| //===-- llvm/Support/PatternMatch.h - Match on the LLVM IR ------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file provides a simple and efficient mechanism for performing general |
| // tree-based pattern matches on the LLVM IR. The power of these routines is |
| // that it allows you to write concise patterns that are expressive and easy to |
| // understand. The other major advantage of this is that it allows you to |
| // trivially capture/bind elements in the pattern to variables. For example, |
| // you can do something like this: |
| // |
| // Value *Exp = ... |
| // Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2) |
| // if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)), |
| // m_And(m_Value(Y), m_ConstantInt(C2))))) { |
| // ... Pattern is matched and variables are bound ... |
| // } |
| // |
| // This is primarily useful to things like the instruction combiner, but can |
| // also be useful for static analysis tools or code generators. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_SUPPORT_PATTERNMATCH_H |
| #define LLVM_SUPPORT_PATTERNMATCH_H |
| |
| #include "llvm/Constants.h" |
| #include "llvm/Instructions.h" |
| |
| namespace llvm { |
| namespace PatternMatch { |
| |
| template<typename Val, typename Pattern> |
| bool match(Val *V, const Pattern &P) { |
| return const_cast<Pattern&>(P).match(V); |
| } |
| |
| |
| template<typename SubPattern_t> |
| struct OneUse_match { |
| SubPattern_t SubPattern; |
| |
| OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {} |
| |
| template<typename OpTy> |
| bool match(OpTy *V) { |
| return V->hasOneUse() && SubPattern.match(V); |
| } |
| }; |
| |
| template<typename T> |
| inline OneUse_match<T> m_OneUse(const T &SubPattern) { return SubPattern; } |
| |
| |
| template<typename Class> |
| struct class_match { |
| template<typename ITy> |
| bool match(ITy *V) { return isa<Class>(V); } |
| }; |
| |
| /// m_Value() - Match an arbitrary value and ignore it. |
| inline class_match<Value> m_Value() { return class_match<Value>(); } |
| /// m_ConstantInt() - Match an arbitrary ConstantInt and ignore it. |
| inline class_match<ConstantInt> m_ConstantInt() { |
| return class_match<ConstantInt>(); |
| } |
| /// m_Undef() - Match an arbitrary undef constant. |
| inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); } |
| |
| inline class_match<Constant> m_Constant() { return class_match<Constant>(); } |
| |
| struct match_zero { |
| template<typename ITy> |
| bool match(ITy *V) { |
| if (const Constant *C = dyn_cast<Constant>(V)) |
| return C->isNullValue(); |
| return false; |
| } |
| }; |
| |
| /// m_Zero() - Match an arbitrary zero/null constant. This includes |
| /// zero_initializer for vectors and ConstantPointerNull for pointers. |
| inline match_zero m_Zero() { return match_zero(); } |
| |
| |
| struct apint_match { |
| const APInt *&Res; |
| apint_match(const APInt *&R) : Res(R) {} |
| template<typename ITy> |
| bool match(ITy *V) { |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { |
| Res = &CI->getValue(); |
| return true; |
| } |
| if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) |
| if (ConstantInt *CI = |
| dyn_cast_or_null<ConstantInt>(CV->getSplatValue())) { |
| Res = &CI->getValue(); |
| return true; |
| } |
| return false; |
| } |
| }; |
| |
| /// m_APInt - Match a ConstantInt or splatted ConstantVector, binding the |
| /// specified pointer to the contained APInt. |
| inline apint_match m_APInt(const APInt *&Res) { return Res; } |
| |
| |
| template<int64_t Val> |
| struct constantint_match { |
| template<typename ITy> |
| bool match(ITy *V) { |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { |
| const APInt &CIV = CI->getValue(); |
| if (Val >= 0) |
| return CIV == static_cast<uint64_t>(Val); |
| // If Val is negative, and CI is shorter than it, truncate to the right |
| // number of bits. If it is larger, then we have to sign extend. Just |
| // compare their negated values. |
| return -CIV == -Val; |
| } |
| return false; |
| } |
| }; |
| |
