| //===- CodeExtractor.cpp - Pull code region into a new function -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the interface to tear out a code region, such as an |
| // individual loop or a parallel section, into a new function, replacing it with |
| // a call to the new function. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Utils/CodeExtractor.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Analysis/BlockFrequencyInfo.h" |
| #include "llvm/Analysis/BlockFrequencyInfoImpl.h" |
| #include "llvm/Analysis/BranchProbabilityInfo.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/IR/Verifier.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/BlockFrequency.h" |
| #include "llvm/Support/BranchProbability.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| #include <map> |
| #include <set> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| using ProfileCount = Function::ProfileCount; |
| |
| #define DEBUG_TYPE "code-extractor" |
| |
| // Provide a command-line option to aggregate function arguments into a struct |
| // for functions produced by the code extractor. This is useful when converting |
| // extracted functions to pthread-based code, as only one argument (void*) can |
| // be passed in to pthread_create(). |
| static cl::opt<bool> |
| AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, |
| cl::desc("Aggregate arguments to code-extracted functions")); |
| |
| /// Test whether a block is valid for extraction. |
| static bool isBlockValidForExtraction(const BasicBlock &BB, |
| const SetVector<BasicBlock *> &Result, |
| bool AllowVarArgs, bool AllowAlloca) { |
| // taking the address of a basic block moved to another function is illegal |
| if (BB.hasAddressTaken()) |
| return false; |
| |
| // don't hoist code that uses another basicblock address, as it's likely to |
| // lead to unexpected behavior, like cross-function jumps |
| SmallPtrSet<User const *, 16> Visited; |
| SmallVector<User const *, 16> ToVisit; |
| |
| for (Instruction const &Inst : BB) |
| ToVisit.push_back(&Inst); |
| |
| while (!ToVisit.empty()) { |
| User const *Curr = ToVisit.pop_back_val(); |
| if (!Visited.insert(Curr).second) |
| continue; |
| if (isa<BlockAddress const>(Curr)) |
| return false; // even a reference to self is likely to be not compatible |
| |
| if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB) |
| continue; |
| |
| for (auto const &U : Curr->operands()) { |
| if (auto *UU = dyn_cast<User>(U)) |
| ToVisit.push_back(UU); |
| } |
| } |
| |
| // If explicitly requested, allow vastart and alloca. For invoke instructions |
| // verify that extraction is valid. |
| for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { |
| if (isa<AllocaInst>(I)) { |
| if (!AllowAlloca) |
| return false; |
| continue; |
| } |
| |
| if (const auto *II = dyn_cast<InvokeInst>(I)) { |
| // Unwind destination (either a landingpad, catchswitch, or cleanuppad) |
| // must be a part of the subgraph which is being extracted. |
| if (auto *UBB = II->getUnwindDest()) |
| if (!Result.count(UBB)) |
| return false; |
| continue; |
| } |
| |
| // All catch handlers of a catchswitch instruction as well as the unwind |
| // destination must be in the subgraph. |
| if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) { |
| if (auto *UBB = CSI->getUnwindDest()) |
| if (!Result.count(UBB)) |
| return false; |
| for (auto *HBB : CSI->handlers()) |
| if (!Result.count(const_cast<BasicBlock*>(HBB))) |
| return false; |
| continue; |
| } |
| |
| // Make sure that entire catch handler is within subgraph. It is sufficient |
| // to check that catch return's block is in the list. |
| if (const auto *CPI = dyn_cast<CatchPadInst>(I)) { |
| for (const auto *U : CPI->users()) |
| if (const auto *CRI = dyn_cast<CatchReturnInst>(U)) |
| if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) |
| return false; |
| continue; |
| } |
| |
| // And do similar checks for cleanup handler - the entire handler must be |
| // in subgraph which is going to be extracted. For cleanup return should |
| // additionally check that the unwind destination is also in the subgraph. |
| if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) { |
| for (const auto *U : CPI->users()) |
| if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) |
| if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) |
| return false; |
| continue; |
| } |
| if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) { |
| if (auto *UBB = CRI->getUnwindDest()) |
| if (!Result.count(UBB)) |
| return false; |
| continue; |
| } |
| |
| if (const CallInst *CI = dyn_cast<CallInst>(I)) |
| if (const Function *F = CI->getCalledFunction()) |
| if (F->getIntrinsicID() == Intrinsic::vastart) { |
| if (AllowVarArgs) |
| continue; |
| else |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /// Build a set of blocks to extract if the input blocks are viable. |
| static SetVector<BasicBlock *> |
| buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, |
| bool AllowVarArgs, bool AllowAlloca) { |
| assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); |
| SetVector<BasicBlock *> Result; |
| |
| // Loop over the blocks, adding them to our set-vector, and aborting with an |
| // empty set if we encounter invalid blocks. |
| for (BasicBlock *BB : BBs) { |
| // If this block is dead, don't process it. |
| if (DT && !DT->isReachableFromEntry(BB)) |
| continue; |
| |
| if (!Result.insert(BB)) |
| llvm_unreachable("Repeated basic blocks in extraction input"); |
