| //===-- Sink.cpp - Code Sinking -------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass moves instructions into successor blocks, when possible, so that |
| // they aren't executed on paths where their results aren't needed. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "sink" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/IntrinsicInst.h" |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace llvm; |
| |
| STATISTIC(NumSunk, "Number of instructions sunk"); |
| |
| namespace { |
| class Sinking : public FunctionPass { |
| DominatorTree *DT; |
| LoopInfo *LI; |
| AliasAnalysis *AA; |
| |
| public: |
| static char ID; // Pass identification |
| Sinking() : FunctionPass(ID) { |
| initializeSinkingPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| virtual bool runOnFunction(Function &F); |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| FunctionPass::getAnalysisUsage(AU); |
| AU.addRequired<AliasAnalysis>(); |
| AU.addRequired<DominatorTree>(); |
| AU.addRequired<LoopInfo>(); |
| AU.addPreserved<DominatorTree>(); |
| AU.addPreserved<LoopInfo>(); |
| } |
| private: |
| bool ProcessBlock(BasicBlock &BB); |
| bool SinkInstruction(Instruction *I, SmallPtrSet<Instruction *, 8> &Stores); |
| bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB) const; |
| }; |
| } // end anonymous namespace |
| |
| char Sinking::ID = 0; |
| INITIALIZE_PASS_BEGIN(Sinking, "sink", "Code sinking", false, false) |
| INITIALIZE_PASS_DEPENDENCY(LoopInfo) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTree) |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis) |
| INITIALIZE_PASS_END(Sinking, "sink", "Code sinking", false, false) |
| |
| FunctionPass *llvm::createSinkingPass() { return new Sinking(); } |
| |
| /// AllUsesDominatedByBlock - Return true if all uses of the specified value |
| /// occur in blocks dominated by the specified block. |
| bool Sinking::AllUsesDominatedByBlock(Instruction *Inst, |
| BasicBlock *BB) const { |
| // Ignoring debug uses is necessary so debug info doesn't affect the code. |
| // This may leave a referencing dbg_value in the original block, before |
| // the definition of the vreg. Dwarf generator handles this although the |
| // user might not get the right info at runtime. |
| for (Value::use_iterator I = Inst->use_begin(), |
| E = Inst->use_end(); I != E; ++I) { |
| // Determine the block of the use. |
| Instruction *UseInst = cast<Instruction>(*I); |
| BasicBlock *UseBlock = UseInst->getParent(); |
| if (PHINode *PN = dyn_cast<PHINode>(UseInst)) { |
| // PHI nodes use the operand in the predecessor block, not the block with |
| // the PHI. |
| unsigned Num = PHINode::getIncomingValueNumForOperand(I.getOperandNo()); |
| UseBlock = PN->getIncomingBlock(Num); |
| } |
| // Check that it dominates. |
| if (!DT->dominates(BB, UseBlock)) |
| return false; |
| } |
| return true; |
| } |
| |
| bool Sinking::runOnFunction(Function &F) { |
| DT = &getAnalysis<DominatorTree>(); |
| LI = &getAnalysis<LoopInfo>(); |
| AA = &getAnalysis<AliasAnalysis>(); |
| |
| bool EverMadeChange = false; |
| |
| while (1) { |
| bool MadeChange = false; |
| |
| // Process all basic blocks. |
| for (Function::iterator I = F.begin(), E = F.end(); |
| I != E; ++I) |
| MadeChange |= ProcessBlock(*I); |
| |
| // If this iteration over the code changed anything, keep iterating. |
| if (!MadeChange) break; |
| EverMadeChange = true; |
| } |
| return EverMadeChange; |
| } |
| |
| bool Sinking::ProcessBlock(BasicBlock &BB) { |
| // Can't sink anything out of a block that has less than two successors. |
| if (BB.getTerminator()->getNumSuccessors() <= 1 || BB.empty()) return false; |
| |
| // Don't bother sinking code out of unreachable blocks. In addition to being |
| // unprofitable, it can also lead to infinite looping, because in an unreachable |
| // loop there may be nowhere to stop. |
| if (!DT->isReachableFromEntry(&BB)) return false; |
| |
| bool MadeChange = false; |
| |
| // Walk the basic block bottom-up. Remember if we saw a store. |
| BasicBlock::iterator I = BB.end(); |
| --I; |
| bool ProcessedBegin = false; |
| SmallPtrSet<Instruction *, 8> Stores; |
| do { |
| Instruction *Inst = I; // The instruction to sink. |
| |
| // Predecrement I (if it's not begin) so that it isn't invalidated by |
| // sinking. |
| ProcessedBegin = I == BB.begin(); |
| if (!ProcessedBegin) |
| --I; |
| |
| if (isa<DbgInfoIntrinsic>(Inst)) |
| continue; |
| |
| if (SinkInstruction(Inst, Stores)) |
| ++NumSunk, MadeChange = true; |
| |
| // If we just processed the first instruction in the block, we're done. |
