blob: 46af120a428b49eb6d2f982faab3198f207c9f3b [file] [log] [blame]
//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines common loop utility functions.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/MustExecute.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "loop-utils"
bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
SmallPtrSetImpl<Instruction *> &Set) {
for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
if (!Set.count(dyn_cast<Instruction>(*Use)))
return false;
return true;
}
bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
switch (Kind) {
default:
break;
case RK_IntegerAdd:
case RK_IntegerMult:
case RK_IntegerOr:
case RK_IntegerAnd:
case RK_IntegerXor:
case RK_IntegerMinMax:
return true;
}
return false;
}
bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
}
bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
switch (Kind) {
default:
break;
case RK_IntegerAdd:
case RK_IntegerMult:
case RK_FloatAdd:
case RK_FloatMult:
return true;
}
return false;
}
/// Determines if Phi may have been type-promoted. If Phi has a single user
/// that ANDs the Phi with a type mask, return the user. RT is updated to
/// account for the narrower bit width represented by the mask, and the AND
/// instruction is added to CI.
static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
SmallPtrSetImpl<Instruction *> &Visited,
SmallPtrSetImpl<Instruction *> &CI) {
if (!Phi->hasOneUse())
return Phi;
const APInt *M = nullptr;
Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
// Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
// with a new integer type of the corresponding bit width.
if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
int32_t Bits = (*M + 1).exactLogBase2();
if (Bits > 0) {
RT = IntegerType::get(Phi->getContext(), Bits);
Visited.insert(Phi);
CI.insert(J);
return J;
}
}
return Phi;
}
/// Compute the minimal bit width needed to represent a reduction whose exit
/// instruction is given by Exit.
static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
DemandedBits *DB,
AssumptionCache *AC,
DominatorTree *DT) {
bool IsSigned = false;
const DataLayout &DL = Exit->getModule()->getDataLayout();
uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
if (DB) {
// Use the demanded bits analysis to determine the bits that are live out
// of the exit instruction, rounding up to the nearest power of two. If the
// use of demanded bits results in a smaller bit width, we know the value
// must be positive (i.e., IsSigned = false), because if this were not the
// case, the sign bit would have been demanded.
auto Mask = DB->getDemandedBits(Exit);
MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros();
}
if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
// If demanded bits wasn't able to limit the bit width, we can try to use
// value tracking instead. This can be the case, for example, if the value
// may be negative.
auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
MaxBitWidth = NumTypeBits - NumSignBits;
KnownBits Bits = computeKnownBits(Exit, DL);
if (!Bits.isNonNegative()) {
// If the value is not known to be non-negative, we set IsSigned to true,
// meaning that we will use sext instructions instead of zext
// instructions to restore the original type.
IsSigned = true;
if (!Bits.isNegative())
// If the value is not known to be negative, we don't known what the
// upper bit is, and therefore, we don't know what kind of extend we
// will need. In this case, just increase the bit width by one bit and
// use sext.
++MaxBitWidth;
}
}
if (!isPowerOf2_64(MaxBitWidth))
MaxBitWidth = NextPowerOf2(MaxBitWidth);
return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
IsSigned);
}
/// Collect cast instructions that can be ignored in the vectorizer's cost
/// model, given a reduction exit value and the minimal type in which the
/// reduction can be represented.
static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit,
Type *RecurrenceType,
SmallPtrSetImpl<Instruction *> &Casts) {
SmallVector<Instruction *, 8> Worklist;
SmallPtrSet<Instruction *, 8> Visited;
Worklist.push_back(Exit);
while (!Worklist.empty()) {
Instruction *Val = Worklist.pop_back_val();
Visited.insert(Val);
if (auto *Cast = dyn_cast<CastInst>(Val))
if (Cast->getSrcTy() == RecurrenceType) {
// If the source type of a cast instruction is equal to the recurrence
// type, it will be eliminated, and should be ignored in the vectorizer
// cost model.
Casts.insert(Cast);
continue;
}
// Add all operands to the work list if they are loop-varying values that
// we haven't yet visited.
for (Value *O : cast<User>(Val)->operands())
if (auto *I = dyn_cast<Instruction>(O))
if (TheLoop->contains(I) && !Visited.count(I))
Worklist.push_back(I);
}
}
bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
Loop *TheLoop, bool HasFunNoNaNAttr,
RecurrenceDescriptor &RedDes,
DemandedBits *DB,
AssumptionCache *AC,
DominatorTree *DT) {
if (Phi->getNumIncomingValues() != 2)
return false;
// Reduction variables are only found in the loop header block.
if (Phi->getParent() != TheLoop->getHeader())
return false;
// Obtain the reduction start value from the value that comes from the loop
// preheader.
Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
// ExitInstruction is the single value which is used outside the loop.
// We only allow for a single reduction value to be used outside the loop.
// This includes users of the reduction, variables (which form a cycle
// which ends in the phi node).
Instruction *ExitInstruction = nullptr;
// Indicates that we found a reduction operation in our scan.
bool FoundReduxOp = false;
// We start with the PHI node and scan for all of the users of this
// instruction. All users must be instructions that can be used as reduction
// variables (such as ADD). We must have a single out-of-block user. The cycle
// must include the original PHI.
bool FoundStartPHI = false;
// To recognize min/max patterns formed by a icmp select sequence, we store
// the number of instruction we saw from the recognized min/max pattern,
// to make sure we only see exactly the two instructions.
unsigned NumCmpSelectPatternInst = 0;
InstDesc ReduxDesc(false, nullptr);
// Data used for determining if the recurrence has been type-promoted.