| /// m_ConstantInt<int64_t> - Match a ConstantInt with a specific value. |
| template<int64_t Val> |
| inline constantint_match<Val> m_ConstantInt() { |
| return constantint_match<Val>(); |
| } |
| |
| /// cst_pred_ty - This helper class is used to match scalar and vector constants |
| /// that satisfy a specified predicate. |
| template<typename Predicate> |
| struct cst_pred_ty : public Predicate { |
| template<typename ITy> |
| bool match(ITy *V) { |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) |
| return this->isValue(CI->getValue()); |
| if (const ConstantVector *CV = dyn_cast<ConstantVector>(V)) |
| if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(CV->getSplatValue())) |
| return this->isValue(CI->getValue()); |
| return false; |
| } |
| }; |
| |
| /// api_pred_ty - This helper class is used to match scalar and vector constants |
| /// that satisfy a specified predicate, and bind them to an APInt. |
| template<typename Predicate> |
| struct api_pred_ty : public Predicate { |
| const APInt *&Res; |
| api_pred_ty(const APInt *&R) : Res(R) {} |
| template<typename ITy> |
| bool match(ITy *V) { |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) |
| if (this->isValue(CI->getValue())) { |
| Res = &CI->getValue(); |
| return true; |
| } |
| if (const ConstantVector *CV = dyn_cast<ConstantVector>(V)) |
| if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(CV->getSplatValue())) |
| if (this->isValue(CI->getValue())) { |
| Res = &CI->getValue(); |
| return true; |
| } |
| return false; |
| } |
| }; |
| |
| |
| struct is_one { |
| bool isValue(const APInt &C) { return C == 1; } |
| }; |
| |
| /// m_One() - Match an integer 1 or a vector with all elements equal to 1. |
| inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); } |
| inline api_pred_ty<is_one> m_One(const APInt *&V) { return V; } |
| |
| struct is_all_ones { |
| bool isValue(const APInt &C) { return C.isAllOnesValue(); } |
| }; |
| |
| /// m_AllOnes() - Match an integer or vector with all bits set to true. |
| inline cst_pred_ty<is_all_ones> m_AllOnes() {return cst_pred_ty<is_all_ones>();} |
| inline api_pred_ty<is_all_ones> m_AllOnes(const APInt *&V) { return V; } |
| |
| struct is_sign_bit { |
| bool isValue(const APInt &C) { return C.isSignBit(); } |
| }; |
| |
| /// m_SignBit() - Match an integer or vector with only the sign bit(s) set. |
| inline cst_pred_ty<is_sign_bit> m_SignBit() {return cst_pred_ty<is_sign_bit>();} |
| inline api_pred_ty<is_sign_bit> m_SignBit(const APInt *&V) { return V; } |
| |
| struct is_power2 { |
| bool isValue(const APInt &C) { return C.isPowerOf2(); } |
| }; |
| |
| /// m_Power2() - Match an integer or vector power of 2. |
| inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); } |
| inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; } |
| |
| template<typename Class> |
| struct bind_ty { |
| Class *&VR; |
| bind_ty(Class *&V) : VR(V) {} |
| |
| template<typename ITy> |
| bool match(ITy *V) { |
| if (Class *CV = dyn_cast<Class>(V)) { |
| VR = CV; |
| return true; |
| } |
| return false; |
| } |
| }; |
| |
| /// m_Value - Match a value, capturing it if we match. |
| inline bind_ty<Value> m_Value(Value *&V) { return V; } |
| |
| /// m_ConstantInt - Match a ConstantInt, capturing the value if we match. |
| inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; } |
| |
| /// m_Constant - Match a Constant, capturing the value if we match. |
| inline bind_ty<Constant> m_Constant(Constant *&C) { return C; } |
| |
| /// specificval_ty - Match a specified Value*. |
| struct specificval_ty { |
| const Value *Val; |
| specificval_ty(const Value *V) : Val(V) {} |
| |
| template<typename ITy> |
| bool match(ITy *V) { |
| return V == Val; |
| } |
| }; |
| |
| /// m_Specific - Match if we have a specific specified value. |
| inline specificval_ty m_Specific(const Value *V) { return V; } |
| |
| struct bind_const_intval_ty { |
| uint64_t &VR; |
| bind_const_intval_ty(uint64_t &V) : VR(V) {} |
| |
| template<typename ITy> |
| bool match(ITy *V) { |
