;
}
/// Represents the stack and debug assignments in a block. Used to describe
/// the live-in and live-out values for blocks, as well as the "current"
/// value as we process each instruction in a block.
struct BlockInfo {
/// Dominating assignment to memory for each variable.
AssignmentMap StackHomeValue;
/// Dominating assignemnt to each variable.
AssignmentMap DebugValue;
/// Location kind for each variable. LiveLoc indicates whether the
/// dominating assignment in StackHomeValue (LocKind::Mem), DebugValue
/// (LocKind::Val), or neither (LocKind::None) is valid, in that order of
/// preference. This cannot be derived by inspecting DebugValue and
/// StackHomeValue due to the fact that there's no distinction in
/// Assignment (the class) between whether an assignment is unknown or a
/// merge of multiple assignments (both are Status::NoneOrPhi). In other
/// words, the memory location may well be valid while both DebugValue and
/// StackHomeValue contain Assignments that have a Status of NoneOrPhi.
LocMap LiveLoc;
/// Compare every element in each map to determine structural equality
/// (slow).
bool operator==(const BlockInfo &Other) const {
return LiveLoc == Other.LiveLoc &&
mapsAreEqual(StackHomeValue, Other.StackHomeValue) &&
mapsAreEqual(DebugValue, Other.DebugValue);
}
bool operator!=(const BlockInfo &Other) const { return !(*this == Other); }
bool isValid() {
return LiveLoc.size() == DebugValue.size() &&
LiveLoc.size() == StackHomeValue.size();
}
};
Function &Fn;
const DataLayout &Layout;
const DenseSet<DebugAggregate> *VarsWithStackSlot;
FunctionVarLocsBuilder *FnVarLocs;
DenseMap<const BasicBlock *, BlockInfo> LiveIn;
DenseMap<const BasicBlock *, BlockInfo> LiveOut;
/// Helper for process methods to track variables touched each frame.
DenseSet<VariableID> VarsTouchedThisFrame;
/// The set of variables that sometimes are not located in their stack home.
DenseSet<DebugAggregate> NotAlwaysStackHomed;
VariableID getVariableID(const DebugVariable &Var) {
return static_cast<VariableID>(FnVarLocs->insertVariable(Var));
}
/// Join the LiveOut values of preds that are contained in \p Visited into
/// LiveIn[BB]. Return True if LiveIn[BB] has changed as a result. LiveIn[BB]
/// values monotonically increase. See the @link joinMethods join methods
/// @endlink documentation for more info.
bool join(const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited);
///@name joinMethods
/// Functions that implement `join` (the least upper bound) for the
/// join-semilattice types used in the dataflow. There is an explicit bottom
/// value (⊥) for some types and and explicit top value (⊤) for all types.
/// By definition:
///
/// Join(A, B) >= A && Join(A, B) >= B
/// Join(A, ⊥) = A
/// Join(A, ⊤) = ⊤
///
/// These invariants are important for monotonicity.
///
/// For the map-type functions, all unmapped keys in an empty map are
/// associated with a bottom value (⊥). This represents their values being
/// unknown. Unmapped keys in non-empty maps (joining two maps with a key
/// only present in one) represents either a variable going out of scope or
/// dropped debug info. It is assumed the key is associated with a top value
/// (⊤) in this case (unknown location / assignment).
///@{
static LocKind joinKind(LocKind A, LocKind B);
static LocMap joinLocMap(const LocMap &A, const LocMap &B);
static Assignment joinAssignment(const Assignment &A, const Assignment &B);
static AssignmentMap joinAssignmentMap(const AssignmentMap &A,
const AssignmentMap &B);
static BlockInfo joinBlockInfo(const BlockInfo &A, const BlockInfo &B);
///@}
/// Process the instructions in \p BB updating \p LiveSet along the way. \p
/// LiveSet must be initialized with the current live-in locations before
/// calling this.
void process(BasicBlock &BB, BlockInfo *LiveSet);
///@name processMethods
/// Methods to process instructions in order to update the LiveSet (current
/// location information).
///@{
void processNonDbgInstruction(Instruction &I, BlockInfo *LiveSet);
void processDbgInstruction(Instruction &I, BlockInfo *LiveSet);
/// Update \p LiveSet after encountering an instruction with a DIAssignID
/// attachment, \p I.
void processTaggedInstruction(Instruction &I, BlockInfo *LiveSet);
/// Update \p LiveSet after encountering an instruciton without a DIAssignID
/// attachment, \p I.
void processUntaggedInstruction(Instruction &I, BlockInfo *LiveSet);
void processDbgAssign(DbgAssignIntrinsic &DAI, BlockInfo *LiveSet);
void processDbgValue(DbgValueInst &DVI, BlockInfo *LiveSet);
/// Add an assignment to memory for the variable /p Var.
void addMemDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV);
/// Add an assignment to the variable /p Var.
void addDbgDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV);
///@}
/// Set the LocKind for \p Var.
void setLocKind(BlockInfo *LiveSet, VariableID Var, LocKind K);
/// Get the live LocKind for a \p Var. Requires addMemDef or addDbgDef to
/// have been called for \p Var first.
LocKind getLocKind(BlockInfo *LiveSet, VariableID Var);
/// Return true if \p Var has an assignment in \p M matching \p AV.
bool hasVarWithAssignment(VariableID Var, const Assignment &AV,
const AssignmentMap &M);
/// Emit info for variables that are fully promoted.
bool emitPromotedVarLocs(FunctionVarLocsBuilder *FnVarLocs);
public:
AssignmentTrackingLowering(Function &Fn, const DataLayout &Layout,
const DenseSet<DebugAggregate> *VarsWithStackSlot)
: Fn(Fn), Layout(Layout), VarsWithStackSlot(VarsWithStackSlot) {}
/// Run the analysis, adding variable location info to \p FnVarLocs. Returns
/// true if any variable locations have been added to FnVarLocs.
bool run(FunctionVarLocsBuilder *FnVarLocs);
};
} // namespace
void AssignmentTrackingLowering::setLocKind(BlockInfo *LiveSet, VariableID Var,
LocKind K) {
auto SetKind = [this](BlockInfo *LiveSet, VariableID Var, LocKind K) {
VarsTouchedThisFrame.insert(Var);
LiveSet->LiveLoc[Var] = K;
};
SetKind(LiveSet, Var, K);
// Update the LocKind for all fragments contained within Var.
for (VariableID Frag : VarContains[Var])
SetKind(LiveSet, Frag, K);
}
AssignmentTrackingLowering::LocKind
AssignmentTrackingLowering::getLocKind(BlockInfo *LiveSet, VariableID Var) {
auto Pair = LiveSet->LiveLoc.find(Var);
assert(Pair != LiveSet->LiveLoc.end());
return Pair->second;
}
void AssignmentTrackingLowering::addMemDef(BlockInfo *LiveSet, VariableID Var,
const Assignment &AV) {
auto AddDef = [](BlockInfo *LiveSet, VariableID Var, Assignment AV) {
LiveSet->StackHomeValue[Var] = AV;
// Add default (Var -> ⊤) to DebugValue if Var isn't in DebugValue yet.
