| //===- InlineFunction.cpp - Code to perform function inlining -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements inlining of a function into a call site, resolving |
| // parameters and the return value as appropriate. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/BlockFrequencyInfo.h" |
| #include "llvm/Analysis/CallGraph.h" |
| #include "llvm/Analysis/CaptureTracking.h" |
| #include "llvm/Analysis/EHPersonalities.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/ProfileSummaryInfo.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DIBuilder.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Transforms/Utils/Cloning.h" |
| #include "llvm/Transforms/Utils/ValueMapper.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| #include <limits> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| using ProfileCount = Function::ProfileCount; |
| |
| static cl::opt<bool> |
| EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), |
| cl::Hidden, |
| cl::desc("Convert noalias attributes to metadata during inlining.")); |
| |
| static cl::opt<bool> |
| PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", |
| cl::init(true), cl::Hidden, |
| cl::desc("Convert align attributes to assumptions during inlining.")); |
| |
| bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI, |
| AAResults *CalleeAAR, bool InsertLifetime) { |
| return InlineFunction(CallSite(CI), IFI, CalleeAAR, InsertLifetime); |
| } |
| |
| bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI, |
| AAResults *CalleeAAR, bool InsertLifetime) { |
| return InlineFunction(CallSite(II), IFI, CalleeAAR, InsertLifetime); |
| } |
| |
| namespace { |
| |
| /// A class for recording information about inlining a landing pad. |
| class LandingPadInliningInfo { |
| /// Destination of the invoke's unwind. |
| BasicBlock *OuterResumeDest; |
| |
| /// Destination for the callee's resume. |
| BasicBlock *InnerResumeDest = nullptr; |
| |
| /// LandingPadInst associated with the invoke. |
| LandingPadInst *CallerLPad = nullptr; |
| |
| /// PHI for EH values from landingpad insts. |
| PHINode *InnerEHValuesPHI = nullptr; |
| |
| SmallVector<Value*, 8> UnwindDestPHIValues; |
| |
| public: |
| LandingPadInliningInfo(InvokeInst *II) |
| : OuterResumeDest(II->getUnwindDest()) { |
| // If there are PHI nodes in the unwind destination block, we need to keep |
| // track of which values came into them from the invoke before removing |
| // the edge from this block. |
| BasicBlock *InvokeBB = II->getParent(); |
| BasicBlock::iterator I = OuterResumeDest->begin(); |
| for (; isa<PHINode>(I); ++I) { |
| // Save the value to use for this edge. |
| PHINode *PHI = cast<PHINode>(I); |
| UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); |
| } |
| |
| CallerLPad = cast<LandingPadInst>(I); |
| } |
| |
| /// The outer unwind destination is the target of |
| /// unwind edges introduced for calls within the inlined function. |
| BasicBlock *getOuterResumeDest() const { |
| return OuterResumeDest; |
| } |
| |
| BasicBlock *getInnerResumeDest(); |
| |
| LandingPadInst *getLandingPadInst() const { return CallerLPad; } |
| |
| /// Forward the 'resume' instruction to the caller's landing pad block. |
| /// When the landing pad block has only one predecessor, this is |
| /// a simple branch. When there is more than one predecessor, we need to |
| /// split the landing pad block after the landingpad instruction and jump |
| /// to there. |
| void forwardResume(ResumeInst *RI, |
| SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); |
| |
| /// Add incoming-PHI values to the unwind destination block for the given |
| /// basic block, using the values for the original invoke's source block. |
| void addIncomingPHIValuesFor(BasicBlock *BB) const { |
| addIncomingPHIValuesForInto(BB, OuterResumeDest); |
| } |
| |
| void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { |
| BasicBlock::iterator I = dest->begin(); |
| for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { |
| PHINode *phi = cast<PHINode>(I); |
| phi->addIncoming(UnwindDestPHIValues[i], src); |
| } |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Get or create a target for the branch from ResumeInsts. |
| BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { |
| if (InnerResumeDest) return InnerResumeDest; |
| |
| // Split the landing pad. |
| BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator(); |
| InnerResumeDest = |
| OuterResumeDest->splitBasicBlock(SplitPoint, |
| OuterResumeDest->getName() + ".body"); |
| |
| // The number of incoming edges we expect to the inner landing pad. |
| const unsigned PHICapacity = 2; |
| |
| // Create corresponding new PHIs for all the PHIs in the outer landing pad. |
| Instruction *InsertPoint = &InnerResumeDest->front(); |
| BasicBlock::iterator I = OuterResumeDest->begin(); |
| for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { |
| PHINode *OuterPHI = cast<PHINode>(I); |
| PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, |
| OuterPHI->getName() + ".lpad-body", |
| InsertPoint); |
| OuterPHI->replaceAllUsesWith(InnerPHI); |
| InnerPHI->addIncoming(OuterPHI, OuterResumeDest); |
| } |
| |
| // Create a PHI for the exception values. |
| InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, |
| "eh.lpad-body", InsertPoint); |
| CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); |
| InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); |
| |
| // All done. |
| return InnerResumeDest; |
| } |
| |
| /// Forward the 'resume' instruction to the caller's landing pad block. |
| /// When the landing pad block has only one predecessor, this is a simple |
| /// branch. When there is more than one predecessor, we need to split the |
| /// landing pad block after the landingpad instruction and jump to there. |
| void LandingPadInliningInfo::forwardResume( |
| ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) { |
| BasicBlock *Dest = getInnerResumeDest(); |
| BasicBlock *Src = RI->getParent(); |
| |
| BranchInst::Create(Dest, Src); |
| |
| // Update the PHIs in the destination. They were inserted in an order which |
| // makes this work. |
| addIncomingPHIValuesForInto(Src, Dest); |
| |
| InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); |
| RI->eraseFromParent(); |
| } |
| |
| /// Helper for getUnwindDestToken/getUnwindDestTokenHelper. |
| static Value *getParentPad(Value *EHPad) { |
| if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) |
| return FPI->getParentPad(); |
| return cast<CatchSwitchInst>(EHPad)->getParentPad(); |
| } |
| |
| using UnwindDestMemoTy = DenseMap<Instruction *, Value *>; |
| |
| /// Helper for getUnwindDestToken that does the descendant-ward part of |
| /// the search. |
| static Value *getUnwindDestTokenHelper(Instruction *EHPad, |
| UnwindDestMemoTy &MemoMap) { |
| SmallVector<Instruction *, 8> Worklist(1, EHPad); |
| |
| while (!Worklist.empty()) { |
| Instruction *CurrentPad = Worklist.pop_back_val(); |
| // We only put pads on the worklist that aren't in the MemoMap. When |
| // we find an unwind dest for a pad we may update its ancestors, but |
| // the queue only ever contains uncles/great-uncles/etc. of CurrentPad, |
| // so they should never get updated while queued on the worklist. |
| assert(!MemoMap.count(CurrentPad)); |
| Value *UnwindDestToken = nullptr; |
| if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) { |
| if (CatchSwitch->hasUnwindDest()) { |
| UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI(); |
| } else { |
| // Catchswitch doesn't have a 'nounwind' variant, and one might be |
| // annotated as "unwinds to caller" when really it's nounwind (see |
| // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the |
| // parent's unwind dest from this. We can check its catchpads' |
| // descendants, since they might include a cleanuppad with an |
| // "unwinds to caller" cleanupret, which can be trusted. |
| for (auto HI = CatchSwitch->handler_begin(), |
| HE = CatchSwitch->handler_end(); |
| HI != HE && !UnwindDestToken; ++HI) { |
| BasicBlock *HandlerBlock = *HI; |
| auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI()); |
| for (User *Child : CatchPad->users()) { |
| // Intentionally ignore invokes here -- since the catchswitch is |
| // marked "unwind to caller", it would be a verifier error if it |
| // contained an invoke which unwinds out of it, so any invoke we'd |
| // encounter must unwind to some child of the catch. |
| if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child)) |
| continue; |
| |
| Instruction *ChildPad = cast<Instruction>(Child); |
| auto Memo = MemoMap.find(ChildPad); |
| if (Memo == MemoMap.end()) { |
| // Haven't figured out this child pad yet; queue it. |
| Worklist.push_back(ChildPad); |
| continue; |
| } |
| // We've already checked this child, but might have found that |
| // it offers no proof either way. |
| Value *ChildUnwindDestToken = Memo->second; |
| if (!ChildUnwindDestToken) |
| continue; |
| // We already know the child's unwind dest, which can either |
| // be ConstantTokenNone to indicate unwind to caller, or can |
| // be another child of the catchpad. Only the former indicates |
| // the unwind dest of the catchswitch. |
| if (isa<ConstantTokenNone>(ChildUnwindDestToken)) { |
| UnwindDestToken = ChildUnwindDestToken; |
| break; |
| } |
| assert(getParentPad(ChildUnwindDestToken) == CatchPad); |
| } |
| } |
| } |
| } else { |
| auto *CleanupPad = cast<CleanupPadInst>(CurrentPad); |
| for (User *U : CleanupPad->users()) { |
| if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) { |
| if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest()) |
| UnwindDestToken = RetUnwindDest->getFirstNonPHI(); |
| else |
| UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext()); |
| break; |
| } |
| Value *ChildUnwindDestToken; |
| if (auto *Invoke = dyn_cast<InvokeInst>(U)) { |
| ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI(); |
| } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) { |
| Instruction *ChildPad = cast<Instruction>(U); |
| auto Memo = MemoMap.find(ChildPad); |
| if (Memo == MemoMap.end()) { |
| // Haven't resolved this child yet; queue it and keep searching. |
| Worklist.push_back(ChildPad); |
| continue; |
| } |
| // We've checked this child, but still need to ignore it if it |
| // had no proof either way. |
| ChildUnwindDestToken = Memo->second; |
| if (!ChildUnwindDestToken) |
| continue; |
| } else { |
| // Not a relevant user of the cleanuppad |
| continue; |
| } |
| // In a well-formed program, the child/invoke must either unwind to |
| // an(other) child of the cleanup, or exit the cleanup. In the |
| // first case, continue searching. |
| if (isa<Instruction>(ChildUnwindDestToken) && |
| getParentPad(ChildUnwindDestToken) == CleanupPad) |
| continue; |
| UnwindDestToken = ChildUnwindDestToken; |
| break; |
| } |
| } |
| // If we haven't found an unwind dest for CurrentPad, we may have queued its |
| // children, so move on to the next in the worklist. |
| if (!UnwindDestToken) |
| continue; |
| |
| // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits |
| // any ancestors of CurrentPad up to but not including UnwindDestToken's |
| // parent pad. Record this in the memo map, and check to see if the |
| // original EHPad being queried is one of the ones exited. |
| Value *UnwindParent; |
| if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken)) |
| UnwindParent = getParentPad(UnwindPad); |
| else |
| UnwindParent = nullptr; |
| bool ExitedOriginalPad = false; |
| for (Instruction *ExitedPad = CurrentPad; |
| ExitedPad && ExitedPad != UnwindParent; |
| ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) { |
