| //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines common loop utility functions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Utils/LoopUtils.h" |
| #include "llvm/ADT/ScopeExit.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/BasicAliasAnalysis.h" |
| #include "llvm/Analysis/GlobalsModRef.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/MustExecute.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" |
| #include "llvm/Analysis/ScalarEvolutionExpander.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/ValueHandle.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| |
| using namespace llvm; |
| using namespace llvm::PatternMatch; |
| |
| #define DEBUG_TYPE "loop-utils" |
| |
| bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, |
| SmallPtrSetImpl<Instruction *> &Set) { |
| for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) |
| if (!Set.count(dyn_cast<Instruction>(*Use))) |
| return false; |
| return true; |
| } |
| |
| bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) { |
| switch (Kind) { |
| default: |
| break; |
| case RK_IntegerAdd: |
| case RK_IntegerMult: |
| case RK_IntegerOr: |
| case RK_IntegerAnd: |
| case RK_IntegerXor: |
| case RK_IntegerMinMax: |
| return true; |
| } |
| return false; |
| } |
| |
| bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) { |
| return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind); |
| } |
| |
| bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) { |
| switch (Kind) { |
| default: |
| break; |
| case RK_IntegerAdd: |
| case RK_IntegerMult: |
| case RK_FloatAdd: |
| case RK_FloatMult: |
| return true; |
| } |
| return false; |
| } |
| |
| /// Determines if Phi may have been type-promoted. If Phi has a single user |
| /// that ANDs the Phi with a type mask, return the user. RT is updated to |
| /// account for the narrower bit width represented by the mask, and the AND |
| /// instruction is added to CI. |
| static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT, |
| SmallPtrSetImpl<Instruction *> &Visited, |
| SmallPtrSetImpl<Instruction *> &CI) { |
| if (!Phi->hasOneUse()) |
| return Phi; |
| |
| const APInt *M = nullptr; |
| Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser()); |
| |
| // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT |
| // with a new integer type of the corresponding bit width. |
| if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) { |
| int32_t Bits = (*M + 1).exactLogBase2(); |
| if (Bits > 0) { |
| RT = IntegerType::get(Phi->getContext(), Bits); |
| Visited.insert(Phi); |
| CI.insert(J); |
| return J; |
| } |
| } |
| return Phi; |
| } |
| |
| /// Compute the minimal bit width needed to represent a reduction whose exit |
| /// instruction is given by Exit. |
| static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit, |
| DemandedBits *DB, |
| AssumptionCache *AC, |
| DominatorTree *DT) { |
| bool IsSigned = false; |
| const DataLayout &DL = Exit->getModule()->getDataLayout(); |
| uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType()); |
| |
| if (DB) { |
| // Use the demanded bits analysis to determine the bits that are live out |
| // of the exit instruction, rounding up to the nearest power of two. If the |
| // use of demanded bits results in a smaller bit width, we know the value |
| // must be positive (i.e., IsSigned = false), because if this were not the |
| // case, the sign bit would have been demanded. |
| auto Mask = DB->getDemandedBits(Exit); |
| MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros(); |
| } |
| |
| if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) { |
| // If demanded bits wasn't able to limit the bit width, we can try to use |
| // value tracking instead. This can be the case, for example, if the value |
| // may be negative. |
| auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT); |
| auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType()); |
| MaxBitWidth = NumTypeBits - NumSignBits; |
| KnownBits Bits = computeKnownBits(Exit, DL); |
| if (!Bits.isNonNegative()) { |
| // If the value is not known to be non-negative, we set IsSigned to true, |
| // meaning that we will use sext instructions instead of zext |
| // instructions to restore the original type. |
| IsSigned = true; |
| if (!Bits.isNegative()) |
| // If the value is not known to be negative, we don't known what the |
| // upper bit is, and therefore, we don't know what kind of extend we |
| // will need. In this case, just increase the bit width by one bit and |
| // use sext. |
| ++MaxBitWidth; |
| } |
| } |
| if (!isPowerOf2_64(MaxBitWidth)) |
| MaxBitWidth = NextPowerOf2(MaxBitWidth); |
| |
| return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth), |
| IsSigned); |
| } |
| |
| /// Collect cast instructions that can be ignored in the vectorizer's cost |
| /// model, given a reduction exit value and the minimal type in which the |
| /// reduction can be represented. |
| static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit, |
| Type *RecurrenceType, |
| SmallPtrSetImpl<Instruction *> &Casts) { |
| |
| SmallVector<Instruction *, 8> Worklist; |
| SmallPtrSet<Instruction *, 8> Visited; |
| Worklist.push_back(Exit); |
| |
| while (!Worklist.empty()) { |
| Instruction *Val = Worklist.pop_back_val(); |
| Visited.insert(Val); |
| if (auto *Cast = dyn_cast<CastInst>(Val)) |
| if (Cast->getSrcTy() == RecurrenceType) { |
| // If the source type of a cast instruction is equal to the recurrence |
| // type, it will be eliminated, and should be ignored in the vectorizer |
| // cost model. |
| Casts.insert(Cast); |
| continue; |
| } |
| |
| // Add all operands to the work list if they are loop-varying values that |
| // we haven't yet visited. |
| for (Value *O : cast<User>(Val)->operands()) |
| if (auto *I = dyn_cast<Instruction>(O)) |
| if (TheLoop->contains(I) && !Visited.count(I)) |
| Worklist.push_back(I); |
| } |
| } |
| |
| bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind, |
| Loop *TheLoop, bool HasFunNoNaNAttr, |
| RecurrenceDescriptor &RedDes, |
| DemandedBits *DB, |
| AssumptionCache *AC, |
| DominatorTree *DT) { |
| if (Phi->getNumIncomingValues() != 2) |
| return false; |
| |
| // Reduction variables are only found in the loop header block. |
| if (Phi->getParent() != TheLoop->getHeader()) |
| return false; |
| |
| // Obtain the reduction start value from the value that comes from the loop |
| // preheader. |
| Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); |
| |
| // ExitInstruction is the single value which is used outside the loop. |
| // We only allow for a single reduction value to be used outside the loop. |
| // This includes users of the reduction, variables (which form a cycle |
| // which ends in the phi node). |
| Instruction *ExitInstruction = nullptr; |
| // Indicates that we found a reduction operation in our scan. |
| bool FoundReduxOp = false; |
| |
| // We start with the PHI node and scan for all of the users of this |
| // instruction. All users must be instructions that can be used as reduction |
| // variables (such as ADD). We must have a single out-of-block user. The cycle |
| // must include the original PHI. |
| bool FoundStartPHI = false; |
| |
| // To recognize min/max patterns formed by a icmp select sequence, we store |
| // the number of instruction we saw from the recognized min/max pattern, |
| // to make sure we only see exactly the two instructions. |
| unsigned NumCmpSelectPatternInst = 0; |
| InstDesc ReduxDesc(false, nullptr); |
| |
| // Data used for determining if the recurrence has been type-promoted. |
| Type *RecurrenceType = Phi->getType(); |
| SmallPtrSet<Instruction *, 4> CastInsts; |
| Instruction *Start = Phi; |
| bool IsSigned = false; |
| |
| SmallPtrSet<Instruction *, 8> VisitedInsts; |
| SmallVector<Instruction *, 8> Worklist; |
| |
| // Return early if the recurrence kind does not match the type of Phi. If the |
