blob: 5442968d20e4af7fffd8711034d25708a87fa9e1 [file] [log] [blame]
//===- APFixedPoint.h - Fixed point constant handling -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Defines the fixed point number interface.
/// This is a class for abstracting various operations performed on fixed point
/// types.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_APFIXEDPOINT_H
#define LLVM_ADT_APFIXEDPOINT_H
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/raw_ostream.h"
namespace llvm {
class APFloat;
struct fltSemantics;
/// The fixed point semantics work similarly to fltSemantics. The width
/// specifies the whole bit width of the underlying scaled integer (with padding
/// if any). The scale represents the number of fractional bits in this type.
/// When HasUnsignedPadding is true and this type is unsigned, the first bit
/// in the value this represents is treated as padding.
class FixedPointSemantics {
public:
static constexpr unsigned WidthBitWidth = 16;
static constexpr unsigned LsbWeightBitWidth = 13;
/// Used to differentiate between constructors with Width and Lsb from the
/// default Width and scale
struct Lsb {
int LsbWeight;
};
FixedPointSemantics(unsigned Width, unsigned Scale, bool IsSigned,
bool IsSaturated, bool HasUnsignedPadding)
: FixedPointSemantics(Width, Lsb{-static_cast<int>(Scale)}, IsSigned,
IsSaturated, HasUnsignedPadding) {}
FixedPointSemantics(unsigned Width, Lsb Weight, bool IsSigned,
bool IsSaturated, bool HasUnsignedPadding)
: Width(Width), LsbWeight(Weight.LsbWeight), IsSigned(IsSigned),
IsSaturated(IsSaturated), HasUnsignedPadding(HasUnsignedPadding) {
assert(isUInt<WidthBitWidth>(Width) && isInt<LsbWeightBitWidth>(Weight.LsbWeight));
assert(!(IsSigned && HasUnsignedPadding) &&
"Cannot have unsigned padding on a signed type.");
}
/// Check if the Semantic follow the requirements of an older more limited
/// version of this class
bool isValidLegacySema() const {
return LsbWeight <= 0 && static_cast<int>(Width) >= -LsbWeight;
}
unsigned getWidth() const { return Width; }
unsigned getScale() const { assert(isValidLegacySema()); return -LsbWeight; }
int getLsbWeight() const { return LsbWeight; }
int getMsbWeight() const {
return LsbWeight + Width - 1 /*Both lsb and msb are both part of width*/;
}
bool isSigned() const { return IsSigned; }
bool isSaturated() const { return IsSaturated; }
bool hasUnsignedPadding() const { return HasUnsignedPadding; }
void setSaturated(bool Saturated) { IsSaturated = Saturated; }
/// return true if the first bit doesn't have a strictly positive weight
bool hasSignOrPaddingBit() const { return IsSigned || HasUnsignedPadding; }
/// Return the number of integral bits represented by these semantics. These
/// are separate from the fractional bits and do not include the sign or
/// padding bit.
unsigned getIntegralBits() const {
return std::max(getMsbWeight() + 1 - hasSignOrPaddingBit(), 0);
}
/// Return the FixedPointSemantics that allows for calculating the full
/// precision semantic that can precisely represent the precision and ranges
/// of both input values. This does not compute the resulting semantics for a
/// given binary operation.
FixedPointSemantics
getCommonSemantics(const FixedPointSemantics &Other) const;
/// Print semantics for debug purposes
void print(llvm::raw_ostream& OS) const;
/// Returns true if this fixed-point semantic with its value bits interpreted
/// as an integer can fit in the given floating point semantic without
/// overflowing to infinity.
/// For example, a signed 8-bit fixed-point semantic has a maximum and
/// minimum integer representation of 127 and -128, respectively. If both of
/// these values can be represented (possibly inexactly) in the floating
/// point semantic without overflowing, this returns true.
bool fitsInFloatSemantics(const fltSemantics &FloatSema) const;
/// Return the FixedPointSemantics for an integer type.