| // Skip over catchpads since they just follow their catchswitches. |
| if (isa<CatchPadInst>(ExitedPad)) |
| continue; |
| MemoMap[ExitedPad] = UnwindDestToken; |
| ExitedOriginalPad |= (ExitedPad == EHPad); |
| } |
| |
| if (ExitedOriginalPad) |
| return UnwindDestToken; |
| |
| // Continue the search. |
| } |
| |
| // No definitive information is contained within this funclet. |
| return nullptr; |
| } |
| |
| /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad, |
| /// return that pad instruction. If it unwinds to caller, return |
| /// ConstantTokenNone. If it does not have a definitive unwind destination, |
| /// return nullptr. |
| /// |
| /// This routine gets invoked for calls in funclets in inlinees when inlining |
| /// an invoke. Since many funclets don't have calls inside them, it's queried |
| /// on-demand rather than building a map of pads to unwind dests up front. |
| /// Determining a funclet's unwind dest may require recursively searching its |
| /// descendants, and also ancestors and cousins if the descendants don't provide |
| /// an answer. Since most funclets will have their unwind dest immediately |
| /// available as the unwind dest of a catchswitch or cleanupret, this routine |
| /// searches top-down from the given pad and then up. To avoid worst-case |
| /// quadratic run-time given that approach, it uses a memo map to avoid |
| /// re-processing funclet trees. The callers that rewrite the IR as they go |
| /// take advantage of this, for correctness, by checking/forcing rewritten |
| /// pads' entries to match the original callee view. |
| static Value *getUnwindDestToken(Instruction *EHPad, |
| UnwindDestMemoTy &MemoMap) { |
| // Catchpads unwind to the same place as their catchswitch; |
| // redirct any queries on catchpads so the code below can |
| // deal with just catchswitches and cleanuppads. |
| if (auto *CPI = dyn_cast<CatchPadInst>(EHPad)) |
| EHPad = CPI->getCatchSwitch(); |
| |
| // Check if we've already determined the unwind dest for this pad. |
| auto Memo = MemoMap.find(EHPad); |
| if (Memo != MemoMap.end()) |
| return Memo->second; |
| |
| // Search EHPad and, if necessary, its descendants. |
| Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap); |
| assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0)); |
| if (UnwindDestToken) |
| return UnwindDestToken; |
| |
| // No information is available for this EHPad from itself or any of its |
| // descendants. An unwind all the way out to a pad in the caller would |
| // need also to agree with the unwind dest of the parent funclet, so |
| // search up the chain to try to find a funclet with information. Put |
| // null entries in the memo map to avoid re-processing as we go up. |
| MemoMap[EHPad] = nullptr; |
| #ifndef NDEBUG |
| SmallPtrSet<Instruction *, 4> TempMemos; |
| TempMemos.insert(EHPad); |
| #endif |
| Instruction *LastUselessPad = EHPad; |
| Value *AncestorToken; |
| for (AncestorToken = getParentPad(EHPad); |
| auto *AncestorPad = dyn_cast<Instruction>(AncestorToken); |
| AncestorToken = getParentPad(AncestorToken)) { |
| // Skip over catchpads since they just follow their catchswitches. |
| if (isa<CatchPadInst>(AncestorPad)) |
| continue; |
| // If the MemoMap had an entry mapping AncestorPad to nullptr, since we |
| // haven't yet called getUnwindDestTokenHelper for AncestorPad in this |
| // call to getUnwindDestToken, that would mean that AncestorPad had no |
| // information in itself, its descendants, or its ancestors. If that |
| // were the case, then we should also have recorded the lack of information |
| // for the descendant that we're coming from. So assert that we don't |
| // find a null entry in the MemoMap for AncestorPad. |
| assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]); |
| auto AncestorMemo = MemoMap.find(AncestorPad); |
| if (AncestorMemo == MemoMap.end()) { |
| UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap); |
| } else { |
| UnwindDestToken = AncestorMemo->second; |
| } |
| if (UnwindDestToken) |
| break; |
| LastUselessPad = AncestorPad; |
| MemoMap[LastUselessPad] = nullptr; |
| #ifndef NDEBUG |
| TempMemos.insert(LastUselessPad); |
| #endif |
| } |
| |
| // We know that getUnwindDestTokenHelper was called on LastUselessPad and |
| // returned nullptr (and likewise for EHPad and any of its ancestors up to |
| // LastUselessPad), so LastUselessPad has no information from below. Since |
| // getUnwindDestTokenHelper must investigate all downward paths through |
| // no-information nodes to prove that a node has no information like this, |
| // and since any time it finds information it records it in the MemoMap for |
| // not just the immediately-containing funclet but also any ancestors also |
| // exited, it must be the case that, walking downward from LastUselessPad, |
| // visiting just those nodes which have not been mapped to an unwind dest |
| // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since |
| // they are just used to keep getUnwindDestTokenHelper from repeating work), |
| // any node visited must have been exhaustively searched with no information |
| // for it found. |
| SmallVector<Instruction *, 8> Worklist(1, LastUselessPad); |
| while (!Worklist.empty()) { |
| Instruction *UselessPad = Worklist.pop_back_val(); |
| auto Memo = MemoMap.find(UselessPad); |
| if (Memo != MemoMap.end() && Memo->second) { |
| // Here the name 'UselessPad' is a bit of a misnomer, because we've found |
| // that it is a funclet that does have information about unwinding to |
| // a particular destination; its parent was a useless pad. |
| // Since its parent has no information, the unwind edge must not escape |
| // the parent, and must target a sibling of this pad. This local unwind |
| // gives us no information about EHPad. Leave it and the subtree rooted |
| // at it alone. |
| assert(getParentPad(Memo->second) == getParentPad(UselessPad)); |
| continue; |
| } |
| // We know we don't have information for UselesPad. If it has an entry in |
| // the MemoMap (mapping it to nullptr), it must be one of the TempMemos |
| // added on this invocation of getUnwindDestToken; if a previous invocation |
| // recorded nullptr, it would have had to prove that the ancestors of |
| // UselessPad, which include LastUselessPad, had no information, and that |
| // in turn would have required proving that the descendants of |
| // LastUselesPad, which include EHPad, have no information about |
| // LastUselessPad, which would imply that EHPad was mapped to nullptr in |
| // the MemoMap on that invocation, which isn't the case if we got here. |
| assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad)); |
| // Assert as we enumerate users that 'UselessPad' doesn't have any unwind |
| // information that we'd be contradicting by making a map entry for it |
| // (which is something that getUnwindDestTokenHelper must have proved for |
| // us to get here). Just assert on is direct users here; the checks in |
| // this downward walk at its descendants will verify that they don't have |
| // any unwind edges that exit 'UselessPad' either (i.e. they either have no |
| // unwind edges or unwind to a sibling). |
| MemoMap[UselessPad] = UnwindDestToken; |
| if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) { |
| assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad"); |
| for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) { |
| auto *CatchPad = HandlerBlock->getFirstNonPHI(); |
| for (User *U : CatchPad->users()) { |
| assert( |
| (!isa<InvokeInst>(U) || |
| (getParentPad( |
| cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == |
| CatchPad)) && |
| "Expected useless pad"); |
| if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) |
| Worklist.push_back(cast<Instruction>(U)); |
| } |
| } |
| } else { |
| assert(isa<CleanupPadInst>(UselessPad)); |
| for (User *U : UselessPad->users()) { |
| assert(!isa<CleanupReturnInst>(U) && "Expected useless pad"); |
| assert((!isa<InvokeInst>(U) || |
| (getParentPad( |
| cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == |
| UselessPad)) && |
| "Expected useless pad"); |
| if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) |
| Worklist.push_back(cast<Instruction>(U)); |
| } |
| } |
| } |
| |
| return UnwindDestToken; |
| } |
| |
| /// When we inline a basic block into an invoke, |
| /// we have to turn all of the calls that can throw into invokes. |
| /// This function analyze BB to see if there are any calls, and if so, |
| /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI |
| /// nodes in that block with the values specified in InvokeDestPHIValues. |
| static BasicBlock *HandleCallsInBlockInlinedThroughInvoke( |
| BasicBlock *BB, BasicBlock *UnwindEdge, |
| UnwindDestMemoTy *FuncletUnwindMap = nullptr) { |
| for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { |
| Instruction *I = &*BBI++; |
| |
| // We only need to check for function calls: inlined invoke |
| // instructions require no special handling. |
| CallInst *CI = dyn_cast<CallInst>(I); |
| |
| if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) |
| continue; |
| |
| // We do not need to (and in fact, cannot) convert possibly throwing calls |
| // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into |
| // invokes. The caller's "segment" of the deoptimization continuation |
| // attached to the newly inlined @llvm.experimental_deoptimize |
| // (resp. @llvm.experimental.guard) call should contain the exception |
| // handling logic, if any. |
| if (auto *F = CI->getCalledFunction()) |
| if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize || |
| F->getIntrinsicID() == Intrinsic::experimental_guard) |
| continue; |
| |
| if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) { |
| // This call is nested inside a funclet. If that funclet has an unwind |
| // destination within the inlinee, then unwinding out of this call would |
| // be UB. Rewriting this call to an invoke which targets the inlined |
| // invoke's unwind dest would give the call's parent funclet multiple |
| // unwind destinations, which is something that subsequent EH table |
| // generation can't handle and that the veirifer rejects. So when we |
| // see such a call, leave it as a call. |
| auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]); |
| Value *UnwindDestToken = |
| getUnwindDestToken(FuncletPad, *FuncletUnwindMap); |
| if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) |
| continue; |
| #ifndef NDEBUG |
| Instruction *MemoKey; |
| if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad)) |
| MemoKey = CatchPad->getCatchSwitch(); |
| else |
| MemoKey = FuncletPad; |
| assert(FuncletUnwindMap->count(MemoKey) && |
| (*FuncletUnwindMap)[MemoKey] == UnwindDestToken && |
| "must get memoized to avoid confusing later searches"); |
| #endif // NDEBUG |
| } |
| |
| changeToInvokeAndSplitBasicBlock(CI, UnwindEdge); |
| return BB; |
| } |
| return nullptr; |
| } |
| |
| /// If we inlined an invoke site, we need to convert calls |
| /// in the body of the inlined function into invokes. |
| /// |
| /// II is the invoke instruction being inlined. FirstNewBlock is the first |
| /// block of the inlined code (the last block is the end of the function), |
| /// and InlineCodeInfo is information about the code that got inlined. |
| static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, |
| ClonedCodeInfo &InlinedCodeInfo) { |
| BasicBlock *InvokeDest = II->getUnwindDest(); |
| |
| Function *Caller = FirstNewBlock->getParent(); |
| |
| // The inlined code is currently at the end of the function, scan from the |
| // start of the inlined code to its end, checking for stuff we need to |
| // rewrite. |
| LandingPadInliningInfo Invoke(II); |