LiveSet->DebugValue.insert({Var, Assignment::makeNoneOrPhi()});
// Add default (Var -> ⊤) to LiveLocs if Var isn't in LiveLocs yet. Callers
// of addMemDef will call setLocKind to override.
LiveSet->LiveLoc.insert({Var, LocKind::None});
};
AddDef(LiveSet, Var, AV);
// Use this assigment for all fragments contained within Var, but do not
// provide a Source because we cannot convert Var's value to a value for the
// fragment.
Assignment FragAV = AV;
FragAV.Source = nullptr;
for (VariableID Frag : VarContains[Var])
AddDef(LiveSet, Frag, FragAV);
}
void AssignmentTrackingLowering::addDbgDef(BlockInfo *LiveSet, VariableID Var,
const Assignment &AV) {
auto AddDef = [](BlockInfo *LiveSet, VariableID Var, Assignment AV) {
LiveSet->DebugValue[Var] = AV;
// Add default (Var -> ⊤) to StackHome if Var isn't in StackHome yet.
LiveSet->StackHomeValue.insert({Var, Assignment::makeNoneOrPhi()});
// Add default (Var -> ⊤) to LiveLocs if Var isn't in LiveLocs yet. Callers
// of addDbgDef will call setLocKind to override.
LiveSet->LiveLoc.insert({Var, LocKind::None});
};
AddDef(LiveSet, Var, AV);
// Use this assigment for all fragments contained within Var, but do not
// provide a Source because we cannot convert Var's value to a value for the
// fragment.
Assignment FragAV = AV;
FragAV.Source = nullptr;
for (VariableID Frag : VarContains[Var])
AddDef(LiveSet, Frag, FragAV);
}
static DIAssignID *getIDFromInst(const Instruction &I) {
return cast<DIAssignID>(I.getMetadata(LLVMContext::MD_DIAssignID));
}
static DIAssignID *getIDFromMarker(const DbgAssignIntrinsic &DAI) {
return cast<DIAssignID>(DAI.getAssignID());
}
/// Return true if \p Var has an assignment in \p M matching \p AV.
bool AssignmentTrackingLowering::hasVarWithAssignment(VariableID Var,
const Assignment &AV,
const AssignmentMap &M) {
auto AssignmentIsMapped = [](VariableID Var, const Assignment &AV,
const AssignmentMap &M) {
auto R = M.find(Var);
if (R == M.end())
return false;
return AV.isSameSourceAssignment(R->second);
};
if (!AssignmentIsMapped(Var, AV, M))
return false;
// Check all the frags contained within Var as these will have all been
// mapped to AV at the last store to Var.
for (VariableID Frag : VarContains[Var])
if (!AssignmentIsMapped(Frag, AV, M))
return false;
return true;
}
#ifndef NDEBUG
const char *locStr(AssignmentTrackingLowering::LocKind Loc) {
using LocKind = AssignmentTrackingLowering::LocKind;
switch (Loc) {
case LocKind::Val:
return "Val";
case LocKind::Mem:
return "Mem";
case LocKind::None:
return "None";
};
llvm_unreachable("unknown LocKind");
}
#endif
void AssignmentTrackingLowering::emitDbgValue(
AssignmentTrackingLowering::LocKind Kind,
const DbgVariableIntrinsic *Source, Instruction *After) {
DILocation *DL = Source->getDebugLoc();
auto Emit = [this, Source, After, DL](Value *Val, DIExpression *Expr) {
assert(Expr);
if (!Val)
Val = PoisonValue::get(Type::getInt1Ty(Source->getContext()));
// Find a suitable insert point.
Instruction *InsertBefore = After->getNextNode();
assert(InsertBefore && "Shouldn't be inserting after a terminator");
VariableID Var = getVariableID(DebugVariable(Source));
VarLocInfo VarLoc;
VarLoc.VariableID = static_cast<VariableID>(Var);
VarLoc.Expr = Expr;
VarLoc.V = Val;
VarLoc.DL = DL;
// Insert it into the map for later.
InsertBeforeMap[InsertBefore].push_back(VarLoc);
};
// NOTE: This block can mutate Kind.
if (Kind == LocKind::Mem) {
const auto *DAI = cast<DbgAssignIntrinsic>(Source);
// Check the address hasn't been dropped (e.g. the debug uses may not have
// been replaced before deleting a Value).
if (DAI->isKillAddress()) {
// The address isn't valid so treat this as a non-memory def.
Kind = LocKind::Val;
} else {
Value *Val = DAI->getAddress();
DIExpression *Expr = DAI->getAddressExpression();
assert(!Expr->getFragmentInfo() &&
"fragment info should be stored in value-expression only");
// Copy the fragment info over from the value-expression to the new
// DIExpression.
if (auto OptFragInfo = Source->getExpression()->getFragmentInfo()) {
auto FragInfo = *OptFragInfo;
Expr = *DIExpression::createFragmentExpression(
Expr, FragInfo.OffsetInBits, FragInfo.SizeInBits);
}
// The address-expression has an implicit deref, add it now.
std::tie(Val, Expr) =
walkToAllocaAndPrependOffsetDeref(Layout, Val, Expr);
Emit(Val, Expr);
return;
}
}
if (Kind == LocKind::Val) {
/// Get the value component, converting to Undef if it is variadic.
Value *Val =
Source->hasArgList() ? nullptr : Source->getVariableLocationOp(0);
Emit(Val, Source->getExpression());
return;
}
if (Kind == LocKind::None) {
Emit(nullptr, Source->getExpression());
return;
}
}
void AssignmentTrackingLowering::processNonDbgInstruction(
Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
if (I.hasMetadata(LLVMContext::MD_DIAssignID))
processTaggedInstruction(I, LiveSet);
else
processUntaggedInstruction(I, LiveSet);
}
void AssignmentTrackingLowering::processUntaggedInstruction(
Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
// Interpret stack stores that are not tagged as an assignment in memory for
// the variables associated with that address. These stores may not be tagged
// because a) the store cannot be represented using dbg.assigns (non-const
// length or offset) or b) the tag was accidentally dropped during
// optimisations. For these stores we fall back to assuming that the stack
// home is a valid location for the variables. The benefit is that this
// prevents us missing an assignment and therefore incorrectly maintaining
// earlier location definitions, and in many cases it should be a reasonable
// assumption. However, this will occasionally lead to slight
// inaccuracies. The value of a hoisted untagged store will be visible
// "early", for example.
assert(!I.hasMetadata(LLVMContext::MD_DIAssignID));
auto It = UntaggedStoreVars.find(&I);
if (It == UntaggedStoreVars.end())
return; // No variables associated with the store destination.
