//===- SparcInstrInfo.td - Target Description for Sparc Target ------------===// | |
// | |
// The LLVM Compiler Infrastructure | |
// | |
// This file is distributed under the University of Illinois Open Source | |
// License. See LICENSE.TXT for details. | |
// | |
//===----------------------------------------------------------------------===// | |
// | |
// This file describes the Sparc instructions in TableGen format. | |
// | |
//===----------------------------------------------------------------------===// | |
//===----------------------------------------------------------------------===// | |
// Instruction format superclass | |
//===----------------------------------------------------------------------===// | |
include "SparcInstrFormats.td" | |
//===----------------------------------------------------------------------===// | |
// Feature predicates. | |
//===----------------------------------------------------------------------===// | |
// HasV9 - This predicate is true when the target processor supports V9 | |
// instructions. Note that the machine may be running in 32-bit mode. | |
def HasV9 : Predicate<"Subtarget.isV9()">; | |
// HasNoV9 - This predicate is true when the target doesn't have V9 | |
// instructions. Use of this is just a hack for the isel not having proper | |
// costs for V8 instructions that are more expensive than their V9 ones. | |
def HasNoV9 : Predicate<"!Subtarget.isV9()">; | |
// HasVIS - This is true when the target processor has VIS extensions. | |
def HasVIS : Predicate<"Subtarget.isVIS()">; | |
// UseDeprecatedInsts - This predicate is true when the target processor is a | |
// V8, or when it is V9 but the V8 deprecated instructions are efficient enough | |
// to use when appropriate. In either of these cases, the instruction selector | |
// will pick deprecated instructions. | |
def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">; | |
//===----------------------------------------------------------------------===// | |
// Instruction Pattern Stuff | |
//===----------------------------------------------------------------------===// | |
def simm11 : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>; | |
def simm13 : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>; | |
def LO10 : SDNodeXForm<imm, [{ | |
return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023, | |
MVT::i32); | |
}]>; | |
def HI22 : SDNodeXForm<imm, [{ | |
// Transformation function: shift the immediate value down into the low bits. | |
return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, MVT::i32); | |
}]>; | |
def SETHIimm : PatLeaf<(imm), [{ | |
return (((unsigned)N->getZExtValue() >> 10) << 10) == | |
(unsigned)N->getZExtValue(); | |
}], HI22>; | |
// Addressing modes. | |
def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>; | |
def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], []>; | |
// Address operands | |
def MEMrr : Operand<i32> { | |
let PrintMethod = "printMemOperand"; | |
let MIOperandInfo = (ops IntRegs, IntRegs); | |
} | |
def MEMri : Operand<i32> { | |
let PrintMethod = "printMemOperand"; | |
let MIOperandInfo = (ops IntRegs, i32imm); | |
} | |
// Branch targets have OtherVT type. | |
def brtarget : Operand<OtherVT>; | |
def calltarget : Operand<i32>; | |
// Operand for printing out a condition code. | |
let PrintMethod = "printCCOperand" in | |
def CCOp : Operand<i32>; | |
