| //===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // The LowerSwitch transformation rewrites switch instructions with a sequence |
| // of branches, which allows targets to get away with not implementing the |
| // switch instruction until it is convenient. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Utils.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| #include <limits> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "lower-switch" |
| |
| namespace { |
| |
| struct IntRange { |
| int64_t Low, High; |
| }; |
| |
| } // end anonymous namespace |
| |
| // Return true iff R is covered by Ranges. |
| static bool IsInRanges(const IntRange &R, |
| const std::vector<IntRange> &Ranges) { |
| // Note: Ranges must be sorted, non-overlapping and non-adjacent. |
| |
| // Find the first range whose High field is >= R.High, |
| // then check if the Low field is <= R.Low. If so, we |
| // have a Range that covers R. |
| auto I = std::lower_bound( |
| Ranges.begin(), Ranges.end(), R, |
| [](const IntRange &A, const IntRange &B) { return A.High < B.High; }); |
| return I != Ranges.end() && I->Low <= R.Low; |
| } |
| |
| namespace { |
| |
| /// Replace all SwitchInst instructions with chained branch instructions. |
| class LowerSwitch : public FunctionPass { |
| public: |
| // Pass identification, replacement for typeid |
| static char ID; |
| |
| LowerSwitch() : FunctionPass(ID) { |
| initializeLowerSwitchPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnFunction(Function &F) override; |
| |
| struct CaseRange { |
| ConstantInt* Low; |
| ConstantInt* High; |
| BasicBlock* BB; |
| |
| CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb) |
| : Low(low), High(high), BB(bb) {} |
| }; |
| |
| using CaseVector = std::vector<CaseRange>; |
| using CaseItr = std::vector<CaseRange>::iterator; |
| |
| private: |
| void processSwitchInst(SwitchInst *SI, SmallPtrSetImpl<BasicBlock*> &DeleteList); |
| |
| BasicBlock *switchConvert(CaseItr Begin, CaseItr End, |
| ConstantInt *LowerBound, ConstantInt *UpperBound, |
| Value *Val, BasicBlock *Predecessor, |
| BasicBlock *OrigBlock, BasicBlock *Default, |
| const std::vector<IntRange> &UnreachableRanges); |
| BasicBlock *newLeafBlock(CaseRange &Leaf, Value *Val, BasicBlock *OrigBlock, |
| BasicBlock *Default); |
| unsigned Clusterify(CaseVector &Cases, SwitchInst *SI); |
| }; |
| |
| /// The comparison function for sorting the switch case values in the vector. |
| /// WARNING: Case ranges should be disjoint! |
| struct CaseCmp { |
| bool operator()(const LowerSwitch::CaseRange& C1, |
| const LowerSwitch::CaseRange& C2) { |
| const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low); |
| const ConstantInt* CI2 = cast<const ConstantInt>(C2.High); |
| return CI1->getValue().slt(CI2->getValue()); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| char LowerSwitch::ID = 0; |
| |
| // Publicly exposed interface to pass... |
| char &llvm::LowerSwitchID = LowerSwitch::ID; |
| |
| INITIALIZE_PASS(LowerSwitch, "lowerswitch", |
| "Lower SwitchInst's to branches", false, false) |
| |
| // createLowerSwitchPass - Interface to this file... |
| FunctionPass *llvm::createLowerSwitchPass() { |
| return new LowerSwitch(); |
| } |
| |
| bool LowerSwitch::runOnFunction(Function &F) { |
| bool Changed = false; |
| SmallPtrSet<BasicBlock*, 8> DeleteList; |
| |
| for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { |
| BasicBlock *Cur = &*I++; // Advance over block so we don't traverse new blocks |
| |
| // If the block is a dead Default block that will be deleted later, don't |
| // waste time processing it. |
| if (DeleteList.count(Cur)) |
| continue; |
| |
| if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) { |
| Changed = true; |