| // recurrence kind is arithmetic, we attempt to look through AND operations |
| // resulting from the type promotion performed by InstCombine. Vector |
| // operations are not limited to the legal integer widths, so we may be able |
| // to evaluate the reduction in the narrower width. |
| if (RecurrenceType->isFloatingPointTy()) { |
| if (!isFloatingPointRecurrenceKind(Kind)) |
| return false; |
| } else { |
| if (!isIntegerRecurrenceKind(Kind)) |
| return false; |
| if (isArithmeticRecurrenceKind(Kind)) |
| Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts); |
| } |
| |
| Worklist.push_back(Start); |
| VisitedInsts.insert(Start); |
| |
| // A value in the reduction can be used: |
| // - By the reduction: |
| // - Reduction operation: |
| // - One use of reduction value (safe). |
| // - Multiple use of reduction value (not safe). |
| // - PHI: |
| // - All uses of the PHI must be the reduction (safe). |
| // - Otherwise, not safe. |
| // - By instructions outside of the loop (safe). |
| // * One value may have several outside users, but all outside |
| // uses must be of the same value. |
| // - By an instruction that is not part of the reduction (not safe). |
| // This is either: |
| // * An instruction type other than PHI or the reduction operation. |
| // * A PHI in the header other than the initial PHI. |
| while (!Worklist.empty()) { |
| Instruction *Cur = Worklist.back(); |
| Worklist.pop_back(); |
| |
| // No Users. |
| // If the instruction has no users then this is a broken chain and can't be |
| // a reduction variable. |
| if (Cur->use_empty()) |
| return false; |
| |
| bool IsAPhi = isa<PHINode>(Cur); |
| |
| // A header PHI use other than the original PHI. |
| if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) |
| return false; |
| |
| // Reductions of instructions such as Div, and Sub is only possible if the |
| // LHS is the reduction variable. |
| if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && |
| !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && |
| !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) |
| return false; |
| |
| // Any reduction instruction must be of one of the allowed kinds. We ignore |
| // the starting value (the Phi or an AND instruction if the Phi has been |
| // type-promoted). |
| if (Cur != Start) { |
| ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr); |
| if (!ReduxDesc.isRecurrence()) |
| return false; |
| } |
| |
| // A reduction operation must only have one use of the reduction value. |
| if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && |
| hasMultipleUsesOf(Cur, VisitedInsts)) |
| return false; |
| |
| // All inputs to a PHI node must be a reduction value. |
| if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) |
| return false; |
| |
| if (Kind == RK_IntegerMinMax && |
| (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur))) |
| ++NumCmpSelectPatternInst; |
| if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur))) |
| ++NumCmpSelectPatternInst; |
| |
| // Check whether we found a reduction operator. |
| FoundReduxOp |= !IsAPhi && Cur != Start; |
| |
| // Process users of current instruction. Push non-PHI nodes after PHI nodes |
| // onto the stack. This way we are going to have seen all inputs to PHI |
| // nodes once we get to them. |
| SmallVector<Instruction *, 8> NonPHIs; |
| SmallVector<Instruction *, 8> PHIs; |
| for (User *U : Cur->users()) { |
| Instruction *UI = cast<Instruction>(U); |
| |
| // Check if we found the exit user. |
| BasicBlock *Parent = UI->getParent(); |
| if (!TheLoop->contains(Parent)) { |
| // If we already know this instruction is used externally, move on to |
| // the next user. |
| if (ExitInstruction == Cur) |
| continue; |
| |
| // Exit if you find multiple values used outside or if the header phi |
| // node is being used. In this case the user uses the value of the |
| // previous iteration, in which case we would loose "VF-1" iterations of |
| // the reduction operation if we vectorize. |
| if (ExitInstruction != nullptr || Cur == Phi) |
| return false; |
| |
| // The instruction used by an outside user must be the last instruction |
| // before we feed back to the reduction phi. Otherwise, we loose VF-1 |
| // operations on the value. |
| if (!is_contained(Phi->operands(), Cur)) |
| return false; |
| |
| ExitInstruction = Cur; |
| continue; |
| } |
| |
| // Process instructions only once (termination). Each reduction cycle |
| // value must only be used once, except by phi nodes and min/max |
| // reductions which are represented as a cmp followed by a select. |
| InstDesc IgnoredVal(false, nullptr); |
| if (VisitedInsts.insert(UI).second) { |
| if (isa<PHINode>(UI)) |
| PHIs.push_back(UI); |
| else |
| NonPHIs.push_back(UI); |
| } else if (!isa<PHINode>(UI) && |
| ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) && |
| !isa<SelectInst>(UI)) || |
| !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence())) |
| return false; |
| |
| // Remember that we completed the cycle. |
| if (UI == Phi) |
| FoundStartPHI = true; |
| } |
| Worklist.append(PHIs.begin(), PHIs.end()); |
| Worklist.append(NonPHIs.begin(), NonPHIs.end()); |
| } |
| |
| // This means we have seen one but not the other instruction of the |
| // pattern or more than just a select and cmp. |
| if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && |
| NumCmpSelectPatternInst != 2) |
| return false; |
| |
| if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) |
| return false; |
| |
| if (Start != Phi) { |
| // If the starting value is not the same as the phi node, we speculatively |
| // looked through an 'and' instruction when evaluating a potential |
| // arithmetic reduction to determine if it may have been type-promoted. |
| // |
| // We now compute the minimal bit width that is required to represent the |
| // reduction. If this is the same width that was indicated by the 'and', we |
| // can represent the reduction in the smaller type. The 'and' instruction |
| // will be eliminated since it will essentially be a cast instruction that |
| // can be ignore in the cost model. If we compute a different type than we |
| // did when evaluating the 'and', the 'and' will not be eliminated, and we |
| // will end up with different kinds of operations in the recurrence |
| // expression (e.g., RK_IntegerAND, RK_IntegerADD). We give up if this is |
| // the case. |
| // |
| // The vectorizer relies on InstCombine to perform the actual |
| // type-shrinking. It does this by inserting instructions to truncate the |
| // exit value of the reduction to the width indicated by RecurrenceType and |
| // then extend this value back to the original width. If IsSigned is false, |
| // a 'zext' instruction will be generated; otherwise, a 'sext' will be |
| // used. |
| // |
| // TODO: We should not rely on InstCombine to rewrite the reduction in the |
| // smaller type. We should just generate a correctly typed expression |
| // to begin with. |
| Type *ComputedType; |
| std::tie(ComputedType, IsSigned) = |
| computeRecurrenceType(ExitInstruction, DB, AC, DT); |
| if (ComputedType != RecurrenceType) |
| return false; |
| |
| // The recurrence expression will be represented in a narrower type. If |
| // there are any cast instructions that will be unnecessary, collect them |
| // in CastInsts. Note that the 'and' instruction was already included in |
| // this list. |
| // |
| // TODO: A better way to represent this may be to tag in some way all the |
| // instructions that are a part of the reduction. The vectorizer cost |
| // model could then apply the recurrence type to these instructions, |
| // without needing a white list of instructions to ignore. |
| collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts); |
| } |
| |
| // We found a reduction var if we have reached the original phi node and we |
| // only have a single instruction with out-of-loop users. |
| |
| // The ExitInstruction(Instruction which is allowed to have out-of-loop users) |