def SDTSPcmpfcc : | |
SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>; | |
def SDTSPbrcc : | |
SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>; | |
def SDTSPselectcc : | |
SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>; | |
def SDTSPFTOI : | |
SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>; | |
def SDTSPITOF : | |
SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>; | |
def SPcmpicc : SDNode<"SPISD::CMPICC", SDTIntBinOp, [SDNPOutGlue]>; | |
def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>; | |
def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; | |
def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; | |
def SPhi : SDNode<"SPISD::Hi", SDTIntUnaryOp>; | |
def SPlo : SDNode<"SPISD::Lo", SDTIntUnaryOp>; | |
def SPftoi : SDNode<"SPISD::FTOI", SDTSPFTOI>; | |
def SPitof : SDNode<"SPISD::ITOF", SDTSPITOF>; | |
def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>; | |
def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>; | |
// These are target-independent nodes, but have target-specific formats. | |
def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>; | |
def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, | |
SDTCisVT<1, i32> ]>; | |
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart, | |
[SDNPHasChain, SDNPOutGlue]>; | |
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd, | |
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; | |
def SDT_SPCall : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>; | |
def call : SDNode<"SPISD::CALL", SDT_SPCall, | |
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, | |
SDNPVariadic]>; | |
def SDT_SPRet : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; | |
def retflag : SDNode<"SPISD::RET_FLAG", SDT_SPRet, | |
[SDNPHasChain, SDNPOptInGlue]>; | |
def flushw : SDNode<"SPISD::FLUSHW", SDTNone, | |
[SDNPHasChain]>; | |
def getPCX : Operand<i32> { | |
let PrintMethod = "printGetPCX"; | |
} | |
//===----------------------------------------------------------------------===// | |
// SPARC Flag Conditions | |
//===----------------------------------------------------------------------===// | |
// Note that these values must be kept in sync with the CCOp::CondCode enum | |
// values. | |
class ICC_VAL<int N> : PatLeaf<(i32 N)>; | |
def ICC_NE : ICC_VAL< 9>; // Not Equal | |
def ICC_E : ICC_VAL< 1>; // Equal | |
def ICC_G : ICC_VAL<10>; // Greater | |
def ICC_LE : ICC_VAL< 2>; // Less or Equal | |
def ICC_GE : ICC_VAL<11>; // Greater or Equal | |
def ICC_L : ICC_VAL< 3>; // Less | |
def ICC_GU : ICC_VAL<12>; // Greater Unsigned | |
def ICC_LEU : ICC_VAL< 4>; // Less or Equal Unsigned | |
def ICC_CC : ICC_VAL<13>; // Carry Clear/Great or Equal Unsigned | |
def ICC_CS : ICC_VAL< 5>; // Carry Set/Less Unsigned | |
def ICC_POS : ICC_VAL<14>; // Positive | |
def ICC_NEG : ICC_VAL< 6>; // Negative | |
def ICC_VC : ICC_VAL<15>; // Overflow Clear | |
def ICC_VS : ICC_VAL< 7>; // Overflow Set | |
class FCC_VAL<int N> : PatLeaf<(i32 N)>; | |
def FCC_U : FCC_VAL<23>; // Unordered | |
def FCC_G : FCC_VAL<22>; // Greater | |
def FCC_UG : FCC_VAL<21>; // Unordered or Greater | |
def FCC_L : FCC_VAL<20>; // Less | |
def FCC_UL : FCC_VAL<19>; // Unordered or Less | |
def FCC_LG : FCC_VAL<18>; // Less or Greater | |
def FCC_NE : FCC_VAL<17>; // Not Equal | |
def FCC_E : FCC_VAL<25>; // Equal | |