| |
| // Get all of the inlined landing pad instructions. |
| SmallPtrSet<LandingPadInst*, 16> InlinedLPads; |
| for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end(); |
| I != E; ++I) |
| if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) |
| InlinedLPads.insert(II->getLandingPadInst()); |
| |
| // Append the clauses from the outer landing pad instruction into the inlined |
| // landing pad instructions. |
| LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); |
| for (LandingPadInst *InlinedLPad : InlinedLPads) { |
| unsigned OuterNum = OuterLPad->getNumClauses(); |
| InlinedLPad->reserveClauses(OuterNum); |
| for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) |
| InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); |
| if (OuterLPad->isCleanup()) |
| InlinedLPad->setCleanup(true); |
| } |
| |
| for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); |
| BB != E; ++BB) { |
| if (InlinedCodeInfo.ContainsCalls) |
| if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( |
| &*BB, Invoke.getOuterResumeDest())) |
| // Update any PHI nodes in the exceptional block to indicate that there |
| // is now a new entry in them. |
| Invoke.addIncomingPHIValuesFor(NewBB); |
| |
| // Forward any resumes that are remaining here. |
| if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) |
| Invoke.forwardResume(RI, InlinedLPads); |
| } |
| |
| // Now that everything is happy, we have one final detail. The PHI nodes in |
| // the exception destination block still have entries due to the original |
| // invoke instruction. Eliminate these entries (which might even delete the |
| // PHI node) now. |
| InvokeDest->removePredecessor(II->getParent()); |
| } |
| |
| /// If we inlined an invoke site, we need to convert calls |
| /// in the body of the inlined function into invokes. |
| /// |
| /// II is the invoke instruction being inlined. FirstNewBlock is the first |
| /// block of the inlined code (the last block is the end of the function), |
| /// and InlineCodeInfo is information about the code that got inlined. |
| static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, |
| ClonedCodeInfo &InlinedCodeInfo) { |
| BasicBlock *UnwindDest = II->getUnwindDest(); |
| Function *Caller = FirstNewBlock->getParent(); |
| |
| assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); |
| |
| // If there are PHI nodes in the unwind destination block, we need to keep |
| // track of which values came into them from the invoke before removing the |
| // edge from this block. |
| SmallVector<Value *, 8> UnwindDestPHIValues; |
| BasicBlock *InvokeBB = II->getParent(); |
| for (Instruction &I : *UnwindDest) { |
| // Save the value to use for this edge. |
| PHINode *PHI = dyn_cast<PHINode>(&I); |
| if (!PHI) |
| break; |
| UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); |
| } |
| |
| // Add incoming-PHI values to the unwind destination block for the given basic |
| // block, using the values for the original invoke's source block. |
| auto UpdatePHINodes = [&](BasicBlock *Src) { |
| BasicBlock::iterator I = UnwindDest->begin(); |
| for (Value *V : UnwindDestPHIValues) { |
| PHINode *PHI = cast<PHINode>(I); |
| PHI->addIncoming(V, Src); |
| ++I; |
| } |
| }; |
| |
| // This connects all the instructions which 'unwind to caller' to the invoke |
| // destination. |
| UnwindDestMemoTy FuncletUnwindMap; |
| for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); |
| BB != E; ++BB) { |
| if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { |
| if (CRI->unwindsToCaller()) { |
| auto *CleanupPad = CRI->getCleanupPad(); |
| CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI); |
| CRI->eraseFromParent(); |
| UpdatePHINodes(&*BB); |
| // Finding a cleanupret with an unwind destination would confuse |
| // subsequent calls to getUnwindDestToken, so map the cleanuppad |
| // to short-circuit any such calls and recognize this as an "unwind |
| // to caller" cleanup. |
| assert(!FuncletUnwindMap.count(CleanupPad) || |
| isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad])); |
| FuncletUnwindMap[CleanupPad] = |
| ConstantTokenNone::get(Caller->getContext()); |
| } |
| } |
| |
| Instruction *I = BB->getFirstNonPHI(); |
| if (!I->isEHPad()) |
| continue; |
| |
| Instruction *Replacement = nullptr; |
| if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { |
| if (CatchSwitch->unwindsToCaller()) { |
| Value *UnwindDestToken; |
| if (auto *ParentPad = |
| dyn_cast<Instruction>(CatchSwitch->getParentPad())) { |
| // This catchswitch is nested inside another funclet. If that |
| // funclet has an unwind destination within the inlinee, then |
| // unwinding out of this catchswitch would be UB. Rewriting this |
| // catchswitch to unwind to the inlined invoke's unwind dest would |
| // give the parent funclet multiple unwind destinations, which is |
| // something that subsequent EH table generation can't handle and |
| // that the veirifer rejects. So when we see such a call, leave it |
| // as "unwind to caller". |
| UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap); |
| if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) |
| continue; |
| } else { |
| // This catchswitch has no parent to inherit constraints from, and |
| // none of its descendants can have an unwind edge that exits it and |
| // targets another funclet in the inlinee. It may or may not have a |
| // descendant that definitively has an unwind to caller. In either |
| // case, we'll have to assume that any unwinds out of it may need to |
| // be routed to the caller, so treat it as though it has a definitive |
| // unwind to caller. |
| UnwindDestToken = ConstantTokenNone::get(Caller->getContext()); |
| } |
| auto *NewCatchSwitch = CatchSwitchInst::Create( |
| CatchSwitch->getParentPad(), UnwindDest, |
| CatchSwitch->getNumHandlers(), CatchSwitch->getName(), |
| CatchSwitch); |
| for (BasicBlock *PadBB : CatchSwitch->handlers()) |
| NewCatchSwitch->addHandler(PadBB); |
| // Propagate info for the old catchswitch over to the new one in |
| // the unwind map. This also serves to short-circuit any subsequent |
| // checks for the unwind dest of this catchswitch, which would get |
| // confused if they found the outer handler in the callee. |
| FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken; |
| Replacement = NewCatchSwitch; |
| } |
| } else if (!isa<FuncletPadInst>(I)) { |
| llvm_unreachable("unexpected EHPad!"); |
| } |
| |
| if (Replacement) { |
| Replacement->takeName(I); |
| I->replaceAllUsesWith(Replacement); |
| I->eraseFromParent(); |
| UpdatePHINodes(&*BB); |
| } |
| } |
| |
| if (InlinedCodeInfo.ContainsCalls) |
| for (Function::iterator BB = FirstNewBlock->getIterator(), |
| E = Caller->end(); |
| BB != E; ++BB) |
| if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( |
| &*BB, UnwindDest, &FuncletUnwindMap)) |
| // Update any PHI nodes in the exceptional block to indicate that there |
| // is now a new entry in them. |
| UpdatePHINodes(NewBB); |
| |
| // Now that everything is happy, we have one final detail. The PHI nodes in |
| // the exception destination block still have entries due to the original |
| // invoke instruction. Eliminate these entries (which might even delete the |
| // PHI node) now. |
| UnwindDest->removePredecessor(InvokeBB); |
| } |
| |
| /// When inlining a call site that has !llvm.mem.parallel_loop_access metadata, |
| /// that metadata should be propagated to all memory-accessing cloned |
| /// instructions. |
| static void PropagateParallelLoopAccessMetadata(CallSite CS, |
| ValueToValueMapTy &VMap) { |
| MDNode *M = |
| CS.getInstruction()->getMetadata(LLVMContext::MD_mem_parallel_loop_access); |
| if (!M) |
| return; |
| |
| for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); |
| VMI != VMIE; ++VMI) { |
| if (!VMI->second) |
| continue; |
| |
| Instruction *NI = dyn_cast<Instruction>(VMI->second); |
| if (!NI) |
| continue; |
| |
| if (MDNode *PM = NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) { |
| M = MDNode::concatenate(PM, M); |
| NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M); |
| } else if (NI->mayReadOrWriteMemory()) { |
| NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M); |
| } |
| } |
| } |
| |
| /// When inlining a function that contains noalias scope metadata, |
| /// this metadata needs to be cloned so that the inlined blocks |
| /// have different "unique scopes" at every call site. Were this not done, then |
| /// aliasing scopes from a function inlined into a caller multiple times could |
| /// not be differentiated (and this would lead to miscompiles because the |
| /// non-aliasing property communicated by the metadata could have |
| /// call-site-specific control dependencies). |
| static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) { |
| const Function *CalledFunc = CS.getCalledFunction(); |
| SetVector<const MDNode *> MD; |
| |
| // Note: We could only clone the metadata if it is already used in the |
| // caller. I'm omitting that check here because it might confuse |
| // inter-procedural alias analysis passes. We can revisit this if it becomes |
| // an efficiency or overhead problem. |
| |
| for (const BasicBlock &I : *CalledFunc) |
| for (const Instruction &J : I) { |
| if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope)) |
| MD.insert(M); |
| if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias)) |
| MD.insert(M); |
| } |
| |
| if (MD.empty()) |
| return; |
| |
| // Walk the existing metadata, adding the complete (perhaps cyclic) chain to |
| // the set. |
| SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); |
| while (!Queue.empty()) { |
| const MDNode *M = cast<MDNode>(Queue.pop_back_val()); |
| for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) |
| if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) |
| if (MD.insert(M1)) |
| Queue.push_back(M1); |
| } |
| |
| // Now we have a complete set of all metadata in the chains used to specify |
| // the noalias scopes and the lists of those scopes. |
| SmallVector<TempMDTuple, 16> DummyNodes; |
| DenseMap<const MDNode *, TrackingMDNodeRef> MDMap; |
| for (const MDNode *I : MD) { |
| DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None)); |
| MDMap[I].reset(DummyNodes.back().get()); |
| } |
| |
| // Create new metadata nodes to replace the dummy nodes, replacing old |
| // metadata references with either a dummy node or an already-created new |
| // node. |
| for (const MDNode *I : MD) { |
| SmallVector<Metadata *, 4> NewOps; |
| for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) { |
| const Metadata *V = I->getOperand(i); |
| if (const MDNode *M = dyn_cast<MDNode>(V)) |
| NewOps.push_back(MDMap[M]); |
| else |
| NewOps.push_back(const_cast<Metadata *>(V)); |
| } |
| |
| MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps); |
| MDTuple *TempM = cast<MDTuple>(MDMap[I]); |
| assert(TempM->isTemporary() && "Expected temporary node"); |
| |
| TempM->replaceAllUsesWith(NewM); |
| } |
| |
| // Now replace the metadata in the new inlined instructions with the |
| // repacements from the map. |
| for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); |
| VMI != VMIE; ++VMI) { |
| if (!VMI->second) |
| continue; |
| |
| Instruction *NI = dyn_cast<Instruction>(VMI->second); |
| if (!NI) |
| continue; |
| |
| if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) { |
| MDNode *NewMD = MDMap[M]; |
| // If the call site also had alias scope metadata (a list of scopes to |
| // which instructions inside it might belong), propagate those scopes to |
| // the inlined instructions. |
| if (MDNode *CSM = |
| CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) |
| NewMD = MDNode::concatenate(NewMD, CSM); |