| // is saved as part of the RecurrenceDescriptor. |
| |
| // Save the description of this reduction variable. |
| RecurrenceDescriptor RD( |
| RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(), |
| ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts); |
| RedDes = RD; |
| |
| return true; |
| } |
| |
| /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction |
| /// pattern corresponding to a min(X, Y) or max(X, Y). |
| RecurrenceDescriptor::InstDesc |
| RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) { |
| |
| assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && |
| "Expect a select instruction"); |
| Instruction *Cmp = nullptr; |
| SelectInst *Select = nullptr; |
| |
| // We must handle the select(cmp()) as a single instruction. Advance to the |
| // select. |
| if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { |
| if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) |
| return InstDesc(false, I); |
| return InstDesc(Select, Prev.getMinMaxKind()); |
| } |
| |
| // Only handle single use cases for now. |
| if (!(Select = dyn_cast<SelectInst>(I))) |
| return InstDesc(false, I); |
| if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && |
| !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) |
| return InstDesc(false, I); |
| if (!Cmp->hasOneUse()) |
| return InstDesc(false, I); |
| |
| Value *CmpLeft; |
| Value *CmpRight; |
| |
| // Look for a min/max pattern. |
| if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) |
| return InstDesc(Select, MRK_UIntMin); |
| else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) |
| return InstDesc(Select, MRK_UIntMax); |
| else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) |
| return InstDesc(Select, MRK_SIntMax); |
| else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) |
| return InstDesc(Select, MRK_SIntMin); |
| else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) |
| return InstDesc(Select, MRK_FloatMin); |
| else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) |
| return InstDesc(Select, MRK_FloatMax); |
| else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) |
| return InstDesc(Select, MRK_FloatMin); |
| else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) |
| return InstDesc(Select, MRK_FloatMax); |
| |
| return InstDesc(false, I); |
| } |
| |
| RecurrenceDescriptor::InstDesc |
| RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind, |
| InstDesc &Prev, bool HasFunNoNaNAttr) { |
| bool FP = I->getType()->isFloatingPointTy(); |
| Instruction *UAI = Prev.getUnsafeAlgebraInst(); |
| if (!UAI && FP && !I->isFast()) |
| UAI = I; // Found an unsafe (unvectorizable) algebra instruction. |
| |
| switch (I->getOpcode()) { |
| default: |
| return InstDesc(false, I); |
| case Instruction::PHI: |
| return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst()); |
| case Instruction::Sub: |
| case Instruction::Add: |
| return InstDesc(Kind == RK_IntegerAdd, I); |
| case Instruction::Mul: |
| return InstDesc(Kind == RK_IntegerMult, I); |
| case Instruction::And: |
| return InstDesc(Kind == RK_IntegerAnd, I); |
| case Instruction::Or: |
| return InstDesc(Kind == RK_IntegerOr, I); |
| case Instruction::Xor: |
| return InstDesc(Kind == RK_IntegerXor, I); |
| case Instruction::FMul: |
| return InstDesc(Kind == RK_FloatMult, I, UAI); |
| case Instruction::FSub: |
| case Instruction::FAdd: |
| return InstDesc(Kind == RK_FloatAdd, I, UAI); |
| case Instruction::FCmp: |
| case Instruction::ICmp: |
| case Instruction::Select: |
| if (Kind != RK_IntegerMinMax && |
| (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) |
| return InstDesc(false, I); |
| return isMinMaxSelectCmpPattern(I, Prev); |
| } |
| } |
| |
| bool RecurrenceDescriptor::hasMultipleUsesOf( |
| Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) { |
| unsigned NumUses = 0; |
| for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; |
| ++Use) { |
| if (Insts.count(dyn_cast<Instruction>(*Use))) |
| ++NumUses; |
| if (NumUses > 1) |
| return true; |
| } |
| |
| return false; |
| } |
| bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, |
| RecurrenceDescriptor &RedDes, |
| DemandedBits *DB, AssumptionCache *AC, |
| DominatorTree *DT) { |
| |
| BasicBlock *Header = TheLoop->getHeader(); |
| Function &F = *Header->getParent(); |
| bool HasFunNoNaNAttr = |
| F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; |
| |
| if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB, |
| AC, DT)) { |
| LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); |
| return true; |
| } |
| if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes, DB, |
| AC, DT)) { |
| LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); |
| return true; |
| } |
| if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes, DB, |
| AC, DT)) { |
| LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); |
| return true; |
| } |
| if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes, DB, |
| AC, DT)) { |
| LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); |
| return true; |
| } |
| if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes, DB, |
| AC, DT)) { |
| LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); |
| return true; |
| } |
| if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, RedDes, |
| DB, AC, DT)) { |
| LLVM_DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n"); |
| return true; |
| } |
| if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes, DB, |
| AC, DT)) { |
| LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); |
| return true; |
| } |
| if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB, |
| AC, DT)) { |
| LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); |
| return true; |
| } |
| if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes, DB, |
| AC, DT)) { |
| LLVM_DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi |
| << "\n"); |
| return true; |
| } |
| // Not a reduction of known type. |
| return false; |
| } |
| |
| bool RecurrenceDescriptor::isFirstOrderRecurrence( |
| PHINode *Phi, Loop *TheLoop, |
| DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) { |
| |
| // Ensure the phi node is in the loop header and has two incoming values. |
| if (Phi->getParent() != TheLoop->getHeader() || |
| Phi->getNumIncomingValues() != 2) |
| return false; |
| |
| // Ensure the loop has a preheader and a single latch block. The loop |
| // vectorizer will need the latch to set up the next iteration of the loop. |
| auto *Preheader = TheLoop->getLoopPreheader(); |
| auto *Latch = TheLoop->getLoopLatch(); |
| if (!Preheader || !Latch) |
| return false; |
| |
| // Ensure the phi node's incoming blocks are the loop preheader and latch. |
| if (Phi->getBasicBlockIndex(Preheader) < 0 || |
| Phi->getBasicBlockIndex(Latch) < 0) |
| return false; |
| |
| // Get the previous value. The previous value comes from the latch edge while |
| // the initial value comes form the preheader edge. |
| auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch)); |
| if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) || |
| SinkAfter.count(Previous)) // Cannot rely on dominance due to motion. |
| return false; |
| |
| // Ensure every user of the phi node is dominated by the previous value. |
| // The dominance requirement ensures the loop vectorizer will not need to |
| // vectorize the initial value prior to the first iteration of the loop. |
| // TODO: Consider extending this sinking to handle other kinds of instructions |
| // and expressions, beyond sinking a single cast past Previous. |
| if (Phi->hasOneUse()) { |
| auto *I = Phi->user_back(); |
| if (I->isCast() && (I->getParent() == Phi->getParent()) && I->hasOneUse() && |
| DT->dominates(Previous, I->user_back())) { |
| if (!DT->dominates(Previous, I)) // Otherwise we're good w/o sinking. |
| SinkAfter[I] = Previous; |
| return true; |
| } |
| } |
| |
| for (User *U : Phi->users()) |