def FCC_UE : FCC_VAL<24>; // Unordered or Equal | |
def FCC_GE : FCC_VAL<25>; // Greater or Equal | |
def FCC_UGE : FCC_VAL<26>; // Unordered or Greater or Equal | |
def FCC_LE : FCC_VAL<27>; // Less or Equal | |
def FCC_ULE : FCC_VAL<28>; // Unordered or Less or Equal | |
def FCC_O : FCC_VAL<29>; // Ordered | |
//===----------------------------------------------------------------------===// | |
// Instruction Class Templates | |
//===----------------------------------------------------------------------===// | |
/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot. | |
multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode> { | |
def rr : F3_1<2, Op3Val, | |
(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), | |
!strconcat(OpcStr, " $b, $c, $dst"), | |
[(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]>; | |
def ri : F3_2<2, Op3Val, | |
(outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c), | |
!strconcat(OpcStr, " $b, $c, $dst"), | |
[(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]>; | |
} | |
/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no | |
/// pattern. | |
multiclass F3_12np<string OpcStr, bits<6> Op3Val> { | |
def rr : F3_1<2, Op3Val, | |
(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), | |
!strconcat(OpcStr, " $b, $c, $dst"), []>; | |
def ri : F3_2<2, Op3Val, | |
(outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c), | |
!strconcat(OpcStr, " $b, $c, $dst"), []>; | |
} | |
//===----------------------------------------------------------------------===// | |
// Instructions | |
//===----------------------------------------------------------------------===// | |
// Pseudo instructions. | |
class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern> | |
: InstSP<outs, ins, asmstr, pattern>; | |
// GETPCX for PIC | |
let Defs = [O7] in { | |
def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >; | |
} | |
let Defs = [O6], Uses = [O6] in { | |
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt), | |
"!ADJCALLSTACKDOWN $amt", | |
[(callseq_start timm:$amt)]>; | |
def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), | |
"!ADJCALLSTACKUP $amt1", | |
[(callseq_end timm:$amt1, timm:$amt2)]>; | |
} | |
let hasSideEffects = 1, mayStore = 1 in { | |
let rd = 0, rs1 = 0, rs2 = 0 in | |
def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins), | |
"flushw", | |
[(flushw)]>, Requires<[HasV9]>; | |
let rd = 0, rs1 = 1, simm13 = 3 in | |
def TA3 : F3_2<0b10, 0b111010, (outs), (ins), | |
"ta 3", | |
[(flushw)]>; | |
} | |
def UNIMP : F2_1<0b000, (outs), (ins i32imm:$val), | |
"unimp $val", []>; | |
// FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the | |
// fpmover pass. | |
let Predicates = [HasNoV9] in { // Only emit these in V8 mode. | |
def FpMOVD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src), | |
"!FpMOVD $src, $dst", []>; | |
def FpNEGD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src), | |
"!FpNEGD $src, $dst", | |
[(set DFPRegs:$dst, (fneg DFPRegs:$src))]>; | |
def FpABSD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src), | |
"!FpABSD $src, $dst", | |
[(set DFPRegs:$dst, (fabs DFPRegs:$src))]>; | |
} | |
// SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded after | |
// instruction selection into a branch sequence. This has to handle all | |
// permutations of selection between i32/f32/f64 on ICC and FCC. | |
// Expanded after instruction selection. | |