| NI->setMetadata(LLVMContext::MD_alias_scope, NewMD); |
| } else if (NI->mayReadOrWriteMemory()) { |
| if (MDNode *M = |
| CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) |
| NI->setMetadata(LLVMContext::MD_alias_scope, M); |
| } |
| |
| if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) { |
| MDNode *NewMD = MDMap[M]; |
| // If the call site also had noalias metadata (a list of scopes with |
| // which instructions inside it don't alias), propagate those scopes to |
| // the inlined instructions. |
| if (MDNode *CSM = |
| CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) |
| NewMD = MDNode::concatenate(NewMD, CSM); |
| NI->setMetadata(LLVMContext::MD_noalias, NewMD); |
| } else if (NI->mayReadOrWriteMemory()) { |
| if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) |
| NI->setMetadata(LLVMContext::MD_noalias, M); |
| } |
| } |
| } |
| |
| /// If the inlined function has noalias arguments, |
| /// then add new alias scopes for each noalias argument, tag the mapped noalias |
| /// parameters with noalias metadata specifying the new scope, and tag all |
| /// non-derived loads, stores and memory intrinsics with the new alias scopes. |
| static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap, |
| const DataLayout &DL, AAResults *CalleeAAR) { |
| if (!EnableNoAliasConversion) |
| return; |
| |
| const Function *CalledFunc = CS.getCalledFunction(); |
| SmallVector<const Argument *, 4> NoAliasArgs; |
| |
| for (const Argument &Arg : CalledFunc->args()) |
| if (Arg.hasNoAliasAttr() && !Arg.use_empty()) |
| NoAliasArgs.push_back(&Arg); |
| |
| if (NoAliasArgs.empty()) |
| return; |
| |
| // To do a good job, if a noalias variable is captured, we need to know if |
| // the capture point dominates the particular use we're considering. |
| DominatorTree DT; |
| DT.recalculate(const_cast<Function&>(*CalledFunc)); |
| |
| // noalias indicates that pointer values based on the argument do not alias |
| // pointer values which are not based on it. So we add a new "scope" for each |
| // noalias function argument. Accesses using pointers based on that argument |
| // become part of that alias scope, accesses using pointers not based on that |
| // argument are tagged as noalias with that scope. |
| |
| DenseMap<const Argument *, MDNode *> NewScopes; |
| MDBuilder MDB(CalledFunc->getContext()); |
| |
| // Create a new scope domain for this function. |
| MDNode *NewDomain = |
| MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); |
| for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { |
| const Argument *A = NoAliasArgs[i]; |
| |
| std::string Name = CalledFunc->getName(); |
| if (A->hasName()) { |
| Name += ": %"; |
| Name += A->getName(); |
| } else { |
| Name += ": argument "; |
| Name += utostr(i); |
| } |
| |
| // Note: We always create a new anonymous root here. This is true regardless |
| // of the linkage of the callee because the aliasing "scope" is not just a |
| // property of the callee, but also all control dependencies in the caller. |
| MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); |
| NewScopes.insert(std::make_pair(A, NewScope)); |
| } |
| |
| // Iterate over all new instructions in the map; for all memory-access |
| // instructions, add the alias scope metadata. |
| for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); |
| VMI != VMIE; ++VMI) { |
| if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { |
| if (!VMI->second) |
| continue; |
| |
| Instruction *NI = dyn_cast<Instruction>(VMI->second); |
| if (!NI) |
| continue; |
| |
| bool IsArgMemOnlyCall = false, IsFuncCall = false; |
| SmallVector<const Value *, 2> PtrArgs; |
| |
| if (const LoadInst *LI = dyn_cast<LoadInst>(I)) |
| PtrArgs.push_back(LI->getPointerOperand()); |
| else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) |
| PtrArgs.push_back(SI->getPointerOperand()); |
| else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) |
| PtrArgs.push_back(VAAI->getPointerOperand()); |
| else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) |
| PtrArgs.push_back(CXI->getPointerOperand()); |
| else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) |
| PtrArgs.push_back(RMWI->getPointerOperand()); |
| else if (ImmutableCallSite ICS = ImmutableCallSite(I)) { |
| // If we know that the call does not access memory, then we'll still |
| // know that about the inlined clone of this call site, and we don't |
| // need to add metadata. |
| if (ICS.doesNotAccessMemory()) |
| continue; |
| |
| IsFuncCall = true; |
| if (CalleeAAR) { |
| FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(ICS); |
| if (MRB == FMRB_OnlyAccessesArgumentPointees || |
| MRB == FMRB_OnlyReadsArgumentPointees) |
| IsArgMemOnlyCall = true; |
| } |
| |
| for (Value *Arg : ICS.args()) { |
| // We need to check the underlying objects of all arguments, not just |
| // the pointer arguments, because we might be passing pointers as |
| // integers, etc. |
| // However, if we know that the call only accesses pointer arguments, |
| // then we only need to check the pointer arguments. |
| if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy()) |
| continue; |
| |
| PtrArgs.push_back(Arg); |
| } |
| } |
| |
| // If we found no pointers, then this instruction is not suitable for |
| // pairing with an instruction to receive aliasing metadata. |
| // However, if this is a call, this we might just alias with none of the |
| // noalias arguments. |
| if (PtrArgs.empty() && !IsFuncCall) |
| continue; |
| |
| // It is possible that there is only one underlying object, but you |
| // need to go through several PHIs to see it, and thus could be |
| // repeated in the Objects list. |
| SmallPtrSet<const Value *, 4> ObjSet; |
| SmallVector<Metadata *, 4> Scopes, NoAliases; |
| |
| SmallSetVector<const Argument *, 4> NAPtrArgs; |
| for (const Value *V : PtrArgs) { |
| SmallVector<Value *, 4> Objects; |
| GetUnderlyingObjects(const_cast<Value*>(V), |
| Objects, DL, /* LI = */ nullptr); |
| |
| for (Value *O : Objects) |
| ObjSet.insert(O); |
| } |
| |
| // Figure out if we're derived from anything that is not a noalias |
| // argument. |
| bool CanDeriveViaCapture = false, UsesAliasingPtr = false; |
| for (const Value *V : ObjSet) { |
| // Is this value a constant that cannot be derived from any pointer |
| // value (we need to exclude constant expressions, for example, that |
| // are formed from arithmetic on global symbols). |
| bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || |
| isa<ConstantPointerNull>(V) || |
| isa<ConstantDataVector>(V) || isa<UndefValue>(V); |
| if (IsNonPtrConst) |
| continue; |
| |
| // If this is anything other than a noalias argument, then we cannot |
| // completely describe the aliasing properties using alias.scope |
| // metadata (and, thus, won't add any). |
| if (const Argument *A = dyn_cast<Argument>(V)) { |
| if (!A->hasNoAliasAttr()) |
| UsesAliasingPtr = true; |
| } else { |
| UsesAliasingPtr = true; |
| } |
| |
| // If this is not some identified function-local object (which cannot |
| // directly alias a noalias argument), or some other argument (which, |
| // by definition, also cannot alias a noalias argument), then we could |
| // alias a noalias argument that has been captured). |
| if (!isa<Argument>(V) && |
| !isIdentifiedFunctionLocal(const_cast<Value*>(V))) |
| CanDeriveViaCapture = true; |
| } |
| |
| // A function call can always get captured noalias pointers (via other |
| // parameters, globals, etc.). |
| if (IsFuncCall && !IsArgMemOnlyCall) |
| CanDeriveViaCapture = true; |
| |
| // First, we want to figure out all of the sets with which we definitely |
| // don't alias. Iterate over all noalias set, and add those for which: |
| // 1. The noalias argument is not in the set of objects from which we |
| // definitely derive. |
| // 2. The noalias argument has not yet been captured. |
| // An arbitrary function that might load pointers could see captured |
| // noalias arguments via other noalias arguments or globals, and so we |
| // must always check for prior capture. |
| for (const Argument *A : NoAliasArgs) { |
| if (!ObjSet.count(A) && (!CanDeriveViaCapture || |
| // It might be tempting to skip the |
| // PointerMayBeCapturedBefore check if |
| // A->hasNoCaptureAttr() is true, but this is |
| // incorrect because nocapture only guarantees |
| // that no copies outlive the function, not |
| // that the value cannot be locally captured. |
| !PointerMayBeCapturedBefore(A, |
| /* ReturnCaptures */ false, |
| /* StoreCaptures */ false, I, &DT))) |
| NoAliases.push_back(NewScopes[A]); |
| } |
| |
| if (!NoAliases.empty()) |
| NI->setMetadata(LLVMContext::MD_noalias, |
| MDNode::concatenate( |
| NI->getMetadata(LLVMContext::MD_noalias), |
| MDNode::get(CalledFunc->getContext(), NoAliases))); |
| |
| // Next, we want to figure out all of the sets to which we might belong. |
| // We might belong to a set if the noalias argument is in the set of |
| // underlying objects. If there is some non-noalias argument in our list |
| // of underlying objects, then we cannot add a scope because the fact |
| // that some access does not alias with any set of our noalias arguments |
| // cannot itself guarantee that it does not alias with this access |
| // (because there is some pointer of unknown origin involved and the |
| // other access might also depend on this pointer). We also cannot add |
| // scopes to arbitrary functions unless we know they don't access any |
| // non-parameter pointer-values. |
| bool CanAddScopes = !UsesAliasingPtr; |
| if (CanAddScopes && IsFuncCall) |
| CanAddScopes = IsArgMemOnlyCall; |
| |
| if (CanAddScopes) |
| for (const Argument *A : NoAliasArgs) { |
| if (ObjSet.count(A)) |
| Scopes.push_back(NewScopes[A]); |
| } |
| |
| if (!Scopes.empty()) |
| NI->setMetadata( |
| LLVMContext::MD_alias_scope, |
| MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), |
| MDNode::get(CalledFunc->getContext(), Scopes))); |
| } |
| } |
| } |
| |
| /// If the inlined function has non-byval align arguments, then |
| /// add @llvm.assume-based alignment assumptions to preserve this information. |
| static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) { |
| if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache) |
| return; |
| |
| AssumptionCache *AC = &(*IFI.GetAssumptionCache)(*CS.getCaller()); |
| auto &DL = CS.getCaller()->getParent()->getDataLayout(); |
| |
| // To avoid inserting redundant assumptions, we should check for assumptions |
| // already in the caller. To do this, we might need a DT of the caller. |
| DominatorTree DT; |
| bool DTCalculated = false; |
| |
| Function *CalledFunc = CS.getCalledFunction(); |
| for (Argument &Arg : CalledFunc->args()) { |
| unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0; |
| if (Align && !Arg.hasByValOrInAllocaAttr() && !Arg.hasNUses(0)) { |
| if (!DTCalculated) { |
| DT.recalculate(*CS.getCaller()); |
| DTCalculated = true; |
| } |
| |
| // If we can already prove the asserted alignment in the context of the |
| // caller, then don't bother inserting the assumption. |
| Value *ArgVal = CS.getArgument(Arg.getArgNo()); |
| if (getKnownAlignment(ArgVal, DL, CS.getInstruction(), AC, &DT) >= Align) |
| continue; |
| |
| CallInst *NewAsmp = IRBuilder<>(CS.getInstruction()) |
| .CreateAlignmentAssumption(DL, ArgVal, Align); |
| AC->registerAssumption(NewAsmp); |
| } |
| } |
| } |
| |
| /// Once we have cloned code over from a callee into the caller, |
| /// update the specified callgraph to reflect the changes we made. |
| /// Note that it's possible that not all code was copied over, so only |
| /// some edges of the callgraph may remain. |
| static void UpdateCallGraphAfterInlining(CallSite CS, |