| if (auto *I = dyn_cast<Instruction>(U)) { |
| if (!DT->dominates(Previous, I)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// This function returns the identity element (or neutral element) for |
| /// the operation K. |
| Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K, |
| Type *Tp) { |
| switch (K) { |
| case RK_IntegerXor: |
| case RK_IntegerAdd: |
| case RK_IntegerOr: |
| // Adding, Xoring, Oring zero to a number does not change it. |
| return ConstantInt::get(Tp, 0); |
| case RK_IntegerMult: |
| // Multiplying a number by 1 does not change it. |
| return ConstantInt::get(Tp, 1); |
| case RK_IntegerAnd: |
| // AND-ing a number with an all-1 value does not change it. |
| return ConstantInt::get(Tp, -1, true); |
| case RK_FloatMult: |
| // Multiplying a number by 1 does not change it. |
| return ConstantFP::get(Tp, 1.0L); |
| case RK_FloatAdd: |
| // Adding zero to a number does not change it. |
| return ConstantFP::get(Tp, 0.0L); |
| default: |
| llvm_unreachable("Unknown recurrence kind"); |
| } |
| } |
| |
| /// This function translates the recurrence kind to an LLVM binary operator. |
| unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) { |
| switch (Kind) { |
| case RK_IntegerAdd: |
| return Instruction::Add; |
| case RK_IntegerMult: |
| return Instruction::Mul; |
| case RK_IntegerOr: |
| return Instruction::Or; |
| case RK_IntegerAnd: |
| return Instruction::And; |
| case RK_IntegerXor: |
| return Instruction::Xor; |
| case RK_FloatMult: |
| return Instruction::FMul; |
| case RK_FloatAdd: |
| return Instruction::FAdd; |
| case RK_IntegerMinMax: |
| return Instruction::ICmp; |
| case RK_FloatMinMax: |
| return Instruction::FCmp; |
| default: |
| llvm_unreachable("Unknown recurrence operation"); |
| } |
| } |
| |
| Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder, |
| MinMaxRecurrenceKind RK, |
| Value *Left, Value *Right) { |
| CmpInst::Predicate P = CmpInst::ICMP_NE; |
| switch (RK) { |
| default: |
| llvm_unreachable("Unknown min/max recurrence kind"); |
| case MRK_UIntMin: |
| P = CmpInst::ICMP_ULT; |
| break; |
| case MRK_UIntMax: |
| P = CmpInst::ICMP_UGT; |
| break; |
| case MRK_SIntMin: |
| P = CmpInst::ICMP_SLT; |
| break; |
| case MRK_SIntMax: |
| P = CmpInst::ICMP_SGT; |
| break; |
| case MRK_FloatMin: |
| P = CmpInst::FCMP_OLT; |
| break; |
| case MRK_FloatMax: |
| P = CmpInst::FCMP_OGT; |
| break; |
| } |
| |
| // We only match FP sequences that are 'fast', so we can unconditionally |
| // set it on any generated instructions. |
| IRBuilder<>::FastMathFlagGuard FMFG(Builder); |
| FastMathFlags FMF; |
| FMF.setFast(); |
| Builder.setFastMathFlags(FMF); |
| |
| Value *Cmp; |
| if (RK == MRK_FloatMin || RK == MRK_FloatMax) |
| Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); |
| else |
| Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); |
| |
| Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); |
| return Select; |
| } |
| |
| InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, |
| const SCEV *Step, BinaryOperator *BOp, |
| SmallVectorImpl<Instruction *> *Casts) |
| : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) { |
| assert(IK != IK_NoInduction && "Not an induction"); |
| |
| // Start value type should match the induction kind and the value |
| // itself should not be null. |
| assert(StartValue && "StartValue is null"); |
| assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && |
| "StartValue is not a pointer for pointer induction"); |
| assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && |
| "StartValue is not an integer for integer induction"); |
| |
| // Check the Step Value. It should be non-zero integer value. |
| assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) && |
| "Step value is zero"); |
| |
| assert((IK != IK_PtrInduction || getConstIntStepValue()) && |
| "Step value should be constant for pointer induction"); |
| assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) && |
| "StepValue is not an integer"); |
| |
| assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) && |
| "StepValue is not FP for FpInduction"); |
| assert((IK != IK_FpInduction || (InductionBinOp && |
| (InductionBinOp->getOpcode() == Instruction::FAdd || |
| InductionBinOp->getOpcode() == Instruction::FSub))) && |
| "Binary opcode should be specified for FP induction"); |
| |
| if (Casts) { |
| for (auto &Inst : *Casts) { |
| RedundantCasts.push_back(Inst); |
| } |
| } |
| } |
| |
| int InductionDescriptor::getConsecutiveDirection() const { |
| ConstantInt *ConstStep = getConstIntStepValue(); |
| if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne())) |
| return ConstStep->getSExtValue(); |
| return 0; |
| } |
| |
| ConstantInt *InductionDescriptor::getConstIntStepValue() const { |
| if (isa<SCEVConstant>(Step)) |
| return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue()); |
| return nullptr; |
| } |
| |
| Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index, |
| ScalarEvolution *SE, |
| const DataLayout& DL) const { |
| |
| SCEVExpander Exp(*SE, DL, "induction"); |
| assert(Index->getType() == Step->getType() && |
| "Index type does not match StepValue type"); |
| switch (IK) { |
| case IK_IntInduction: { |
| assert(Index->getType() == StartValue->getType() && |
| "Index type does not match StartValue type"); |
| |
| // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution |
| // and calculate (Start + Index * Step) for all cases, without |
| // special handling for "isOne" and "isMinusOne". |
| // But in the real life the result code getting worse. We mix SCEV |
| // expressions and ADD/SUB operations and receive redundant |
| // intermediate values being calculated in different ways and |
| // Instcombine is unable to reduce them all. |
| |
| if (getConstIntStepValue() && |
| getConstIntStepValue()->isMinusOne()) |
| return B.CreateSub(StartValue, Index); |
| if (getConstIntStepValue() && |
| getConstIntStepValue()->isOne()) |
| return B.CreateAdd(StartValue, Index); |
| const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue), |
| SE->getMulExpr(Step, SE->getSCEV(Index))); |
| return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint()); |
| } |
| case IK_PtrInduction: { |
| assert(isa<SCEVConstant>(Step) && |
| "Expected constant step for pointer induction"); |
| const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step); |
| Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint()); |
| return B.CreateGEP(nullptr, StartValue, Index); |
| } |
| case IK_FpInduction: { |
| assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); |
| assert(InductionBinOp && |
| (InductionBinOp->getOpcode() == Instruction::FAdd || |
| InductionBinOp->getOpcode() == Instruction::FSub) && |
| "Original bin op should be defined for FP induction"); |
| |
| Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); |
| |
| // Floating point operations had to be 'fast' to enable the induction. |
| FastMathFlags Flags; |
| Flags.setFast(); |
| |
| Value *MulExp = B.CreateFMul(StepValue, Index); |
| if (isa<Instruction>(MulExp)) |
| // We have to check, the MulExp may be a constant. |
| cast<Instruction>(MulExp)->setFastMathFlags(Flags); |
| |
| Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue, |
| MulExp, "induction"); |
| if (isa<Instruction>(BOp)) |
| cast<Instruction>(BOp)->setFastMathFlags(Flags); |
| |
| return BOp; |
| } |
| case IK_NoInduction: |
| return nullptr; |
| } |
| llvm_unreachable("invalid enum"); |
| } |
| |
| bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop, |
| ScalarEvolution *SE, |
| InductionDescriptor &D) { |
| |
| // Here we only handle FP induction variables. |
| assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type"); |
| |
| if (TheLoop->getHeader() != Phi->getParent()) |
| return false; |
| |
| // The loop may have multiple entrances or multiple exits; we can analyze |
| // this phi if it has a unique entry value and a unique backedge value. |
| if (Phi->getNumIncomingValues() != 2) |