| processSwitchInst(SI, DeleteList); |
| } |
| } |
| |
| for (BasicBlock* BB: DeleteList) { |
| DeleteDeadBlock(BB); |
| } |
| |
| return Changed; |
| } |
| |
| /// Used for debugging purposes. |
| LLVM_ATTRIBUTE_USED |
| static raw_ostream &operator<<(raw_ostream &O, |
| const LowerSwitch::CaseVector &C) { |
| O << "["; |
| |
| for (LowerSwitch::CaseVector::const_iterator B = C.begin(), |
| E = C.end(); B != E; ) { |
| O << *B->Low << " -" << *B->High; |
| if (++B != E) O << ", "; |
| } |
| |
| return O << "]"; |
| } |
| |
| /// Update the first occurrence of the "switch statement" BB in the PHI |
| /// node with the "new" BB. The other occurrences will: |
| /// |
| /// 1) Be updated by subsequent calls to this function. Switch statements may |
| /// have more than one outcoming edge into the same BB if they all have the same |
| /// value. When the switch statement is converted these incoming edges are now |
| /// coming from multiple BBs. |
| /// 2) Removed if subsequent incoming values now share the same case, i.e., |
| /// multiple outcome edges are condensed into one. This is necessary to keep the |
| /// number of phi values equal to the number of branches to SuccBB. |
| static void fixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB, |
| unsigned NumMergedCases) { |
| for (BasicBlock::iterator I = SuccBB->begin(), |
| IE = SuccBB->getFirstNonPHI()->getIterator(); |
| I != IE; ++I) { |
| PHINode *PN = cast<PHINode>(I); |
| |
| // Only update the first occurrence. |
| unsigned Idx = 0, E = PN->getNumIncomingValues(); |
| unsigned LocalNumMergedCases = NumMergedCases; |
| for (; Idx != E; ++Idx) { |
| if (PN->getIncomingBlock(Idx) == OrigBB) { |
| PN->setIncomingBlock(Idx, NewBB); |
| break; |
| } |
| } |
| |
| // Remove additional occurrences coming from condensed cases and keep the |
| // number of incoming values equal to the number of branches to SuccBB. |
| SmallVector<unsigned, 8> Indices; |
| for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx) |
| if (PN->getIncomingBlock(Idx) == OrigBB) { |
| Indices.push_back(Idx); |
| LocalNumMergedCases--; |
| } |
| // Remove incoming values in the reverse order to prevent invalidating |
| // *successive* index. |
| for (unsigned III : llvm::reverse(Indices)) |
| PN->removeIncomingValue(III); |
| } |
| } |
| |
| /// Convert the switch statement into a binary lookup of the case values. |
| /// The function recursively builds this tree. LowerBound and UpperBound are |
| /// used to keep track of the bounds for Val that have already been checked by |
| /// a block emitted by one of the previous calls to switchConvert in the call |
| /// stack. |
| BasicBlock * |
| LowerSwitch::switchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound, |
| ConstantInt *UpperBound, Value *Val, |
| BasicBlock *Predecessor, BasicBlock *OrigBlock, |
| BasicBlock *Default, |
| const std::vector<IntRange> &UnreachableRanges) { |
| unsigned Size = End - Begin; |
| |
| if (Size == 1) { |
| // Check if the Case Range is perfectly squeezed in between |
| // already checked Upper and Lower bounds. If it is then we can avoid |
| // emitting the code that checks if the value actually falls in the range |
| // because the bounds already tell us so. |
| if (Begin->Low == LowerBound && Begin->High == UpperBound) { |
| unsigned NumMergedCases = 0; |
| if (LowerBound && UpperBound) |
| NumMergedCases = |
| UpperBound->getSExtValue() - LowerBound->getSExtValue(); |
| fixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases); |
| return Begin->BB; |
| } |
| return newLeafBlock(*Begin, Val, OrigBlock, Default); |
| } |
| |
| unsigned Mid = Size / 2; |
| std::vector<CaseRange> LHS(Begin, Begin + Mid); |
| LLVM_DEBUG(dbgs() << "LHS: " << LHS << "\n"); |