| Function::iterator FirstNewBlock, |
| ValueToValueMapTy &VMap, |
| InlineFunctionInfo &IFI) { |
| CallGraph &CG = *IFI.CG; |
| const Function *Caller = CS.getCaller(); |
| const Function *Callee = CS.getCalledFunction(); |
| CallGraphNode *CalleeNode = CG[Callee]; |
| CallGraphNode *CallerNode = CG[Caller]; |
| |
| // Since we inlined some uninlined call sites in the callee into the caller, |
| // add edges from the caller to all of the callees of the callee. |
| CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); |
| |
| // Consider the case where CalleeNode == CallerNode. |
| CallGraphNode::CalledFunctionsVector CallCache; |
| if (CalleeNode == CallerNode) { |
| CallCache.assign(I, E); |
| I = CallCache.begin(); |
| E = CallCache.end(); |
| } |
| |
| for (; I != E; ++I) { |
| const Value *OrigCall = I->first; |
| |
| ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); |
| // Only copy the edge if the call was inlined! |
| if (VMI == VMap.end() || VMI->second == nullptr) |
| continue; |
| |
| // If the call was inlined, but then constant folded, there is no edge to |
| // add. Check for this case. |
| Instruction *NewCall = dyn_cast<Instruction>(VMI->second); |
| if (!NewCall) |
| continue; |
| |
| // We do not treat intrinsic calls like real function calls because we |
| // expect them to become inline code; do not add an edge for an intrinsic. |
| CallSite CS = CallSite(NewCall); |
| if (CS && CS.getCalledFunction() && CS.getCalledFunction()->isIntrinsic()) |
| continue; |
| |
| // Remember that this call site got inlined for the client of |
| // InlineFunction. |
| IFI.InlinedCalls.push_back(NewCall); |
| |
| // It's possible that inlining the callsite will cause it to go from an |
| // indirect to a direct call by resolving a function pointer. If this |
| // happens, set the callee of the new call site to a more precise |
| // destination. This can also happen if the call graph node of the caller |
| // was just unnecessarily imprecise. |
| if (!I->second->getFunction()) |
| if (Function *F = CallSite(NewCall).getCalledFunction()) { |
| // Indirect call site resolved to direct call. |
| CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); |
| |
| continue; |
| } |
| |
| CallerNode->addCalledFunction(CallSite(NewCall), I->second); |
| } |
| |
| // Update the call graph by deleting the edge from Callee to Caller. We must |
| // do this after the loop above in case Caller and Callee are the same. |
| CallerNode->removeCallEdgeFor(CS); |
| } |
| |
| static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, |
| BasicBlock *InsertBlock, |
| InlineFunctionInfo &IFI) { |
| Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); |
| IRBuilder<> Builder(InsertBlock, InsertBlock->begin()); |
| |
| Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy)); |
| |
| // Always generate a memcpy of alignment 1 here because we don't know |
| // the alignment of the src pointer. Other optimizations can infer |
| // better alignment. |
| Builder.CreateMemCpy(Dst, /*DstAlign*/1, Src, /*SrcAlign*/1, Size); |
| } |
| |
| /// When inlining a call site that has a byval argument, |
| /// we have to make the implicit memcpy explicit by adding it. |
| static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, |
| const Function *CalledFunc, |
| InlineFunctionInfo &IFI, |
| unsigned ByValAlignment) { |
| PointerType *ArgTy = cast<PointerType>(Arg->getType()); |
| Type *AggTy = ArgTy->getElementType(); |
| |
| Function *Caller = TheCall->getFunction(); |
| const DataLayout &DL = Caller->getParent()->getDataLayout(); |
| |
| // If the called function is readonly, then it could not mutate the caller's |
| // copy of the byval'd memory. In this case, it is safe to elide the copy and |
| // temporary. |
| if (CalledFunc->onlyReadsMemory()) { |
| // If the byval argument has a specified alignment that is greater than the |
| // passed in pointer, then we either have to round up the input pointer or |
| // give up on this transformation. |
| if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. |
| return Arg; |
| |
| AssumptionCache *AC = |
| IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr; |
| |
| // If the pointer is already known to be sufficiently aligned, or if we can |
| // round it up to a larger alignment, then we don't need a temporary. |
| if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, AC) >= |
| ByValAlignment) |
| return Arg; |
| |
| // Otherwise, we have to make a memcpy to get a safe alignment. This is bad |
| // for code quality, but rarely happens and is required for correctness. |
| } |
| |
| // Create the alloca. If we have DataLayout, use nice alignment. |
| unsigned Align = DL.getPrefTypeAlignment(AggTy); |
| |
| // If the byval had an alignment specified, we *must* use at least that |
| // alignment, as it is required by the byval argument (and uses of the |
| // pointer inside the callee). |
| Align = std::max(Align, ByValAlignment); |
| |
| Value *NewAlloca = new AllocaInst(AggTy, DL.getAllocaAddrSpace(), |
| nullptr, Align, Arg->getName(), |
| &*Caller->begin()->begin()); |
| IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); |
| |
| // Uses of the argument in the function should use our new alloca |
| // instead. |
| return NewAlloca; |
| } |
| |
| // Check whether this Value is used by a lifetime intrinsic. |
| static bool isUsedByLifetimeMarker(Value *V) { |
| for (User *U : V->users()) { |
| if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { |
| switch (II->getIntrinsicID()) { |
| default: break; |
| case Intrinsic::lifetime_start: |
| case Intrinsic::lifetime_end: |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| // Check whether the given alloca already has |
| // lifetime.start or lifetime.end intrinsics. |
| static bool hasLifetimeMarkers(AllocaInst *AI) { |
| Type *Ty = AI->getType(); |
| Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), |
| Ty->getPointerAddressSpace()); |
| if (Ty == Int8PtrTy) |
| return isUsedByLifetimeMarker(AI); |
| |
| // Do a scan to find all the casts to i8*. |
| for (User *U : AI->users()) { |
| if (U->getType() != Int8PtrTy) continue; |
| if (U->stripPointerCasts() != AI) continue; |
| if (isUsedByLifetimeMarker(U)) |
| return true; |
| } |
| return false; |
| } |
| |
| /// Return the result of AI->isStaticAlloca() if AI were moved to the entry |
| /// block. Allocas used in inalloca calls and allocas of dynamic array size |
| /// cannot be static. |
| static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) { |
| return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca(); |
| } |
| |
| /// Update inlined instructions' line numbers to |
| /// to encode location where these instructions are inlined. |
| static void fixupLineNumbers(Function *Fn, Function::iterator FI, |
| Instruction *TheCall, bool CalleeHasDebugInfo) { |
| const DebugLoc &TheCallDL = TheCall->getDebugLoc(); |
| if (!TheCallDL) |
| return; |
| |
| auto &Ctx = Fn->getContext(); |
| DILocation *InlinedAtNode = TheCallDL; |
| |
| // Create a unique call site, not to be confused with any other call from the |
| // same location. |
| InlinedAtNode = DILocation::getDistinct( |
| Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), |
| InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); |
| |
| // Cache the inlined-at nodes as they're built so they are reused, without |
| // this every instruction's inlined-at chain would become distinct from each |
| // other. |
| DenseMap<const MDNode *, MDNode *> IANodes; |
| |
| for (; FI != Fn->end(); ++FI) { |
| for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); |
| BI != BE; ++BI) { |
| if (DebugLoc DL = BI->getDebugLoc()) { |
| auto IA = DebugLoc::appendInlinedAt(DL, InlinedAtNode, BI->getContext(), |
| IANodes); |
| auto IDL = DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), IA); |
| BI->setDebugLoc(IDL); |
| continue; |
| } |
| |
| if (CalleeHasDebugInfo) |
| continue; |
| |
| // If the inlined instruction has no line number, make it look as if it |
| // originates from the call location. This is important for |
| // ((__always_inline__, __nodebug__)) functions which must use caller |
| // location for all instructions in their function body. |
| |
| // Don't update static allocas, as they may get moved later. |
| if (auto *AI = dyn_cast<AllocaInst>(BI)) |
| if (allocaWouldBeStaticInEntry(AI)) |
| continue; |
| |
| BI->setDebugLoc(TheCallDL); |
| } |
| } |
| } |
| |
| /// Update the block frequencies of the caller after a callee has been inlined. |
| /// |
| /// Each block cloned into the caller has its block frequency scaled by the |
| /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of |
| /// callee's entry block gets the same frequency as the callsite block and the |
| /// relative frequencies of all cloned blocks remain the same after cloning. |
| static void updateCallerBFI(BasicBlock *CallSiteBlock, |
| const ValueToValueMapTy &VMap, |
| BlockFrequencyInfo *CallerBFI, |
| BlockFrequencyInfo *CalleeBFI, |
| const BasicBlock &CalleeEntryBlock) { |
| SmallPtrSet<BasicBlock *, 16> ClonedBBs; |
| for (auto const &Entry : VMap) { |
| if (!isa<BasicBlock>(Entry.first) || !Entry.second) |
| continue; |
| auto *OrigBB = cast<BasicBlock>(Entry.first); |
| auto *ClonedBB = cast<BasicBlock>(Entry.second); |
| uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency(); |
| if (!ClonedBBs.insert(ClonedBB).second) { |
| // Multiple blocks in the callee might get mapped to one cloned block in |
| // the caller since we prune the callee as we clone it. When that happens, |
| // we want to use the maximum among the original blocks' frequencies. |
| uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency(); |
| if (NewFreq > Freq) |
| Freq = NewFreq; |
| } |
| CallerBFI->setBlockFreq(ClonedBB, Freq); |
| } |
| BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock)); |
| CallerBFI->setBlockFreqAndScale( |
| EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(), |
| ClonedBBs); |
| } |
| |
| /// Update the branch metadata for cloned call instructions. |
| static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap, |
| const ProfileCount &CalleeEntryCount, |
| const Instruction *TheCall, |
| ProfileSummaryInfo *PSI, |
| BlockFrequencyInfo *CallerBFI) { |
| if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() || |
| CalleeEntryCount.getCount() < 1) |
| return; |
| auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None; |
| uint64_t CallCount = |
| std::min(CallSiteCount.hasValue() ? CallSiteCount.getValue() : 0, |
| CalleeEntryCount.getCount()); |
| |
| for (auto const &Entry : VMap) |
| if (isa<CallInst>(Entry.first)) |
| if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second)) |
| CI->updateProfWeight(CallCount, CalleeEntryCount.getCount()); |
| for (BasicBlock &BB : *Callee) |
| // No need to update the callsite if it is pruned during inlining. |
| if (VMap.count(&BB)) |
| for (Instruction &I : BB) |
| if (CallInst *CI = dyn_cast<CallInst>(&I)) |
| CI->updateProfWeight(CalleeEntryCount.getCount() - CallCount, |
| CalleeEntryCount.getCount()); |
| } |
| |
| /// Update the entry count of callee after inlining. |
| /// |
| /// The callsite's block count is subtracted from the callee's function entry |
| /// count. |
| static void updateCalleeCount(BlockFrequencyInfo *CallerBFI, BasicBlock *CallBB, |
| Instruction *CallInst, Function *Callee, |
| ProfileSummaryInfo *PSI) { |
| // If the callee has a original count of N, and the estimated count of |
| // callsite is M, the new callee count is set to N - M. M is estimated from |
| // the caller's entry count, its entry block frequency and the block frequency |
| // of the callsite. |