| return false; |
| Value *BEValue = nullptr, *StartValue = nullptr; |
| if (TheLoop->contains(Phi->getIncomingBlock(0))) { |
| BEValue = Phi->getIncomingValue(0); |
| StartValue = Phi->getIncomingValue(1); |
| } else { |
| assert(TheLoop->contains(Phi->getIncomingBlock(1)) && |
| "Unexpected Phi node in the loop"); |
| BEValue = Phi->getIncomingValue(1); |
| StartValue = Phi->getIncomingValue(0); |
| } |
| |
| BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue); |
| if (!BOp) |
| return false; |
| |
| Value *Addend = nullptr; |
| if (BOp->getOpcode() == Instruction::FAdd) { |
| if (BOp->getOperand(0) == Phi) |
| Addend = BOp->getOperand(1); |
| else if (BOp->getOperand(1) == Phi) |
| Addend = BOp->getOperand(0); |
| } else if (BOp->getOpcode() == Instruction::FSub) |
| if (BOp->getOperand(0) == Phi) |
| Addend = BOp->getOperand(1); |
| |
| if (!Addend) |
| return false; |
| |
| // The addend should be loop invariant |
| if (auto *I = dyn_cast<Instruction>(Addend)) |
| if (TheLoop->contains(I)) |
| return false; |
| |
| // FP Step has unknown SCEV |
| const SCEV *Step = SE->getUnknown(Addend); |
| D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp); |
| return true; |
| } |
| |
| /// This function is called when we suspect that the update-chain of a phi node |
| /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts, |
| /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime |
| /// predicate P under which the SCEV expression for the phi can be the |
| /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the |
| /// cast instructions that are involved in the update-chain of this induction. |
| /// A caller that adds the required runtime predicate can be free to drop these |
| /// cast instructions, and compute the phi using \p AR (instead of some scev |
| /// expression with casts). |
| /// |
| /// For example, without a predicate the scev expression can take the following |
| /// form: |
| /// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy) |
| /// |
| /// It corresponds to the following IR sequence: |
| /// %for.body: |
| /// %x = phi i64 [ 0, %ph ], [ %add, %for.body ] |
| /// %casted_phi = "ExtTrunc i64 %x" |
| /// %add = add i64 %casted_phi, %step |
| /// |
| /// where %x is given in \p PN, |
| /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate, |
| /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of |
| /// several forms, for example, such as: |
| /// ExtTrunc1: %casted_phi = and %x, 2^n-1 |
| /// or: |
| /// ExtTrunc2: %t = shl %x, m |
| /// %casted_phi = ashr %t, m |
| /// |
| /// If we are able to find such sequence, we return the instructions |
| /// we found, namely %casted_phi and the instructions on its use-def chain up |
| /// to the phi (not including the phi). |
| static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE, |
| const SCEVUnknown *PhiScev, |
| const SCEVAddRecExpr *AR, |
| SmallVectorImpl<Instruction *> &CastInsts) { |
| |
| assert(CastInsts.empty() && "CastInsts is expected to be empty."); |
| auto *PN = cast<PHINode>(PhiScev->getValue()); |
| assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression"); |
| const Loop *L = AR->getLoop(); |
| |
| // Find any cast instructions that participate in the def-use chain of |
| // PhiScev in the loop. |
| // FORNOW/TODO: We currently expect the def-use chain to include only |
| // two-operand instructions, where one of the operands is an invariant. |
| // createAddRecFromPHIWithCasts() currently does not support anything more |
| // involved than that, so we keep the search simple. This can be |
| // extended/generalized as needed. |
| |
| auto getDef = [&](const Value *Val) -> Value * { |
| const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val); |
| if (!BinOp) |
| return nullptr; |
| Value *Op0 = BinOp->getOperand(0); |
| Value *Op1 = BinOp->getOperand(1); |
| Value *Def = nullptr; |
| if (L->isLoopInvariant(Op0)) |
| Def = Op1; |
| else if (L->isLoopInvariant(Op1)) |
| Def = Op0; |
| return Def; |
| }; |
| |
| // Look for the instruction that defines the induction via the |
| // loop backedge. |
| BasicBlock *Latch = L->getLoopLatch(); |
| if (!Latch) |
| return false; |
| Value *Val = PN->getIncomingValueForBlock(Latch); |
| if (!Val) |
| return false; |
| |
| // Follow the def-use chain until the induction phi is reached. |
| // If on the way we encounter a Value that has the same SCEV Expr as the |
| // phi node, we can consider the instructions we visit from that point |
| // as part of the cast-sequence that can be ignored. |
| bool InCastSequence = false; |
| auto *Inst = dyn_cast<Instruction>(Val); |
| while (Val != PN) { |
| // If we encountered a phi node other than PN, or if we left the loop, |
| // we bail out. |
| if (!Inst || !L->contains(Inst)) { |
| return false; |
| } |
| auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val)); |
| if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR)) |
| InCastSequence = true; |
| if (InCastSequence) { |
| // Only the last instruction in the cast sequence is expected to have |
| // uses outside the induction def-use chain. |
| if (!CastInsts.empty()) |
| if (!Inst->hasOneUse()) |
| return false; |
| CastInsts.push_back(Inst); |
| } |
| Val = getDef(Val); |
| if (!Val) |
| return false; |
| Inst = dyn_cast<Instruction>(Val); |
| } |
| |
| return InCastSequence; |
| } |
| |
| bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, |
| PredicatedScalarEvolution &PSE, |
| InductionDescriptor &D, |
| bool Assume) { |
| Type *PhiTy = Phi->getType(); |
| |
| // Handle integer and pointer inductions variables. |
| // Now we handle also FP induction but not trying to make a |
| // recurrent expression from the PHI node in-place. |
| |
| if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && |
| !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy()) |
| return false; |
| |
| if (PhiTy->isFloatingPointTy()) |
| return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D); |
| |
| const SCEV *PhiScev = PSE.getSCEV(Phi); |
| const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); |
| |
| // We need this expression to be an AddRecExpr. |
| if (Assume && !AR) |
| AR = PSE.getAsAddRec(Phi); |
| |
| if (!AR) { |
| LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); |
| return false; |
| } |
| |
| // Record any Cast instructions that participate in the induction update |
| const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev); |
| // If we started from an UnknownSCEV, and managed to build an addRecurrence |
| // only after enabling Assume with PSCEV, this means we may have encountered |
| // cast instructions that required adding a runtime check in order to |
| // guarantee the correctness of the AddRecurence respresentation of the |
| // induction. |
| if (PhiScev != AR && SymbolicPhi) { |
| SmallVector<Instruction *, 2> Casts; |
| if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts)) |
| return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts); |
| } |
| |
| return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR); |
| } |
| |
| bool InductionDescriptor::isInductionPHI( |
| PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE, |
| InductionDescriptor &D, const SCEV *Expr, |
| SmallVectorImpl<Instruction *> *CastsToIgnore) { |
| Type *PhiTy = Phi->getType(); |
| // We only handle integer and pointer inductions variables. |
| if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) |
| return false; |
| |
| // Check that the PHI is consecutive. |
| const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi); |
| const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); |
| |
| if (!AR) { |
| LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); |
| return false; |
| } |
| |
| if (AR->getLoop() != TheLoop) { |
| // FIXME: We should treat this as a uniform. Unfortunately, we |
| // don't currently know how to handled uniform PHIs. |
| LLVM_DEBUG( |
| dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n"); |