Type *RecurrenceType = Phi->getType();
SmallPtrSet<Instruction *, 4> CastInsts;
Instruction *Start = Phi;
bool IsSigned = false;
SmallPtrSet<Instruction *, 8> VisitedInsts;
SmallVector<Instruction *, 8> Worklist;
// Return early if the recurrence kind does not match the type of Phi. If the
// recurrence kind is arithmetic, we attempt to look through AND operations
// resulting from the type promotion performed by InstCombine. Vector
// operations are not limited to the legal integer widths, so we may be able
// to evaluate the reduction in the narrower width.
if (RecurrenceType->isFloatingPointTy()) {
if (!isFloatingPointRecurrenceKind(Kind))
return false;
} else {
if (!isIntegerRecurrenceKind(Kind))
return false;
if (isArithmeticRecurrenceKind(Kind))
Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
}
Worklist.push_back(Start);
VisitedInsts.insert(Start);
// A value in the reduction can be used:
// - By the reduction:
// - Reduction operation:
// - One use of reduction value (safe).
// - Multiple use of reduction value (not safe).
// - PHI:
// - All uses of the PHI must be the reduction (safe).
// - Otherwise, not safe.
// - By instructions outside of the loop (safe).
// * One value may have several outside users, but all outside
// uses must be of the same value.
// - By an instruction that is not part of the reduction (not safe).
// This is either:
// * An instruction type other than PHI or the reduction operation.
// * A PHI in the header other than the initial PHI.
while (!Worklist.empty()) {
Instruction *Cur = Worklist.back();
Worklist.pop_back();
// No Users.
// If the instruction has no users then this is a broken chain and can't be
// a reduction variable.
if (Cur->use_empty())
return false;
bool IsAPhi = isa<PHINode>(Cur);
// A header PHI use other than the original PHI.
if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
return false;
// Reductions of instructions such as Div, and Sub is only possible if the
// LHS is the reduction variable.
if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
!isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
!VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
return false;
// Any reduction instruction must be of one of the allowed kinds. We ignore
// the starting value (the Phi or an AND instruction if the Phi has been
// type-promoted).
if (Cur != Start) {
ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
if (!ReduxDesc.isRecurrence())
return false;
}
// A reduction operation must only have one use of the reduction value.
if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
hasMultipleUsesOf(Cur, VisitedInsts))
return false;
// All inputs to a PHI node must be a reduction value.
if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
return false;
if (Kind == RK_IntegerMinMax &&
(isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
++NumCmpSelectPatternInst;
if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
++NumCmpSelectPatternInst;
// Check whether we found a reduction operator.
FoundReduxOp |= !IsAPhi && Cur != Start;
// Process users of current instruction. Push non-PHI nodes after PHI nodes
// onto the stack. This way we are going to have seen all inputs to PHI
// nodes once we get to them.
SmallVector<Instruction *, 8> NonPHIs;
SmallVector<Instruction *, 8> PHIs;
for (User *U : Cur->users()) {
Instruction *UI = cast<Instruction>(U);
// Check if we found the exit user.
BasicBlock *Parent = UI->getParent();
if (!TheLoop->contains(Parent)) {
// If we already know this instruction is used externally, move on to
// the next user.
if (ExitInstruction == Cur)
continue;
// Exit if you find multiple values used outside or if the header phi
// node is being used. In this case the user uses the value of the
// previous iteration, in which case we would loose "VF-1" iterations of
// the reduction operation if we vectorize.
if (ExitInstruction != nullptr || Cur == Phi)
return false;
// The instruction used by an outside user must be the last instruction
// before we feed back to the reduction phi. Otherwise, we loose VF-1
// operations on the value.
if (!is_contained(Phi->operands(), Cur))
return false;
ExitInstruction = Cur;
continue;
}
// Process instructions only once (termination). Each reduction cycle
// value must only be used once, except by phi nodes and min/max
// reductions which are represented as a cmp followed by a select.
InstDesc IgnoredVal(false, nullptr);
if (VisitedInsts.insert(UI).second) {
if (isa<PHINode>(UI))
PHIs.push_back(UI);
else
NonPHIs.push_back(UI);
} else if (!isa<PHINode>(UI) &&
((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
!isa<SelectInst>(UI)) ||
!isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
return false;
// Remember that we completed the cycle.
if (UI == Phi)
FoundStartPHI = true;
}
Worklist.append(PHIs.begin(), PHIs.end());
Worklist.append(NonPHIs.begin(), NonPHIs.end());
}
// This means we have seen one but not the other instruction of the
// pattern or more than just a select and cmp.
if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
NumCmpSelectPatternInst != 2)
return false;
if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
return false;
if (Start != Phi) {
// If the starting value is not the same as the phi node, we speculatively
// looked through an 'and' instruction when evaluating a potential
// arithmetic reduction to determine if it may have been type-promoted.
//
// We now compute the minimal bit width that is required to represent the
// reduction. If this is the same width that was indicated by the 'and', we
// can represent the reduction in the smaller type. The 'and' instruction
// will be eliminated since it will essentially be a cast instruction that
// can be ignore in the cost model. If we compute a different type than we
// did when evaluating the 'and', the 'and' will not be eliminated, and we
// will end up with different kinds of operations in the recurrence
// expression (e.g., RK_IntegerAND, RK_IntegerADD). We give up if this is
// the case.
//
// The vectorizer relies on InstCombine to perform the actual
// type-shrinking. It does this by inserting instructions to truncate the
// exit value of the reduction to the width indicated by RecurrenceType and
// then extend this value back to the original width. If IsSigned is false,
// a 'zext' instruction will be generated; otherwise, a 'sext' will be
// used.
//
// TODO: We should not rely on InstCombine to rewrite the reduction in the
// smaller type. We should just generate a correctly typed expression
// to begin with.
Type *ComputedType;
std::tie(ComputedType, IsSigned) =
computeRecurrenceType(ExitInstruction, DB, AC, DT);
if (ComputedType != RecurrenceType)
return false;
// The recurrence expression will be represented in a narrower type. If
// there are any cast instructions that will be unnecessary, collect them
// in CastInsts. Note that the 'and' instruction was already included in
// this list.
//
// TODO: A better way to represent this may be to tag in some way all the
// instructions that are a part of the reduction. The vectorizer cost
// model could then apply the recurrence type to these instructions,
// without needing a white list of instructions to ignore.
collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts);
}
// We found a reduction var if we have reached the original phi node and we
// only have a single instruction with out-of-loop users.