LLVM_DEBUG(dbgs() << "processUntaggedInstruction on UNTAGGED INST " << I
<< "\n");
// Iterate over the variables that this store affects, add a NoneOrPhi dbg
// and mem def, set lockind to Mem, and emit a location def for each.
for (auto [Var, Info] : It->second) {
// This instruction is treated as both a debug and memory assignment,
// meaning the memory location should be used. We don't have an assignment
// ID though so use Assignment::makeNoneOrPhi() to create an imaginary one.
addMemDef(LiveSet, Var, Assignment::makeNoneOrPhi());
addDbgDef(LiveSet, Var, Assignment::makeNoneOrPhi());
setLocKind(LiveSet, Var, LocKind::Mem);
LLVM_DEBUG(dbgs() << " setting Stack LocKind to: " << locStr(LocKind::Mem)
<< "\n");
// Build the dbg location def to insert.
//
// DIExpression: Add fragment and offset.
DebugVariable V = FnVarLocs->getVariable(Var);
DIExpression *DIE = DIExpression::get(I.getContext(), std::nullopt);
if (auto Frag = V.getFragment()) {
auto R = DIExpression::createFragmentExpression(DIE, Frag->OffsetInBits,
Frag->SizeInBits);
assert(R && "unexpected createFragmentExpression failure");
DIE = *R;
}
SmallVector<uint64_t, 3> Ops;
if (Info.OffsetInBits)
Ops = {dwarf::DW_OP_plus_uconst, Info.OffsetInBits / 8};
Ops.push_back(dwarf::DW_OP_deref);
DIE = DIExpression::prependOpcodes(DIE, Ops, /*StackValue=*/false,
/*EntryValue=*/false);
// Find a suitable insert point.
Instruction *InsertBefore = I.getNextNode();
assert(InsertBefore && "Shouldn't be inserting after a terminator");
// Get DILocation for this unrecorded assignment.
DILocation *InlinedAt = const_cast<DILocation *>(V.getInlinedAt());
const DILocation *DILoc = DILocation::get(
Fn.getContext(), 0, 0, V.getVariable()->getScope(), InlinedAt);
VarLocInfo VarLoc;
VarLoc.VariableID = static_cast<VariableID>(Var);
VarLoc.Expr = DIE;
VarLoc.V = const_cast<AllocaInst *>(Info.Base);
VarLoc.DL = DILoc;
// 3. Insert it into the map for later.
InsertBeforeMap[InsertBefore].push_back(VarLoc);
}
}
void AssignmentTrackingLowering::processTaggedInstruction(
Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
auto Linked = at::getAssignmentMarkers(&I);
// No dbg.assign intrinsics linked.
// FIXME: All vars that have a stack slot this store modifies that don't have
// a dbg.assign linked to it should probably treat this like an untagged
// store.
if (Linked.empty())
return;
LLVM_DEBUG(dbgs() << "processTaggedInstruction on " << I << "\n");
for (DbgAssignIntrinsic *DAI : Linked) {
VariableID Var = getVariableID(DebugVariable(DAI));
// Something has gone wrong if VarsWithStackSlot doesn't contain a variable
// that is linked to a store.
assert(VarsWithStackSlot->count(getAggregate(DAI)) &&
"expected DAI's variable to have stack slot");
Assignment AV = Assignment::makeFromMemDef(getIDFromInst(I));
addMemDef(LiveSet, Var, AV);
LLVM_DEBUG(dbgs() << " linked to " << *DAI << "\n");
LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var))
<< " -> ");
// The last assignment to the stack is now AV. Check if the last debug
// assignment has a matching Assignment.
if (hasVarWithAssignment(Var, AV, LiveSet->DebugValue)) {
// The StackHomeValue and DebugValue for this variable match so we can
// emit a stack home location here.
LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";);
LLVM_DEBUG(dbgs() << " Stack val: "; AV.dump(dbgs()); dbgs() << "\n");
LLVM_DEBUG(dbgs() << " Debug val: ";
LiveSet->DebugValue[Var].dump(dbgs()); dbgs() << "\n");
setLocKind(LiveSet, Var, LocKind::Mem);
emitDbgValue(LocKind::Mem, DAI, &I);
continue;
}
// The StackHomeValue and DebugValue for this variable do not match. I.e.
// The value currently stored in the stack is not what we'd expect to
// see, so we cannot use emit a stack home location here. Now we will
// look at the live LocKind for the variable and determine an appropriate
// dbg.value to emit.
LocKind PrevLoc = getLocKind(LiveSet, Var);
switch (PrevLoc) {
case LocKind::Val: {
// The value in memory in memory has changed but we're not currently
// using the memory location. Do nothing.
LLVM_DEBUG(dbgs() << "Val, (unchanged)\n";);
setLocKind(LiveSet, Var, LocKind::Val);
} break;
case LocKind::Mem: {
// There's been an assignment to memory that we were using as a
// location for this variable, and the Assignment doesn't match what
// we'd expect to see in memory.
if (LiveSet->DebugValue[Var].Status == Assignment::NoneOrPhi) {
// We need to terminate any previously open location now.
LLVM_DEBUG(dbgs() << "None, No Debug value available\n";);
setLocKind(LiveSet, Var, LocKind::None);
emitDbgValue(LocKind::None, DAI, &I);
} else {
// The previous DebugValue Value can be used here.
LLVM_DEBUG(dbgs() << "Val, Debug value is Known\n";);
setLocKind(LiveSet, Var, LocKind::Val);
Assignment PrevAV = LiveSet->DebugValue.lookup(Var);
if (PrevAV.Source) {
emitDbgValue(LocKind::Val, PrevAV.Source, &I);
} else {
// PrevAV.Source is nullptr so we must emit undef here.
emitDbgValue(LocKind::None, DAI, &I);
}
}
} break;
case LocKind::None: {
// There's been an assignment to memory and we currently are
// not tracking a location for the variable. Do not emit anything.
LLVM_DEBUG(dbgs() << "None, (unchanged)\n";);
setLocKind(LiveSet, Var, LocKind::None);
} break;
}
}
}
void AssignmentTrackingLowering::processDbgAssign(DbgAssignIntrinsic &DAI,
BlockInfo *LiveSet) {
// Only bother tracking variables that are at some point stack homed. Other
// variables can be dealt with trivially later.
if (!VarsWithStackSlot->count(getAggregate(&DAI)))
return;
VariableID Var = getVariableID(DebugVariable(&DAI));
Assignment AV = Assignment::make(getIDFromMarker(DAI), &DAI);
addDbgDef(LiveSet, Var, AV);
LLVM_DEBUG(dbgs() << "processDbgAssign on " << DAI << "\n";);
LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var))
<< " -> ");
// Check if the DebugValue and StackHomeValue both hold the same
// Assignment.
if (hasVarWithAssignment(Var, AV, LiveSet->StackHomeValue)) {
// They match. We can use the stack home because the debug intrinsics state
// that an assignment happened here, and we know that specific assignment
// was the last one to take place in memory for this variable.
LocKind Kind;
if (DAI.isKillAddress()) {
LLVM_DEBUG(
dbgs()
<< "Val, Stack matches Debug program but address is killed\n";);
Kind = LocKind::Val;
} else {
LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";);
Kind = LocKind::Mem;
};
setLocKind(LiveSet, Var, Kind);
emitDbgValue(Kind, &DAI, &DAI);
} else {
// The last assignment to the memory location isn't the one that we want to
// show to the user so emit a dbg.value(Value). Value may be undef.