let Uses = [ICC], usesCustomInserter = 1 in { | |
def SELECT_CC_Int_ICC | |
: Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond), | |
"; SELECT_CC_Int_ICC PSEUDO!", | |
[(set IntRegs:$dst, (SPselecticc IntRegs:$T, IntRegs:$F, | |
imm:$Cond))]>; | |
def SELECT_CC_FP_ICC | |
: Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond), | |
"; SELECT_CC_FP_ICC PSEUDO!", | |
[(set FPRegs:$dst, (SPselecticc FPRegs:$T, FPRegs:$F, | |
imm:$Cond))]>; | |
def SELECT_CC_DFP_ICC | |
: Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond), | |
"; SELECT_CC_DFP_ICC PSEUDO!", | |
[(set DFPRegs:$dst, (SPselecticc DFPRegs:$T, DFPRegs:$F, | |
imm:$Cond))]>; | |
} | |
let usesCustomInserter = 1, Uses = [FCC] in { | |
def SELECT_CC_Int_FCC | |
: Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond), | |
"; SELECT_CC_Int_FCC PSEUDO!", | |
[(set IntRegs:$dst, (SPselectfcc IntRegs:$T, IntRegs:$F, | |
imm:$Cond))]>; | |
def SELECT_CC_FP_FCC | |
: Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond), | |
"; SELECT_CC_FP_FCC PSEUDO!", | |
[(set FPRegs:$dst, (SPselectfcc FPRegs:$T, FPRegs:$F, | |
imm:$Cond))]>; | |
def SELECT_CC_DFP_FCC | |
: Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond), | |
"; SELECT_CC_DFP_FCC PSEUDO!", | |
[(set DFPRegs:$dst, (SPselectfcc DFPRegs:$T, DFPRegs:$F, | |
imm:$Cond))]>; | |
} | |
// Section A.3 - Synthetic Instructions, p. 85 | |
// special cases of JMPL: | |
let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in { | |
let rd = O7.Num, rs1 = G0.Num in | |
def RETL: F3_2<2, 0b111000, (outs), (ins i32imm:$val), | |
"jmp %o7+$val", [(retflag simm13:$val)]>; | |
let rd = I7.Num, rs1 = G0.Num in | |
def RET: F3_2<2, 0b111000, (outs), (ins i32imm:$val), | |
"jmp %i7+$val", []>; | |
} | |
// Section B.1 - Load Integer Instructions, p. 90 | |
def LDSBrr : F3_1<3, 0b001001, | |
(outs IntRegs:$dst), (ins MEMrr:$addr), | |
"ldsb [$addr], $dst", | |
[(set IntRegs:$dst, (sextloadi8 ADDRrr:$addr))]>; | |
def LDSBri : F3_2<3, 0b001001, | |
(outs IntRegs:$dst), (ins MEMri:$addr), | |
"ldsb [$addr], $dst", | |
[(set IntRegs:$dst, (sextloadi8 ADDRri:$addr))]>; | |
def LDSHrr : F3_1<3, 0b001010, | |
(outs IntRegs:$dst), (ins MEMrr:$addr), | |
"ldsh [$addr], $dst", | |
[(set IntRegs:$dst, (sextloadi16 ADDRrr:$addr))]>; | |
def LDSHri : F3_2<3, 0b001010, | |
(outs IntRegs:$dst), (ins MEMri:$addr), | |
"ldsh [$addr], $dst", | |
[(set IntRegs:$dst, (sextloadi16 ADDRri:$addr))]>; | |
def LDUBrr : F3_1<3, 0b000001, | |
(outs IntRegs:$dst), (ins MEMrr:$addr), | |
"ldub [$addr], $dst", | |
[(set IntRegs:$dst, (zextloadi8 ADDRrr:$addr))]>; | |
def LDUBri : F3_2<3, 0b000001, | |
(outs IntRegs:$dst), (ins MEMri:$addr), | |
"ldub [$addr], $dst", | |
[(set IntRegs:$dst, (zextloadi8 ADDRri:$addr))]>; | |
def LDUHrr : F3_1<3, 0b000010, | |
(outs IntRegs:$dst), (ins MEMrr:$addr), | |
"lduh [$addr], $dst", | |
[(set IntRegs:$dst, (zextloadi16 ADDRrr:$addr))]>; | |
def LDUHri : F3_2<3, 0b000010, | |
(outs IntRegs:$dst), (ins MEMri:$addr), | |
"lduh [$addr], $dst", | |
[(set IntRegs:$dst, (zextloadi16 ADDRri:$addr))]>; | |
def LDrr : F3_1<3, 0b000000, | |
(outs IntRegs:$dst), (ins MEMrr:$addr), | |
"ld [$addr], $dst", | |
[(set IntRegs:$dst, (load ADDRrr:$addr))]>; | |
def LDri : F3_2<3, 0b000000, | |
(outs IntRegs:$dst), (ins MEMri:$addr), | |
"ld [$addr], $dst", | |
[(set IntRegs:$dst, (load ADDRri:$addr))]>; | |