| auto CalleeCount = Callee->getEntryCount(); |
| if (!CalleeCount.hasValue() || !PSI) |
| return; |
| auto CallCount = PSI->getProfileCount(CallInst, CallerBFI); |
| if (!CallCount.hasValue()) |
| return; |
| // Since CallSiteCount is an estimate, it could exceed the original callee |
| // count and has to be set to 0. |
| if (CallCount.getValue() > CalleeCount.getCount()) |
| CalleeCount.setCount(0); |
| else |
| CalleeCount.setCount(CalleeCount.getCount() - CallCount.getValue()); |
| Callee->setEntryCount(CalleeCount); |
| } |
| |
| /// This function inlines the called function into the basic block of the |
| /// caller. This returns false if it is not possible to inline this call. |
| /// The program is still in a well defined state if this occurs though. |
| /// |
| /// Note that this only does one level of inlining. For example, if the |
| /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now |
| /// exists in the instruction stream. Similarly this will inline a recursive |
| /// function by one level. |
| bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, |
| AAResults *CalleeAAR, bool InsertLifetime, |
| Function *ForwardVarArgsTo) { |
| Instruction *TheCall = CS.getInstruction(); |
| assert(TheCall->getParent() && TheCall->getFunction() |
| && "Instruction not in function!"); |
| |
| // If IFI has any state in it, zap it before we fill it in. |
| IFI.reset(); |
| |
| Function *CalledFunc = CS.getCalledFunction(); |
| if (!CalledFunc || // Can't inline external function or indirect |
| CalledFunc->isDeclaration()) // call! |
| return false; |
| |
| // The inliner does not know how to inline through calls with operand bundles |
| // in general ... |
| if (CS.hasOperandBundles()) { |
| for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { |
| uint32_t Tag = CS.getOperandBundleAt(i).getTagID(); |
| // ... but it knows how to inline through "deopt" operand bundles ... |
| if (Tag == LLVMContext::OB_deopt) |
| continue; |
| // ... and "funclet" operand bundles. |
| if (Tag == LLVMContext::OB_funclet) |
| continue; |
| |
| return false; |
| } |
| } |
| |
| // If the call to the callee cannot throw, set the 'nounwind' flag on any |
| // calls that we inline. |
| bool MarkNoUnwind = CS.doesNotThrow(); |
| |
| BasicBlock *OrigBB = TheCall->getParent(); |
| Function *Caller = OrigBB->getParent(); |
| |
| // GC poses two hazards to inlining, which only occur when the callee has GC: |
| // 1. If the caller has no GC, then the callee's GC must be propagated to the |
| // caller. |
| // 2. If the caller has a differing GC, it is invalid to inline. |
| if (CalledFunc->hasGC()) { |
| if (!Caller->hasGC()) |
| Caller->setGC(CalledFunc->getGC()); |
| else if (CalledFunc->getGC() != Caller->getGC()) |
| return false; |
| } |
| |
| // Get the personality function from the callee if it contains a landing pad. |
| Constant *CalledPersonality = |
| CalledFunc->hasPersonalityFn() |
| ? CalledFunc->getPersonalityFn()->stripPointerCasts() |
| : nullptr; |
| |
| // Find the personality function used by the landing pads of the caller. If it |
| // exists, then check to see that it matches the personality function used in |
| // the callee. |
| Constant *CallerPersonality = |
| Caller->hasPersonalityFn() |
| ? Caller->getPersonalityFn()->stripPointerCasts() |
| : nullptr; |
| if (CalledPersonality) { |
| if (!CallerPersonality) |
| Caller->setPersonalityFn(CalledPersonality); |
| // If the personality functions match, then we can perform the |
| // inlining. Otherwise, we can't inline. |
| // TODO: This isn't 100% true. Some personality functions are proper |
| // supersets of others and can be used in place of the other. |
| else if (CalledPersonality != CallerPersonality) |
| return false; |
| } |
| |
| // We need to figure out which funclet the callsite was in so that we may |
| // properly nest the callee. |
| Instruction *CallSiteEHPad = nullptr; |
| if (CallerPersonality) { |
| EHPersonality Personality = classifyEHPersonality(CallerPersonality); |
| if (isScopedEHPersonality(Personality)) { |
| Optional<OperandBundleUse> ParentFunclet = |
| CS.getOperandBundle(LLVMContext::OB_funclet); |
| if (ParentFunclet) |
| CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front()); |
| |
| // OK, the inlining site is legal. What about the target function? |
| |
| if (CallSiteEHPad) { |
| if (Personality == EHPersonality::MSVC_CXX) { |
| // The MSVC personality cannot tolerate catches getting inlined into |
| // cleanup funclets. |
| if (isa<CleanupPadInst>(CallSiteEHPad)) { |
| // Ok, the call site is within a cleanuppad. Let's check the callee |
| // for catchpads. |
| for (const BasicBlock &CalledBB : *CalledFunc) { |
| if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI())) |
| return false; |
| } |
| } |
| } else if (isAsynchronousEHPersonality(Personality)) { |
| // SEH is even less tolerant, there may not be any sort of exceptional |
| // funclet in the callee. |
| for (const BasicBlock &CalledBB : *CalledFunc) { |
| if (CalledBB.isEHPad()) |
| return false; |
| } |
| } |
| } |
| } |
| } |
| |
| // Determine if we are dealing with a call in an EHPad which does not unwind |
| // to caller. |
| bool EHPadForCallUnwindsLocally = false; |
| if (CallSiteEHPad && CS.isCall()) { |
| UnwindDestMemoTy FuncletUnwindMap; |
| Value *CallSiteUnwindDestToken = |
| getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap); |
| |
| EHPadForCallUnwindsLocally = |
| CallSiteUnwindDestToken && |
| !isa<ConstantTokenNone>(CallSiteUnwindDestToken); |
| } |
| |
| // Get an iterator to the last basic block in the function, which will have |
| // the new function inlined after it. |
| Function::iterator LastBlock = --Caller->end(); |
| |
| // Make sure to capture all of the return instructions from the cloned |
| // function. |
| SmallVector<ReturnInst*, 8> Returns; |
| ClonedCodeInfo InlinedFunctionInfo; |
| Function::iterator FirstNewBlock; |
| |
| { // Scope to destroy VMap after cloning. |
| ValueToValueMapTy VMap; |
| // Keep a list of pair (dst, src) to emit byval initializations. |
| SmallVector<std::pair<Value*, Value*>, 4> ByValInit; |
| |
| auto &DL = Caller->getParent()->getDataLayout(); |
| |
| // Calculate the vector of arguments to pass into the function cloner, which |
| // matches up the formal to the actual argument values. |
| CallSite::arg_iterator AI = CS.arg_begin(); |
| unsigned ArgNo = 0; |
| for (Function::arg_iterator I = CalledFunc->arg_begin(), |
| E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { |
| Value *ActualArg = *AI; |
| |
| // When byval arguments actually inlined, we need to make the copy implied |
| // by them explicit. However, we don't do this if the callee is readonly |
| // or readnone, because the copy would be unneeded: the callee doesn't |
| // modify the struct. |
| if (CS.isByValArgument(ArgNo)) { |
| ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, |
| CalledFunc->getParamAlignment(ArgNo)); |
| if (ActualArg != *AI) |
| ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); |
| } |
| |
| VMap[&*I] = ActualArg; |
| } |
| |
| // Add alignment assumptions if necessary. We do this before the inlined |
| // instructions are actually cloned into the caller so that we can easily |
| // check what will be known at the start of the inlined code. |
| AddAlignmentAssumptions(CS, IFI); |
| |
| // We want the inliner to prune the code as it copies. We would LOVE to |
| // have no dead or constant instructions leftover after inlining occurs |
| // (which can happen, e.g., because an argument was constant), but we'll be |
| // happy with whatever the cloner can do. |
| CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, |
| /*ModuleLevelChanges=*/false, Returns, ".i", |
| &InlinedFunctionInfo, TheCall); |
| // Remember the first block that is newly cloned over. |
| FirstNewBlock = LastBlock; ++FirstNewBlock; |
| |
| if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr) |
| // Update the BFI of blocks cloned into the caller. |
| updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI, |
| CalledFunc->front()); |
| |
| updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), TheCall, |
| IFI.PSI, IFI.CallerBFI); |
| // Update the profile count of callee. |
| updateCalleeCount(IFI.CallerBFI, OrigBB, TheCall, CalledFunc, IFI.PSI); |
| |
| // Inject byval arguments initialization. |
| for (std::pair<Value*, Value*> &Init : ByValInit) |
| HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), |
| &*FirstNewBlock, IFI); |
| |
| Optional<OperandBundleUse> ParentDeopt = |
| CS.getOperandBundle(LLVMContext::OB_deopt); |
| if (ParentDeopt) { |
| SmallVector<OperandBundleDef, 2> OpDefs; |
| |
| for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) { |
| Instruction *I = dyn_cast_or_null<Instruction>(VH); |
| if (!I) continue; // instruction was DCE'd or RAUW'ed to undef |
| |
| OpDefs.clear(); |
| |
| CallSite ICS(I); |
| OpDefs.reserve(ICS.getNumOperandBundles()); |
| |
| for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) { |
| auto ChildOB = ICS.getOperandBundleAt(i); |
| if (ChildOB.getTagID() != LLVMContext::OB_deopt) { |
| // If the inlined call has other operand bundles, let them be |
| OpDefs.emplace_back(ChildOB); |
| continue; |
| } |
| |
| // It may be useful to separate this logic (of handling operand |
| // bundles) out to a separate "policy" component if this gets crowded. |
| // Prepend the parent's deoptimization continuation to the newly |
| // inlined call's deoptimization continuation. |
| std::vector<Value *> MergedDeoptArgs; |
| MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() + |
| ChildOB.Inputs.size()); |
| |
| MergedDeoptArgs.insert(MergedDeoptArgs.end(), |
| ParentDeopt->Inputs.begin(), |
| ParentDeopt->Inputs.end()); |
| MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(), |
| ChildOB.Inputs.end()); |
| |
| OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs)); |
| } |
| |
| Instruction *NewI = nullptr; |
| if (isa<CallInst>(I)) |
| NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I); |
| else |
| NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I); |
| |
| // Note: the RAUW does the appropriate fixup in VMap, so we need to do |
| // this even if the call returns void. |
| I->replaceAllUsesWith(NewI); |
| |
| VH = nullptr; |
| I->eraseFromParent(); |
| } |
| } |
| |
| // Update the callgraph if requested. |
| if (IFI.CG) |
| UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); |
| |
| // For 'nodebug' functions, the associated DISubprogram is always null. |
| // Conservatively avoid propagating the callsite debug location to |
| // instructions inlined from a function whose DISubprogram is not null. |
| fixupLineNumbers(Caller, FirstNewBlock, TheCall, |
| CalledFunc->getSubprogram() != nullptr); |
| |
| // Clone existing noalias metadata if necessary. |
| CloneAliasScopeMetadata(CS, VMap); |
| |
| // Add noalias metadata if necessary. |
| AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR); |
| |
| // Propagate llvm.mem.parallel_loop_access if necessary. |
| PropagateParallelLoopAccessMetadata(CS, VMap); |
| |
| // Register any cloned assumptions. |
| if (IFI.GetAssumptionCache) |
| for (BasicBlock &NewBlock : |
| make_range(FirstNewBlock->getIterator(), Caller->end())) |
| for (Instruction &I : NewBlock) { |
| if (auto *II = dyn_cast<IntrinsicInst>(&I)) |
| if (II->getIntrinsicID() == Intrinsic::assume) |
| (*IFI.GetAssumptionCache)(*Caller).registerAssumption(II); |
| } |
| } |
| |
| // If there are any alloca instructions in the block that used to be the entry |
| // block for the callee, move them to the entry block of the caller. First |
| // calculate which instruction they should be inserted before. We insert the |