| std::vector<CaseRange> RHS(Begin + Mid, End); |
| LLVM_DEBUG(dbgs() << "RHS: " << RHS << "\n"); |
| |
| CaseRange &Pivot = *(Begin + Mid); |
| LLVM_DEBUG(dbgs() << "Pivot ==> " << Pivot.Low->getValue() << " -" |
| << Pivot.High->getValue() << "\n"); |
| |
| // NewLowerBound here should never be the integer minimal value. |
| // This is because it is computed from a case range that is never |
| // the smallest, so there is always a case range that has at least |
| // a smaller value. |
| ConstantInt *NewLowerBound = Pivot.Low; |
| |
| // Because NewLowerBound is never the smallest representable integer |
| // it is safe here to subtract one. |
| ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(), |
| NewLowerBound->getValue() - 1); |
| |
| if (!UnreachableRanges.empty()) { |
| // Check if the gap between LHS's highest and NewLowerBound is unreachable. |
| int64_t GapLow = LHS.back().High->getSExtValue() + 1; |
| int64_t GapHigh = NewLowerBound->getSExtValue() - 1; |
| IntRange Gap = { GapLow, GapHigh }; |
| if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges)) |
| NewUpperBound = LHS.back().High; |
| } |
| |
| LLVM_DEBUG(dbgs() << "LHS Bounds ==> "; if (LowerBound) { |
| dbgs() << LowerBound->getSExtValue(); |
| } else { dbgs() << "NONE"; } dbgs() << " - " |
| << NewUpperBound->getSExtValue() << "\n"; |
| dbgs() << "RHS Bounds ==> "; |
| dbgs() << NewLowerBound->getSExtValue() << " - "; if (UpperBound) { |
| dbgs() << UpperBound->getSExtValue() << "\n"; |
| } else { dbgs() << "NONE\n"; }); |
| |
| // Create a new node that checks if the value is < pivot. Go to the |
| // left branch if it is and right branch if not. |
| Function* F = OrigBlock->getParent(); |
| BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock"); |
| |
| ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT, |
| Val, Pivot.Low, "Pivot"); |
| |
| BasicBlock *LBranch = switchConvert(LHS.begin(), LHS.end(), LowerBound, |
| NewUpperBound, Val, NewNode, OrigBlock, |
| Default, UnreachableRanges); |
| BasicBlock *RBranch = switchConvert(RHS.begin(), RHS.end(), NewLowerBound, |
| UpperBound, Val, NewNode, OrigBlock, |
| Default, UnreachableRanges); |
| |
| F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewNode); |
| NewNode->getInstList().push_back(Comp); |
| |
| BranchInst::Create(LBranch, RBranch, Comp, NewNode); |
| return NewNode; |
| } |
| |
| /// Create a new leaf block for the binary lookup tree. It checks if the |
| /// switch's value == the case's value. If not, then it jumps to the default |
| /// branch. At this point in the tree, the value can't be another valid case |
| /// value, so the jump to the "default" branch is warranted. |
| BasicBlock* LowerSwitch::newLeafBlock(CaseRange& Leaf, Value* Val, |
| BasicBlock* OrigBlock, |
| BasicBlock* Default) { |
| Function* F = OrigBlock->getParent(); |
| BasicBlock* NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock"); |
| F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewLeaf); |
| |
| // Emit comparison |
| ICmpInst* Comp = nullptr; |
| if (Leaf.Low == Leaf.High) { |
| // Make the seteq instruction... |
| Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val, |
| Leaf.Low, "SwitchLeaf"); |
| } else { |
| // Make range comparison |
| if (Leaf.Low->isMinValue(true /*isSigned*/)) { |
| // Val >= Min && Val <= Hi --> Val <= Hi |
| Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High, |
| "SwitchLeaf"); |
| } else if (Leaf.Low->isZero()) { |
| // Val >= 0 && Val <= Hi --> Val <=u Hi |
| Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High, |
| "SwitchLeaf"); |
| } else { |
| // Emit V-Lo <=u Hi-Lo |
| Constant* NegLo = ConstantExpr::getNeg(Leaf.Low); |
| Instruction* Add = BinaryOperator::CreateAdd(Val, NegLo, |
| Val->getName()+".off", |