| } |
| |
| for (auto *BB : Result) { |
| if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca)) |
| return {}; |
| |
| // Make sure that the first block is not a landing pad. |
| if (BB == Result.front()) { |
| if (BB->isEHPad()) { |
| LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n"); |
| return {}; |
| } |
| continue; |
| } |
| |
| // All blocks other than the first must not have predecessors outside of |
| // the subgraph which is being extracted. |
| for (auto *PBB : predecessors(BB)) |
| if (!Result.count(PBB)) { |
| LLVM_DEBUG( |
| dbgs() << "No blocks in this region may have entries from " |
| "outside the region except for the first block!\n"); |
| return {}; |
| } |
| } |
| |
| return Result; |
| } |
| |
| CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, |
| bool AggregateArgs, BlockFrequencyInfo *BFI, |
| BranchProbabilityInfo *BPI, bool AllowVarArgs, |
| bool AllowAlloca) |
| : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), |
| BPI(BPI), AllowVarArgs(AllowVarArgs), |
| Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)) {} |
| |
| CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, |
| BlockFrequencyInfo *BFI, |
| BranchProbabilityInfo *BPI) |
| : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), |
| BPI(BPI), AllowVarArgs(false), |
| Blocks(buildExtractionBlockSet(L.getBlocks(), &DT, |
| /* AllowVarArgs */ false, |
| /* AllowAlloca */ false)) {} |
| |
| /// definedInRegion - Return true if the specified value is defined in the |
| /// extracted region. |
| static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| if (Blocks.count(I->getParent())) |
| return true; |
| return false; |
| } |
| |
| /// definedInCaller - Return true if the specified value is defined in the |
| /// function being code extracted, but not in the region being extracted. |
| /// These values must be passed in as live-ins to the function. |
| static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { |
| if (isa<Argument>(V)) return true; |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| if (!Blocks.count(I->getParent())) |
| return true; |
| return false; |
| } |
| |
| static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) { |
| BasicBlock *CommonExitBlock = nullptr; |
| auto hasNonCommonExitSucc = [&](BasicBlock *Block) { |
| for (auto *Succ : successors(Block)) { |
| // Internal edges, ok. |
| if (Blocks.count(Succ)) |
| continue; |
| if (!CommonExitBlock) { |
| CommonExitBlock = Succ; |
| continue; |
| } |
| if (CommonExitBlock == Succ) |
| continue; |
| |
| return true; |
| } |
| return false; |
| }; |
| |
| if (any_of(Blocks, hasNonCommonExitSucc)) |
| return nullptr; |
| |
| return CommonExitBlock; |
| } |
| |
| bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( |
| Instruction *Addr) const { |
| AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets()); |
| Function *Func = (*Blocks.begin())->getParent(); |
| for (BasicBlock &BB : *Func) { |
| if (Blocks.count(&BB)) |
| continue; |
| for (Instruction &II : BB) { |
| if (isa<DbgInfoIntrinsic>(II)) |
| continue; |
| |
| unsigned Opcode = II.getOpcode(); |
| Value *MemAddr = nullptr; |
| switch (Opcode) { |
| case Instruction::Store: |
| case Instruction::Load: { |
| if (Opcode == Instruction::Store) { |
| StoreInst *SI = cast<StoreInst>(&II); |
| MemAddr = SI->getPointerOperand(); |
| } else { |
| LoadInst *LI = cast<LoadInst>(&II); |
| MemAddr = LI->getPointerOperand(); |
| } |
| // Global variable can not be aliased with locals. |
| if (dyn_cast<Constant>(MemAddr)) |
| break; |
| Value *Base = MemAddr->stripInBoundsConstantOffsets(); |
| if (!dyn_cast<AllocaInst>(Base) || Base == AI) |
| return false; |
| break; |
| } |
| default: { |
| IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II); |
| if (IntrInst) { |
| if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start || |
| IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) |
| break; |
| return false; |
| } |
| // Treat all the other cases conservatively if it has side effects. |
| if (II.mayHaveSideEffects()) |
| return false; |
| } |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| BasicBlock * |
| CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { |
| BasicBlock *SinglePredFromOutlineRegion = nullptr; |
| assert(!Blocks.count(CommonExitBlock) && |
| "Expect a block outside the region!"); |
| for (auto *Pred : predecessors(CommonExitBlock)) { |
| if (!Blocks.count(Pred)) |
| continue; |
| if (!SinglePredFromOutlineRegion) { |
| SinglePredFromOutlineRegion = Pred; |
| } else if (SinglePredFromOutlineRegion != Pred) { |
| SinglePredFromOutlineRegion = nullptr; |
| break; |
| } |
| } |
| |
| if (SinglePredFromOutlineRegion) |
| return SinglePredFromOutlineRegion; |
| |
| #ifndef NDEBUG |
| auto getFirstPHI = [](BasicBlock *BB) { |
| BasicBlock::iterator I = BB->begin(); |
| PHINode *FirstPhi = nullptr; |
| while (I != BB->end()) { |
| PHINode *Phi = dyn_cast<PHINode>(I); |
| if (!Phi) |
| break; |
| if (!FirstPhi) { |
| FirstPhi = Phi; |
| break; |
| } |
| } |
| return FirstPhi; |
| }; |
| // If there are any phi nodes, the single pred either exists or has already |
| // be created before code extraction. |
| assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); |
| #endif |
| |
| BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( |
| CommonExitBlock->getFirstNonPHI()->getIterator()); |
| |
| for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock); |
| PI != PE;) { |