LLVM_DEBUG(dbgs() << "Val, Stack contents is unknown\n";);
setLocKind(LiveSet, Var, LocKind::Val);
emitDbgValue(LocKind::Val, &DAI, &DAI);
}
}
void AssignmentTrackingLowering::processDbgValue(DbgValueInst &DVI,
BlockInfo *LiveSet) {
// Only other tracking variables that are at some point stack homed.
// Other variables can be dealt with trivally later.
if (!VarsWithStackSlot->count(getAggregate(&DVI)))
return;
VariableID Var = getVariableID(DebugVariable(&DVI));
// We have no ID to create an Assignment with so we mark this assignment as
// NoneOrPhi. Note that the dbg.value still exists, we just cannot determine
// the assignment responsible for setting this value.
// This is fine; dbg.values are essentially interchangable with unlinked
// dbg.assigns, and some passes such as mem2reg and instcombine add them to
// PHIs for promoted variables.
Assignment AV = Assignment::makeNoneOrPhi();
addDbgDef(LiveSet, Var, AV);
LLVM_DEBUG(dbgs() << "processDbgValue on " << DVI << "\n";);
LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var))
<< " -> Val, dbg.value override");
setLocKind(LiveSet, Var, LocKind::Val);
emitDbgValue(LocKind::Val, &DVI, &DVI);
}
void AssignmentTrackingLowering::processDbgInstruction(
Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
assert(!isa<DbgAddrIntrinsic>(&I) && "unexpected dbg.addr");
if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&I))
processDbgAssign(*DAI, LiveSet);
else if (auto *DVI = dyn_cast<DbgValueInst>(&I))
processDbgValue(*DVI, LiveSet);
}
void AssignmentTrackingLowering::resetInsertionPoint(Instruction &After) {
assert(!After.isTerminator() && "Can't insert after a terminator");
auto R = InsertBeforeMap.find(After.getNextNode());
if (R == InsertBeforeMap.end())
return;
R->second.clear();
}
void AssignmentTrackingLowering::process(BasicBlock &BB, BlockInfo *LiveSet) {
for (auto II = BB.begin(), EI = BB.end(); II != EI;) {
assert(VarsTouchedThisFrame.empty());
// Process the instructions in "frames". A "frame" includes a single
// non-debug instruction followed any debug instructions before the
// next non-debug instruction.
if (!isa<DbgInfoIntrinsic>(&*II)) {
if (II->isTerminator())
break;
resetInsertionPoint(*II);
processNonDbgInstruction(*II, LiveSet);
assert(LiveSet->isValid());
++II;
}
while (II != EI) {
if (!isa<DbgInfoIntrinsic>(&*II))
break;
resetInsertionPoint(*II);
processDbgInstruction(*II, LiveSet);
assert(LiveSet->isValid());
++II;
}
// We've processed everything in the "frame". Now determine which variables
// cannot be represented by a dbg.declare.
for (auto Var : VarsTouchedThisFrame) {
LocKind Loc = getLocKind(LiveSet, Var);
// If a variable's LocKind is anything other than LocKind::Mem then we
// must note that it cannot be represented with a dbg.declare.
// Note that this check is enough without having to check the result of
// joins() because for join to produce anything other than Mem after
// we've already seen a Mem we'd be joining None or Val with Mem. In that
// case, we've already hit this codepath when we set the LocKind to Val
// or None in that block.
if (Loc != LocKind::Mem) {
DebugVariable DbgVar = FnVarLocs->getVariable(Var);
DebugAggregate Aggr{DbgVar.getVariable(), DbgVar.getInlinedAt()};
NotAlwaysStackHomed.insert(Aggr);
}
}
VarsTouchedThisFrame.clear();
}
}
AssignmentTrackingLowering::LocKind
AssignmentTrackingLowering::joinKind(LocKind A, LocKind B) {
// Partial order:
// None > Mem, Val
return A == B ? A : LocKind::None;
}
AssignmentTrackingLowering::LocMap
AssignmentTrackingLowering::joinLocMap(const LocMap &A, const LocMap &B) {
// Join A and B.
//
// U = join(a, b) for a in A, b in B where Var(a) == Var(b)
// D = join(x, ⊤) for x where Var(x) is in A xor B
// Join = U ∪ D
//
// This is achieved by performing a join on elements from A and B with
// variables common to both A and B (join elements indexed by var intersect),
// then adding LocKind::None elements for vars in A xor B. The latter part is
// equivalent to performing join on elements with variables in A xor B with
// LocKind::None (⊤) since join(x, ⊤) = ⊤.
LocMap Join;
SmallVector<VariableID, 16> SymmetricDifference;
// Insert the join of the elements with common vars into Join. Add the
// remaining elements to into SymmetricDifference.
for (const auto &[Var, Loc] : A) {
// If this Var doesn't exist in B then add it to the symmetric difference
// set.
auto R = B.find(Var);
if (R == B.end()) {
SymmetricDifference.push_back(Var);
continue;
}
// There is an entry for Var in both, join it.
Join[Var] = joinKind(Loc, R->second);
}
unsigned IntersectSize = Join.size();
(void)IntersectSize;
// Add the elements in B with variables that are not in A into
// SymmetricDifference.
for (const auto &Pair : B) {
VariableID Var = Pair.first;
if (A.count(Var) == 0)
SymmetricDifference.push_back(Var);
}
// Add SymmetricDifference elements to Join and return the result.
for (const auto &Var : SymmetricDifference)
Join.insert({Var, LocKind::None});
assert(Join.size() == (IntersectSize + SymmetricDifference.size()));
assert(Join.size() >= A.size() && Join.size() >= B.size());
return Join;
}
AssignmentTrackingLowering::Assignment
AssignmentTrackingLowering::joinAssignment(const Assignment &A,
const Assignment &B) {
// Partial order:
// NoneOrPhi(null, null) > Known(v, ?s)
// If either are NoneOrPhi the join is NoneOrPhi.
// If either value is different then the result is
// NoneOrPhi (joining two values is a Phi).
if (!A.isSameSourceAssignment(B))
return Assignment::makeNoneOrPhi();
if (A.Status == Assignment::NoneOrPhi)
return Assignment::makeNoneOrPhi();
// Source is used to lookup the value + expression in the debug program if
// the stack slot gets assigned a value earlier than expected. Because
// we're only tracking the one dbg.assign, we can't capture debug PHIs.
// It's unlikely that we're losing out on much coverage by avoiding that
// extra work.
// The Source may differ in this situation:
// Pred.1:
// dbg.assign i32 0, ..., !1, ...
// Pred.2:
// dbg.assign i32 1, ..., !1, ...