| if (ConstantInt *CV = dyn_cast<ConstantInt>(V)) |
| if (CV->getBitWidth() <= 64) { |
| VR = CV->getZExtValue(); |
| return true; |
| } |
| return false; |
| } |
| }; |
| |
| /// m_ConstantInt - Match a ConstantInt and bind to its value. This does not |
| /// match ConstantInts wider than 64-bits. |
| inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; } |
| |
| //===----------------------------------------------------------------------===// |
| // Matchers for specific binary operators. |
| // |
| |
| template<typename LHS_t, typename RHS_t, unsigned Opcode> |
| struct BinaryOp_match { |
| LHS_t L; |
| RHS_t R; |
| |
| BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
| |
| template<typename OpTy> |
| bool match(OpTy *V) { |
| if (V->getValueID() == Value::InstructionVal + Opcode) { |
| BinaryOperator *I = cast<BinaryOperator>(V); |
| return L.match(I->getOperand(0)) && R.match(I->getOperand(1)); |
| } |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) |
| return CE->getOpcode() == Opcode && L.match(CE->getOperand(0)) && |
| R.match(CE->getOperand(1)); |
| return false; |
| } |
| }; |
| |
| template<typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::Add> |
| m_Add(const LHS &L, const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R); |
| } |
| |
| template<typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::FAdd> |
| m_FAdd(const LHS &L, const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R); |
| } |
| |
| template<typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::Sub> |
| m_Sub(const LHS &L, const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R); |
| } |
| |
| template<typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::FSub> |
| m_FSub(const LHS &L, const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R); |
| } |
| |
| template<typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::Mul> |
| m_Mul(const LHS &L, const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R); |
| } |
| |
| template<typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::FMul> |
| m_FMul(const LHS &L, const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R); |
| } |
| |
| template<typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::UDiv> |
| m_UDiv(const LHS &L, const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R); |
| } |
| |
| template<typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::SDiv> |
| m_SDiv(const LHS &L, const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R); |
| } |
| |
| template<typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::FDiv> |
| m_FDiv(const LHS &L, const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R); |
| } |
| |
| template<typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::URem> |
| m_URem(const LHS &L, const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R); |
| } |
| |
| template<typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::SRem> |
| m_SRem(const LHS &L, const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R); |
| } |
| |
| template<typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::FRem> |
| m_FRem(const LHS &L, const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R); |
| } |
| |
| template<typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::And> |
| m_And(const LHS &L, const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::And>(L, R); |
| } |
| |
| template<typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::Or> |
| m_Or(const LHS &L, const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R); |
| } |
| |
| template<typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::Xor> |
| m_Xor(const LHS &L, const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R); |
| } |
| |
| template<typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::Shl> |
| m_Shl(const LHS &L, const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R); |
| } |
| |
| template<typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::LShr> |
| m_LShr(const LHS &L, const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R); |