| // instructions at the end of the current alloca list. |
| { |
| BasicBlock::iterator InsertPoint = Caller->begin()->begin(); |
| for (BasicBlock::iterator I = FirstNewBlock->begin(), |
| E = FirstNewBlock->end(); I != E; ) { |
| AllocaInst *AI = dyn_cast<AllocaInst>(I++); |
| if (!AI) continue; |
| |
| // If the alloca is now dead, remove it. This often occurs due to code |
| // specialization. |
| if (AI->use_empty()) { |
| AI->eraseFromParent(); |
| continue; |
| } |
| |
| if (!allocaWouldBeStaticInEntry(AI)) |
| continue; |
| |
| // Keep track of the static allocas that we inline into the caller. |
| IFI.StaticAllocas.push_back(AI); |
| |
| // Scan for the block of allocas that we can move over, and move them |
| // all at once. |
| while (isa<AllocaInst>(I) && |
| allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) { |
| IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); |
| ++I; |
| } |
| |
| // Transfer all of the allocas over in a block. Using splice means |
| // that the instructions aren't removed from the symbol table, then |
| // reinserted. |
| Caller->getEntryBlock().getInstList().splice( |
| InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I); |
| } |
| // Move any dbg.declares describing the allocas into the entry basic block. |
| DIBuilder DIB(*Caller->getParent()); |
| for (auto &AI : IFI.StaticAllocas) |
| replaceDbgDeclareForAlloca(AI, AI, DIB, DIExpression::NoDeref, 0, |
| DIExpression::NoDeref); |
| } |
| |
| SmallVector<Value*,4> VarArgsToForward; |
| SmallVector<AttributeSet, 4> VarArgsAttrs; |
| for (unsigned i = CalledFunc->getFunctionType()->getNumParams(); |
| i < CS.getNumArgOperands(); i++) { |
| VarArgsToForward.push_back(CS.getArgOperand(i)); |
| VarArgsAttrs.push_back(CS.getAttributes().getParamAttributes(i)); |
| } |
| |
| bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false; |
| if (InlinedFunctionInfo.ContainsCalls) { |
| CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; |
| if (CallInst *CI = dyn_cast<CallInst>(TheCall)) |
| CallSiteTailKind = CI->getTailCallKind(); |
| |
| // For inlining purposes, the "notail" marker is the same as no marker. |
| if (CallSiteTailKind == CallInst::TCK_NoTail) |
| CallSiteTailKind = CallInst::TCK_None; |
| |
| for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; |
| ++BB) { |
| for (auto II = BB->begin(); II != BB->end();) { |
| Instruction &I = *II++; |
| CallInst *CI = dyn_cast<CallInst>(&I); |
| if (!CI) |
| continue; |
| |
| // Forward varargs from inlined call site to calls to the |
| // ForwardVarArgsTo function, if requested, and to musttail calls. |
| if (!VarArgsToForward.empty() && |
| ((ForwardVarArgsTo && |
| CI->getCalledFunction() == ForwardVarArgsTo) || |
| CI->isMustTailCall())) { |
| // Collect attributes for non-vararg parameters. |
| AttributeList Attrs = CI->getAttributes(); |
| SmallVector<AttributeSet, 8> ArgAttrs; |
| if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) { |
| for (unsigned ArgNo = 0; |
| ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo) |
| ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo)); |
| } |
| |
| // Add VarArg attributes. |
| ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end()); |
| Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(), |
| Attrs.getRetAttributes(), ArgAttrs); |
| // Add VarArgs to existing parameters. |
| SmallVector<Value *, 6> Params(CI->arg_operands()); |
| Params.append(VarArgsToForward.begin(), VarArgsToForward.end()); |
| CallInst *NewCI = |
| CallInst::Create(CI->getCalledFunction() ? CI->getCalledFunction() |
| : CI->getCalledValue(), |
| Params, "", CI); |
| NewCI->setDebugLoc(CI->getDebugLoc()); |
| NewCI->setAttributes(Attrs); |
| NewCI->setCallingConv(CI->getCallingConv()); |
| CI->replaceAllUsesWith(NewCI); |
| CI->eraseFromParent(); |
| CI = NewCI; |
| } |
| |
| if (Function *F = CI->getCalledFunction()) |
| InlinedDeoptimizeCalls |= |
| F->getIntrinsicID() == Intrinsic::experimental_deoptimize; |
| |
| // We need to reduce the strength of any inlined tail calls. For |
| // musttail, we have to avoid introducing potential unbounded stack |
| // growth. For example, if functions 'f' and 'g' are mutually recursive |
| // with musttail, we can inline 'g' into 'f' so long as we preserve |
| // musttail on the cloned call to 'f'. If either the inlined call site |
| // or the cloned call site is *not* musttail, the program already has |
| // one frame of stack growth, so it's safe to remove musttail. Here is |
| // a table of example transformations: |
| // |
| // f -> musttail g -> musttail f ==> f -> musttail f |
| // f -> musttail g -> tail f ==> f -> tail f |
| // f -> g -> musttail f ==> f -> f |
| // f -> g -> tail f ==> f -> f |
| // |
| // Inlined notail calls should remain notail calls. |
| CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); |
| if (ChildTCK != CallInst::TCK_NoTail) |
| ChildTCK = std::min(CallSiteTailKind, ChildTCK); |
| CI->setTailCallKind(ChildTCK); |
| InlinedMustTailCalls |= CI->isMustTailCall(); |
| |
| // Calls inlined through a 'nounwind' call site should be marked |
| // 'nounwind'. |
| if (MarkNoUnwind) |
| CI->setDoesNotThrow(); |
| } |
| } |
| } |
| |
| // Leave lifetime markers for the static alloca's, scoping them to the |
| // function we just inlined. |
| if (InsertLifetime && !IFI.StaticAllocas.empty()) { |
| IRBuilder<> builder(&FirstNewBlock->front()); |
| for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { |
| AllocaInst *AI = IFI.StaticAllocas[ai]; |
| // Don't mark swifterror allocas. They can't have bitcast uses. |
| if (AI->isSwiftError()) |
| continue; |
| |
| // If the alloca is already scoped to something smaller than the whole |
| // function then there's no need to add redundant, less accurate markers. |
| if (hasLifetimeMarkers(AI)) |
| continue; |
| |
| // Try to determine the size of the allocation. |
| ConstantInt *AllocaSize = nullptr; |
| if (ConstantInt *AIArraySize = |
| dyn_cast<ConstantInt>(AI->getArraySize())) { |
| auto &DL = Caller->getParent()->getDataLayout(); |
| Type *AllocaType = AI->getAllocatedType(); |
| uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType); |
| uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); |
| |
| // Don't add markers for zero-sized allocas. |
| if (AllocaArraySize == 0) |
| continue; |
| |
| // Check that array size doesn't saturate uint64_t and doesn't |
| // overflow when it's multiplied by type size. |
| if (AllocaArraySize != std::numeric_limits<uint64_t>::max() && |
| std::numeric_limits<uint64_t>::max() / AllocaArraySize >= |
| AllocaTypeSize) { |
| AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), |
| AllocaArraySize * AllocaTypeSize); |
| } |
| } |
| |
| builder.CreateLifetimeStart(AI, AllocaSize); |
| for (ReturnInst *RI : Returns) { |
| // Don't insert llvm.lifetime.end calls between a musttail or deoptimize |
| // call and a return. The return kills all local allocas. |
| if (InlinedMustTailCalls && |
| RI->getParent()->getTerminatingMustTailCall()) |
| continue; |
| if (InlinedDeoptimizeCalls && |
| RI->getParent()->getTerminatingDeoptimizeCall()) |
| continue; |
| IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); |
| } |
| } |
| } |
| |
| // If the inlined code contained dynamic alloca instructions, wrap the inlined |
| // code with llvm.stacksave/llvm.stackrestore intrinsics. |
| if (InlinedFunctionInfo.ContainsDynamicAllocas) { |
| Module *M = Caller->getParent(); |
| // Get the two intrinsics we care about. |
| Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); |
| Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); |
| |
| // Insert the llvm.stacksave. |
| CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin()) |
| .CreateCall(StackSave, {}, "savedstack"); |
| |
| // Insert a call to llvm.stackrestore before any return instructions in the |
| // inlined function. |
| for (ReturnInst *RI : Returns) { |
| // Don't insert llvm.stackrestore calls between a musttail or deoptimize |
| // call and a return. The return will restore the stack pointer. |
| if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) |
| continue; |
| if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall()) |
| continue; |
| IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); |
| } |
| } |
| |
| // If we are inlining for an invoke instruction, we must make sure to rewrite |
| // any call instructions into invoke instructions. This is sensitive to which |
| // funclet pads were top-level in the inlinee, so must be done before |
| // rewriting the "parent pad" links. |
| if (auto *II = dyn_cast<InvokeInst>(TheCall)) { |
| BasicBlock *UnwindDest = II->getUnwindDest(); |
| Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); |
| if (isa<LandingPadInst>(FirstNonPHI)) { |
| HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo); |
| } else { |
| HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo); |
| } |
| } |
| |
| // Update the lexical scopes of the new funclets and callsites. |
| // Anything that had 'none' as its parent is now nested inside the callsite's |
| // EHPad. |
| |
| if (CallSiteEHPad) { |
| for (Function::iterator BB = FirstNewBlock->getIterator(), |
| E = Caller->end(); |
| BB != E; ++BB) { |
| // Add bundle operands to any top-level call sites. |
| SmallVector<OperandBundleDef, 1> OpBundles; |
| for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) { |
| Instruction *I = &*BBI++; |
| CallSite CS(I); |
| if (!CS) |
| continue; |
| |
| // Skip call sites which are nounwind intrinsics. |
| auto *CalledFn = |
| dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts()); |
| if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow()) |
| continue; |
| |
| // Skip call sites which already have a "funclet" bundle. |
| if (CS.getOperandBundle(LLVMContext::OB_funclet)) |
| continue; |
| |
| CS.getOperandBundlesAsDefs(OpBundles); |
| OpBundles.emplace_back("funclet", CallSiteEHPad); |
| |
| Instruction *NewInst; |
| if (CS.isCall()) |
| NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I); |
| else |
| NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I); |
| NewInst->takeName(I); |
| I->replaceAllUsesWith(NewInst); |
| I->eraseFromParent(); |
| |
| OpBundles.clear(); |
| } |
| |
| // It is problematic if the inlinee has a cleanupret which unwinds to |
| // caller and we inline it into a call site which doesn't unwind but into |
| // an EH pad that does. Such an edge must be dynamically unreachable. |
| // As such, we replace the cleanupret with unreachable. |
| if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator())) |
| if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally) |
| changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false); |
| |
| Instruction *I = BB->getFirstNonPHI(); |
| if (!I->isEHPad()) |
| continue; |
| |
| if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { |
| if (isa<ConstantTokenNone>(CatchSwitch->getParentPad())) |
| CatchSwitch->setParentPad(CallSiteEHPad); |
| } else { |
| auto *FPI = cast<FuncletPadInst>(I); |
| if (isa<ConstantTokenNone>(FPI->getParentPad())) |
| FPI->setParentPad(CallSiteEHPad); |
| } |
| } |
| } |
| |
| if (InlinedDeoptimizeCalls) { |
| // We need to at least remove the deoptimizing returns from the Return set, |
| // so that the control flow from those returns does not get merged into the |
| // caller (but terminate it instead). If the caller's return type does not |
| // match the callee's return type, we also need to change the return type of |
| // the intrinsic. |
| if (Caller->getReturnType() == TheCall->getType()) { |
| auto NewEnd = llvm::remove_if(Returns, [](ReturnInst *RI) { |
| return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr; |