| return false; |
| } |
| |
| Value *StartValue = |
| Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader()); |
| const SCEV *Step = AR->getStepRecurrence(*SE); |
| // Calculate the pointer stride and check if it is consecutive. |
| // The stride may be a constant or a loop invariant integer value. |
| const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step); |
| if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop)) |
| return false; |
| |
| if (PhiTy->isIntegerTy()) { |
| D = InductionDescriptor(StartValue, IK_IntInduction, Step, /*BOp=*/ nullptr, |
| CastsToIgnore); |
| return true; |
| } |
| |
| assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); |
| // Pointer induction should be a constant. |
| if (!ConstStep) |
| return false; |
| |
| ConstantInt *CV = ConstStep->getValue(); |
| Type *PointerElementType = PhiTy->getPointerElementType(); |
| // The pointer stride cannot be determined if the pointer element type is not |
| // sized. |
| if (!PointerElementType->isSized()) |
| return false; |
| |
| const DataLayout &DL = Phi->getModule()->getDataLayout(); |
| int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType)); |
| if (!Size) |
| return false; |
| |
| int64_t CVSize = CV->getSExtValue(); |
| if (CVSize % Size) |
| return false; |
| auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size, |
| true /* signed */); |
| D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue); |
| return true; |
| } |
| |
| bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, |
| bool PreserveLCSSA) { |
| bool Changed = false; |
| |
| // We re-use a vector for the in-loop predecesosrs. |
| SmallVector<BasicBlock *, 4> InLoopPredecessors; |
| |
| auto RewriteExit = [&](BasicBlock *BB) { |
| assert(InLoopPredecessors.empty() && |
| "Must start with an empty predecessors list!"); |
| auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); |
| |
| // See if there are any non-loop predecessors of this exit block and |
| // keep track of the in-loop predecessors. |
| bool IsDedicatedExit = true; |
| for (auto *PredBB : predecessors(BB)) |
| if (L->contains(PredBB)) { |
| if (isa<IndirectBrInst>(PredBB->getTerminator())) |
| // We cannot rewrite exiting edges from an indirectbr. |
| return false; |
| |
| InLoopPredecessors.push_back(PredBB); |
| } else { |
| IsDedicatedExit = false; |
| } |
| |
| assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); |
| |
| // Nothing to do if this is already a dedicated exit. |
| if (IsDedicatedExit) |
| return false; |
| |
| auto *NewExitBB = SplitBlockPredecessors( |
| BB, InLoopPredecessors, ".loopexit", DT, LI, PreserveLCSSA); |
| |
| if (!NewExitBB) |
| LLVM_DEBUG( |
| dbgs() << "WARNING: Can't create a dedicated exit block for loop: " |
| << *L << "\n"); |
| else |
| LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " |
| << NewExitBB->getName() << "\n"); |
| return true; |
| }; |
| |
| // Walk the exit blocks directly rather than building up a data structure for |
| // them, but only visit each one once. |
| SmallPtrSet<BasicBlock *, 4> Visited; |
| for (auto *BB : L->blocks()) |
| for (auto *SuccBB : successors(BB)) { |
| // We're looking for exit blocks so skip in-loop successors. |
| if (L->contains(SuccBB)) |
| continue; |
| |
| // Visit each exit block exactly once. |
| if (!Visited.insert(SuccBB).second) |
| continue; |
| |
| Changed |= RewriteExit(SuccBB); |
| } |
| |
| return Changed; |
| } |
| |
| /// Returns the instructions that use values defined in the loop. |
| SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { |
| SmallVector<Instruction *, 8> UsedOutside; |
| |
| for (auto *Block : L->getBlocks()) |
| // FIXME: I believe that this could use copy_if if the Inst reference could |
| // be adapted into a pointer. |
| for (auto &Inst : *Block) { |
| auto Users = Inst.users(); |
| if (any_of(Users, [&](User *U) { |
| auto *Use = cast<Instruction>(U); |
| return !L->contains(Use->getParent()); |
| })) |
| UsedOutside.push_back(&Inst); |
| } |
| |
| return UsedOutside; |
| } |
| |
| void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { |
| // By definition, all loop passes need the LoopInfo analysis and the |
| // Dominator tree it depends on. Because they all participate in the loop |
| // pass manager, they must also preserve these. |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addPreserved<DominatorTreeWrapperPass>(); |
| AU.addRequired<LoopInfoWrapperPass>(); |
| AU.addPreserved<LoopInfoWrapperPass>(); |
| |
| // We must also preserve LoopSimplify and LCSSA. We locally access their IDs |
| // here because users shouldn't directly get them from this header. |
| extern char &LoopSimplifyID; |
| extern char &LCSSAID; |
| AU.addRequiredID(LoopSimplifyID); |
| AU.addPreservedID(LoopSimplifyID); |
| AU.addRequiredID(LCSSAID); |
| AU.addPreservedID(LCSSAID); |
| // This is used in the LPPassManager to perform LCSSA verification on passes |
| // which preserve lcssa form |
| AU.addRequired<LCSSAVerificationPass>(); |
| AU.addPreserved<LCSSAVerificationPass>(); |
| |
| // Loop passes are designed to run inside of a loop pass manager which means |
| // that any function analyses they require must be required by the first loop |
| // pass in the manager (so that it is computed before the loop pass manager |
| // runs) and preserved by all loop pasess in the manager. To make this |
| // reasonably robust, the set needed for most loop passes is maintained here. |
| // If your loop pass requires an analysis not listed here, you will need to |
| // carefully audit the loop pass manager nesting structure that results. |
| AU.addRequired<AAResultsWrapperPass>(); |
| AU.addPreserved<AAResultsWrapperPass>(); |
| AU.addPreserved<BasicAAWrapperPass>(); |
| AU.addPreserved<GlobalsAAWrapperPass>(); |
| AU.addPreserved<SCEVAAWrapperPass>(); |
| AU.addRequired<ScalarEvolutionWrapperPass>(); |
| AU.addPreserved<ScalarEvolutionWrapperPass>(); |
| } |
| |
| /// Manually defined generic "LoopPass" dependency initialization. This is used |
| /// to initialize the exact set of passes from above in \c |
| /// getLoopAnalysisUsage. It can be used within a loop pass's initialization |
| /// with: |
| /// |
| /// INITIALIZE_PASS_DEPENDENCY(LoopPass) |
| /// |
| /// As-if "LoopPass" were a pass. |
| void llvm::initializeLoopPassPass(PassRegistry &Registry) { |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(LoopSimplify) |
| INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) |
| } |
| |
| /// Find string metadata for loop |
| /// |
| /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an |
| /// operand or null otherwise. If the string metadata is not found return |
| /// Optional's not-a-value. |
| Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop, |
| StringRef Name) { |
| MDNode *LoopID = TheLoop->getLoopID(); |
| // Return none if LoopID is false. |
| if (!LoopID) |
| return None; |
| |
| // First operand should refer to the loop id itself. |
| assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); |
| assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); |
| |
| // Iterate over LoopID operands and look for MDString Metadata |
| for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { |
| MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); |
| if (!MD) |
| continue; |
| MDString *S = dyn_cast<MDString>(MD->getOperand(0)); |
| if (!S) |
| continue; |
| // Return true if MDString holds expected MetaData. |
| if (Name.equals(S->getString())) |
| switch (MD->getNumOperands()) { |
| case 1: |
| return nullptr; |
| case 2: |
| return &MD->getOperand(1); |
| default: |
| llvm_unreachable("loop metadata has 0 or 1 operand"); |
| } |
| } |
| return None; |
| } |
| |
| /// Does a BFS from a given node to all of its children inside a given loop. |
| /// The returned vector of nodes includes the starting point. |
| SmallVector<DomTreeNode *, 16> |
| llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { |
| SmallVector<DomTreeNode *, 16> Worklist; |
| auto AddRegionToWorklist = [&](DomTreeNode *DTN) { |
| // Only include subregions in the top level loop. |
| BasicBlock *BB = DTN->getBlock(); |
| if (CurLoop->contains(BB)) |
| Worklist.push_back(DTN); |
| }; |
| |
| AddRegionToWorklist(N); |
| |
| for (size_t I = 0; I < Worklist.size(); I++) |
| for (DomTreeNode *Child : Worklist[I]->getChildren()) |
| AddRegionToWorklist(Child); |
| |
| return Worklist; |
| } |
| |
| void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr, |
| ScalarEvolution *SE = nullptr, |
| LoopInfo *LI = nullptr) { |
| assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); |
| auto *Preheader = L->getLoopPreheader(); |
| assert(Preheader && "Preheader should exist!"); |
| |
| // Now that we know the removal is safe, remove the loop by changing the |
| // branch from the preheader to go to the single exit block. |
| // |
| // Because we're deleting a large chunk of code at once, the sequence in which |
| // we remove things is very important to avoid invalidation issues. |
| |
| // Tell ScalarEvolution that the loop is deleted. Do this before |
| // deleting the loop so that ScalarEvolution can look at the loop |
| // to determine what it needs to clean up. |
| if (SE) |
| SE->forgetLoop(L); |
| |
| auto *ExitBlock = L->getUniqueExitBlock(); |
| assert(ExitBlock && "Should have a unique exit block!"); |
| assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); |
| |
| auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator()); |
| assert(OldBr && "Preheader must end with a branch"); |
| assert(OldBr->isUnconditional() && "Preheader must have a single successor"); |
| // Connect the preheader to the exit block. Keep the old edge to the header |
| // around to perform the dominator tree update in two separate steps |
| // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge |
| // preheader -> header. |
| // |
| // |
| // 0. Preheader 1. Preheader 2. Preheader |
| // | | | | |
| // V | V | |
| // Header <--\ | Header <--\ | Header <--\ |
| // | | | | | | | | | | | |
| // | V | | | V | | | V | |
| // | Body --/ | | Body --/ | | Body --/ |
| // V V V V V |
| // Exit Exit Exit |
| // |
| // By doing this is two separate steps we can perform the dominator tree |
| // update without using the batch update API. |
| // |
| // Even when the loop is never executed, we cannot remove the edge from the |
| // source block to the exit block. Consider the case where the unexecuted loop |
| // branches back to an outer loop. If we deleted the loop and removed the edge |
| // coming to this inner loop, this will break the outer loop structure (by |
| // deleting the backedge of the outer loop). If the outer loop is indeed a |
| // non-loop, it will be deleted in a future iteration of loop deletion pass. |
| IRBuilder<> Builder(OldBr); |
| Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); |
| // Remove the old branch. The conditional branch becomes a new terminator. |
| OldBr->eraseFromParent(); |
| |
| // Rewrite phis in the exit block to get their inputs from the Preheader |
| // instead of the exiting block. |
| for (PHINode &P : ExitBlock->phis()) { |
| // Set the zero'th element of Phi to be from the preheader and remove all |
| // other incoming values. Given the loop has dedicated exits, all other |
| // incoming values must be from the exiting blocks. |
| int PredIndex = 0; |
| P.setIncomingBlock(PredIndex, Preheader); |
| // Removes all incoming values from all other exiting blocks (including |
| // duplicate values from an exiting block). |
| // Nuke all entries except the zero'th entry which is the preheader entry. |
| // NOTE! We need to remove Incoming Values in the reverse order as done |
| // below, to keep the indices valid for deletion (removeIncomingValues |
| // updates getNumIncomingValues and shifts all values down into the operand |
| // being deleted). |
| for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) |
| P.removeIncomingValue(e - i, false); |
| |
| assert((P.getNumIncomingValues() == 1 && |
| P.getIncomingBlock(PredIndex) == Preheader) && |
| "Should have exactly one value and that's from the preheader!"); |
| } |
| |
| // Disconnect the loop body by branching directly to its exit. |
| Builder.SetInsertPoint(Preheader->getTerminator()); |
| Builder.CreateBr(ExitBlock); |
| // Remove the old branch. |
| Preheader->getTerminator()->eraseFromParent(); |
| |
| if (DT) { |
| // Update the dominator tree by informing it about the new edge from the |
| // preheader to the exit. |
| DT->insertEdge(Preheader, ExitBlock); |
| // Inform the dominator tree about the removed edge. |
| DT->deleteEdge(Preheader, L->getHeader()); |
| } |
| |
| // Given LCSSA form is satisfied, we should not have users of instructions |
| // within the dead loop outside of the loop. However, LCSSA doesn't take |
| // unreachable uses into account. We handle them here. |
| // We could do it after drop all references (in this case all users in the |
| // loop will be already eliminated and we have less work to do but according |
| // to API doc of User::dropAllReferences only valid operation after dropping |
| // references, is deletion. So let's substitute all usages of |
| // instruction from the loop with undef value of corresponding type first. |
| for (auto *Block : L->blocks()) |
| for (Instruction &I : *Block) { |
| auto *Undef = UndefValue::get(I.getType()); |
| for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) { |
| Use &U = *UI; |
| ++UI; |
| if (auto *Usr = dyn_cast<Instruction>(U.getUser())) |
| if (L->contains(Usr->getParent())) |
| continue; |
| // If we have a DT then we can check that uses outside a loop only in |
| // unreachable block. |
| if (DT) |
| assert(!DT->isReachableFromEntry(U) && |
| "Unexpected user in reachable block"); |
| U.set(Undef); |
| } |
| } |
| |
| // Remove the block from the reference counting scheme, so that we can |
| // delete it freely later. |
| for (auto *Block : L->blocks()) |
| Block->dropAllReferences(); |
| |
| if (LI) { |
| // Erase the instructions and the blocks without having to worry |
| // about ordering because we already dropped the references. |
| // NOTE: This iteration is safe because erasing the block does not remove |
| // its entry from the loop's block list. We do that in the next section. |
| for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end(); |
| LpI != LpE; ++LpI) |
| (*LpI)->eraseFromParent(); |
| |
| // Finally, the blocks from loopinfo. This has to happen late because |
| // otherwise our loop iterators won't work. |
| |
| SmallPtrSet<BasicBlock *, 8> blocks; |
| blocks.insert(L->block_begin(), L->block_end()); |
| for (BasicBlock *BB : blocks) |
| LI->removeBlock(BB); |
| |
| // The last step is to update LoopInfo now that we've eliminated this loop. |
| LI->erase(L); |
| } |
| } |
| |
| Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) { |
| // Only support loops with a unique exiting block, and a latch. |
| if (!L->getExitingBlock()) |
| return None; |
| |
| // Get the branch weights for the loop's backedge. |
| BranchInst *LatchBR = |
| dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator()); |
| if (!LatchBR || LatchBR->getNumSuccessors() != 2) |
| return None; |
| |
| assert((LatchBR->getSuccessor(0) == L->getHeader() || |
| LatchBR->getSuccessor(1) == L->getHeader()) && |
| "At least one edge out of the latch must go to the header"); |
| |
| // To estimate the number of times the loop body was executed, we want to |
| // know the number of times the backedge was taken, vs. the number of times |
| // we exited the loop. |
| uint64_t TrueVal, FalseVal; |
| if (!LatchBR->extractProfMetadata(TrueVal, FalseVal)) |
| return None; |
| |
| if (!TrueVal || !FalseVal) |
| return 0; |
| |
| // Divide the count of the backedge by the count of the edge exiting the loop, |
| // rounding to nearest. |
| if (LatchBR->getSuccessor(0) == L->getHeader()) |
