blob: 24956e781572233ca048eae159e51123cf857d9c [file] [log] [blame]
//===- llvm/Analysis/MemoryProfileInfo.h - memory profile info ---*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains utilities to analyze memory profile information.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_MEMORYPROFILEINFO_H
#define LLVM_ANALYSIS_MEMORYPROFILEINFO_H
#include "llvm/IR/Constants.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include <map>
namespace llvm {
namespace memprof {
/// Return the allocation type for a given set of memory profile values.
AllocationType getAllocType(uint64_t MaxAccessCount, uint64_t MinSize,
uint64_t MinLifetime);
/// Build callstack metadata from the provided list of call stack ids. Returns
/// the resulting metadata node.
MDNode *buildCallstackMetadata(ArrayRef<uint64_t> CallStack, LLVMContext &Ctx);
/// Returns the stack node from an MIB metadata node.
MDNode *getMIBStackNode(const MDNode *MIB);
/// Returns the allocation type from an MIB metadata node.
AllocationType getMIBAllocType(const MDNode *MIB);
/// Class to build a trie of call stack contexts for a particular profiled
/// allocation call, along with their associated allocation types.
/// The allocation will be at the root of the trie, which is then used to
/// compute the minimum lists of context ids needed to associate a call context
/// with a single allocation type.
class CallStackTrie {
private:
struct CallStackTrieNode {
// Allocation types for call context sharing the context prefix at this
// node.
uint8_t AllocTypes;
// Map of caller stack id to the corresponding child Trie node.
std::map<uint64_t, CallStackTrieNode *> Callers;
CallStackTrieNode(AllocationType Type)
: AllocTypes(static_cast<uint8_t>(Type)) {}
};
// The node for the allocation at the root.
CallStackTrieNode *Alloc;
// The allocation's leaf stack id.
uint64_t AllocStackId;
void deleteTrieNode(CallStackTrieNode *Node) {
if (!Node)
return;
for (auto C : Node->Callers)
deleteTrieNode(C.second);
delete Node;
}
// Recursive helper to trim contexts and create metadata nodes.
bool buildMIBNodes(CallStackTrieNode *Node, LLVMContext &Ctx,
std::vector<uint64_t> &MIBCallStack,
std::vector<Metadata *> &MIBNodes,
bool CalleeHasAmbiguousCallerContext);
public:
CallStackTrie() : Alloc(nullptr), AllocStackId(0) {}
~CallStackTrie() { deleteTrieNode(Alloc); }
bool empty() const { return Alloc == nullptr; }
/// Add a call stack context with the given allocation type to the Trie.
/// The context is represented by the list of stack ids (computed during
/// matching via a debug location hash), expected to be in order from the
/// allocation call down to the bottom of the call stack (i.e. callee to
/// caller order).
void addCallStack(AllocationType AllocType, ArrayRef<uint64_t> StackIds);
/// Add the call stack context along with its allocation type from the MIB
/// metadata to the Trie.
void addCallStack(MDNode *MIB);
/// Build and attach the minimal necessary MIB metadata. If the alloc has a
/// single allocation type, add a function attribute instead. The reason for
/// adding an attribute in this case is that it matches how the behavior for
/// allocation calls will be communicated to lib call simplification after
/// cloning or another optimization to distinguish the allocation types,
/// which is lower overhead and more direct than maintaining this metadata.
/// Returns true if memprof metadata attached, false if not (attribute added).
bool buildAndAttachMIBMetadata(CallBase *CI);
};
/// Helper class to iterate through stack ids in both metadata (memprof MIB and
/// callsite) and the corresponding ThinLTO summary data structures
/// (CallsiteInfo and MIBInfo). This simplifies implementation of client code
/// which doesn't need to worry about whether we are operating with IR (Regular
/// LTO), or summary (ThinLTO).
template <class NodeT, class IteratorT> class CallStack {
public:
CallStack(const NodeT *N = nullptr) : N(N) {}
// Implement minimum required methods for range-based for loop.
// The default implementation assumes we are operating on ThinLTO data
// structures, which have a vector of StackIdIndices. There are specialized
// versions provided to iterate through metadata.
struct CallStackIterator {
const NodeT *N = nullptr;
IteratorT Iter;
CallStackIterator(const NodeT *N, bool End);
uint64_t operator*();
bool operator==(const CallStackIterator &rhs) { return Iter == rhs.Iter; }
bool operator!=(const CallStackIterator &rhs) { return !(*this == rhs); }
void operator++() { ++Iter; }
};
bool empty() const { return N == nullptr; }
CallStackIterator begin() const;
CallStackIterator end() const { return CallStackIterator(N, /*End*/ true); }
CallStackIterator beginAfterSharedPrefix(CallStack &Other);
private:
const NodeT *N = nullptr;
};
template <class NodeT, class IteratorT>
CallStack<NodeT, IteratorT>::CallStackIterator::CallStackIterator(
const NodeT *N, bool End)
: N(N) {
if (!N)
return;
Iter = End ? N->StackIdIndices.end() : N->StackIdIndices.begin();
}
template <class NodeT, class IteratorT>
uint64_t CallStack<NodeT, IteratorT>::CallStackIterator::operator*() {
assert(Iter != N->StackIdIndices.end());
return *Iter;
}
template <class NodeT, class IteratorT>
typename CallStack<NodeT, IteratorT>::CallStackIterator
CallStack<NodeT, IteratorT>::begin() const {
return CallStackIterator(N, /*End*/ false);
}
template <class NodeT, class IteratorT>
typename CallStack<NodeT, IteratorT>::CallStackIterator
CallStack<NodeT, IteratorT>::beginAfterSharedPrefix(CallStack &Other) {
CallStackIterator Cur = begin();
for (CallStackIterator OtherCur = Other.begin();
Cur != end() && OtherCur != Other.end(); ++Cur, ++OtherCur)
assert(*Cur == *OtherCur);
return Cur;
}
/// Specializations for iterating through IR metadata stack contexts.
template <>
CallStack<MDNode, MDNode::op_iterator>::CallStackIterator::CallStackIterator(
const MDNode *N, bool End);
template <>
uint64_t CallStack<MDNode, MDNode::op_iterator>::CallStackIterator::operator*();
} // end namespace memprof
} // end namespace llvm
#endif