| NewLeaf); |
| Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High); |
| Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound, |
| "SwitchLeaf"); |
| } |
| } |
| |
| // Make the conditional branch... |
| BasicBlock* Succ = Leaf.BB; |
| BranchInst::Create(Succ, Default, Comp, NewLeaf); |
| |
| // If there were any PHI nodes in this successor, rewrite one entry |
| // from OrigBlock to come from NewLeaf. |
| for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { |
| PHINode* PN = cast<PHINode>(I); |
| // Remove all but one incoming entries from the cluster |
| uint64_t Range = Leaf.High->getSExtValue() - |
| Leaf.Low->getSExtValue(); |
| for (uint64_t j = 0; j < Range; ++j) { |
| PN->removeIncomingValue(OrigBlock); |
| } |
| |
| int BlockIdx = PN->getBasicBlockIndex(OrigBlock); |
| assert(BlockIdx != -1 && "Switch didn't go to this successor??"); |
| PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf); |
| } |
| |
| return NewLeaf; |
| } |
| |
| /// Transform simple list of Cases into list of CaseRange's. |
| unsigned LowerSwitch::Clusterify(CaseVector& Cases, SwitchInst *SI) { |
| unsigned numCmps = 0; |
| |
| // Start with "simple" cases |
| for (auto Case : SI->cases()) |
| Cases.push_back(CaseRange(Case.getCaseValue(), Case.getCaseValue(), |
| Case.getCaseSuccessor())); |
| |
| llvm::sort(Cases.begin(), Cases.end(), CaseCmp()); |
| |
| // Merge case into clusters |
| if (Cases.size() >= 2) { |
| CaseItr I = Cases.begin(); |
| for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) { |
| int64_t nextValue = J->Low->getSExtValue(); |
| int64_t currentValue = I->High->getSExtValue(); |
| BasicBlock* nextBB = J->BB; |
| BasicBlock* currentBB = I->BB; |
| |
| // If the two neighboring cases go to the same destination, merge them |
| // into a single case. |
| assert(nextValue > currentValue && "Cases should be strictly ascending"); |
| if ((nextValue == currentValue + 1) && (currentBB == nextBB)) { |
| I->High = J->High; |
| // FIXME: Combine branch weights. |
| } else if (++I != J) { |
| *I = *J; |
| } |
| } |
| Cases.erase(std::next(I), Cases.end()); |
| } |
| |
| for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { |
| if (I->Low != I->High) |
| // A range counts double, since it requires two compares. |
| ++numCmps; |
| } |
| |
| return numCmps; |
| } |
| |
| /// Replace the specified switch instruction with a sequence of chained if-then |
| /// insts in a balanced binary search. |
| void LowerSwitch::processSwitchInst(SwitchInst *SI, |
| SmallPtrSetImpl<BasicBlock*> &DeleteList) { |
| BasicBlock *CurBlock = SI->getParent(); |
| BasicBlock *OrigBlock = CurBlock; |
| Function *F = CurBlock->getParent(); |
| Value *Val = SI->getCondition(); // The value we are switching on... |
| BasicBlock* Default = SI->getDefaultDest(); |
| |
| // Don't handle unreachable blocks. If there are successors with phis, this |
| // would leave them behind with missing predecessors. |
| if ((CurBlock != &F->getEntryBlock() && pred_empty(CurBlock)) || |
| CurBlock->getSinglePredecessor() == CurBlock) { |
| DeleteList.insert(CurBlock); |
| return; |
| } |
| |
| // If there is only the default destination, just branch. |
| if (!SI->getNumCases()) { |
| BranchInst::Create(Default, CurBlock); |
| SI->eraseFromParent(); |
| return; |
| } |
| |
| // Prepare cases vector. |
| CaseVector Cases; |
| unsigned numCmps = Clusterify(Cases, SI); |
| LLVM_DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() |
| << ". Total compares: " << numCmps << "\n"); |
| LLVM_DEBUG(dbgs() << "Cases: " << Cases << "\n"); |
| (void)numCmps; |
| |
| ConstantInt *LowerBound = nullptr; |
| ConstantInt *UpperBound = nullptr; |
| std::vector<IntRange> UnreachableRanges; |
| |