static FixedPointSemantics GetIntegerSemantics(unsigned Width,
bool IsSigned) {
return FixedPointSemantics(Width, /*Scale=*/0, IsSigned,
/*IsSaturated=*/false,
/*HasUnsignedPadding=*/false);
}
bool operator==(FixedPointSemantics Other) const {
return Width == Other.Width && LsbWeight == Other.LsbWeight &&
IsSigned == Other.IsSigned && IsSaturated == Other.IsSaturated &&
HasUnsignedPadding == Other.HasUnsignedPadding;
}
bool operator!=(FixedPointSemantics Other) const { return !(*this == Other); }
private:
unsigned Width : WidthBitWidth;
signed int LsbWeight : LsbWeightBitWidth;
unsigned IsSigned : 1;
unsigned IsSaturated : 1;
unsigned HasUnsignedPadding : 1;
};
static_assert(sizeof(FixedPointSemantics) == 4, "");
inline hash_code hash_value(const FixedPointSemantics &Val) {
return hash_value(bit_cast<uint32_t>(Val));
}
template <> struct DenseMapInfo<FixedPointSemantics> {
static inline FixedPointSemantics getEmptyKey() {
return FixedPointSemantics(0, 0, false, false, false);
}
static inline FixedPointSemantics getTombstoneKey() {
return FixedPointSemantics(0, 1, false, false, false);
}
static unsigned getHashValue(const FixedPointSemantics &Val) {
return hash_value(Val);
}
static bool isEqual(const char &LHS, const char &RHS) { return LHS == RHS; }
};
/// The APFixedPoint class works similarly to APInt/APSInt in that it is a
/// functional replacement for a scaled integer. It supports a wide range of
/// semantics including the one used by fixed point types proposed in ISO/IEC
/// JTC1 SC22 WG14 N1169. The class carries the value and semantics of
/// a fixed point, and provides different operations that would normally be
/// performed on fixed point types.
class APFixedPoint {
public:
APFixedPoint(const APInt &Val, const FixedPointSemantics &Sema)
: Val(Val, !Sema.isSigned()), Sema(Sema) {
assert(Val.getBitWidth() == Sema.getWidth() &&
"The value should have a bit width that matches the Sema width");
}
APFixedPoint(uint64_t Val, const FixedPointSemantics &Sema)
: APFixedPoint(APInt(Sema.getWidth(), Val, Sema.isSigned()), Sema) {}
// Zero initialization.
APFixedPoint(const FixedPointSemantics &Sema) : APFixedPoint(0, Sema) {}
APSInt getValue() const { return APSInt(Val, !Sema.isSigned()); }
inline unsigned getWidth() const { return Sema.getWidth(); }
inline unsigned getScale() const { return Sema.getScale(); }
int getLsbWeight() const { return Sema.getLsbWeight(); }
int getMsbWeight() const { return Sema.getMsbWeight(); }
inline bool isSaturated() const { return Sema.isSaturated(); }
inline bool isSigned() const { return Sema.isSigned(); }
inline bool hasPadding() const { return Sema.hasUnsignedPadding(); }
FixedPointSemantics getSemantics() const { return Sema; }
bool getBoolValue() const { return Val.getBoolValue(); }
// Convert this number to match the semantics provided. If the overflow
// parameter is provided, set this value to true or false to indicate if this
// operation results in an overflow.
APFixedPoint convert(const FixedPointSemantics &DstSema,
bool *Overflow = nullptr) const;
// Perform binary operations on a fixed point type. The resulting fixed point
// value will be in the common, full precision semantics that can represent
// the precision and ranges of both input values. See convert() for an
// explanation of the Overflow parameter.
APFixedPoint add(const APFixedPoint &Other, bool *Overflow = nullptr) const;
APFixedPoint sub(const APFixedPoint &Other, bool *Overflow = nullptr) const;
APFixedPoint mul(const APFixedPoint &Other, bool *Overflow = nullptr) const;
APFixedPoint div(const APFixedPoint &Other, bool *Overflow = nullptr) const;
// Perform shift operations on a fixed point type. Unlike the other binary
// operations, the resulting fixed point value will be in the original
// semantic.
APFixedPoint shl(unsigned Amt, bool *Overflow = nullptr) const;
APFixedPoint shr(unsigned Amt, bool *Overflow = nullptr) const {
// Right shift cannot overflow.
if (Overflow)
*Overflow = false;
return APFixedPoint(Val >> Amt, Sema);
}
/// Perform a unary negation (-X) on this fixed point type, taking into
/// account saturation if applicable.