| } |
| |
| template<typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::AShr> |
| m_AShr(const LHS &L, const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Class that matches two different binary ops. |
| // |
| template<typename LHS_t, typename RHS_t, unsigned Opc1, unsigned Opc2> |
| struct BinOp2_match { |
| LHS_t L; |
| RHS_t R; |
| |
| BinOp2_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
| |
| template<typename OpTy> |
| bool match(OpTy *V) { |
| if (V->getValueID() == Value::InstructionVal + Opc1 || |
| V->getValueID() == Value::InstructionVal + Opc2) { |
| BinaryOperator *I = cast<BinaryOperator>(V); |
| return L.match(I->getOperand(0)) && R.match(I->getOperand(1)); |
| } |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) |
| return (CE->getOpcode() == Opc1 || CE->getOpcode() == Opc2) && |
| L.match(CE->getOperand(0)) && R.match(CE->getOperand(1)); |
| return false; |
| } |
| }; |
| |
| /// m_Shr - Matches LShr or AShr. |
| template<typename LHS, typename RHS> |
| inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr> |
| m_Shr(const LHS &L, const RHS &R) { |
| return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>(L, R); |
| } |
| |
| /// m_LogicalShift - Matches LShr or Shl. |
| template<typename LHS, typename RHS> |
| inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl> |
| m_LogicalShift(const LHS &L, const RHS &R) { |
| return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>(L, R); |
| } |
| |
| /// m_IDiv - Matches UDiv and SDiv. |
| template<typename LHS, typename RHS> |
| inline BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv> |
| m_IDiv(const LHS &L, const RHS &R) { |
| return BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>(L, R); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Matchers for CmpInst classes |
| // |
| |
| template<typename LHS_t, typename RHS_t, typename Class, typename PredicateTy> |
| struct CmpClass_match { |
| PredicateTy &Predicate; |
| LHS_t L; |
| RHS_t R; |
| |
| CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS) |
| : Predicate(Pred), L(LHS), R(RHS) {} |
| |
| template<typename OpTy> |
| bool match(OpTy *V) { |
| if (Class *I = dyn_cast<Class>(V)) |
| if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) { |
| Predicate = I->getPredicate(); |
| return true; |
| } |
| return false; |
| } |
| }; |
| |
| template<typename LHS, typename RHS> |
| inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate> |
| m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { |
| return CmpClass_match<LHS, RHS, |
| ICmpInst, ICmpInst::Predicate>(Pred, L, R); |
| } |
| |
| template<typename LHS, typename RHS> |
| inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate> |
| m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) { |
| return CmpClass_match<LHS, RHS, |
| FCmpInst, FCmpInst::Predicate>(Pred, L, R); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Matchers for SelectInst classes |
| // |
| |
| template<typename Cond_t, typename LHS_t, typename RHS_t> |
| struct SelectClass_match { |
| Cond_t C; |
| LHS_t L; |
| RHS_t R; |
| |
| SelectClass_match(const Cond_t &Cond, const LHS_t &LHS, |
| const RHS_t &RHS) |
| : C(Cond), L(LHS), R(RHS) {} |
| |
| template<typename OpTy> |
| bool match(OpTy *V) { |
| if (SelectInst *I = dyn_cast<SelectInst>(V)) |
| return C.match(I->getOperand(0)) && |
| L.match(I->getOperand(1)) && |
| R.match(I->getOperand(2)); |
| return false; |
| } |
| }; |
| |
| template<typename Cond, typename LHS, typename RHS> |
| inline SelectClass_match<Cond, LHS, RHS> |
| m_Select(const Cond &C, const LHS &L, const RHS &R) { |
| return SelectClass_match<Cond, LHS, RHS>(C, L, R); |
| } |
| |
| /// m_SelectCst - This matches a select of two constants, e.g.: |
| /// m_SelectCst<-1, 0>(m_Value(V)) |
| template<int64_t L, int64_t R, typename Cond> |
| inline SelectClass_match<Cond, constantint_match<L>, constantint_match<R> > |
| m_SelectCst(const Cond &C) { |