| BasicBlock *Pred = *PI++; |
| if (Blocks.count(Pred)) |
| continue; |
| Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); |
| } |
| // Now add the old exit block to the outline region. |
| Blocks.insert(CommonExitBlock); |
| return CommonExitBlock; |
| } |
| |
| void CodeExtractor::findAllocas(ValueSet &SinkCands, ValueSet &HoistCands, |
| BasicBlock *&ExitBlock) const { |
| Function *Func = (*Blocks.begin())->getParent(); |
| ExitBlock = getCommonExitBlock(Blocks); |
| |
| for (BasicBlock &BB : *Func) { |
| if (Blocks.count(&BB)) |
| continue; |
| for (Instruction &II : BB) { |
| auto *AI = dyn_cast<AllocaInst>(&II); |
| if (!AI) |
| continue; |
| |
| // Find the pair of life time markers for address 'Addr' that are either |
| // defined inside the outline region or can legally be shrinkwrapped into |
| // the outline region. If there are not other untracked uses of the |
| // address, return the pair of markers if found; otherwise return a pair |
| // of nullptr. |
| auto GetLifeTimeMarkers = |
| [&](Instruction *Addr, bool &SinkLifeStart, |
| bool &HoistLifeEnd) -> std::pair<Instruction *, Instruction *> { |
| Instruction *LifeStart = nullptr, *LifeEnd = nullptr; |
| |
| for (User *U : Addr->users()) { |
| IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U); |
| if (IntrInst) { |
| if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { |
| // Do not handle the case where AI has multiple start markers. |
| if (LifeStart) |
| return std::make_pair<Instruction *>(nullptr, nullptr); |
| LifeStart = IntrInst; |
| } |
| if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { |
| if (LifeEnd) |
| return std::make_pair<Instruction *>(nullptr, nullptr); |
| LifeEnd = IntrInst; |
| } |
| continue; |
| } |
| // Find untracked uses of the address, bail. |
| if (!definedInRegion(Blocks, U)) |
| return std::make_pair<Instruction *>(nullptr, nullptr); |
| } |
| |
| if (!LifeStart || !LifeEnd) |
| return std::make_pair<Instruction *>(nullptr, nullptr); |
| |
| SinkLifeStart = !definedInRegion(Blocks, LifeStart); |
| HoistLifeEnd = !definedInRegion(Blocks, LifeEnd); |
| // Do legality Check. |
| if ((SinkLifeStart || HoistLifeEnd) && |
| !isLegalToShrinkwrapLifetimeMarkers(Addr)) |
| return std::make_pair<Instruction *>(nullptr, nullptr); |
| |
| // Check to see if we have a place to do hoisting, if not, bail. |
| if (HoistLifeEnd && !ExitBlock) |
| return std::make_pair<Instruction *>(nullptr, nullptr); |
| |
| return std::make_pair(LifeStart, LifeEnd); |
| }; |
| |
| bool SinkLifeStart = false, HoistLifeEnd = false; |
| auto Markers = GetLifeTimeMarkers(AI, SinkLifeStart, HoistLifeEnd); |
| |
| if (Markers.first) { |
| if (SinkLifeStart) |
| SinkCands.insert(Markers.first); |
| SinkCands.insert(AI); |
| if (HoistLifeEnd) |
| HoistCands.insert(Markers.second); |
| continue; |
| } |
| |
| // Follow the bitcast. |
| Instruction *MarkerAddr = nullptr; |
| for (User *U : AI->users()) { |
| if (U->stripInBoundsConstantOffsets() == AI) { |
| SinkLifeStart = false; |
| HoistLifeEnd = false; |
| Instruction *Bitcast = cast<Instruction>(U); |
| Markers = GetLifeTimeMarkers(Bitcast, SinkLifeStart, HoistLifeEnd); |
| if (Markers.first) { |
| MarkerAddr = Bitcast; |
| continue; |
| } |
| } |
| |
| // Found unknown use of AI. |
| if (!definedInRegion(Blocks, U)) { |
| MarkerAddr = nullptr; |
| break; |
| } |
| } |
| |
| if (MarkerAddr) { |
| if (SinkLifeStart) |
| SinkCands.insert(Markers.first); |
| if (!definedInRegion(Blocks, MarkerAddr)) |
| SinkCands.insert(MarkerAddr); |
| SinkCands.insert(AI); |
| if (HoistLifeEnd) |
| HoistCands.insert(Markers.second); |
| } |
| } |
| } |
| } |
| |
| void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, |
| const ValueSet &SinkCands) const { |
| for (BasicBlock *BB : Blocks) { |
| // If a used value is defined outside the region, it's an input. If an |
| // instruction is used outside the region, it's an output. |
| for (Instruction &II : *BB) { |
| for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE; |
| ++OI) { |
| Value *V = *OI; |
| if (!SinkCands.count(V) && definedInCaller(Blocks, V)) |
| Inputs.insert(V); |
| } |
| |
| for (User *U : II.users()) |
| if (!definedInRegion(Blocks, U)) { |
| Outputs.insert(&II); |
| break; |
| } |
| } |
| } |
| } |
| |
| /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the |
| /// region, we need to split the entry block of the region so that the PHI node |
| /// is easier to deal with. |
| void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { |
| unsigned NumPredsFromRegion = 0; |
| unsigned NumPredsOutsideRegion = 0; |
| |
| if (Header != &Header->getParent()->getEntryBlock()) { |
| PHINode *PN = dyn_cast<PHINode>(Header->begin()); |
| if (!PN) return; // No PHI nodes. |
| |
| // If the header node contains any PHI nodes, check to see if there is more |
| // than one entry from outside the region. If so, we need to sever the |
| // header block into two. |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| if (Blocks.count(PN->getIncomingBlock(i))) |
| ++NumPredsFromRegion; |
| else |
| ++NumPredsOutsideRegion; |
| |
| // If there is one (or fewer) predecessor from outside the region, we don't |
| // need to do anything special. |
| if (NumPredsOutsideRegion <= 1) return; |
| } |
| |
| // Otherwise, we need to split the header block into two pieces: one |
| // containing PHI nodes merging values from outside of the region, and a |
| // second that contains all of the code for the block and merges back any |