| }); |
| Returns.erase(NewEnd, Returns.end()); |
| } else { |
| SmallVector<ReturnInst *, 8> NormalReturns; |
| Function *NewDeoptIntrinsic = Intrinsic::getDeclaration( |
| Caller->getParent(), Intrinsic::experimental_deoptimize, |
| {Caller->getReturnType()}); |
| |
| for (ReturnInst *RI : Returns) { |
| CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall(); |
| if (!DeoptCall) { |
| NormalReturns.push_back(RI); |
| continue; |
| } |
| |
| // The calling convention on the deoptimize call itself may be bogus, |
| // since the code we're inlining may have undefined behavior (and may |
| // never actually execute at runtime); but all |
| // @llvm.experimental.deoptimize declarations have to have the same |
| // calling convention in a well-formed module. |
| auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv(); |
| NewDeoptIntrinsic->setCallingConv(CallingConv); |
| auto *CurBB = RI->getParent(); |
| RI->eraseFromParent(); |
| |
| SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(), |
| DeoptCall->arg_end()); |
| |
| SmallVector<OperandBundleDef, 1> OpBundles; |
| DeoptCall->getOperandBundlesAsDefs(OpBundles); |
| DeoptCall->eraseFromParent(); |
| assert(!OpBundles.empty() && |
| "Expected at least the deopt operand bundle"); |
| |
| IRBuilder<> Builder(CurBB); |
| CallInst *NewDeoptCall = |
| Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles); |
| NewDeoptCall->setCallingConv(CallingConv); |
| if (NewDeoptCall->getType()->isVoidTy()) |
| Builder.CreateRetVoid(); |
| else |
| Builder.CreateRet(NewDeoptCall); |
| } |
| |
| // Leave behind the normal returns so we can merge control flow. |
| std::swap(Returns, NormalReturns); |
| } |
| } |
| |
| // Handle any inlined musttail call sites. In order for a new call site to be |
| // musttail, the source of the clone and the inlined call site must have been |
| // musttail. Therefore it's safe to return without merging control into the |
| // phi below. |
| if (InlinedMustTailCalls) { |
| // Check if we need to bitcast the result of any musttail calls. |
| Type *NewRetTy = Caller->getReturnType(); |
| bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy; |
| |
| // Handle the returns preceded by musttail calls separately. |
| SmallVector<ReturnInst *, 8> NormalReturns; |
| for (ReturnInst *RI : Returns) { |
| CallInst *ReturnedMustTail = |
| RI->getParent()->getTerminatingMustTailCall(); |
| if (!ReturnedMustTail) { |
| NormalReturns.push_back(RI); |
| continue; |
| } |
| if (!NeedBitCast) |
| continue; |
| |
| // Delete the old return and any preceding bitcast. |
| BasicBlock *CurBB = RI->getParent(); |
| auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); |
| RI->eraseFromParent(); |
| if (OldCast) |
| OldCast->eraseFromParent(); |
| |
| // Insert a new bitcast and return with the right type. |
| IRBuilder<> Builder(CurBB); |
| Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); |
| } |
| |
| // Leave behind the normal returns so we can merge control flow. |
| std::swap(Returns, NormalReturns); |
| } |
| |
| // Now that all of the transforms on the inlined code have taken place but |
| // before we splice the inlined code into the CFG and lose track of which |
| // blocks were actually inlined, collect the call sites. We only do this if |
| // call graph updates weren't requested, as those provide value handle based |
| // tracking of inlined call sites instead. |
| if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) { |
| // Otherwise just collect the raw call sites that were inlined. |
| for (BasicBlock &NewBB : |
| make_range(FirstNewBlock->getIterator(), Caller->end())) |
| for (Instruction &I : NewBB) |
| if (auto CS = CallSite(&I)) |
| IFI.InlinedCallSites.push_back(CS); |
| } |
| |
| // If we cloned in _exactly one_ basic block, and if that block ends in a |
| // return instruction, we splice the body of the inlined callee directly into |
| // the calling basic block. |
| if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { |
| // Move all of the instructions right before the call. |
| OrigBB->getInstList().splice(TheCall->getIterator(), |
| FirstNewBlock->getInstList(), |
| FirstNewBlock->begin(), FirstNewBlock->end()); |
| // Remove the cloned basic block. |
| Caller->getBasicBlockList().pop_back(); |
| |
| // If the call site was an invoke instruction, add a branch to the normal |
| // destination. |
| if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { |
| BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); |
| NewBr->setDebugLoc(Returns[0]->getDebugLoc()); |
| } |
| |
| // If the return instruction returned a value, replace uses of the call with |
| // uses of the returned value. |
| if (!TheCall->use_empty()) { |
| ReturnInst *R = Returns[0]; |
| if (TheCall == R->getReturnValue()) |
| TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); |
| else |
| TheCall->replaceAllUsesWith(R->getReturnValue()); |
| } |
| // Since we are now done with the Call/Invoke, we can delete it. |
| TheCall->eraseFromParent(); |
| |
| // Since we are now done with the return instruction, delete it also. |
| Returns[0]->eraseFromParent(); |
| |
| // We are now done with the inlining. |
| return true; |
| } |
| |
| // Otherwise, we have the normal case, of more than one block to inline or |
| // multiple return sites. |
| |
| // We want to clone the entire callee function into the hole between the |
| // "starter" and "ender" blocks. How we accomplish this depends on whether |
| // this is an invoke instruction or a call instruction. |
| BasicBlock *AfterCallBB; |
| BranchInst *CreatedBranchToNormalDest = nullptr; |
| if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { |
| |
| // Add an unconditional branch to make this look like the CallInst case... |
| CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); |
| |
| // Split the basic block. This guarantees that no PHI nodes will have to be |
| // updated due to new incoming edges, and make the invoke case more |
| // symmetric to the call case. |
| AfterCallBB = |
| OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(), |
| CalledFunc->getName() + ".exit"); |
| |
| } else { // It's a call |
| // If this is a call instruction, we need to split the basic block that |
| // the call lives in. |
| // |
| AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(), |
| CalledFunc->getName() + ".exit"); |
| } |
| |
| if (IFI.CallerBFI) { |
| // Copy original BB's block frequency to AfterCallBB |
| IFI.CallerBFI->setBlockFreq( |
| AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency()); |
| } |
| |
| // Change the branch that used to go to AfterCallBB to branch to the first |
| // basic block of the inlined function. |
| // |
| TerminatorInst *Br = OrigBB->getTerminator(); |
| assert(Br && Br->getOpcode() == Instruction::Br && |
| "splitBasicBlock broken!"); |
| Br->setOperand(0, &*FirstNewBlock); |
| |
| // Now that the function is correct, make it a little bit nicer. In |
| // particular, move the basic blocks inserted from the end of the function |
| // into the space made by splitting the source basic block. |
| Caller->getBasicBlockList().splice(AfterCallBB->getIterator(), |
| Caller->getBasicBlockList(), FirstNewBlock, |
| Caller->end()); |
| |
| // Handle all of the return instructions that we just cloned in, and eliminate |
| // any users of the original call/invoke instruction. |
| Type *RTy = CalledFunc->getReturnType(); |
| |
| PHINode *PHI = nullptr; |
| if (Returns.size() > 1) { |
| // The PHI node should go at the front of the new basic block to merge all |
| // possible incoming values. |
| if (!TheCall->use_empty()) { |
| PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), |
| &AfterCallBB->front()); |
| // Anything that used the result of the function call should now use the |
| // PHI node as their operand. |
| TheCall->replaceAllUsesWith(PHI); |
| } |
| |
| // Loop over all of the return instructions adding entries to the PHI node |
| // as appropriate. |
| if (PHI) { |
| for (unsigned i = 0, e = Returns.size(); i != e; ++i) { |
| ReturnInst *RI = Returns[i]; |
| assert(RI->getReturnValue()->getType() == PHI->getType() && |
| "Ret value not consistent in function!"); |
| PHI->addIncoming(RI->getReturnValue(), RI->getParent()); |
| } |
| } |
| |
| // Add a branch to the merge points and remove return instructions. |
| DebugLoc Loc; |
| for (unsigned i = 0, e = Returns.size(); i != e; ++i) { |
| ReturnInst *RI = Returns[i]; |
| BranchInst* BI = BranchInst::Create(AfterCallBB, RI); |
| Loc = RI->getDebugLoc(); |
| BI->setDebugLoc(Loc); |
| RI->eraseFromParent(); |
| } |
| // We need to set the debug location to *somewhere* inside the |
| // inlined function. The line number may be nonsensical, but the |
| // instruction will at least be associated with the right |
| // function. |
| if (CreatedBranchToNormalDest) |
| CreatedBranchToNormalDest->setDebugLoc(Loc); |
| } else if (!Returns.empty()) { |
| // Otherwise, if there is exactly one return value, just replace anything |
| // using the return value of the call with the computed value. |
| if (!TheCall->use_empty()) { |
| if (TheCall == Returns[0]->getReturnValue()) |
| TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); |
| else |
| TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); |
| } |
| |
| // Update PHI nodes that use the ReturnBB to use the AfterCallBB. |
| BasicBlock *ReturnBB = Returns[0]->getParent(); |
| ReturnBB->replaceAllUsesWith(AfterCallBB); |
| |
| // Splice the code from the return block into the block that it will return |
| // to, which contains the code that was after the call. |
| AfterCallBB->getInstList().splice(AfterCallBB->begin(), |
| ReturnBB->getInstList()); |
| |
| if (CreatedBranchToNormalDest) |
| CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); |
| |
| // Delete the return instruction now and empty ReturnBB now. |
| Returns[0]->eraseFromParent(); |
| ReturnBB->eraseFromParent(); |
| } else if (!TheCall->use_empty()) { |
| // No returns, but something is using the return value of the call. Just |
| // nuke the result. |
| TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); |
| } |
| |
| // Since we are now done with the Call/Invoke, we can delete it. |
| TheCall->eraseFromParent(); |
| |
| // If we inlined any musttail calls and the original return is now |
| // unreachable, delete it. It can only contain a bitcast and ret. |
| if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) |
| AfterCallBB->eraseFromParent(); |
| |
| // We should always be able to fold the entry block of the function into the |
| // single predecessor of the block... |
| assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); |
| BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); |
| |
| // Splice the code entry block into calling block, right before the |
| // unconditional branch. |
| CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes |
| OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList()); |
| |
| // Remove the unconditional branch. |
| OrigBB->getInstList().erase(Br); |
| |
| // Now we can remove the CalleeEntry block, which is now empty. |
| Caller->getBasicBlockList().erase(CalleeEntry); |
| |
| // If we inserted a phi node, check to see if it has a single value (e.g. all |
| // the entries are the same or undef). If so, remove the PHI so it doesn't |
| // block other optimizations. |
| if (PHI) { |
| AssumptionCache *AC = |
| IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr; |
| auto &DL = Caller->getParent()->getDataLayout(); |
| if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) { |
| PHI->replaceAllUsesWith(V); |
| PHI->eraseFromParent(); |
| } |
| } |
| |
| return true; |
| } |