// Here the same assignment (!1) was performed in both preds in the source,
// but we can't use either one unless they are identical (e.g. .we don't
// want to arbitrarily pick between constant values).
auto JoinSource = [&]() -> DbgAssignIntrinsic * {
if (A.Source == B.Source)
return A.Source;
if (A.Source == nullptr || B.Source == nullptr)
return nullptr;
if (A.Source->isIdenticalTo(B.Source))
return A.Source;
return nullptr;
};
DbgAssignIntrinsic *Source = JoinSource();
assert(A.Status == B.Status && A.Status == Assignment::Known);
assert(A.ID == B.ID);
return Assignment::make(A.ID, Source);
}
AssignmentTrackingLowering::AssignmentMap
AssignmentTrackingLowering::joinAssignmentMap(const AssignmentMap &A,
const AssignmentMap &B) {
// Join A and B.
//
// U = join(a, b) for a in A, b in B where Var(a) == Var(b)
// D = join(x, ⊤) for x where Var(x) is in A xor B
// Join = U ∪ D
//
// This is achieved by performing a join on elements from A and B with
// variables common to both A and B (join elements indexed by var intersect),
// then adding LocKind::None elements for vars in A xor B. The latter part is
// equivalent to performing join on elements with variables in A xor B with
// Status::NoneOrPhi (⊤) since join(x, ⊤) = ⊤.
AssignmentMap Join;
SmallVector<VariableID, 16> SymmetricDifference;
// Insert the join of the elements with common vars into Join. Add the
// remaining elements to into SymmetricDifference.
for (const auto &[Var, AV] : A) {
// If this Var doesn't exist in B then add it to the symmetric difference
// set.
auto R = B.find(Var);
if (R == B.end()) {
SymmetricDifference.push_back(Var);
continue;
}
// There is an entry for Var in both, join it.
Join[Var] = joinAssignment(AV, R->second);
}
unsigned IntersectSize = Join.size();
(void)IntersectSize;
// Add the elements in B with variables that are not in A into
// SymmetricDifference.
for (const auto &Pair : B) {
VariableID Var = Pair.first;
if (A.count(Var) == 0)
SymmetricDifference.push_back(Var);
}
// Add SymmetricDifference elements to Join and return the result.
for (auto Var : SymmetricDifference)
Join.insert({Var, Assignment::makeNoneOrPhi()});
assert(Join.size() == (IntersectSize + SymmetricDifference.size()));
assert(Join.size() >= A.size() && Join.size() >= B.size());
return Join;
}
AssignmentTrackingLowering::BlockInfo
AssignmentTrackingLowering::joinBlockInfo(const BlockInfo &A,
const BlockInfo &B) {
BlockInfo Join;
Join.LiveLoc = joinLocMap(A.LiveLoc, B.LiveLoc);
Join.StackHomeValue = joinAssignmentMap(A.StackHomeValue, B.StackHomeValue);
Join.DebugValue = joinAssignmentMap(A.DebugValue, B.DebugValue);
assert(Join.isValid());
return Join;
}
bool AssignmentTrackingLowering::join(
const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited) {
BlockInfo BBLiveIn;
bool FirstJoin = true;
// LiveIn locs for BB is the join of the already-processed preds' LiveOut
// locs.
for (auto I = pred_begin(&BB), E = pred_end(&BB); I != E; I++) {
// Ignore backedges if we have not visited the predecessor yet. As the
// predecessor hasn't yet had locations propagated into it, most locations
// will not yet be valid, so treat them as all being uninitialized and
// potentially valid. If a location guessed to be correct here is
// invalidated later, we will remove it when we revisit this block. This
// is essentially the same as initialising all LocKinds and Assignments to
// an implicit ⊥ value which is the identity value for the join operation.
const BasicBlock *Pred = *I;
if (!Visited.count(Pred))
continue;
auto PredLiveOut = LiveOut.find(Pred);
// Pred must have been processed already. See comment at start of this loop.
assert(PredLiveOut != LiveOut.end());
// Perform the join of BBLiveIn (current live-in info) and PrevLiveOut.
if (FirstJoin)
BBLiveIn = PredLiveOut->second;
else
BBLiveIn = joinBlockInfo(std::move(BBLiveIn), PredLiveOut->second);
FirstJoin = false;
}
auto CurrentLiveInEntry = LiveIn.find(&BB);
// Check if there isn't an entry, or there is but the LiveIn set has changed
// (expensive check).
if (CurrentLiveInEntry == LiveIn.end() ||
BBLiveIn != CurrentLiveInEntry->second) {
LiveIn[&BB] = std::move(BBLiveIn);
// A change has occured.
return true;
}
// No change.
return false;
}
/// Return true if A fully contains B.
static bool fullyContains(DIExpression::FragmentInfo A,
DIExpression::FragmentInfo B) {
auto ALeft = A.OffsetInBits;
auto BLeft = B.OffsetInBits;
if (BLeft < ALeft)
return false;
auto ARight = ALeft + A.SizeInBits;
auto BRight = BLeft + B.SizeInBits;
if (BRight > ARight)
return false;
return true;
}
static std::optional<at::AssignmentInfo>
getUntaggedStoreAssignmentInfo(const Instruction &I, const DataLayout &Layout) {
// Don't bother checking if this is an AllocaInst. We know this
// instruction has no tag which means there are no variables associated
// with it.
if (const auto *SI = dyn_cast<StoreInst>(&I))
return at::getAssignmentInfo(Layout, SI);
if (const auto *MI = dyn_cast<MemIntrinsic>(&I))
return at::getAssignmentInfo(Layout, MI);
// Alloca or non-store-like inst.
return std::nullopt;
}
/// Build a map of {Variable x: Variables y} where all variable fragments
/// contained within the variable fragment x are in set y. This means that
/// y does not contain all overlaps because partial overlaps are excluded.
///
/// While we're iterating over the function, add single location defs for
/// dbg.declares to \p FnVarLocs
///
/// Finally, populate UntaggedStoreVars with a mapping of untagged stores to
/// the stored-to variable fragments.
///
/// These tasks are bundled together to reduce the number of times we need
/// to iterate over the function as they can be achieved together in one pass.
static AssignmentTrackingLowering::OverlapMap buildOverlapMapAndRecordDeclares(
Function &Fn, FunctionVarLocsBuilder *FnVarLocs,
AssignmentTrackingLowering::UntaggedStoreAssignmentMap &UntaggedStoreVars) {
DenseSet<DebugVariable> Seen;
// Map of Variable: [Fragments].
DenseMap<DebugAggregate, SmallVector<DebugVariable, 8>> FragmentMap;
// Iterate over all instructions:
// - dbg.declare -> add single location variable record
// - dbg.* -> Add fragments to FragmentMap
// - untagged store -> Add fragments to FragmentMap and update
// UntaggedStoreVars.