| return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>()); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Matchers for CastInst classes |
| // |
| |
| template<typename Op_t, unsigned Opcode> |
| struct CastClass_match { |
| Op_t Op; |
| |
| CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {} |
| |
| template<typename OpTy> |
| bool match(OpTy *V) { |
| if (CastInst *I = dyn_cast<CastInst>(V)) |
| return I->getOpcode() == Opcode && Op.match(I->getOperand(0)); |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) |
| return CE->getOpcode() == Opcode && Op.match(CE->getOperand(0)); |
| return false; |
| } |
| }; |
| |
| /// m_BitCast |
| template<typename OpTy> |
| inline CastClass_match<OpTy, Instruction::BitCast> |
| m_BitCast(const OpTy &Op) { |
| return CastClass_match<OpTy, Instruction::BitCast>(Op); |
| } |
| |
| /// m_PtrToInt |
| template<typename OpTy> |
| inline CastClass_match<OpTy, Instruction::PtrToInt> |
| m_PtrToInt(const OpTy &Op) { |
| return CastClass_match<OpTy, Instruction::PtrToInt>(Op); |
| } |
| |
| /// m_Trunc |
| template<typename OpTy> |
| inline CastClass_match<OpTy, Instruction::Trunc> |
| m_Trunc(const OpTy &Op) { |
| return CastClass_match<OpTy, Instruction::Trunc>(Op); |
| } |
| |
| /// m_SExt |
| template<typename OpTy> |
| inline CastClass_match<OpTy, Instruction::SExt> |
| m_SExt(const OpTy &Op) { |
| return CastClass_match<OpTy, Instruction::SExt>(Op); |
| } |
| |
| /// m_ZExt |
| template<typename OpTy> |
| inline CastClass_match<OpTy, Instruction::ZExt> |
| m_ZExt(const OpTy &Op) { |
| return CastClass_match<OpTy, Instruction::ZExt>(Op); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Matchers for unary operators |
| // |
| |
| template<typename LHS_t> |
| struct not_match { |
| LHS_t L; |
| |
| not_match(const LHS_t &LHS) : L(LHS) {} |
| |
| template<typename OpTy> |
| bool match(OpTy *V) { |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| if (I->getOpcode() == Instruction::Xor) |
| return matchIfNot(I->getOperand(0), I->getOperand(1)); |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) |
| if (CE->getOpcode() == Instruction::Xor) |
| return matchIfNot(CE->getOperand(0), CE->getOperand(1)); |
| return false; |
| } |
| private: |
| bool matchIfNot(Value *LHS, Value *RHS) { |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) |
| return CI->isAllOnesValue() && L.match(LHS); |
| if (ConstantVector *CV = dyn_cast<ConstantVector>(RHS)) |
| return CV->isAllOnesValue() && L.match(LHS); |
| return false; |
| } |
| }; |
| |
| template<typename LHS> |
| inline not_match<LHS> m_Not(const LHS &L) { return L; } |
| |
| |
| template<typename LHS_t> |
| struct neg_match { |
| LHS_t L; |
| |
| neg_match(const LHS_t &LHS) : L(LHS) {} |
| |
| template<typename OpTy> |
| bool match(OpTy *V) { |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| if (I->getOpcode() == Instruction::Sub) |
| return matchIfNeg(I->getOperand(0), I->getOperand(1)); |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) |
| if (CE->getOpcode() == Instruction::Sub) |
| return matchIfNeg(CE->getOperand(0), CE->getOperand(1)); |
| return false; |
| } |
| private: |
| bool matchIfNeg(Value *LHS, Value *RHS) { |
| if (ConstantInt *C = dyn_cast<ConstantInt>(LHS)) |
| return C->isZero() && L.match(RHS); |
| return false; |
| } |
| }; |
| |
| /// m_Neg - Match an integer negate. |
| template<typename LHS> |
| inline neg_match<LHS> m_Neg(const LHS &L) { return L; } |
| |
| |
| template<typename LHS_t> |
| struct fneg_match { |
| LHS_t L; |
| |
| fneg_match(const LHS_t &LHS) : L(LHS) {} |
| |
| template<typename OpTy> |
| bool match(OpTy *V) { |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| if (I->getOpcode() == Instruction::FSub) |
| return matchIfFNeg(I->getOperand(0), I->getOperand(1)); |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) |
| if (CE->getOpcode() == Instruction::FSub) |
| return matchIfFNeg(CE->getOperand(0), CE->getOperand(1)); |
| return false; |
| } |
| private: |
| bool matchIfFNeg(Value *LHS, Value *RHS) { |
| if (ConstantFP *C = dyn_cast<ConstantFP>(LHS)) |