// Section B.2 - Load Floating-point Instructions, p. 92 | |
def LDFrr : F3_1<3, 0b100000, | |
(outs FPRegs:$dst), (ins MEMrr:$addr), | |
"ld [$addr], $dst", | |
[(set FPRegs:$dst, (load ADDRrr:$addr))]>; | |
def LDFri : F3_2<3, 0b100000, | |
(outs FPRegs:$dst), (ins MEMri:$addr), | |
"ld [$addr], $dst", | |
[(set FPRegs:$dst, (load ADDRri:$addr))]>; | |
def LDDFrr : F3_1<3, 0b100011, | |
(outs DFPRegs:$dst), (ins MEMrr:$addr), | |
"ldd [$addr], $dst", | |
[(set DFPRegs:$dst, (load ADDRrr:$addr))]>; | |
def LDDFri : F3_2<3, 0b100011, | |
(outs DFPRegs:$dst), (ins MEMri:$addr), | |
"ldd [$addr], $dst", | |
[(set DFPRegs:$dst, (load ADDRri:$addr))]>; | |
// Section B.4 - Store Integer Instructions, p. 95 | |
def STBrr : F3_1<3, 0b000101, | |
(outs), (ins MEMrr:$addr, IntRegs:$src), | |
"stb $src, [$addr]", | |
[(truncstorei8 IntRegs:$src, ADDRrr:$addr)]>; | |
def STBri : F3_2<3, 0b000101, | |
(outs), (ins MEMri:$addr, IntRegs:$src), | |
"stb $src, [$addr]", | |
[(truncstorei8 IntRegs:$src, ADDRri:$addr)]>; | |
def STHrr : F3_1<3, 0b000110, | |
(outs), (ins MEMrr:$addr, IntRegs:$src), | |
"sth $src, [$addr]", | |
[(truncstorei16 IntRegs:$src, ADDRrr:$addr)]>; | |
def STHri : F3_2<3, 0b000110, | |
(outs), (ins MEMri:$addr, IntRegs:$src), | |
"sth $src, [$addr]", | |
[(truncstorei16 IntRegs:$src, ADDRri:$addr)]>; | |
def STrr : F3_1<3, 0b000100, | |
(outs), (ins MEMrr:$addr, IntRegs:$src), | |
"st $src, [$addr]", | |
[(store IntRegs:$src, ADDRrr:$addr)]>; | |
def STri : F3_2<3, 0b000100, | |
(outs), (ins MEMri:$addr, IntRegs:$src), | |
"st $src, [$addr]", | |
[(store IntRegs:$src, ADDRri:$addr)]>; | |
// Section B.5 - Store Floating-point Instructions, p. 97 | |
def STFrr : F3_1<3, 0b100100, | |
(outs), (ins MEMrr:$addr, FPRegs:$src), | |
"st $src, [$addr]", | |
[(store FPRegs:$src, ADDRrr:$addr)]>; | |
def STFri : F3_2<3, 0b100100, | |
(outs), (ins MEMri:$addr, FPRegs:$src), | |
"st $src, [$addr]", | |
[(store FPRegs:$src, ADDRri:$addr)]>; | |
def STDFrr : F3_1<3, 0b100111, | |
(outs), (ins MEMrr:$addr, DFPRegs:$src), | |
"std $src, [$addr]", | |
[(store DFPRegs:$src, ADDRrr:$addr)]>; | |
def STDFri : F3_2<3, 0b100111, | |
(outs), (ins MEMri:$addr, DFPRegs:$src), | |
"std $src, [$addr]", | |
[(store DFPRegs:$src, ADDRri:$addr)]>; | |
// Section B.9 - SETHI Instruction, p. 104 | |
def SETHIi: F2_1<0b100, | |
(outs IntRegs:$dst), (ins i32imm:$src), | |
"sethi $src, $dst", | |
[(set IntRegs:$dst, SETHIimm:$src)]>; | |
// Section B.10 - NOP Instruction, p. 105 | |
// (It's a special case of SETHI) | |
let rd = 0, imm22 = 0 in | |
def NOP : F2_1<0b100, (outs), (ins), "nop", []>; | |
// Section B.11 - Logical Instructions, p. 106 | |
defm AND : F3_12<"and", 0b000001, and>; | |
def ANDNrr : F3_1<2, 0b000101, | |
(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), | |
"andn $b, $c, $dst", | |
[(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>; | |
def ANDNri : F3_2<2, 0b000101, | |
(outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c), | |
"andn $b, $c, $dst", []>; | |
defm OR : F3_12<"or", 0b000010, or>; | |
def ORNrr : F3_1<2, 0b000110, | |
(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), | |
"orn $b, $c, $dst", | |
[(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>; | |
def ORNri : F3_2<2, 0b000110, | |
(outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c), | |
"orn $b, $c, $dst", []>; | |