APFixedPoint negate(bool *Overflow = nullptr) const;
/// Return the integral part of this fixed point number, rounded towards
/// zero. (-2.5k -> -2)
APSInt getIntPart() const {
if (getMsbWeight() < 0)
return APSInt(APInt::getZero(getWidth()), Val.isUnsigned());
APSInt ExtVal =
(getLsbWeight() > 0) ? Val.extend(getWidth() + getLsbWeight()) : Val;
if (Val < 0 && Val != -Val) // Cover the case when we have the min val
return -((-ExtVal).relativeShl(getLsbWeight()));
return ExtVal.relativeShl(getLsbWeight());
}
/// Return the integral part of this fixed point number, rounded towards
/// zero. The value is stored into an APSInt with the provided width and sign.
/// If the overflow parameter is provided, and the integral value is not able
/// to be fully stored in the provided width and sign, the overflow parameter
/// is set to true.
APSInt convertToInt(unsigned DstWidth, bool DstSign,
bool *Overflow = nullptr) const;
/// Convert this fixed point number to a floating point value with the
/// provided semantics.
APFloat convertToFloat(const fltSemantics &FloatSema) const;
void toString(SmallVectorImpl<char> &Str) const;
std::string toString() const {
SmallString<40> S;
toString(S);
return std::string(S.str());
}
void print(raw_ostream &) const;
void dump() const;
// If LHS > RHS, return 1. If LHS == RHS, return 0. If LHS < RHS, return -1.
int compare(const APFixedPoint &Other) const;
bool operator==(const APFixedPoint &Other) const {
return compare(Other) == 0;
}
bool operator!=(const APFixedPoint &Other) const {
return compare(Other) != 0;
}
bool operator>(const APFixedPoint &Other) const { return compare(Other) > 0; }
bool operator<(const APFixedPoint &Other) const { return compare(Other) < 0; }
bool operator>=(const APFixedPoint &Other) const {
return compare(Other) >= 0;
}
bool operator<=(const APFixedPoint &Other) const {
return compare(Other) <= 0;
}
static APFixedPoint getMax(const FixedPointSemantics &Sema);
static APFixedPoint getMin(const FixedPointSemantics &Sema);
/// Given a floating point semantic, return the next floating point semantic
/// with a larger exponent and larger or equal mantissa.
static const fltSemantics *promoteFloatSemantics(const fltSemantics *S);
/// Create an APFixedPoint with a value equal to that of the provided integer,
/// and in the same semantics as the provided target semantics. If the value
/// is not able to fit in the specified fixed point semantics, and the
/// overflow parameter is provided, it is set to true.
static APFixedPoint getFromIntValue(const APSInt &Value,
const FixedPointSemantics &DstFXSema,
bool *Overflow = nullptr);
/// Create an APFixedPoint with a value equal to that of the provided
/// floating point value, in the provided target semantics. If the value is
/// not able to fit in the specified fixed point semantics and the overflow
/// parameter is specified, it is set to true.
/// For NaN, the Overflow flag is always set. For +inf and -inf, if the
/// semantic is saturating, the value saturates. Otherwise, the Overflow flag
/// is set.
static APFixedPoint getFromFloatValue(const APFloat &Value,
const FixedPointSemantics &DstFXSema,
bool *Overflow = nullptr);
private:
APSInt Val;
FixedPointSemantics Sema;
};
inline raw_ostream &operator<<(raw_ostream &OS, const APFixedPoint &FX) {
OS << FX.toString();
return OS;
}
inline hash_code hash_value(const APFixedPoint &Val) {
return hash_combine(Val.getSemantics(), Val.getValue());
}
template <> struct DenseMapInfo<APFixedPoint> {
static inline APFixedPoint getEmptyKey() {
return APFixedPoint(DenseMapInfo<FixedPointSemantics>::getEmptyKey());
}
static inline APFixedPoint getTombstoneKey() {
return APFixedPoint(DenseMapInfo<FixedPointSemantics>::getTombstoneKey());
}
static unsigned getHashValue(const APFixedPoint &Val) {
return hash_value(Val);
}
static bool isEqual(const APFixedPoint &LHS, const APFixedPoint &RHS) {
return LHS.getSemantics() == RHS.getSemantics() &&
LHS.getValue() == RHS.getValue();
}
};
} // namespace llvm
#endif