| return C->isNegativeZeroValue() && L.match(RHS); |
| return false; |
| } |
| }; |
| |
| /// m_FNeg - Match a floating point negate. |
| template<typename LHS> |
| inline fneg_match<LHS> m_FNeg(const LHS &L) { return L; } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Matchers for control flow. |
| // |
| |
| template<typename Cond_t> |
| struct brc_match { |
| Cond_t Cond; |
| BasicBlock *&T, *&F; |
| brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f) |
| : Cond(C), T(t), F(f) { |
| } |
| |
| template<typename OpTy> |
| bool match(OpTy *V) { |
| if (BranchInst *BI = dyn_cast<BranchInst>(V)) |
| if (BI->isConditional() && Cond.match(BI->getCondition())) { |
| T = BI->getSuccessor(0); |
| F = BI->getSuccessor(1); |
| return true; |
| } |
| return false; |
| } |
| }; |
| |
| template<typename Cond_t> |
| inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) { |
| return brc_match<Cond_t>(C, T, F); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y). |
| // |
| |
| template<typename LHS_t, typename RHS_t, typename Pred_t> |
| struct MaxMin_match { |
| LHS_t L; |
| RHS_t R; |
| |
| MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) |
| : L(LHS), R(RHS) {} |
| |
| template<typename OpTy> |
| bool match(OpTy *V) { |
| // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x". |
| SelectInst *SI = dyn_cast<SelectInst>(V); |
| if (!SI) |
| return false; |
| ICmpInst *Cmp = dyn_cast<ICmpInst>(SI->getCondition()); |
| if (!Cmp) |
| return false; |
| // At this point we have a select conditioned on a comparison. Check that |
| // it is the values returned by the select that are being compared. |
| Value *TrueVal = SI->getTrueValue(); |
| Value *FalseVal = SI->getFalseValue(); |
| Value *LHS = Cmp->getOperand(0); |
| Value *RHS = Cmp->getOperand(1); |
| if ((TrueVal != LHS || FalseVal != RHS) && |
| (TrueVal != RHS || FalseVal != LHS)) |
| return false; |
| ICmpInst::Predicate Pred = LHS == TrueVal ? |
| Cmp->getPredicate() : Cmp->getSwappedPredicate(); |
| // Does "(x pred y) ? x : y" represent the desired max/min operation? |
| if (!Pred_t::match(Pred)) |
| return false; |
| // It does! Bind the operands. |
| return L.match(LHS) && R.match(RHS); |
| } |
| }; |
| |
| /// smax_pred_ty - Helper class for identifying signed max predicates. |
| struct smax_pred_ty { |
| static bool match(ICmpInst::Predicate Pred) { |
| return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE; |
| } |
| }; |
| |
| /// smin_pred_ty - Helper class for identifying signed min predicates. |
| struct smin_pred_ty { |
| static bool match(ICmpInst::Predicate Pred) { |
| return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE; |
| } |
| }; |
| |
| /// umax_pred_ty - Helper class for identifying unsigned max predicates. |
| struct umax_pred_ty { |
| static bool match(ICmpInst::Predicate Pred) { |
| return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE; |
| } |
| }; |
| |
| /// umin_pred_ty - Helper class for identifying unsigned min predicates. |
| struct umin_pred_ty { |
| static bool match(ICmpInst::Predicate Pred) { |
| return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE; |
| } |
| }; |
| |
| template<typename LHS, typename RHS> |
| inline MaxMin_match<LHS, RHS, smax_pred_ty> |
| m_SMax(const LHS &L, const RHS &R) { |
| return MaxMin_match<LHS, RHS, smax_pred_ty>(L, R); |
| } |
| |
| template<typename LHS, typename RHS> |
| inline MaxMin_match<LHS, RHS, smin_pred_ty> |
| m_SMin(const LHS &L, const RHS &R) { |
| return MaxMin_match<LHS, RHS, smin_pred_ty>(L, R); |
| } |
| |
| template<typename LHS, typename RHS> |
| inline MaxMin_match<LHS, RHS, umax_pred_ty> |
| m_UMax(const LHS &L, const RHS &R) { |
| return MaxMin_match<LHS, RHS, umax_pred_ty>(L, R); |
| } |
| |
| template<typename LHS, typename RHS> |
| inline MaxMin_match<LHS, RHS, umin_pred_ty> |
| m_UMin(const LHS &L, const RHS &R) { |
| return MaxMin_match<LHS, RHS, umin_pred_ty>(L, R); |
| } |
| |
| } // end namespace PatternMatch |
| } // end namespace llvm |
| |
| #endif |