| // incoming values from inside of the region. |
| BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT); |
| |
| // We only want to code extract the second block now, and it becomes the new |
| // header of the region. |
| BasicBlock *OldPred = Header; |
| Blocks.remove(OldPred); |
| Blocks.insert(NewBB); |
| Header = NewBB; |
| |
| // Okay, now we need to adjust the PHI nodes and any branches from within the |
| // region to go to the new header block instead of the old header block. |
| if (NumPredsFromRegion) { |
| PHINode *PN = cast<PHINode>(OldPred->begin()); |
| // Loop over all of the predecessors of OldPred that are in the region, |
| // changing them to branch to NewBB instead. |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| if (Blocks.count(PN->getIncomingBlock(i))) { |
| TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); |
| TI->replaceUsesOfWith(OldPred, NewBB); |
| } |
| |
| // Okay, everything within the region is now branching to the right block, we |
| // just have to update the PHI nodes now, inserting PHI nodes into NewBB. |
| BasicBlock::iterator AfterPHIs; |
| for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { |
| PHINode *PN = cast<PHINode>(AfterPHIs); |
| // Create a new PHI node in the new region, which has an incoming value |
| // from OldPred of PN. |
| PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, |
| PN->getName() + ".ce", &NewBB->front()); |
| PN->replaceAllUsesWith(NewPN); |
| NewPN->addIncoming(PN, OldPred); |
| |
| // Loop over all of the incoming value in PN, moving them to NewPN if they |
| // are from the extracted region. |
| for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { |
| if (Blocks.count(PN->getIncomingBlock(i))) { |
| NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); |
| PN->removeIncomingValue(i); |
| --i; |
| } |
| } |
| } |
| } |
| } |
| |
| void CodeExtractor::splitReturnBlocks() { |
| for (BasicBlock *Block : Blocks) |
| if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { |
| BasicBlock *New = |
| Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); |
| if (DT) { |
| // Old dominates New. New node dominates all other nodes dominated |
| // by Old. |
| DomTreeNode *OldNode = DT->getNode(Block); |
| SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), |
| OldNode->end()); |
| |
| DomTreeNode *NewNode = DT->addNewBlock(New, Block); |
| |
| for (DomTreeNode *I : Children) |
| DT->changeImmediateDominator(I, NewNode); |
| } |
| } |
| } |
| |
| /// constructFunction - make a function based on inputs and outputs, as follows: |
| /// f(in0, ..., inN, out0, ..., outN) |
| Function *CodeExtractor::constructFunction(const ValueSet &inputs, |
| const ValueSet &outputs, |
| BasicBlock *header, |
| BasicBlock *newRootNode, |
| BasicBlock *newHeader, |
| Function *oldFunction, |
| Module *M) { |
| LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); |
| LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); |
| |
| // This function returns unsigned, outputs will go back by reference. |
| switch (NumExitBlocks) { |
| case 0: |
| case 1: RetTy = Type::getVoidTy(header->getContext()); break; |
| case 2: RetTy = Type::getInt1Ty(header->getContext()); break; |
| default: RetTy = Type::getInt16Ty(header->getContext()); break; |
| } |
| |
| std::vector<Type *> paramTy; |
| |
| // Add the types of the input values to the function's argument list |
| for (Value *value : inputs) { |
| LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n"); |
| paramTy.push_back(value->getType()); |
| } |
| |
| // Add the types of the output values to the function's argument list. |
| for (Value *output : outputs) { |
| LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n"); |
| if (AggregateArgs) |
| paramTy.push_back(output->getType()); |
| else |
| paramTy.push_back(PointerType::getUnqual(output->getType())); |
| } |
| |
| LLVM_DEBUG({ |
| dbgs() << "Function type: " << *RetTy << " f("; |
| for (Type *i : paramTy) |
| dbgs() << *i << ", "; |
| dbgs() << ")\n"; |
| }); |
| |
| StructType *StructTy; |
| if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { |
| StructTy = StructType::get(M->getContext(), paramTy); |
| paramTy.clear(); |
| paramTy.push_back(PointerType::getUnqual(StructTy)); |
| } |
| FunctionType *funcType = |
| FunctionType::get(RetTy, paramTy, |
| AllowVarArgs && oldFunction->isVarArg()); |
| |
| // Create the new function |
| Function *newFunction = Function::Create(funcType, |
| GlobalValue::InternalLinkage, |
| oldFunction->getName() + "_" + |
| header->getName(), M); |
| // If the old function is no-throw, so is the new one. |
| if (oldFunction->doesNotThrow()) |
| newFunction->setDoesNotThrow(); |
| |
| // Inherit the uwtable attribute if we need to. |
| if (oldFunction->hasUWTable()) |
| newFunction->setHasUWTable(); |
| |
| // Inherit all of the target dependent attributes and white-listed |
| // target independent attributes. |
| // (e.g. If the extracted region contains a call to an x86.sse |
| // instruction we need to make sure that the extracted region has the |
| // "target-features" attribute allowing it to be lowered. |
| // FIXME: This should be changed to check to see if a specific |
| // attribute can not be inherited. |
| for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) { |
| if (Attr.isStringAttribute()) { |
| if (Attr.getKindAsString() == "thunk") |
| continue; |
| } else |
| switch (Attr.getKindAsEnum()) { |