| if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) { |
| // Make the bounds tightly fitted around the case value range, because we |
| // know that the value passed to the switch must be exactly one of the case |
| // values. |
| assert(!Cases.empty()); |
| LowerBound = Cases.front().Low; |
| UpperBound = Cases.back().High; |
| |
| DenseMap<BasicBlock *, unsigned> Popularity; |
| unsigned MaxPop = 0; |
| BasicBlock *PopSucc = nullptr; |
| |
| IntRange R = {std::numeric_limits<int64_t>::min(), |
| std::numeric_limits<int64_t>::max()}; |
| UnreachableRanges.push_back(R); |
| for (const auto &I : Cases) { |
| int64_t Low = I.Low->getSExtValue(); |
| int64_t High = I.High->getSExtValue(); |
| |
| IntRange &LastRange = UnreachableRanges.back(); |
| if (LastRange.Low == Low) { |
| // There is nothing left of the previous range. |
| UnreachableRanges.pop_back(); |
| } else { |
| // Terminate the previous range. |
| assert(Low > LastRange.Low); |
| LastRange.High = Low - 1; |
| } |
| if (High != std::numeric_limits<int64_t>::max()) { |
| IntRange R = { High + 1, std::numeric_limits<int64_t>::max() }; |
| UnreachableRanges.push_back(R); |
| } |
| |
| // Count popularity. |
| int64_t N = High - Low + 1; |
| unsigned &Pop = Popularity[I.BB]; |
| if ((Pop += N) > MaxPop) { |
| MaxPop = Pop; |
| PopSucc = I.BB; |
| } |
| } |
| #ifndef NDEBUG |
| /* UnreachableRanges should be sorted and the ranges non-adjacent. */ |
| for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end(); |
| I != E; ++I) { |
| assert(I->Low <= I->High); |
| auto Next = I + 1; |
| if (Next != E) { |
| assert(Next->Low > I->High); |
| } |
| } |
| #endif |
| |
| // As the default block in the switch is unreachable, update the PHI nodes |
| // (remove the entry to the default block) to reflect this. |
| Default->removePredecessor(OrigBlock); |
| |
| // Use the most popular block as the new default, reducing the number of |
| // cases. |
| assert(MaxPop > 0 && PopSucc); |
| Default = PopSucc; |
| Cases.erase( |
| llvm::remove_if( |
| Cases, [PopSucc](const CaseRange &R) { return R.BB == PopSucc; }), |
| Cases.end()); |
| |
| // If there are no cases left, just branch. |
| if (Cases.empty()) { |
| BranchInst::Create(Default, CurBlock); |
| SI->eraseFromParent(); |
| // As all the cases have been replaced with a single branch, only keep |
| // one entry in the PHI nodes. |
| for (unsigned I = 0 ; I < (MaxPop - 1) ; ++I) |
| PopSucc->removePredecessor(OrigBlock); |
| return; |
| } |
| } |
| |
| unsigned NrOfDefaults = (SI->getDefaultDest() == Default) ? 1 : 0; |
| for (const auto &Case : SI->cases()) |
| if (Case.getCaseSuccessor() == Default) |
| NrOfDefaults++; |
| |
| // Create a new, empty default block so that the new hierarchy of |
| // if-then statements go to this and the PHI nodes are happy. |
| BasicBlock *NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault"); |
| F->getBasicBlockList().insert(Default->getIterator(), NewDefault); |
| BranchInst::Create(Default, NewDefault); |
| |
| BasicBlock *SwitchBlock = |
| switchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val, |
| OrigBlock, OrigBlock, NewDefault, UnreachableRanges); |
| |
| // If there are entries in any PHI nodes for the default edge, make sure |
| // to update them as well. |
| fixPhis(Default, OrigBlock, NewDefault, NrOfDefaults); |
| |
| // Branch to our shiny new if-then stuff... |
| BranchInst::Create(SwitchBlock, OrigBlock); |
| |
| // We are now done with the switch instruction, delete it. |
| BasicBlock *OldDefault = SI->getDefaultDest(); |
| CurBlock->getInstList().erase(SI); |
| |
| // If the Default block has no more predecessors just add it to DeleteList. |
| if (pred_begin(OldDefault) == pred_end(OldDefault)) |
| DeleteList.insert(OldDefault); |
| } |