| return (TrueVal + (FalseVal / 2)) / FalseVal; |
| else |
| return (FalseVal + (TrueVal / 2)) / TrueVal; |
| } |
| |
| /// Adds a 'fast' flag to floating point operations. |
| static Value *addFastMathFlag(Value *V) { |
| if (isa<FPMathOperator>(V)) { |
| FastMathFlags Flags; |
| Flags.setFast(); |
| cast<Instruction>(V)->setFastMathFlags(Flags); |
| } |
| return V; |
| } |
| |
| // Helper to generate an ordered reduction. |
| Value * |
| llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src, |
| unsigned Op, |
| RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, |
| ArrayRef<Value *> RedOps) { |
| unsigned VF = Src->getType()->getVectorNumElements(); |
| |
| // Extract and apply reduction ops in ascending order: |
| // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] |
| Value *Result = Acc; |
| for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { |
| Value *Ext = |
| Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); |
| |
| if (Op != Instruction::ICmp && Op != Instruction::FCmp) { |
| Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, |
| "bin.rdx"); |
| } else { |
| assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && |
| "Invalid min/max"); |
| Result = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, Result, |
| Ext); |
| } |
| |
| if (!RedOps.empty()) |
| propagateIRFlags(Result, RedOps); |
| } |
| |
| return Result; |
| } |
| |
| // Helper to generate a log2 shuffle reduction. |
| Value * |
| llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op, |
| RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, |
| ArrayRef<Value *> RedOps) { |
| unsigned VF = Src->getType()->getVectorNumElements(); |
| // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles |
| // and vector ops, reducing the set of values being computed by half each |
| // round. |
| assert(isPowerOf2_32(VF) && |
| "Reduction emission only supported for pow2 vectors!"); |
| Value *TmpVec = Src; |
| SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); |
| for (unsigned i = VF; i != 1; i >>= 1) { |
| // Move the upper half of the vector to the lower half. |
| for (unsigned j = 0; j != i / 2; ++j) |
| ShuffleMask[j] = Builder.getInt32(i / 2 + j); |
| |
| // Fill the rest of the mask with undef. |
| std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), |
| UndefValue::get(Builder.getInt32Ty())); |
| |
| Value *Shuf = Builder.CreateShuffleVector( |
| TmpVec, UndefValue::get(TmpVec->getType()), |
| ConstantVector::get(ShuffleMask), "rdx.shuf"); |
| |
| if (Op != Instruction::ICmp && Op != Instruction::FCmp) { |
| // Floating point operations had to be 'fast' to enable the reduction. |
| TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op, |
| TmpVec, Shuf, "bin.rdx")); |
| } else { |
| assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && |
| "Invalid min/max"); |
| TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, TmpVec, |
| Shuf); |
| } |
| if (!RedOps.empty()) |
| propagateIRFlags(TmpVec, RedOps); |
| } |
| // The result is in the first element of the vector. |
| return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); |
| } |
| |
| /// Create a simple vector reduction specified by an opcode and some |
| /// flags (if generating min/max reductions). |
| Value *llvm::createSimpleTargetReduction( |
| IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode, |
| Value *Src, TargetTransformInfo::ReductionFlags Flags, |
| ArrayRef<Value *> RedOps) { |
| assert(isa<VectorType>(Src->getType()) && "Type must be a vector"); |
| |
| Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType()); |
| std::function<Value*()> BuildFunc; |
| using RD = RecurrenceDescriptor; |
| RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid; |
| // TODO: Support creating ordered reductions. |
| FastMathFlags FMFFast; |
| FMFFast.setFast(); |
| |
| switch (Opcode) { |
| case Instruction::Add: |
| BuildFunc = [&]() { return Builder.CreateAddReduce(Src); }; |
| break; |
| case Instruction::Mul: |
| BuildFunc = [&]() { return Builder.CreateMulReduce(Src); }; |
| break; |
| case Instruction::And: |
| BuildFunc = [&]() { return Builder.CreateAndReduce(Src); }; |
| break; |
| case Instruction::Or: |
| BuildFunc = [&]() { return Builder.CreateOrReduce(Src); }; |
| break; |
| case Instruction::Xor: |
| BuildFunc = [&]() { return Builder.CreateXorReduce(Src); }; |
| break; |
| case Instruction::FAdd: |
| BuildFunc = [&]() { |
| auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src); |
| cast<CallInst>(Rdx)->setFastMathFlags(FMFFast); |
| return Rdx; |
| }; |
| break; |
| case Instruction::FMul: |
| BuildFunc = [&]() { |
| auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src); |
| cast<CallInst>(Rdx)->setFastMathFlags(FMFFast); |
| return Rdx; |
| }; |
| break; |
| case Instruction::ICmp: |
| if (Flags.IsMaxOp) { |
| MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax; |
| BuildFunc = [&]() { |
| return Builder.CreateIntMaxReduce(Src, Flags.IsSigned); |
| }; |
| } else { |
| MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin; |
| BuildFunc = [&]() { |
| return Builder.CreateIntMinReduce(Src, Flags.IsSigned); |
| }; |
| } |
| break; |
| case Instruction::FCmp: |
| if (Flags.IsMaxOp) { |
| MinMaxKind = RD::MRK_FloatMax; |
| BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); }; |
| } else { |
| MinMaxKind = RD::MRK_FloatMin; |
| BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); }; |
| } |
| break; |
| default: |
| llvm_unreachable("Unhandled opcode"); |
| break; |
| } |
| if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags)) |
| return BuildFunc(); |
| return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps); |
| } |
| |
| /// Create a vector reduction using a given recurrence descriptor. |
| Value *llvm::createTargetReduction(IRBuilder<> &B, |
| const TargetTransformInfo *TTI, |
| RecurrenceDescriptor &Desc, Value *Src, |
| bool NoNaN) { |
| // TODO: Support in-order reductions based on the recurrence descriptor. |
| using RD = RecurrenceDescriptor; |
| RD::RecurrenceKind RecKind = Desc.getRecurrenceKind(); |
| TargetTransformInfo::ReductionFlags Flags; |
| Flags.NoNaN = NoNaN; |
| switch (RecKind) { |
| case RD::RK_FloatAdd: |
| return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags); |
| case RD::RK_FloatMult: |
| return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags); |
| case RD::RK_IntegerAdd: |
| return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags); |
| case RD::RK_IntegerMult: |
| return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags); |
| case RD::RK_IntegerAnd: |
| return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags); |
| case RD::RK_IntegerOr: |
| return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags); |
| case RD::RK_IntegerXor: |
| return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags); |
| case RD::RK_IntegerMinMax: { |
| RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind(); |
| Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax); |
| Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin); |
| return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags); |
| } |
| case RD::RK_FloatMinMax: { |
| Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax; |
| return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags); |
| } |
| default: |
| llvm_unreachable("Unhandled RecKind"); |
| } |
| } |
| |
| void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) { |
| auto *VecOp = dyn_cast<Instruction>(I); |
| if (!VecOp) |
| return; |
| auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) |
| : dyn_cast<Instruction>(OpValue); |
| if (!Intersection) |
| return; |
| const unsigned Opcode = Intersection->getOpcode(); |
| VecOp->copyIRFlags(Intersection); |
| for (auto *V : VL) { |
| auto *Instr = dyn_cast<Instruction>(V); |
| if (!Instr) |
| continue; |
| if (OpValue == nullptr || Opcode == Instr->getOpcode()) |
| VecOp->andIRFlags(V); |
| } |
| } |