// The ExitInstruction(Instruction which is allowed to have out-of-loop users)
// is saved as part of the RecurrenceDescriptor.
// Save the description of this reduction variable.
RecurrenceDescriptor RD(
RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(),
ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
RedDes = RD;
return true;
}
/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
/// pattern corresponding to a min(X, Y) or max(X, Y).
RecurrenceDescriptor::InstDesc
RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
"Expect a select instruction");
Instruction *Cmp = nullptr;
SelectInst *Select = nullptr;
// We must handle the select(cmp()) as a single instruction. Advance to the
// select.
if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
return InstDesc(false, I);
return InstDesc(Select, Prev.getMinMaxKind());
}
// Only handle single use cases for now.
if (!(Select = dyn_cast<SelectInst>(I)))
return InstDesc(false, I);
if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
!(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
return InstDesc(false, I);
if (!Cmp->hasOneUse())
return InstDesc(false, I);
Value *CmpLeft;
Value *CmpRight;
// Look for a min/max pattern.
if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return InstDesc(Select, MRK_UIntMin);
else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return InstDesc(Select, MRK_UIntMax);
else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return InstDesc(Select, MRK_SIntMax);
else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return InstDesc(Select, MRK_SIntMin);
else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return InstDesc(Select, MRK_FloatMin);
else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return InstDesc(Select, MRK_FloatMax);
else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return InstDesc(Select, MRK_FloatMin);
else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return InstDesc(Select, MRK_FloatMax);
return InstDesc(false, I);
}
RecurrenceDescriptor::InstDesc
RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
InstDesc &Prev, bool HasFunNoNaNAttr) {
bool FP = I->getType()->isFloatingPointTy();
Instruction *UAI = Prev.getUnsafeAlgebraInst();
if (!UAI && FP && !I->isFast())
UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
switch (I->getOpcode()) {
default:
return InstDesc(false, I);
case Instruction::PHI:
return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
case Instruction::Sub:
case Instruction::Add:
return InstDesc(Kind == RK_IntegerAdd, I);
case Instruction::Mul:
return InstDesc(Kind == RK_IntegerMult, I);
case Instruction::And:
return InstDesc(Kind == RK_IntegerAnd, I);
case Instruction::Or:
return InstDesc(Kind == RK_IntegerOr, I);
case Instruction::Xor:
return InstDesc(Kind == RK_IntegerXor, I);
case Instruction::FMul:
return InstDesc(Kind == RK_FloatMult, I, UAI);
case Instruction::FSub:
case Instruction::FAdd:
return InstDesc(Kind == RK_FloatAdd, I, UAI);
case Instruction::FCmp:
case Instruction::ICmp:
case Instruction::Select:
if (Kind != RK_IntegerMinMax &&
(!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
return InstDesc(false, I);
return isMinMaxSelectCmpPattern(I, Prev);
}
}
bool RecurrenceDescriptor::hasMultipleUsesOf(
Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
unsigned NumUses = 0;
for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
++Use) {
if (Insts.count(dyn_cast<Instruction>(*Use)))
++NumUses;
if (NumUses > 1)
return true;
}
return false;
}
bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
RecurrenceDescriptor &RedDes,
DemandedBits *DB, AssumptionCache *AC,
DominatorTree *DT) {
BasicBlock *Header = TheLoop->getHeader();
Function &F = *Header->getParent();
bool HasFunNoNaNAttr =
F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
AC, DT)) {
LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
AC, DT)) {
LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes, DB,
AC, DT)) {
LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
AC, DT)) {
LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes, DB,
AC, DT)) {
LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, RedDes,
DB, AC, DT)) {
LLVM_DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
AC, DT)) {
LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
AC, DT)) {
LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes, DB,
AC, DT)) {
LLVM_DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi
<< "\n");
return true;
}
// Not a reduction of known type.
return false;
}
bool RecurrenceDescriptor::isFirstOrderRecurrence(
PHINode *Phi, Loop *TheLoop,
DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {
// Ensure the phi node is in the loop header and has two incoming values.
if (Phi->getParent() != TheLoop->getHeader() ||
Phi->getNumIncomingValues() != 2)
return false;
// Ensure the loop has a preheader and a single latch block. The loop
// vectorizer will need the latch to set up the next iteration of the loop.
auto *Preheader = TheLoop->getLoopPreheader();
auto *Latch = TheLoop->getLoopLatch();
if (!Preheader || !Latch)
return false;
// Ensure the phi node's incoming blocks are the loop preheader and latch.
if (Phi->getBasicBlockIndex(Preheader) < 0 ||
Phi->getBasicBlockIndex(Latch) < 0)
return false;
// Get the previous value. The previous value comes from the latch edge while
// the initial value comes form the preheader edge.
auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
return false;
// Ensure every user of the phi node is dominated by the previous value.
// The dominance requirement ensures the loop vectorizer will not need to
// vectorize the initial value prior to the first iteration of the loop.
// TODO: Consider extending this sinking to handle other kinds of instructions
// and expressions, beyond sinking a single cast past Previous.
if (Phi->hasOneUse()) {
auto *I = Phi->user_back();
if (I->isCast() && (I->getParent() == Phi->getParent()) && I->hasOneUse() &&
DT->dominates(Previous, I->user_back())) {
if (!DT->dominates(Previous, I)) // Otherwise we're good w/o sinking.
SinkAfter[I] = Previous;
return true;
}
}
for (User *U : Phi->users())
if (auto *I = dyn_cast<Instruction>(U)) {
if (!DT->dominates(Previous, I))
return false;
}
return true;
}
/// This function returns the identity element (or neutral element) for
/// the operation K.
Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
Type *Tp) {
switch (K) {
case RK_IntegerXor:
case RK_IntegerAdd:
case RK_IntegerOr:
// Adding, Xoring, Oring zero to a number does not change it.
return ConstantInt::get(Tp, 0);
case RK_IntegerMult:
// Multiplying a number by 1 does not change it.
return ConstantInt::get(Tp, 1);
case RK_IntegerAnd:
// AND-ing a number with an all-1 value does not change it.
return ConstantInt::get(Tp, -1, true);
case RK_FloatMult:
// Multiplying a number by 1 does not change it.
return ConstantFP::get(Tp, 1.0L);
case RK_FloatAdd:
// Adding zero to a number does not change it.
return ConstantFP::get(Tp, 0.0L);
default:
llvm_unreachable("Unknown recurrence kind");
}
}
/// This function translates the recurrence kind to an LLVM binary operator.
unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
switch (Kind) {
case RK_IntegerAdd:
return Instruction::Add;
case RK_IntegerMult:
return Instruction::Mul;
case RK_IntegerOr:
return Instruction::Or;
case RK_IntegerAnd:
return Instruction::And;
case RK_IntegerXor:
return Instruction::Xor;
case RK_FloatMult:
return Instruction::FMul;
case RK_FloatAdd:
return Instruction::FAdd;
case RK_IntegerMinMax:
return Instruction::ICmp;
case RK_FloatMinMax:
return Instruction::FCmp;
default:
llvm_unreachable("Unknown recurrence operation");
}
}
Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,
MinMaxRecurrenceKind RK,
Value *Left, Value *Right) {
CmpInst::Predicate P = CmpInst::ICMP_NE;
switch (RK) {
default:
llvm_unreachable("Unknown min/max recurrence kind");
case MRK_UIntMin:
P = CmpInst::ICMP_ULT;
break;
case MRK_UIntMax:
P = CmpInst::ICMP_UGT;
break;
case MRK_SIntMin:
P = CmpInst::ICMP_SLT;
break;
case MRK_SIntMax:
P = CmpInst::ICMP_SGT;
break;
case MRK_FloatMin:
P = CmpInst::FCMP_OLT;
break;
case MRK_FloatMax:
P = CmpInst::FCMP_OGT;
break;
}
// We only match FP sequences that are 'fast', so we can unconditionally
// set it on any generated instructions.
IRBuilder<>::FastMathFlagGuard FMFG(Builder);
FastMathFlags FMF;
FMF.setFast();
Builder.setFastMathFlags(FMF);
Value *Cmp;
if (RK == MRK_FloatMin || RK == MRK_FloatMax)
Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
else
Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
return Select;
}
InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
const SCEV *Step, BinaryOperator *BOp,
SmallVectorImpl<Instruction *> *Casts)
: StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
assert(IK != IK_NoInduction && "Not an induction");
// Start value type should match the induction kind and the value
// itself should not be null.
assert(StartValue && "StartValue is null");
assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
"StartValue is not a pointer for pointer induction");
assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
"StartValue is not an integer for integer induction");
// Check the Step Value. It should be non-zero integer value.
assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
"Step value is zero");
assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
"Step value should be constant for pointer induction");
assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
"StepValue is not an integer");
assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
"StepValue is not FP for FpInduction");
assert((IK != IK_FpInduction || (InductionBinOp &&
(InductionBinOp->getOpcode() == Instruction::FAdd ||
InductionBinOp->getOpcode() == Instruction::FSub))) &&
"Binary opcode should be specified for FP induction");
if (Casts) {
for (auto &Inst : *Casts) {
RedundantCasts.push_back(Inst);
}
}
}
int InductionDescriptor::getConsecutiveDirection() const {
ConstantInt *ConstStep = getConstIntStepValue();
if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
return ConstStep->getSExtValue();
return 0;
}
ConstantInt *InductionDescriptor::getConstIntStepValue() const {
if (isa<SCEVConstant>(Step))
return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
return nullptr;
}
Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index,
ScalarEvolution *SE,
const DataLayout& DL) const {
SCEVExpander Exp(*SE, DL, "induction");
assert(Index->getType() == Step->getType() &&
"Index type does not match StepValue type");
switch (IK) {
case IK_IntInduction: {
assert(Index->getType() == StartValue->getType() &&
"Index type does not match StartValue type");
// FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution
// and calculate (Start + Index * Step) for all cases, without
// special handling for "isOne" and "isMinusOne".
// But in the real life the result code getting worse. We mix SCEV
// expressions and ADD/SUB operations and receive redundant
// intermediate values being calculated in different ways and
// Instcombine is unable to reduce them all.
if (getConstIntStepValue() &&
getConstIntStepValue()->isMinusOne())
return B.CreateSub(StartValue, Index);
if (getConstIntStepValue() &&
getConstIntStepValue()->isOne())
return B.CreateAdd(StartValue, Index);
const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue),
SE->getMulExpr(Step, SE->getSCEV(Index)));
return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint());
}
case IK_PtrInduction: {
assert(isa<SCEVConstant>(Step) &&
"Expected constant step for pointer induction");
const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step);
Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint());
return B.CreateGEP(nullptr, StartValue, Index);
}
case IK_FpInduction: {
assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
assert(InductionBinOp &&
(InductionBinOp->getOpcode() == Instruction::FAdd ||
InductionBinOp->getOpcode() == Instruction::FSub) &&
"Original bin op should be defined for FP induction");
Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
// Floating point operations had to be 'fast' to enable the induction.