// We need to add fragments for untagged stores too so that we can correctly
// clobber overlapped fragment locations later.
for (auto &BB : Fn) {
for (auto &I : BB) {
if (auto *DDI = dyn_cast<DbgDeclareInst>(&I)) {
FnVarLocs->addSingleLocVar(DebugVariable(DDI), DDI->getExpression(),
DDI->getDebugLoc(), DDI->getAddress());
} else if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
DebugVariable DV = DebugVariable(DII);
DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()};
if (Seen.insert(DV).second)
FragmentMap[DA].push_back(DV);
} else if (auto Info = getUntaggedStoreAssignmentInfo(
I, Fn.getParent()->getDataLayout())) {
// Find markers linked to this alloca.
for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(Info->Base)) {
// Discard the fragment if it covers the entire variable.
std::optional<DIExpression::FragmentInfo> FragInfo =
[&Info, DAI]() -> std::optional<DIExpression::FragmentInfo> {
DIExpression::FragmentInfo F;
F.OffsetInBits = Info->OffsetInBits;
F.SizeInBits = Info->SizeInBits;
if (auto ExistingFrag = DAI->getExpression()->getFragmentInfo())
F.OffsetInBits += ExistingFrag->OffsetInBits;
if (auto Sz = DAI->getVariable()->getSizeInBits()) {
if (F.OffsetInBits == 0 && F.SizeInBits == *Sz)
return std::nullopt;
}
return F;
}();
DebugVariable DV = DebugVariable(DAI->getVariable(), FragInfo,
DAI->getDebugLoc().getInlinedAt());
DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()};
// Cache this info for later.
UntaggedStoreVars[&I].push_back(
{FnVarLocs->insertVariable(DV), *Info});
if (Seen.insert(DV).second)
FragmentMap[DA].push_back(DV);
}
}
}
}
// Sort the fragment map for each DebugAggregate in non-descending
// order of fragment size. Assert no entries are duplicates.
for (auto &Pair : FragmentMap) {
SmallVector<DebugVariable, 8> &Frags = Pair.second;
std::sort(
Frags.begin(), Frags.end(), [](DebugVariable Next, DebugVariable Elmt) {
assert(!(Elmt.getFragmentOrDefault() == Next.getFragmentOrDefault()));
return Elmt.getFragmentOrDefault().SizeInBits >
Next.getFragmentOrDefault().SizeInBits;
});
}
// Build the map.
AssignmentTrackingLowering::OverlapMap Map;
for (auto Pair : FragmentMap) {
auto &Frags = Pair.second;
for (auto It = Frags.begin(), IEnd = Frags.end(); It != IEnd; ++It) {
DIExpression::FragmentInfo Frag = It->getFragmentOrDefault();
// Find the frags that this is contained within.
//
// Because Frags is sorted by size and none have the same offset and
// size, we know that this frag can only be contained by subsequent
// elements.
SmallVector<DebugVariable, 8>::iterator OtherIt = It;
++OtherIt;
VariableID ThisVar = FnVarLocs->insertVariable(*It);
for (; OtherIt != IEnd; ++OtherIt) {
DIExpression::FragmentInfo OtherFrag = OtherIt->getFragmentOrDefault();
VariableID OtherVar = FnVarLocs->insertVariable(*OtherIt);
if (fullyContains(OtherFrag, Frag))
Map[OtherVar].push_back(ThisVar);
}
}
}
return Map;
}
bool AssignmentTrackingLowering::run(FunctionVarLocsBuilder *FnVarLocsBuilder) {
if (Fn.size() > MaxNumBlocks) {
LLVM_DEBUG(dbgs() << "[AT] Dropping var locs in: " << Fn.getName()
<< ": too many blocks (" << Fn.size() << ")\n");
at::deleteAll(&Fn);
return false;
}
FnVarLocs = FnVarLocsBuilder;
// The general structure here is inspired by VarLocBasedImpl.cpp
// (LiveDebugValues).
// Build the variable fragment overlap map.
// Note that this pass doesn't handle partial overlaps correctly (FWIW
// neither does LiveDebugVariables) because that is difficult to do and
// appears to be rare occurance.
VarContains =
buildOverlapMapAndRecordDeclares(Fn, FnVarLocs, UntaggedStoreVars);
// Prepare for traversal.
ReversePostOrderTraversal<Function *> RPOT(&Fn);
std::priority_queue<unsigned int, std::vector<unsigned int>,
std::greater<unsigned int>>
Worklist;
std::priority_queue<unsigned int, std::vector<unsigned int>,
std::greater<unsigned int>>
Pending;
DenseMap<unsigned int, BasicBlock *> OrderToBB;
DenseMap<BasicBlock *, unsigned int> BBToOrder;
{ // Init OrderToBB and BBToOrder.
unsigned int RPONumber = 0;
for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
OrderToBB[RPONumber] = *RI;
BBToOrder[*RI] = RPONumber;
Worklist.push(RPONumber);
++RPONumber;
}
LiveIn.init(RPONumber);
LiveOut.init(RPONumber);
}
// Perform the traversal.
//
// This is a standard "union of predecessor outs" dataflow problem. To solve
// it, we perform join() and process() using the two worklist method until
// the LiveIn data for each block becomes unchanging. The "proof" that this
// terminates can be put together by looking at the comments around LocKind,
// Assignment, and the various join methods, which show that all the elements
// involved are made up of join-semilattices; LiveIn(n) can only
// monotonically increase in value throughout the dataflow.
//
SmallPtrSet<BasicBlock *, 16> Visited;
while (!Worklist.empty()) {
// We track what is on the pending worklist to avoid inserting the same
// thing twice.
SmallPtrSet<BasicBlock *, 16> OnPending;
LLVM_DEBUG(dbgs() << "Processing Worklist\n");
while (!Worklist.empty()) {
BasicBlock *BB = OrderToBB[Worklist.top()];
LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n");
Worklist.pop();
bool InChanged = join(*BB, Visited);
// Always consider LiveIn changed on the first visit.
InChanged |= Visited.insert(BB).second;
if (InChanged) {
LLVM_DEBUG(dbgs() << BB->getName() << " has new InLocs, process it\n");
// Mutate a copy of LiveIn while processing BB. After calling process
// LiveSet is the LiveOut set for BB.
BlockInfo LiveSet = LiveIn[BB];
// Process the instructions in the block.
process(*BB, &LiveSet);
// Relatively expensive check: has anything changed in LiveOut for BB?
if (LiveOut[BB] != LiveSet) {
LLVM_DEBUG(dbgs() << BB->getName()
<< " has new OutLocs, add succs to worklist: [ ");
LiveOut[BB] = std::move(LiveSet);
for (auto I = succ_begin(BB), E = succ_end(BB); I != E; I++) {
if (OnPending.insert(*I).second) {
LLVM_DEBUG(dbgs() << I->getName() << " ");
Pending.push(BBToOrder[*I]);
}
}
LLVM_DEBUG(dbgs() << "]\n");
}
}
}
Worklist.swap(Pending);
// At this point, pending must be empty, since it was just the empty
// worklist
assert(Pending.empty() && "Pending should be empty");
}
// That's the hard part over. Now we just have some admin to do.
// Record whether we inserted any intrinsics.
bool InsertedAnyIntrinsics = false;
// Identify and add defs for single location variables.
//
// Go through all of the defs that we plan to add. If the aggregate variable
// it's a part of is not in the NotAlwaysStackHomed set we can emit a single
// location def and omit the rest. Add an entry to AlwaysStackHomed so that
// we can identify those uneeded defs later.