| } while (!ProcessedBegin); |
| |
| return MadeChange; |
| } |
| |
| static bool isSafeToMove(Instruction *Inst, AliasAnalysis *AA, |
| SmallPtrSet<Instruction *, 8> &Stores) { |
| |
| if (Inst->mayWriteToMemory()) { |
| Stores.insert(Inst); |
| return false; |
| } |
| |
| if (LoadInst *L = dyn_cast<LoadInst>(Inst)) { |
| AliasAnalysis::Location Loc = AA->getLocation(L); |
| for (SmallPtrSet<Instruction *, 8>::iterator I = Stores.begin(), |
| E = Stores.end(); I != E; ++I) |
| if (AA->getModRefInfo(*I, Loc) & AliasAnalysis::Mod) |
| return false; |
| } |
| |
| if (isa<TerminatorInst>(Inst) || isa<PHINode>(Inst)) |
| return false; |
| |
| return true; |
| } |
| |
| /// SinkInstruction - Determine whether it is safe to sink the specified machine |
| /// instruction out of its current block into a successor. |
| bool Sinking::SinkInstruction(Instruction *Inst, |
| SmallPtrSet<Instruction *, 8> &Stores) { |
| // Check if it's safe to move the instruction. |
| if (!isSafeToMove(Inst, AA, Stores)) |
| return false; |
| |
| // FIXME: This should include support for sinking instructions within the |
| // block they are currently in to shorten the live ranges. We often get |
| // instructions sunk into the top of a large block, but it would be better to |
| // also sink them down before their first use in the block. This xform has to |
| // be careful not to *increase* register pressure though, e.g. sinking |
| // "x = y + z" down if it kills y and z would increase the live ranges of y |
| // and z and only shrink the live range of x. |
| |
| // Loop over all the operands of the specified instruction. If there is |
| // anything we can't handle, bail out. |
| BasicBlock *ParentBlock = Inst->getParent(); |
| |
| // SuccToSinkTo - This is the successor to sink this instruction to, once we |
| // decide. |
| BasicBlock *SuccToSinkTo = 0; |
| |
| // FIXME: This picks a successor to sink into based on having one |
| // successor that dominates all the uses. However, there are cases where |
| // sinking can happen but where the sink point isn't a successor. For |
| // example: |
| // x = computation |
| // if () {} else {} |
| // use x |
| // the instruction could be sunk over the whole diamond for the |
| // if/then/else (or loop, etc), allowing it to be sunk into other blocks |
| // after that. |
| |
| // Instructions can only be sunk if all their uses are in blocks |
| // dominated by one of the successors. |
| // Look at all the successors and decide which one |
| // we should sink to. |
| for (succ_iterator SI = succ_begin(ParentBlock), |
| E = succ_end(ParentBlock); SI != E; ++SI) { |
| if (AllUsesDominatedByBlock(Inst, *SI)) { |
| SuccToSinkTo = *SI; |
| break; |
| } |
| } |
| |
| // If we couldn't find a block to sink to, ignore this instruction. |
| if (SuccToSinkTo == 0) |
| return false; |
| |
| // It is not possible to sink an instruction into its own block. This can |
| // happen with loops. |
| if (Inst->getParent() == SuccToSinkTo) |
| return false; |
| |
| DEBUG(dbgs() << "Sink instr " << *Inst); |
| DEBUG(dbgs() << "to block "; |
| WriteAsOperand(dbgs(), SuccToSinkTo, false)); |
| |
| // If the block has multiple predecessors, this would introduce computation on |
| // a path that it doesn't already exist. We could split the critical edge, |
| // but for now we just punt. |
| // FIXME: Split critical edges if not backedges. |
| if (SuccToSinkTo->getUniquePredecessor() != ParentBlock) { |
| // We cannot sink a load across a critical edge - there may be stores in |
| // other code paths. |
| if (!Inst->isSafeToSpeculativelyExecute()) { |
| DEBUG(dbgs() << " *** PUNTING: Wont sink load along critical edge.\n"); |
| return false; |
| } |
| |
| // We don't want to sink across a critical edge if we don't dominate the |
| // successor. We could be introducing calculations to new code paths. |
| if (!DT->dominates(ParentBlock, SuccToSinkTo)) { |
| DEBUG(dbgs() << " *** PUNTING: Critical edge found\n"); |
| return false; |
| } |
| |
| // Don't sink instructions into a loop. |
| if (LI->isLoopHeader(SuccToSinkTo)) { |
| DEBUG(dbgs() << " *** PUNTING: Loop header found\n"); |
| return false; |
| } |
| |
| // Otherwise we are OK with sinking along a critical edge. |
| DEBUG(dbgs() << "Sinking along critical edge.\n"); |
| } |
| |
| // Determine where to insert into. Skip phi nodes. |
| BasicBlock::iterator InsertPos = SuccToSinkTo->begin(); |
| while (InsertPos != SuccToSinkTo->end() && isa<PHINode>(InsertPos)) |
| ++InsertPos; |
| |
| // Move the instruction. |
| Inst->moveBefore(InsertPos); |
| return true; |
| } |