FastMathFlags Flags;
Flags.setFast();
Value *MulExp = B.CreateFMul(StepValue, Index);
if (isa<Instruction>(MulExp))
// We have to check, the MulExp may be a constant.
cast<Instruction>(MulExp)->setFastMathFlags(Flags);
Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue,
MulExp, "induction");
if (isa<Instruction>(BOp))
cast<Instruction>(BOp)->setFastMathFlags(Flags);
return BOp;
}
case IK_NoInduction:
return nullptr;
}
llvm_unreachable("invalid enum");
}
bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
ScalarEvolution *SE,
InductionDescriptor &D) {
// Here we only handle FP induction variables.
assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
if (TheLoop->getHeader() != Phi->getParent())
return false;
// The loop may have multiple entrances or multiple exits; we can analyze
// this phi if it has a unique entry value and a unique backedge value.
if (Phi->getNumIncomingValues() != 2)
return false;
Value *BEValue = nullptr, *StartValue = nullptr;
if (TheLoop->contains(Phi->getIncomingBlock(0))) {
BEValue = Phi->getIncomingValue(0);
StartValue = Phi->getIncomingValue(1);
} else {
assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
"Unexpected Phi node in the loop");
BEValue = Phi->getIncomingValue(1);
StartValue = Phi->getIncomingValue(0);
}
BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
if (!BOp)
return false;
Value *Addend = nullptr;
if (BOp->getOpcode() == Instruction::FAdd) {
if (BOp->getOperand(0) == Phi)
Addend = BOp->getOperand(1);
else if (BOp->getOperand(1) == Phi)
Addend = BOp->getOperand(0);
} else if (BOp->getOpcode() == Instruction::FSub)
if (BOp->getOperand(0) == Phi)
Addend = BOp->getOperand(1);
if (!Addend)
return false;
// The addend should be loop invariant
if (auto *I = dyn_cast<Instruction>(Addend))
if (TheLoop->contains(I))
return false;
// FP Step has unknown SCEV
const SCEV *Step = SE->getUnknown(Addend);
D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
return true;
}
/// This function is called when we suspect that the update-chain of a phi node
/// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
/// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
/// predicate P under which the SCEV expression for the phi can be the
/// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
/// cast instructions that are involved in the update-chain of this induction.
/// A caller that adds the required runtime predicate can be free to drop these
/// cast instructions, and compute the phi using \p AR (instead of some scev
/// expression with casts).
///
/// For example, without a predicate the scev expression can take the following
/// form:
/// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
///
/// It corresponds to the following IR sequence:
/// %for.body:
/// %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
/// %casted_phi = "ExtTrunc i64 %x"
/// %add = add i64 %casted_phi, %step
///
/// where %x is given in \p PN,
/// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
/// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
/// several forms, for example, such as:
/// ExtTrunc1: %casted_phi = and %x, 2^n-1
/// or:
/// ExtTrunc2: %t = shl %x, m
/// %casted_phi = ashr %t, m
///
/// If we are able to find such sequence, we return the instructions
/// we found, namely %casted_phi and the instructions on its use-def chain up
/// to the phi (not including the phi).
static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
const SCEVUnknown *PhiScev,
const SCEVAddRecExpr *AR,
SmallVectorImpl<Instruction *> &CastInsts) {
assert(CastInsts.empty() && "CastInsts is expected to be empty.");
auto *PN = cast<PHINode>(PhiScev->getValue());
assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
const Loop *L = AR->getLoop();
// Find any cast instructions that participate in the def-use chain of
// PhiScev in the loop.
// FORNOW/TODO: We currently expect the def-use chain to include only
// two-operand instructions, where one of the operands is an invariant.
// createAddRecFromPHIWithCasts() currently does not support anything more
// involved than that, so we keep the search simple. This can be
// extended/generalized as needed.
auto getDef = [&](const Value *Val) -> Value * {
const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
if (!BinOp)
return nullptr;
Value *Op0 = BinOp->getOperand(0);
Value *Op1 = BinOp->getOperand(1);
Value *Def = nullptr;
if (L->isLoopInvariant(Op0))
Def = Op1;
else if (L->isLoopInvariant(Op1))
Def = Op0;
return Def;
};
// Look for the instruction that defines the induction via the
// loop backedge.
BasicBlock *Latch = L->getLoopLatch();
if (!Latch)
return false;
Value *Val = PN->getIncomingValueForBlock(Latch);
if (!Val)
return false;
// Follow the def-use chain until the induction phi is reached.
// If on the way we encounter a Value that has the same SCEV Expr as the
// phi node, we can consider the instructions we visit from that point
// as part of the cast-sequence that can be ignored.
bool InCastSequence = false;
auto *Inst = dyn_cast<Instruction>(Val);
while (Val != PN) {
// If we encountered a phi node other than PN, or if we left the loop,
// we bail out.
if (!Inst || !L->contains(Inst)) {
return false;
}
auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
InCastSequence = true;
if (InCastSequence) {
// Only the last instruction in the cast sequence is expected to have
// uses outside the induction def-use chain.
if (!CastInsts.empty())
if (!Inst->hasOneUse())
return false;
CastInsts.push_back(Inst);
}
Val = getDef(Val);
if (!Val)
return false;
Inst = dyn_cast<Instruction>(Val);
}
return InCastSequence;
}
bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
PredicatedScalarEvolution &PSE,
InductionDescriptor &D,
bool Assume) {
Type *PhiTy = Phi->getType();
// Handle integer and pointer inductions variables.
// Now we handle also FP induction but not trying to make a
// recurrent expression from the PHI node in-place.
if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() &&
!PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
return false;
if (PhiTy->isFloatingPointTy())
return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
const SCEV *PhiScev = PSE.getSCEV(Phi);
const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
// We need this expression to be an AddRecExpr.
if (Assume && !AR)
AR = PSE.getAsAddRec(Phi);
if (!AR) {
LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
return false;
}
// Record any Cast instructions that participate in the induction update
const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
// If we started from an UnknownSCEV, and managed to build an addRecurrence
// only after enabling Assume with PSCEV, this means we may have encountered
// cast instructions that required adding a runtime check in order to
// guarantee the correctness of the AddRecurence respresentation of the
// induction.
if (PhiScev != AR && SymbolicPhi) {
SmallVector<Instruction *, 2> Casts;
if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
}
return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
}
bool InductionDescriptor::isInductionPHI(
PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
InductionDescriptor &D, const SCEV *Expr,
SmallVectorImpl<Instruction *> *CastsToIgnore) {
Type *PhiTy = Phi->getType();
// We only handle integer and pointer inductions variables.
if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
return false;
// Check that the PHI is consecutive.
const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
if (!AR) {
LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
return false;
}
if (AR->getLoop() != TheLoop) {
// FIXME: We should treat this as a uniform. Unfortunately, we
// don't currently know how to handled uniform PHIs.
