| //===- llvm/Analysis/ValueTracking.h - Walk computations --------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains routines that help analyze properties that chains of |
| // computations have. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_ANALYSIS_VALUETRACKING_H |
| #define LLVM_ANALYSIS_VALUETRACKING_H |
| |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/Support/DataTypes.h" |
| #include <string> |
| |
| namespace llvm { |
| template <typename T> class SmallVectorImpl; |
| class Value; |
| class Instruction; |
| class APInt; |
| class TargetData; |
| |
| /// ComputeMaskedBits - Determine which of the bits specified in Mask are |
| /// known to be either zero or one and return them in the KnownZero/KnownOne |
| /// bit sets. This code only analyzes bits in Mask, in order to short-circuit |
| /// processing. |
| /// |
| /// This function is defined on values with integer type, values with pointer |
| /// type (but only if TD is non-null), and vectors of integers. In the case |
| /// where V is a vector, the mask, known zero, and known one values are the |
| /// same width as the vector element, and the bit is set only if it is true |
| /// for all of the elements in the vector. |
| void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero, |
| APInt &KnownOne, const TargetData *TD = 0, |
| unsigned Depth = 0); |
| |
| /// ComputeSignBit - Determine whether the sign bit is known to be zero or |
| /// one. Convenience wrapper around ComputeMaskedBits. |
| void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, |
| const TargetData *TD = 0, unsigned Depth = 0); |
| |
| /// isPowerOfTwo - Return true if the given value is known to have exactly one |
| /// bit set when defined. For vectors return true if every element is known to |
| /// be a power of two when defined. Supports values with integer or pointer |
| /// type and vectors of integers. |
| bool isPowerOfTwo(Value *V, const TargetData *TD = 0, unsigned Depth = 0); |
| |
| /// isKnownNonZero - Return true if the given value is known to be non-zero |
| /// when defined. For vectors return true if every element is known to be |
| /// non-zero when defined. Supports values with integer or pointer type and |
| /// vectors of integers. |
| bool isKnownNonZero(Value *V, const TargetData *TD = 0, unsigned Depth = 0); |
| |
| /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use |
| /// this predicate to simplify operations downstream. Mask is known to be |
| /// zero for bits that V cannot have. |
| /// |
| /// This function is defined on values with integer type, values with pointer |
| /// type (but only if TD is non-null), and vectors of integers. In the case |
| /// where V is a vector, the mask, known zero, and known one values are the |
| /// same width as the vector element, and the bit is set only if it is true |
| /// for all of the elements in the vector. |
| bool MaskedValueIsZero(Value *V, const APInt &Mask, |
| const TargetData *TD = 0, unsigned Depth = 0); |
| |
| |
| /// ComputeNumSignBits - Return the number of times the sign bit of the |
| /// register is replicated into the other bits. We know that at least 1 bit |
| /// is always equal to the sign bit (itself), but other cases can give us |
| /// information. For example, immediately after an "ashr X, 2", we know that |
| /// the top 3 bits are all equal to each other, so we return 3. |
| /// |
| /// 'Op' must have a scalar integer type. |
| /// |
| unsigned ComputeNumSignBits(Value *Op, const TargetData *TD = 0, |
| unsigned Depth = 0); |
| |
| /// ComputeMultiple - This function computes the integer multiple of Base that |
| /// equals V. If successful, it returns true and returns the multiple in |
| /// Multiple. If unsuccessful, it returns false. Also, if V can be |
| /// simplified to an integer, then the simplified V is returned in Val. Look |
| /// through sext only if LookThroughSExt=true. |
| bool ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, |
| bool LookThroughSExt = false, |
| unsigned Depth = 0); |
| |
| /// CannotBeNegativeZero - Return true if we can prove that the specified FP |
| /// value is never equal to -0.0. |
| /// |
| bool CannotBeNegativeZero(const Value *V, unsigned Depth = 0); |
| |
| /// isBytewiseValue - If the specified value can be set by repeating the same |
| /// byte in memory, return the i8 value that it is represented with. This is |
| /// true for all i8 values obviously, but is also true for i32 0, i32 -1, |
| /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated |
| /// byte store (e.g. i16 0x1234), return null. |
| Value *isBytewiseValue(Value *V); |
| |
| /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if |
| /// the scalar value indexed is already around as a register, for example if |
| /// it were inserted directly into the aggregrate. |
| /// |
| /// If InsertBefore is not null, this function will duplicate (modified) |
| /// insertvalues when a part of a nested struct is extracted. |
| Value *FindInsertedValue(Value *V, |
| ArrayRef<unsigned> idx_range, |
| Instruction *InsertBefore = 0); |
| |
| /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if |
| /// it can be expressed as a base pointer plus a constant offset. Return the |
| /// base and offset to the caller. |
| Value *GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, |
| const TargetData &TD); |
| static inline const Value * |
| GetPointerBaseWithConstantOffset(const Value *Ptr, int64_t &Offset, |
| const TargetData &TD) { |
| return GetPointerBaseWithConstantOffset(const_cast<Value*>(Ptr), Offset,TD); |
| } |
| |
| /// GetConstantStringInfo - This function computes the length of a |
| /// null-terminated C string pointed to by V. If successful, it returns true |
| /// and returns the string in Str. If unsuccessful, it returns false. If |
| /// StopAtNul is set to true (the default), the returned string is truncated |
| /// by a nul character in the global. If StopAtNul is false, the nul |
| /// character is included in the result string. |
| bool GetConstantStringInfo(const Value *V, std::string &Str, |
| uint64_t Offset = 0, |
| bool StopAtNul = true); |
| |
| /// GetStringLength - If we can compute the length of the string pointed to by |
| /// the specified pointer, return 'len+1'. If we can't, return 0. |
| uint64_t GetStringLength(Value *V); |
| |
| /// GetUnderlyingObject - This method strips off any GEP address adjustments |
| /// and pointer casts from the specified value, returning the original object |
| /// being addressed. Note that the returned value has pointer type if the |
| /// specified value does. If the MaxLookup value is non-zero, it limits the |
| /// number of instructions to be stripped off. |
| Value *GetUnderlyingObject(Value *V, const TargetData *TD = 0, |
| unsigned MaxLookup = 6); |
| static inline const Value * |
| GetUnderlyingObject(const Value *V, const TargetData *TD = 0, |
| unsigned MaxLookup = 6) { |
| return GetUnderlyingObject(const_cast<Value *>(V), TD, MaxLookup); |
| } |
| |
| /// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer |
| /// are lifetime markers. |
| bool onlyUsedByLifetimeMarkers(const Value *V); |
| |
| } // end namespace llvm |
| |
| #endif |