| // Those attributes cannot be propagated safely. Explicitly list them |
| // here so we get a warning if new attributes are added. This list also |
| // includes non-function attributes. |
| case Attribute::Alignment: |
| case Attribute::AllocSize: |
| case Attribute::ArgMemOnly: |
| case Attribute::Builtin: |
| case Attribute::ByVal: |
| case Attribute::Convergent: |
| case Attribute::Dereferenceable: |
| case Attribute::DereferenceableOrNull: |
| case Attribute::InAlloca: |
| case Attribute::InReg: |
| case Attribute::InaccessibleMemOnly: |
| case Attribute::InaccessibleMemOrArgMemOnly: |
| case Attribute::JumpTable: |
| case Attribute::Naked: |
| case Attribute::Nest: |
| case Attribute::NoAlias: |
| case Attribute::NoBuiltin: |
| case Attribute::NoCapture: |
| case Attribute::NoReturn: |
| case Attribute::None: |
| case Attribute::NonNull: |
| case Attribute::ReadNone: |
| case Attribute::ReadOnly: |
| case Attribute::Returned: |
| case Attribute::ReturnsTwice: |
| case Attribute::SExt: |
| case Attribute::Speculatable: |
| case Attribute::StackAlignment: |
| case Attribute::StructRet: |
| case Attribute::SwiftError: |
| case Attribute::SwiftSelf: |
| case Attribute::WriteOnly: |
| case Attribute::ZExt: |
| case Attribute::EndAttrKinds: |
| continue; |
| // Those attributes should be safe to propagate to the extracted function. |
| case Attribute::AlwaysInline: |
| case Attribute::Cold: |
| case Attribute::NoRecurse: |
| case Attribute::InlineHint: |
| case Attribute::MinSize: |
| case Attribute::NoDuplicate: |
| case Attribute::NoImplicitFloat: |
| case Attribute::NoInline: |
| case Attribute::NonLazyBind: |
| case Attribute::NoRedZone: |
| case Attribute::NoUnwind: |
| case Attribute::OptForFuzzing: |
| case Attribute::OptimizeNone: |
| case Attribute::OptimizeForSize: |
| case Attribute::SafeStack: |
| case Attribute::ShadowCallStack: |
| case Attribute::SanitizeAddress: |
| case Attribute::SanitizeMemory: |
| case Attribute::SanitizeThread: |
| case Attribute::SanitizeHWAddress: |
| case Attribute::StackProtect: |
| case Attribute::StackProtectReq: |
| case Attribute::StackProtectStrong: |
| case Attribute::StrictFP: |
| case Attribute::UWTable: |
| case Attribute::NoCfCheck: |
| break; |
| } |
| |
| newFunction->addFnAttr(Attr); |
| } |
| newFunction->getBasicBlockList().push_back(newRootNode); |
| |
| // Create an iterator to name all of the arguments we inserted. |
| Function::arg_iterator AI = newFunction->arg_begin(); |
| |
| // Rewrite all users of the inputs in the extracted region to use the |
| // arguments (or appropriate addressing into struct) instead. |
| for (unsigned i = 0, e = inputs.size(); i != e; ++i) { |
| Value *RewriteVal; |
| if (AggregateArgs) { |
| Value *Idx[2]; |
| Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); |
| Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); |
| TerminatorInst *TI = newFunction->begin()->getTerminator(); |
| GetElementPtrInst *GEP = GetElementPtrInst::Create( |
| StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI); |
| RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI); |
| } else |
| RewriteVal = &*AI++; |
| |
| std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end()); |
| for (User *use : Users) |
| if (Instruction *inst = dyn_cast<Instruction>(use)) |
| if (Blocks.count(inst->getParent())) |
| inst->replaceUsesOfWith(inputs[i], RewriteVal); |
| } |
| |
| // Set names for input and output arguments. |
| if (!AggregateArgs) { |
| AI = newFunction->arg_begin(); |
| for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) |
| AI->setName(inputs[i]->getName()); |
| for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) |
| AI->setName(outputs[i]->getName()+".out"); |
| } |
| |
| // Rewrite branches to basic blocks outside of the loop to new dummy blocks |
| // within the new function. This must be done before we lose track of which |
| // blocks were originally in the code region. |
| std::vector<User *> Users(header->user_begin(), header->user_end()); |
| for (unsigned i = 0, e = Users.size(); i != e; ++i) |
| // The BasicBlock which contains the branch is not in the region |
| // modify the branch target to a new block |
| if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) |
| if (!Blocks.count(TI->getParent()) && |
| TI->getParent()->getParent() == oldFunction) |
| TI->replaceUsesOfWith(header, newHeader); |
| |
| return newFunction; |
| } |
| |
| /// emitCallAndSwitchStatement - This method sets up the caller side by adding |
| /// the call instruction, splitting any PHI nodes in the header block as |
| /// necessary. |
| void CodeExtractor:: |
| emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, |
| ValueSet &inputs, ValueSet &outputs) { |
| // Emit a call to the new function, passing in: *pointer to struct (if |
| // aggregating parameters), or plan inputs and allocated memory for outputs |
| std::vector<Value *> params, StructValues, ReloadOutputs, Reloads; |
| |
| Module *M = newFunction->getParent(); |
| LLVMContext &Context = M->getContext(); |
| const DataLayout &DL = M->getDataLayout(); |
| |
| // Add inputs as params, or to be filled into the struct |
| for (Value *input : inputs) |
| if (AggregateArgs) |
| StructValues.push_back(input); |
| else |
| params.push_back(input); |
| |
| // Create allocas for the outputs |
| for (Value *output : outputs) { |
| if (AggregateArgs) { |
| StructValues.push_back(output); |
| } else { |
| AllocaInst *alloca = |
| new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), |