LLVM_DEBUG(
dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
return false;
}
Value *StartValue =
Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
const SCEV *Step = AR->getStepRecurrence(*SE);
// Calculate the pointer stride and check if it is consecutive.
// The stride may be a constant or a loop invariant integer value.
const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
return false;
if (PhiTy->isIntegerTy()) {
D = InductionDescriptor(StartValue, IK_IntInduction, Step, /*BOp=*/ nullptr,
CastsToIgnore);
return true;
}
assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
// Pointer induction should be a constant.
if (!ConstStep)
return false;
ConstantInt *CV = ConstStep->getValue();
Type *PointerElementType = PhiTy->getPointerElementType();
// The pointer stride cannot be determined if the pointer element type is not
// sized.
if (!PointerElementType->isSized())
return false;
const DataLayout &DL = Phi->getModule()->getDataLayout();
int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
if (!Size)
return false;
int64_t CVSize = CV->getSExtValue();
if (CVSize % Size)
return false;
auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size,
true /* signed */);
D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue);
return true;
}
bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
bool PreserveLCSSA) {
bool Changed = false;
// We re-use a vector for the in-loop predecesosrs.
SmallVector<BasicBlock *, 4> InLoopPredecessors;
auto RewriteExit = [&](BasicBlock *BB) {
assert(InLoopPredecessors.empty() &&
"Must start with an empty predecessors list!");
auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
// See if there are any non-loop predecessors of this exit block and
// keep track of the in-loop predecessors.
bool IsDedicatedExit = true;
for (auto *PredBB : predecessors(BB))
if (L->contains(PredBB)) {
if (isa<IndirectBrInst>(PredBB->getTerminator()))
// We cannot rewrite exiting edges from an indirectbr.
return false;
InLoopPredecessors.push_back(PredBB);
} else {
IsDedicatedExit = false;
}
assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
// Nothing to do if this is already a dedicated exit.
if (IsDedicatedExit)
return false;
auto *NewExitBB = SplitBlockPredecessors(
BB, InLoopPredecessors, ".loopexit", DT, LI, PreserveLCSSA);
if (!NewExitBB)
LLVM_DEBUG(
dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
<< *L << "\n");
else
LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
<< NewExitBB->getName() << "\n");
return true;
};
// Walk the exit blocks directly rather than building up a data structure for
// them, but only visit each one once.
SmallPtrSet<BasicBlock *, 4> Visited;
for (auto *BB : L->blocks())
for (auto *SuccBB : successors(BB)) {
// We're looking for exit blocks so skip in-loop successors.
if (L->contains(SuccBB))
continue;
// Visit each exit block exactly once.
if (!Visited.insert(SuccBB).second)
continue;
Changed |= RewriteExit(SuccBB);
}
return Changed;
}
/// Returns the instructions that use values defined in the loop.
SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
SmallVector<Instruction *, 8> UsedOutside;
for (auto *Block : L->getBlocks())
// FIXME: I believe that this could use copy_if if the Inst reference could
// be adapted into a pointer.
for (auto &Inst : *Block) {
auto Users = Inst.users();
if (any_of(Users, [&](User *U) {
auto *Use = cast<Instruction>(U);
return !L->contains(Use->getParent());
}))
UsedOutside.push_back(&Inst);
}
return UsedOutside;
}
void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
// By definition, all loop passes need the LoopInfo analysis and the
// Dominator tree it depends on. Because they all participate in the loop
// pass manager, they must also preserve these.
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
// We must also preserve LoopSimplify and LCSSA. We locally access their IDs
// here because users shouldn't directly get them from this header.
extern char &LoopSimplifyID;
extern char &LCSSAID;
AU.addRequiredID(LoopSimplifyID);
AU.addPreservedID(LoopSimplifyID);
AU.addRequiredID(LCSSAID);
AU.addPreservedID(LCSSAID);
// This is used in the LPPassManager to perform LCSSA verification on passes
// which preserve lcssa form
AU.addRequired<LCSSAVerificationPass>();
AU.addPreserved<LCSSAVerificationPass>();
// Loop passes are designed to run inside of a loop pass manager which means
// that any function analyses they require must be required by the first loop
// pass in the manager (so that it is computed before the loop pass manager
// runs) and preserved by all loop pasess in the manager. To make this
// reasonably robust, the set needed for most loop passes is maintained here.
// If your loop pass requires an analysis not listed here, you will need to
// carefully audit the loop pass manager nesting structure that results.
AU.addRequired<AAResultsWrapperPass>();
AU.addPreserved<AAResultsWrapperPass>();
AU.addPreserved<BasicAAWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
AU.addPreserved<SCEVAAWrapperPass>();
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addPreserved<ScalarEvolutionWrapperPass>();
}
/// Manually defined generic "LoopPass" dependency initialization. This is used
/// to initialize the exact set of passes from above in \c
/// getLoopAnalysisUsage. It can be used within a loop pass's initialization
/// with:
///
/// INITIALIZE_PASS_DEPENDENCY(LoopPass)
///
/// As-if "LoopPass" were a pass.
void llvm::initializeLoopPassPass(PassRegistry &Registry) {
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
}
/// Find string metadata for loop
///
/// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
/// operand or null otherwise. If the string metadata is not found return
/// Optional's not-a-value.
Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop,
StringRef Name) {
MDNode *LoopID = TheLoop->getLoopID();
// Return none if LoopID is false.
if (!LoopID)
return None;
// First operand should refer to the loop id itself.
assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
// Iterate over LoopID operands and look for MDString Metadata
for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
if (!MD)
continue;
MDString *S = dyn_cast<MDString>(MD->getOperand(0));
if (!S)
continue;
// Return true if MDString holds expected MetaData.
if (Name.equals(S->getString()))
switch (MD->getNumOperands()) {
case 1:
return nullptr;
case 2:
return &MD->getOperand(1);
default:
llvm_unreachable("loop metadata has 0 or 1 operand");
}
}
return None;
}
/// Does a BFS from a given node to all of its children inside a given loop.