DenseSet<DebugAggregate> AlwaysStackHomed;
for (const auto &Pair : InsertBeforeMap) {
const auto &Vec = Pair.second;
for (VarLocInfo VarLoc : Vec) {
DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()};
// Skip this Var if it's not always stack homed.
if (NotAlwaysStackHomed.contains(Aggr))
continue;
// Skip complex cases such as when different fragments of a variable have
// been split into different allocas. Skipping in this case means falling
// back to using a list of defs (which could reduce coverage, but is no
// less correct).
bool Simple =
VarLoc.Expr->getNumElements() == 1 && VarLoc.Expr->startsWithDeref();
if (!Simple) {
NotAlwaysStackHomed.insert(Aggr);
continue;
}
// All source assignments to this variable remain and all stores to any
// part of the variable store to the same address (with varying
// offsets). We can just emit a single location for the whole variable.
//
// Unless we've already done so, create the single location def now.
if (AlwaysStackHomed.insert(Aggr).second) {
assert(isa<AllocaInst>(VarLoc.V));
// TODO: When more complex cases are handled VarLoc.Expr should be
// built appropriately rather than always using an empty DIExpression.
// The assert below is a reminder.
assert(Simple);
VarLoc.Expr = DIExpression::get(Fn.getContext(), std::nullopt);
DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
FnVarLocs->addSingleLocVar(Var, VarLoc.Expr, VarLoc.DL, VarLoc.V);
InsertedAnyIntrinsics = true;
}
}
}
// Insert the other DEFs.
for (const auto &[InsertBefore, Vec] : InsertBeforeMap) {
SmallVector<VarLocInfo> NewDefs;
for (const VarLocInfo &VarLoc : Vec) {
DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()};
// If this variable is always stack homed then we have already inserted a
// dbg.declare and deleted this dbg.value.
if (AlwaysStackHomed.contains(Aggr))
continue;
NewDefs.push_back(VarLoc);
InsertedAnyIntrinsics = true;
}
FnVarLocs->setWedge(InsertBefore, std::move(NewDefs));
}
InsertedAnyIntrinsics |= emitPromotedVarLocs(FnVarLocs);
return InsertedAnyIntrinsics;
}
bool AssignmentTrackingLowering::emitPromotedVarLocs(
FunctionVarLocsBuilder *FnVarLocs) {
bool InsertedAnyIntrinsics = false;
// Go through every block, translating debug intrinsics for fully promoted
// variables into FnVarLocs location defs. No analysis required for these.
for (auto &BB : Fn) {
for (auto &I : BB) {
// Skip instructions other than dbg.values and dbg.assigns.
auto *DVI = dyn_cast<DbgValueInst>(&I);
if (!DVI)
continue;
// Skip variables that haven't been promoted - we've dealt with those
// already.
if (VarsWithStackSlot->contains(getAggregate(DVI)))
continue;
// Wrapper to get a single value (or undef) from DVI.
auto GetValue = [DVI]() -> Value * {
// We can't handle variadic DIExpressions yet so treat those as
// kill locations.
if (DVI->isKillLocation() || DVI->getValue() == nullptr ||
DVI->hasArgList())
return PoisonValue::get(Type::getInt32Ty(DVI->getContext()));
return DVI->getValue();
};
Instruction *InsertBefore = I.getNextNode();
assert(InsertBefore && "Unexpected: debug intrinsics after a terminator");
FnVarLocs->addVarLoc(InsertBefore, DebugVariable(DVI),
DVI->getExpression(), DVI->getDebugLoc(),
GetValue());
InsertedAnyIntrinsics = true;
}
}
return InsertedAnyIntrinsics;
}
/// Remove redundant definitions within sequences of consecutive location defs.
/// This is done using a backward scan to keep the last def describing a
/// specific variable/fragment.
///
/// This implements removeRedundantDbgInstrsUsingBackwardScan from
/// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with
/// FunctionVarLocsBuilder instead of with intrinsics.
static bool
removeRedundantDbgLocsUsingBackwardScan(const BasicBlock *BB,
FunctionVarLocsBuilder &FnVarLocs) {
bool Changed = false;
SmallDenseSet<DebugVariable> VariableSet;
// Scan over the entire block, not just over the instructions mapped by
// FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
// instructions.
for (const Instruction &I : reverse(*BB)) {
if (!isa<DbgVariableIntrinsic>(I)) {
// Sequence of consecutive defs ended. Clear map for the next one.
VariableSet.clear();
}
// Get the location defs that start just before this instruction.
const auto *Locs = FnVarLocs.getWedge(&I);
if (!Locs)
continue;
NumWedgesScanned++;
bool ChangedThisWedge = false;
// The new pruned set of defs, reversed because we're scanning backwards.
SmallVector<VarLocInfo> NewDefsReversed;
// Iterate over the existing defs in reverse.
for (auto RIt = Locs->rbegin(), REnd = Locs->rend(); RIt != REnd; ++RIt) {
NumDefsScanned++;
const DebugVariable &Key = FnVarLocs.getVariable(RIt->VariableID);
bool FirstDefOfFragment = VariableSet.insert(Key).second;
// If the same variable fragment is described more than once it is enough
// to keep the last one (i.e. the first found in this reverse iteration).
if (FirstDefOfFragment) {
// New def found: keep it.
NewDefsReversed.push_back(*RIt);
} else {
// Redundant def found: throw it away. Since the wedge of defs is being
// rebuilt, doing nothing is the same as deleting an entry.
ChangedThisWedge = true;
NumDefsRemoved++;
}
continue;
}
// Un-reverse the defs and replace the wedge with the pruned version.
if (ChangedThisWedge) {
std::reverse(NewDefsReversed.begin(), NewDefsReversed.end());
FnVarLocs.setWedge(&I, std::move(NewDefsReversed));
NumWedgesChanged++;
Changed = true;
}
}
return Changed;
}
/// Remove redundant location defs using a forward scan. This can remove a
/// location definition that is redundant due to indicating that a variable has
/// the same value as is already being indicated by an earlier def.
///
/// This implements removeRedundantDbgInstrsUsingForwardScan from
/// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with
/// FunctionVarLocsBuilder instead of with intrinsics
static bool
removeRedundantDbgLocsUsingForwardScan(const BasicBlock *BB,
FunctionVarLocsBuilder &FnVarLocs) {
bool Changed = false;
DenseMap<DebugVariable, std::pair<Value *, DIExpression *>> VariableMap;
// Scan over the entire block, not just over the instructions mapped by
// FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
// instructions.
for (const Instruction &I : *BB) {
// Get the defs that come just before this instruction.
const auto *Locs = FnVarLocs.getWedge(&I);
if (!Locs)
continue;
NumWedgesScanned++;
bool ChangedThisWedge = false;
// The new pruned set of defs.
SmallVector<VarLocInfo> NewDefs;
// Iterate over the existing defs.
for (const VarLocInfo &Loc : *Locs) {
NumDefsScanned++;
DebugVariable Key(FnVarLocs.getVariable(Loc.VariableID).getVariable(),
std::nullopt, Loc.DL.getInlinedAt());
auto VMI = VariableMap.find(Key);
// Update the map if we found a new value/expression describing the
// variable, or if the variable wasn't mapped already.
if (VMI == VariableMap.end() || VMI->second.first != Loc.V ||
VMI->second.second != Loc.Expr) {
VariableMap[Key] = {Loc.V, Loc.Expr};
NewDefs.push_back(Loc);
continue;
}
// Did not insert this Loc, which is the same as removing it.