defm XOR : F3_12<"xor", 0b000011, xor>; | |
def XNORrr : F3_1<2, 0b000111, | |
(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), | |
"xnor $b, $c, $dst", | |
[(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>; | |
def XNORri : F3_2<2, 0b000111, | |
(outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c), | |
"xnor $b, $c, $dst", []>; | |
// Section B.12 - Shift Instructions, p. 107 | |
defm SLL : F3_12<"sll", 0b100101, shl>; | |
defm SRL : F3_12<"srl", 0b100110, srl>; | |
defm SRA : F3_12<"sra", 0b100111, sra>; | |
// Section B.13 - Add Instructions, p. 108 | |
defm ADD : F3_12<"add", 0b000000, add>; | |
// "LEA" forms of add (patterns to make tblgen happy) | |
def LEA_ADDri : F3_2<2, 0b000000, | |
(outs IntRegs:$dst), (ins MEMri:$addr), | |
"add ${addr:arith}, $dst", | |
[(set IntRegs:$dst, ADDRri:$addr)]>; | |
let Defs = [ICC] in | |
defm ADDCC : F3_12<"addcc", 0b010000, addc>; | |
let Uses = [ICC] in | |
defm ADDX : F3_12<"addx", 0b001000, adde>; | |
// Section B.15 - Subtract Instructions, p. 110 | |
defm SUB : F3_12 <"sub" , 0b000100, sub>; | |
let Uses = [ICC] in | |
defm SUBX : F3_12 <"subx" , 0b001100, sube>; | |
let Defs = [ICC] in | |
defm SUBCC : F3_12 <"subcc", 0b010100, SPcmpicc>; | |
let Uses = [ICC], Defs = [ICC] in | |
def SUBXCCrr: F3_1<2, 0b011100, | |
(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), | |
"subxcc $b, $c, $dst", []>; | |
// Section B.18 - Multiply Instructions, p. 113 | |
let Defs = [Y] in { | |
defm UMUL : F3_12np<"umul", 0b001010>; | |
defm SMUL : F3_12 <"smul", 0b001011, mul>; | |
} | |
// Section B.19 - Divide Instructions, p. 115 | |
let Defs = [Y] in { | |
defm UDIV : F3_12np<"udiv", 0b001110>; | |
defm SDIV : F3_12np<"sdiv", 0b001111>; | |
} | |
// Section B.20 - SAVE and RESTORE, p. 117 | |
defm SAVE : F3_12np<"save" , 0b111100>; | |
defm RESTORE : F3_12np<"restore", 0b111101>; | |
// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119 | |
// conditional branch class: | |
class BranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern> | |
: F2_2<cc, 0b010, (outs), ins, asmstr, pattern> { | |
let isBranch = 1; | |
let isTerminator = 1; | |
let hasDelaySlot = 1; | |
} | |
let isBarrier = 1 in | |
def BA : BranchSP<0b1000, (ins brtarget:$dst), | |
"ba $dst", | |
[(br bb:$dst)]>; | |
// FIXME: the encoding for the JIT should look at the condition field. | |
let Uses = [ICC] in | |
def BCOND : BranchSP<0, (ins brtarget:$dst, CCOp:$cc), | |
"b$cc $dst", | |
[(SPbricc bb:$dst, imm:$cc)]>; | |
// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121 | |
// floating-point conditional branch class: | |
class FPBranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern> | |
: F2_2<cc, 0b110, (outs), ins, asmstr, pattern> { | |
let isBranch = 1; | |
let isTerminator = 1; | |
let hasDelaySlot = 1; | |
} | |
// FIXME: the encoding for the JIT should look at the condition field. | |
let Uses = [FCC] in | |
def FBCOND : FPBranchSP<0, (ins brtarget:$dst, CCOp:$cc), | |
"fb$cc $dst", | |
[(SPbrfcc bb:$dst, imm:$cc)]>; | |
// Section B.24 - Call and Link Instruction, p. 125 | |
// This is the only Format 1 instruction | |
let Uses = [O6], | |
hasDelaySlot = 1, isCall = 1, | |
Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7, | |
D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15, | |
ICC, FCC, Y] in { | |
def CALL : InstSP<(outs), (ins calltarget:$dst, variable_ops), | |