/// The returned vector of nodes includes the starting point.
SmallVector<DomTreeNode *, 16>
llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
SmallVector<DomTreeNode *, 16> Worklist;
auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
// Only include subregions in the top level loop.
BasicBlock *BB = DTN->getBlock();
if (CurLoop->contains(BB))
Worklist.push_back(DTN);
};
AddRegionToWorklist(N);
for (size_t I = 0; I < Worklist.size(); I++)
for (DomTreeNode *Child : Worklist[I]->getChildren())
AddRegionToWorklist(Child);
return Worklist;
}
void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr,
ScalarEvolution *SE = nullptr,
LoopInfo *LI = nullptr) {
assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
auto *Preheader = L->getLoopPreheader();
assert(Preheader && "Preheader should exist!");
// Now that we know the removal is safe, remove the loop by changing the
// branch from the preheader to go to the single exit block.
//
// Because we're deleting a large chunk of code at once, the sequence in which
// we remove things is very important to avoid invalidation issues.
// Tell ScalarEvolution that the loop is deleted. Do this before
// deleting the loop so that ScalarEvolution can look at the loop
// to determine what it needs to clean up.
if (SE)
SE->forgetLoop(L);
auto *ExitBlock = L->getUniqueExitBlock();
assert(ExitBlock && "Should have a unique exit block!");
assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
assert(OldBr && "Preheader must end with a branch");
assert(OldBr->isUnconditional() && "Preheader must have a single successor");
// Connect the preheader to the exit block. Keep the old edge to the header
// around to perform the dominator tree update in two separate steps
// -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
// preheader -> header.
//
//
// 0. Preheader 1. Preheader 2. Preheader
// | | | |
// V | V |
// Header <--\ | Header <--\ | Header <--\
// | | | | | | | | | | |
// | V | | | V | | | V |
// | Body --/ | | Body --/ | | Body --/
// V V V V V
// Exit Exit Exit
//
// By doing this is two separate steps we can perform the dominator tree
// update without using the batch update API.
//
// Even when the loop is never executed, we cannot remove the edge from the
// source block to the exit block. Consider the case where the unexecuted loop
// branches back to an outer loop. If we deleted the loop and removed the edge
// coming to this inner loop, this will break the outer loop structure (by
// deleting the backedge of the outer loop). If the outer loop is indeed a
// non-loop, it will be deleted in a future iteration of loop deletion pass.
IRBuilder<> Builder(OldBr);
Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
// Remove the old branch. The conditional branch becomes a new terminator.
OldBr->eraseFromParent();
// Rewrite phis in the exit block to get their inputs from the Preheader
// instead of the exiting block.
for (PHINode &P : ExitBlock->phis()) {
// Set the zero'th element of Phi to be from the preheader and remove all
// other incoming values. Given the loop has dedicated exits, all other
// incoming values must be from the exiting blocks.
int PredIndex = 0;
P.setIncomingBlock(PredIndex, Preheader);
// Removes all incoming values from all other exiting blocks (including
// duplicate values from an exiting block).
// Nuke all entries except the zero'th entry which is the preheader entry.
// NOTE! We need to remove Incoming Values in the reverse order as done
// below, to keep the indices valid for deletion (removeIncomingValues
// updates getNumIncomingValues and shifts all values down into the operand
// being deleted).
for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
P.removeIncomingValue(e - i, false);
assert((P.getNumIncomingValues() == 1 &&
P.getIncomingBlock(PredIndex) == Preheader) &&
"Should have exactly one value and that's from the preheader!");
}
// Disconnect the loop body by branching directly to its exit.
Builder.SetInsertPoint(Preheader->getTerminator());
Builder.CreateBr(ExitBlock);
// Remove the old branch.
Preheader->getTerminator()->eraseFromParent();
if (DT) {
// Update the dominator tree by informing it about the new edge from the
// preheader to the exit.
DT->insertEdge(Preheader, ExitBlock);
// Inform the dominator tree about the removed edge.
DT->deleteEdge(Preheader, L->getHeader());
}
// Given LCSSA form is satisfied, we should not have users of instructions
// within the dead loop outside of the loop. However, LCSSA doesn't take
// unreachable uses into account. We handle them here.
// We could do it after drop all references (in this case all users in the
// loop will be already eliminated and we have less work to do but according
// to API doc of User::dropAllReferences only valid operation after dropping
// references, is deletion. So let's substitute all usages of
// instruction from the loop with undef value of corresponding type first.
for (auto *Block : L->blocks())
for (Instruction &I : *Block) {
auto *Undef = UndefValue::get(I.getType());
for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) {
Use &U = *UI;
++UI;
if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
if (L->contains(Usr->getParent()))
continue;
// If we have a DT then we can check that uses outside a loop only in
// unreachable block.
if (DT)
assert(!DT->isReachableFromEntry(U) &&
"Unexpected user in reachable block");
U.set(Undef);
}
}
// Remove the block from the reference counting scheme, so that we can
// delete it freely later.
for (auto *Block : L->blocks())
Block->dropAllReferences();
if (LI) {
// Erase the instructions and the blocks without having to worry
// about ordering because we already dropped the references.
// NOTE: This iteration is safe because erasing the block does not remove
// its entry from the loop's block list. We do that in the next section.
for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
LpI != LpE; ++LpI)
(*LpI)->eraseFromParent();
// Finally, the blocks from loopinfo. This has to happen late because
// otherwise our loop iterators won't work.
SmallPtrSet<BasicBlock *, 8> blocks;
blocks.insert(L->block_begin(), L->block_end());
for (BasicBlock *BB : blocks)
LI->removeBlock(BB);
// The last step is to update LoopInfo now that we've eliminated this loop.
LI->erase(L);
}
}
Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
// Only support loops with a unique exiting block, and a latch.
if (!L->getExitingBlock())
return None;
// Get the branch weights for the loop's backedge.