ChangedThisWedge = true;
NumDefsRemoved++;
}
// Replace the existing wedge with the pruned version.
if (ChangedThisWedge) {
FnVarLocs.setWedge(&I, std::move(NewDefs));
NumWedgesChanged++;
Changed = true;
}
}
return Changed;
}
static bool
removeUndefDbgLocsFromEntryBlock(const BasicBlock *BB,
FunctionVarLocsBuilder &FnVarLocs) {
assert(BB->isEntryBlock());
// Do extra work to ensure that we remove semantically unimportant undefs.
//
// This is to work around the fact that SelectionDAG will hoist dbg.values
// using argument values to the top of the entry block. That can move arg
// dbg.values before undef and constant dbg.values which they previously
// followed. The easiest thing to do is to just try to feed SelectionDAG
// input it's happy with.
//
// Map of {Variable x: Fragments y} where the fragments y of variable x have
// have at least one non-undef location defined already. Don't use directly,
// instead call DefineBits and HasDefinedBits.
SmallDenseMap<DebugAggregate, SmallDenseSet<DIExpression::FragmentInfo>>
VarsWithDef;
// Specify that V (a fragment of A) has a non-undef location.
auto DefineBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) {
VarsWithDef[A].insert(V.getFragmentOrDefault());
};
// Return true if a non-undef location has been defined for V (a fragment of
// A). Doesn't imply that the location is currently non-undef, just that a
// non-undef location has been seen previously.
auto HasDefinedBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) {
auto FragsIt = VarsWithDef.find(A);
if (FragsIt == VarsWithDef.end())
return false;
return llvm::any_of(FragsIt->second, [V](auto Frag) {
return DIExpression::fragmentsOverlap(Frag, V.getFragmentOrDefault());
});
};
bool Changed = false;
DenseMap<DebugVariable, std::pair<Value *, DIExpression *>> VariableMap;
// Scan over the entire block, not just over the instructions mapped by
// FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
// instructions.
for (const Instruction &I : *BB) {
// Get the defs that come just before this instruction.
const auto *Locs = FnVarLocs.getWedge(&I);
if (!Locs)
continue;
NumWedgesScanned++;
bool ChangedThisWedge = false;
// The new pruned set of defs.
SmallVector<VarLocInfo> NewDefs;
// Iterate over the existing defs.
for (const VarLocInfo &Loc : *Locs) {
NumDefsScanned++;
DebugAggregate Aggr{FnVarLocs.getVariable(Loc.VariableID).getVariable(),
Loc.DL.getInlinedAt()};
DebugVariable Var = FnVarLocs.getVariable(Loc.VariableID);
// Remove undef entries that are encountered before any non-undef
// intrinsics from the entry block.
if (isa<UndefValue>(Loc.V) && !HasDefinedBits(Aggr, Var)) {
// Did not insert this Loc, which is the same as removing it.
NumDefsRemoved++;
ChangedThisWedge = true;
continue;
}
DefineBits(Aggr, Var);
NewDefs.push_back(Loc);
}
// Replace the existing wedge with the pruned version.
if (ChangedThisWedge) {
FnVarLocs.setWedge(&I, std::move(NewDefs));
NumWedgesChanged++;
Changed = true;
}
}
return Changed;
}
static bool removeRedundantDbgLocs(const BasicBlock *BB,
FunctionVarLocsBuilder &FnVarLocs) {
bool MadeChanges = false;
MadeChanges |= removeRedundantDbgLocsUsingBackwardScan(BB, FnVarLocs);
if (BB->isEntryBlock())
MadeChanges |= removeUndefDbgLocsFromEntryBlock(BB, FnVarLocs);
MadeChanges |= removeRedundantDbgLocsUsingForwardScan(BB, FnVarLocs);
if (MadeChanges)
LLVM_DEBUG(dbgs() << "Removed redundant dbg locs from: " << BB->getName()
<< "\n");
return MadeChanges;
}
static DenseSet<DebugAggregate> findVarsWithStackSlot(Function &Fn) {
DenseSet<DebugAggregate> Result;
for (auto &BB : Fn) {
for (auto &I : BB) {
// Any variable linked to an instruction is considered
// interesting. Ideally we only need to check Allocas, however, a
// DIAssignID might get dropped from an alloca but not stores. In that
// case, we need to consider the variable interesting for NFC behaviour
// with this change. TODO: Consider only looking at allocas.
for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(&I)) {
Result.insert({DAI->getVariable(), DAI->getDebugLoc().getInlinedAt()});
}
}
}
return Result;
}
static void analyzeFunction(Function &Fn, const DataLayout &Layout,
FunctionVarLocsBuilder *FnVarLocs) {
// The analysis will generate location definitions for all variables, but we
// only need to perform a dataflow on the set of variables which have a stack
// slot. Find those now.
DenseSet<DebugAggregate> VarsWithStackSlot = findVarsWithStackSlot(Fn);
bool Changed = false;
// Use a scope block to clean up AssignmentTrackingLowering before running
// MemLocFragmentFill to reduce peak memory consumption.
{
AssignmentTrackingLowering Pass(Fn, Layout, &VarsWithStackSlot);
Changed = Pass.run(FnVarLocs);
}
if (Changed) {
MemLocFragmentFill Pass(Fn, &VarsWithStackSlot);
Pass.run(FnVarLocs);
// Remove redundant entries. As well as reducing memory consumption and
// avoiding waiting cycles later by burning some now, this has another
// important job. That is to work around some SelectionDAG quirks. See
// removeRedundantDbgLocsUsingForwardScan comments for more info on that.
for (auto &BB : Fn)
removeRedundantDbgLocs(&BB, *FnVarLocs);
}
}
bool AssignmentTrackingAnalysis::runOnFunction(Function &F) {
if (!isAssignmentTrackingEnabled(*F.getParent()))
return false;
LLVM_DEBUG(dbgs() << "AssignmentTrackingAnalysis run on " << F.getName()
<< "\n");
auto DL = std::make_unique<DataLayout>(F.getParent());
// Clear previous results.
Results->clear();
FunctionVarLocsBuilder Builder;
analyzeFunction(F, *DL.get(), &Builder);
// Save these results.
Results->init(Builder);
if (PrintResults && isFunctionInPrintList(F.getName()))
Results->print(errs(), F);
// Return false because this pass does not modify the function.
return false;
}
AssignmentTrackingAnalysis::AssignmentTrackingAnalysis()
: FunctionPass(ID), Results(std::make_unique<FunctionVarLocs>()) {}
char AssignmentTrackingAnalysis::ID = 0;
INITIALIZE_PASS(AssignmentTrackingAnalysis, DEBUG_TYPE,
"Assignment Tracking Analysis", false, true)