| nullptr, output->getName() + ".loc", |
| &codeReplacer->getParent()->front().front()); |
| ReloadOutputs.push_back(alloca); |
| params.push_back(alloca); |
| } |
| } |
| |
| StructType *StructArgTy = nullptr; |
| AllocaInst *Struct = nullptr; |
| if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { |
| std::vector<Type *> ArgTypes; |
| for (ValueSet::iterator v = StructValues.begin(), |
| ve = StructValues.end(); v != ve; ++v) |
| ArgTypes.push_back((*v)->getType()); |
| |
| // Allocate a struct at the beginning of this function |
| StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); |
| Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr, |
| "structArg", |
| &codeReplacer->getParent()->front().front()); |
| params.push_back(Struct); |
| |
| for (unsigned i = 0, e = inputs.size(); i != e; ++i) { |
| Value *Idx[2]; |
| Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); |
| Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); |
| GetElementPtrInst *GEP = GetElementPtrInst::Create( |
| StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); |
| codeReplacer->getInstList().push_back(GEP); |
| StoreInst *SI = new StoreInst(StructValues[i], GEP); |
| codeReplacer->getInstList().push_back(SI); |
| } |
| } |
| |
| // Emit the call to the function |
| CallInst *call = CallInst::Create(newFunction, params, |
| NumExitBlocks > 1 ? "targetBlock" : ""); |
| // Add debug location to the new call, if the original function has debug |
| // info. In that case, the terminator of the entry block of the extracted |
| // function contains the first debug location of the extracted function, |
| // set in extractCodeRegion. |
| if (codeReplacer->getParent()->getSubprogram()) { |
| if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc()) |
| call->setDebugLoc(DL); |
| } |
| codeReplacer->getInstList().push_back(call); |
| |
| Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); |
| unsigned FirstOut = inputs.size(); |
| if (!AggregateArgs) |
| std::advance(OutputArgBegin, inputs.size()); |
| |
| // Reload the outputs passed in by reference. |
| Function::arg_iterator OAI = OutputArgBegin; |
| for (unsigned i = 0, e = outputs.size(); i != e; ++i) { |
| Value *Output = nullptr; |
| if (AggregateArgs) { |
| Value *Idx[2]; |
| Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); |
| Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); |
| GetElementPtrInst *GEP = GetElementPtrInst::Create( |
| StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); |
| codeReplacer->getInstList().push_back(GEP); |
| Output = GEP; |
| } else { |
| Output = ReloadOutputs[i]; |
| } |
| LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); |
| Reloads.push_back(load); |
| codeReplacer->getInstList().push_back(load); |
| std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end()); |
| for (unsigned u = 0, e = Users.size(); u != e; ++u) { |
| Instruction *inst = cast<Instruction>(Users[u]); |
| if (!Blocks.count(inst->getParent())) |
| inst->replaceUsesOfWith(outputs[i], load); |
| } |
| |
| // Store to argument right after the definition of output value. |
| auto *OutI = dyn_cast<Instruction>(outputs[i]); |
| if (!OutI) |
| continue; |
| // Find proper insertion point. |
| Instruction *InsertPt = OutI->getNextNode(); |
| // Let's assume that there is no other guy interleave non-PHI in PHIs. |
| if (isa<PHINode>(InsertPt)) |
| InsertPt = InsertPt->getParent()->getFirstNonPHI(); |
| |
| assert(OAI != newFunction->arg_end() && |
| "Number of output arguments should match " |
| "the amount of defined values"); |
| if (AggregateArgs) { |
| Value *Idx[2]; |
| Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); |
| Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); |
| GetElementPtrInst *GEP = GetElementPtrInst::Create( |
| StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(), InsertPt); |
| new StoreInst(outputs[i], GEP, InsertPt); |
| // Since there should be only one struct argument aggregating |
| // all the output values, we shouldn't increment OAI, which always |
| // points to the struct argument, in this case. |
| } else { |
| new StoreInst(outputs[i], &*OAI, InsertPt); |
| ++OAI; |
| } |
| } |
| |
| // Now we can emit a switch statement using the call as a value. |
| SwitchInst *TheSwitch = |
| SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), |
| codeReplacer, 0, codeReplacer); |
| |
| // Since there may be multiple exits from the original region, make the new |
| // function return an unsigned, switch on that number. This loop iterates |
| // over all of the blocks in the extracted region, updating any terminator |
| // instructions in the to-be-extracted region that branch to blocks that are |
| // not in the region to be extracted. |
| std::map<BasicBlock *, BasicBlock *> ExitBlockMap; |
| |
| unsigned switchVal = 0; |
| for (BasicBlock *Block : Blocks) { |
| TerminatorInst *TI = Block->getTerminator(); |
| for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) |
| if (!Blocks.count(TI->getSuccessor(i))) { |
| BasicBlock *OldTarget = TI->getSuccessor(i); |
| // add a new basic block which returns the appropriate value |
| BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; |
| if (!NewTarget) { |
| // If we don't already have an exit stub for this non-extracted |
| // destination, create one now! |
| NewTarget = BasicBlock::Create(Context, |
| OldTarget->getName() + ".exitStub", |
| newFunction); |
| unsigned SuccNum = switchVal++; |
| |
| Value *brVal = nullptr; |