BranchInst *LatchBR =
dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator());
if (!LatchBR || LatchBR->getNumSuccessors() != 2)
return None;
assert((LatchBR->getSuccessor(0) == L->getHeader() ||
LatchBR->getSuccessor(1) == L->getHeader()) &&
"At least one edge out of the latch must go to the header");
// To estimate the number of times the loop body was executed, we want to
// know the number of times the backedge was taken, vs. the number of times
// we exited the loop.
uint64_t TrueVal, FalseVal;
if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
return None;
if (!TrueVal || !FalseVal)
return 0;
// Divide the count of the backedge by the count of the edge exiting the loop,
// rounding to nearest.
if (LatchBR->getSuccessor(0) == L->getHeader())
return (TrueVal + (FalseVal / 2)) / FalseVal;
else
return (FalseVal + (TrueVal / 2)) / TrueVal;
}
/// Adds a 'fast' flag to floating point operations.
static Value *addFastMathFlag(Value *V) {
if (isa<FPMathOperator>(V)) {
FastMathFlags Flags;
Flags.setFast();
cast<Instruction>(V)->setFastMathFlags(Flags);
}
return V;
}
// Helper to generate an ordered reduction.
Value *
llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src,
unsigned Op,
RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
ArrayRef<Value *> RedOps) {
unsigned VF = Src->getType()->getVectorNumElements();
// Extract and apply reduction ops in ascending order:
// e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
Value *Result = Acc;
for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
Value *Ext =
Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
"bin.rdx");
} else {
assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
"Invalid min/max");
Result = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, Result,
Ext);
}
if (!RedOps.empty())
propagateIRFlags(Result, RedOps);
}
return Result;
}
// Helper to generate a log2 shuffle reduction.
Value *
llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
ArrayRef<Value *> RedOps) {
unsigned VF = Src->getType()->getVectorNumElements();
// VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
// and vector ops, reducing the set of values being computed by half each
// round.
assert(isPowerOf2_32(VF) &&
"Reduction emission only supported for pow2 vectors!");
Value *TmpVec = Src;
SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
for (unsigned i = VF; i != 1; i >>= 1) {
// Move the upper half of the vector to the lower half.
for (unsigned j = 0; j != i / 2; ++j)
ShuffleMask[j] = Builder.getInt32(i / 2 + j);
// Fill the rest of the mask with undef.
std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
UndefValue::get(Builder.getInt32Ty()));
Value *Shuf = Builder.CreateShuffleVector(
TmpVec, UndefValue::get(TmpVec->getType()),
ConstantVector::get(ShuffleMask), "rdx.shuf");
if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
// Floating point operations had to be 'fast' to enable the reduction.
TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op,
TmpVec, Shuf, "bin.rdx"));
} else {
assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
"Invalid min/max");
TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, TmpVec,
Shuf);
}
if (!RedOps.empty())
propagateIRFlags(TmpVec, RedOps);
}
// The result is in the first element of the vector.
return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
}
/// Create a simple vector reduction specified by an opcode and some
/// flags (if generating min/max reductions).
Value *llvm::createSimpleTargetReduction(
IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
Value *Src, TargetTransformInfo::ReductionFlags Flags,
ArrayRef<Value *> RedOps) {
assert(isa<VectorType>(Src->getType()) && "Type must be a vector");
Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType());
std::function<Value*()> BuildFunc;
using RD = RecurrenceDescriptor;
RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
// TODO: Support creating ordered reductions.
FastMathFlags FMFFast;
FMFFast.setFast();
switch (Opcode) {
case Instruction::Add:
BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
break;
case Instruction::Mul:
BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
break;
case Instruction::And:
BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
break;
case Instruction::Or:
BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
break;
case Instruction::Xor:
BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
break;
case Instruction::FAdd:
BuildFunc = [&]() {
auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src);
cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
return Rdx;
};
break;
case Instruction::FMul:
BuildFunc = [&]() {
auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src);
cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
return Rdx;
};
break;
case Instruction::ICmp:
if (Flags.IsMaxOp) {
MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
BuildFunc = [&]() {
return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
};
} else {
MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
BuildFunc = [&]() {
return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
};
}
break;
case Instruction::FCmp:
if (Flags.IsMaxOp) {
MinMaxKind = RD::MRK_FloatMax;
BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
} else {
MinMaxKind = RD::MRK_FloatMin;
BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
}
break;
default:
llvm_unreachable("Unhandled opcode");
break;
}
if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
return BuildFunc();
return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
}
/// Create a vector reduction using a given recurrence descriptor.
Value *llvm::createTargetReduction(IRBuilder<> &B,
const TargetTransformInfo *TTI,
RecurrenceDescriptor &Desc, Value *Src,
bool NoNaN) {
// TODO: Support in-order reductions based on the recurrence descriptor.
using RD = RecurrenceDescriptor;
RD::RecurrenceKind RecKind = Desc.getRecurrenceKind();
TargetTransformInfo::ReductionFlags Flags;
Flags.NoNaN = NoNaN;
switch (RecKind) {
case RD::RK_FloatAdd:
return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags);
case RD::RK_FloatMult:
return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags);
case RD::RK_IntegerAdd:
return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags);
case RD::RK_IntegerMult:
return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags);
case RD::RK_IntegerAnd:
return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags);
case RD::RK_IntegerOr:
return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags);
case RD::RK_IntegerXor:
return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags);
case RD::RK_IntegerMinMax: {
RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind();
Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax);
Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin);
return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags);
}
case RD::RK_FloatMinMax: {
Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax;
return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags);
}
default:
llvm_unreachable("Unhandled RecKind");
}
}
void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
auto *VecOp = dyn_cast<Instruction>(I);
if (!VecOp)
return;
auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
: dyn_cast<Instruction>(OpValue);
if (!Intersection)
return;
const unsigned Opcode = Intersection->getOpcode();
VecOp->copyIRFlags(Intersection);
for (auto *V : VL) {
auto *Instr = dyn_cast<Instruction>(V);
if (!Instr)
continue;
if (OpValue == nullptr || Opcode == Instr->getOpcode())
VecOp->andIRFlags(V);
}
}