| switch (NumExitBlocks) { |
| case 0: |
| case 1: break; // No value needed. |
| case 2: // Conditional branch, return a bool |
| brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); |
| break; |
| default: |
| brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); |
| break; |
| } |
| |
| ReturnInst::Create(Context, brVal, NewTarget); |
| |
| // Update the switch instruction. |
| TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), |
| SuccNum), |
| OldTarget); |
| } |
| |
| // rewrite the original branch instruction with this new target |
| TI->setSuccessor(i, NewTarget); |
| } |
| } |
| |
| // Now that we've done the deed, simplify the switch instruction. |
| Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); |
| switch (NumExitBlocks) { |
| case 0: |
| // There are no successors (the block containing the switch itself), which |
| // means that previously this was the last part of the function, and hence |
| // this should be rewritten as a `ret' |
| |
| // Check if the function should return a value |
| if (OldFnRetTy->isVoidTy()) { |
| ReturnInst::Create(Context, nullptr, TheSwitch); // Return void |
| } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { |
| // return what we have |
| ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); |
| } else { |
| // Otherwise we must have code extracted an unwind or something, just |
| // return whatever we want. |
| ReturnInst::Create(Context, |
| Constant::getNullValue(OldFnRetTy), TheSwitch); |
| } |
| |
| TheSwitch->eraseFromParent(); |
| break; |
| case 1: |
| // Only a single destination, change the switch into an unconditional |
| // branch. |
| BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); |
| TheSwitch->eraseFromParent(); |
| break; |
| case 2: |
| BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), |
| call, TheSwitch); |
| TheSwitch->eraseFromParent(); |
| break; |
| default: |
| // Otherwise, make the default destination of the switch instruction be one |
| // of the other successors. |
| TheSwitch->setCondition(call); |
| TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); |
| // Remove redundant case |
| TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); |
| break; |
| } |
| } |
| |
| void CodeExtractor::moveCodeToFunction(Function *newFunction) { |
| Function *oldFunc = (*Blocks.begin())->getParent(); |
| Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); |
| Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); |
| |
| for (BasicBlock *Block : Blocks) { |
| // Delete the basic block from the old function, and the list of blocks |
| oldBlocks.remove(Block); |
| |
| // Insert this basic block into the new function |
| newBlocks.push_back(Block); |
| } |
| } |
| |
| void CodeExtractor::calculateNewCallTerminatorWeights( |
| BasicBlock *CodeReplacer, |
| DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, |
| BranchProbabilityInfo *BPI) { |
| using Distribution = BlockFrequencyInfoImplBase::Distribution; |
| using BlockNode = BlockFrequencyInfoImplBase::BlockNode; |
| |
| // Update the branch weights for the exit block. |
| TerminatorInst *TI = CodeReplacer->getTerminator(); |
| SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); |
| |
| // Block Frequency distribution with dummy node. |
| Distribution BranchDist; |
| |
| // Add each of the frequencies of the successors. |
| for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { |
| BlockNode ExitNode(i); |
| uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); |
| if (ExitFreq != 0) |
| BranchDist.addExit(ExitNode, ExitFreq); |
| else |
| BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero()); |
| } |
| |
| // Check for no total weight. |
| if (BranchDist.Total == 0) |
| return; |
| |
| // Normalize the distribution so that they can fit in unsigned. |
| BranchDist.normalize(); |
| |
| // Create normalized branch weights and set the metadata. |
| for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { |
| const auto &Weight = BranchDist.Weights[I]; |
| |
| // Get the weight and update the current BFI. |
| BranchWeights[Weight.TargetNode.Index] = Weight.Amount; |
| BranchProbability BP(Weight.Amount, BranchDist.Total); |
| BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP); |
| } |
| TI->setMetadata( |
| LLVMContext::MD_prof, |
| MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); |
| } |
| |
| Function *CodeExtractor::extractCodeRegion() { |
| if (!isEligible()) |
| return nullptr; |
| |
| // Assumption: this is a single-entry code region, and the header is the first |
| // block in the region. |
| BasicBlock *header = *Blocks.begin(); |
| Function *oldFunction = header->getParent(); |
| |
| // For functions with varargs, check that varargs handling is only done in the |
| // outlined function, i.e vastart and vaend are only used in outlined blocks. |
| if (AllowVarArgs && oldFunction->getFunctionType()->isVarArg()) { |
| auto containsVarArgIntrinsic = [](Instruction &I) { |
| if (const CallInst *CI = dyn_cast<CallInst>(&I)) |
| if (const Function *F = CI->getCalledFunction()) |
| return F->getIntrinsicID() == Intrinsic::vastart || |
| F->getIntrinsicID() == Intrinsic::vaend; |
| return false; |
| }; |
| |
| for (auto &BB : *oldFunction) { |
| if (Blocks.count(&BB)) |
| continue; |
| if (llvm::any_of(BB, containsVarArgIntrinsic)) |
| return nullptr; |
| } |
| } |
| ValueSet inputs, outputs, SinkingCands, HoistingCands; |
| BasicBlock *CommonExit = nullptr; |
| |
| // Calculate the entry frequency of the new function before we change the root |
| // block. |
| BlockFrequency EntryFreq; |
| if (BFI) { |
| assert(BPI && "Both BPI and BFI are required to preserve profile info"); |
| for (BasicBlock *Pred : predecessors(header)) { |
| if (Blocks.count(Pred)) |
| continue; |
| EntryFreq += |
| BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); |
| } |
| } |
| |
| // If we have to split PHI nodes or the entry block, do so now. |
| severSplitPHINodes(header); |
| |
| // If we have any return instructions in the region, split those blocks so |
| // that the return is not in the region. |
| splitReturnBlocks(); |
| |
| // This takes place of the original loop |
| BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), |
| "codeRepl", oldFunction, |
| header); |
| |
| // The new function needs a root node because other nodes can branch to the |
| // head of the region, but the entry node of a function cannot have preds. |
| BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), |
| "newFuncRoot"); |
| auto *BranchI = BranchInst::Create(header); |
| // If the original function has debug info, we have to add a debug location |
| // to the new branch instruction from the artificial entry block. |
| // We use the debug location of the first instruction in the extracted |
| // blocks, as there is no other equivalent line in the source code. |
| if (oldFunction->getSubprogram()) { |
| any_of(Blocks, [&BranchI](const BasicBlock *BB) { |
| return any_of(*BB, [&BranchI](const Instruction &I) { |
| if (!I.getDebugLoc()) |
| return false; |
| BranchI->setDebugLoc(I.getDebugLoc()); |
| return true; |
| }); |
| }); |
| } |
| newFuncRoot->getInstList().push_back(BranchI); |
| |
| findAllocas(SinkingCands, HoistingCands, CommonExit); |
| assert(HoistingCands.empty() || CommonExit); |
| |
| // Find inputs to, outputs from the code region. |
| findInputsOutputs(inputs, outputs, SinkingCands); |
| |
| // Now sink all instructions which only have non-phi uses inside the region |
| for (auto *II : SinkingCands) |
| cast<Instruction>(II)->moveBefore(*newFuncRoot, |
| newFuncRoot->getFirstInsertionPt()); |
| |
| if (!HoistingCands.empty()) { |
| auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); |
| Instruction *TI = HoistToBlock->getTerminator(); |
| for (auto *II : HoistingCands) |
| cast<Instruction>(II)->moveBefore(TI); |
| } |
| |
| // Calculate the exit blocks for the extracted region and the total exit |
| // weights for each of those blocks. |
| DenseMap<BasicBlock *, BlockFrequency> ExitWeights; |
| SmallPtrSet<BasicBlock *, 1> ExitBlocks; |
| for (BasicBlock *Block : Blocks) { |
| for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE; |
| ++SI) { |
| if (!Blocks.count(*SI)) { |
| // Update the branch weight for this successor. |
| if (BFI) { |
| BlockFrequency &BF = ExitWeights[*SI]; |
| BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI); |
| } |
| ExitBlocks.insert(*SI); |
| } |
| } |
| } |
| NumExitBlocks = ExitBlocks.size(); |
| |
| // Construct new function based on inputs/outputs & add allocas for all defs. |
| Function *newFunction = constructFunction(inputs, outputs, header, |
| newFuncRoot, |
| codeReplacer, oldFunction, |
| oldFunction->getParent()); |
| |
| // Update the entry count of the function. |
| if (BFI) { |
| auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency()); |
| if (Count.hasValue()) |
| newFunction->setEntryCount( |
| ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME |
| BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency()); |
| } |
| |
| emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); |
| |
| moveCodeToFunction(newFunction); |
| |
| // Propagate personality info to the new function if there is one. |
| if (oldFunction->hasPersonalityFn()) |
| newFunction->setPersonalityFn(oldFunction->getPersonalityFn()); |
| |
| // Update the branch weights for the exit block. |
| if (BFI && NumExitBlocks > 1) |
| calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); |
| |
| // Loop over all of the PHI nodes in the header block, and change any |
| // references to the old incoming edge to be the new incoming edge. |
| for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { |
| PHINode *PN = cast<PHINode>(I); |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| if (!Blocks.count(PN->getIncomingBlock(i))) |
| PN->setIncomingBlock(i, newFuncRoot); |
| } |
| |
| // Look at all successors of the codeReplacer block. If any of these blocks |
| // had PHI nodes in them, we need to update the "from" block to be the code |
| // replacer, not the original block in the extracted region. |
| std::vector<BasicBlock *> Succs(succ_begin(codeReplacer), |
| succ_end(codeReplacer)); |
| for (unsigned i = 0, e = Succs.size(); i != e; ++i) |
| for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) { |
| PHINode *PN = cast<PHINode>(I); |
| std::set<BasicBlock*> ProcessedPreds; |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| if (Blocks.count(PN->getIncomingBlock(i))) { |
| if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second) |
| PN->setIncomingBlock(i, codeReplacer); |
| else { |
| // There were multiple entries in the PHI for this block, now there |
| // is only one, so remove the duplicated entries. |
| PN->removeIncomingValue(i, false); |
| --i; --e; |
| } |
| } |
| } |
| |
| LLVM_DEBUG(if (verifyFunction(*newFunction)) |
| report_fatal_error("verifyFunction failed!")); |
| return newFunction; |
| } |