"call $dst", []> { | |
bits<30> disp; | |
let op = 1; | |
let Inst{29-0} = disp; | |
} | |
// indirect calls | |
def JMPLrr : F3_1<2, 0b111000, | |
(outs), (ins MEMrr:$ptr, variable_ops), | |
"call $ptr", | |
[(call ADDRrr:$ptr)]>; | |
def JMPLri : F3_2<2, 0b111000, | |
(outs), (ins MEMri:$ptr, variable_ops), | |
"call $ptr", | |
[(call ADDRri:$ptr)]>; | |
} | |
// Section B.28 - Read State Register Instructions | |
let Uses = [Y] in | |
def RDY : F3_1<2, 0b101000, | |
(outs IntRegs:$dst), (ins), | |
"rd %y, $dst", []>; | |
// Section B.29 - Write State Register Instructions | |
let Defs = [Y] in { | |
def WRYrr : F3_1<2, 0b110000, | |
(outs), (ins IntRegs:$b, IntRegs:$c), | |
"wr $b, $c, %y", []>; | |
def WRYri : F3_2<2, 0b110000, | |
(outs), (ins IntRegs:$b, i32imm:$c), | |
"wr $b, $c, %y", []>; | |
} | |
// Convert Integer to Floating-point Instructions, p. 141 | |
def FITOS : F3_3<2, 0b110100, 0b011000100, | |
(outs FPRegs:$dst), (ins FPRegs:$src), | |
"fitos $src, $dst", | |
[(set FPRegs:$dst, (SPitof FPRegs:$src))]>; | |
def FITOD : F3_3<2, 0b110100, 0b011001000, | |
(outs DFPRegs:$dst), (ins FPRegs:$src), | |
"fitod $src, $dst", | |
[(set DFPRegs:$dst, (SPitof FPRegs:$src))]>; | |
// Convert Floating-point to Integer Instructions, p. 142 | |
def FSTOI : F3_3<2, 0b110100, 0b011010001, | |
(outs FPRegs:$dst), (ins FPRegs:$src), | |
"fstoi $src, $dst", | |
[(set FPRegs:$dst, (SPftoi FPRegs:$src))]>; | |
def FDTOI : F3_3<2, 0b110100, 0b011010010, | |
(outs FPRegs:$dst), (ins DFPRegs:$src), | |
"fdtoi $src, $dst", | |
[(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>; | |
// Convert between Floating-point Formats Instructions, p. 143 | |
def FSTOD : F3_3<2, 0b110100, 0b011001001, | |
(outs DFPRegs:$dst), (ins FPRegs:$src), | |
"fstod $src, $dst", | |
[(set DFPRegs:$dst, (fextend FPRegs:$src))]>; | |
def FDTOS : F3_3<2, 0b110100, 0b011000110, | |
(outs FPRegs:$dst), (ins DFPRegs:$src), | |
"fdtos $src, $dst", | |
[(set FPRegs:$dst, (fround DFPRegs:$src))]>; | |
// Floating-point Move Instructions, p. 144 | |
def FMOVS : F3_3<2, 0b110100, 0b000000001, | |
(outs FPRegs:$dst), (ins FPRegs:$src), | |
"fmovs $src, $dst", []>; | |
def FNEGS : F3_3<2, 0b110100, 0b000000101, | |
(outs FPRegs:$dst), (ins FPRegs:$src), | |
"fnegs $src, $dst", | |
[(set FPRegs:$dst, (fneg FPRegs:$src))]>; | |
def FABSS : F3_3<2, 0b110100, 0b000001001, | |
(outs FPRegs:$dst), (ins FPRegs:$src), | |
"fabss $src, $dst", | |
[(set FPRegs:$dst, (fabs FPRegs:$src))]>; | |
// Floating-point Square Root Instructions, p.145 | |
def FSQRTS : F3_3<2, 0b110100, 0b000101001, | |
(outs FPRegs:$dst), (ins FPRegs:$src), | |
"fsqrts $src, $dst", | |
[(set FPRegs:$dst, (fsqrt FPRegs:$src))]>; | |
def FSQRTD : F3_3<2, 0b110100, 0b000101010, | |
(outs DFPRegs:$dst), (ins DFPRegs:$src), | |
"fsqrtd $src, $dst", | |
[(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>; | |
// Floating-point Add and Subtract Instructions, p. 146 | |
def FADDS : F3_3<2, 0b110100, 0b001000001, | |
(outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2), | |
"fadds $src1, $src2, $dst", | |
[(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>; | |
def FADDD : F3_3<2, 0b110100, 0b001000010, | |
(outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2), | |
"faddd $src1, $src2, $dst", | |
[(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>; | |
def FSUBS : F3_3<2, 0b110100, 0b001000101, | |
(outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2), | |
"fsubs $src1, $src2, $dst", | |
[(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>; | |
def FSUBD : F3_3<2, 0b110100, 0b001000110, | |
(outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2), | |
"fsubd $src1, $src2, $dst", | |
[(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>; | |
// Floating-point Multiply and Divide Instructions, p. 147 | |
def FMULS : F3_3<2, 0b110100, 0b001001001, | |
(outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2), | |
"fmuls $src1, $src2, $dst", | |
[(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>; | |
def FMULD : F3_3<2, 0b110100, 0b001001010, | |
(outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2), | |
"fmuld $src1, $src2, $dst", | |
[(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>; | |
def FSMULD : F3_3<2, 0b110100, 0b001101001, | |
(outs DFPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2), | |
"fsmuld $src1, $src2, $dst", | |
[(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1), | |
(fextend FPRegs:$src2)))]>; | |
def FDIVS : F3_3<2, 0b110100, 0b001001101, | |
(outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2), | |
"fdivs $src1, $src2, $dst", | |
[(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>; | |
def FDIVD : F3_3<2, 0b110100, 0b001001110, | |
(outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2), | |
"fdivd $src1, $src2, $dst", | |
[(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>; | |
// Floating-point Compare Instructions, p. 148 | |
// Note: the 2nd template arg is different for these guys. | |
// Note 2: the result of a FCMP is not available until the 2nd cycle | |
// after the instr is retired, but there is no interlock. This behavior | |
// is modelled with a forced noop after the instruction. | |
let Defs = [FCC] in { | |
def FCMPS : F3_3<2, 0b110101, 0b001010001, | |
(outs), (ins FPRegs:$src1, FPRegs:$src2), | |
"fcmps $src1, $src2\n\tnop", | |
[(SPcmpfcc FPRegs:$src1, FPRegs:$src2)]>; | |
def FCMPD : F3_3<2, 0b110101, 0b001010010, | |
(outs), (ins DFPRegs:$src1, DFPRegs:$src2), | |
"fcmpd $src1, $src2\n\tnop", | |
[(SPcmpfcc DFPRegs:$src1, DFPRegs:$src2)]>; | |
} | |
//===----------------------------------------------------------------------===// | |
// V9 Instructions | |
//===----------------------------------------------------------------------===// | |
// V9 Conditional Moves. | |
let Predicates = [HasV9], Constraints = "$T = $dst" in { | |
// Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual. | |
// FIXME: Add instruction encodings for the JIT some day. | |
let Uses = [ICC] in { | |
def MOVICCrr | |
: Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc), | |
"mov$cc %icc, $F, $dst", | |
[(set IntRegs:$dst, | |
(SPselecticc IntRegs:$F, IntRegs:$T, imm:$cc))]>; | |
def MOVICCri | |
: Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc), | |
"mov$cc %icc, $F, $dst", | |
[(set IntRegs:$dst, | |
(SPselecticc simm11:$F, IntRegs:$T, imm:$cc))]>; | |
} | |
let Uses = [FCC] in { | |
def MOVFCCrr | |
: Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc), | |
"mov$cc %fcc0, $F, $dst", | |
[(set IntRegs:$dst, | |
(SPselectfcc IntRegs:$F, IntRegs:$T, imm:$cc))]>; | |
def MOVFCCri | |
: Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc), | |
"mov$cc %fcc0, $F, $dst", | |
[(set IntRegs:$dst, | |
(SPselectfcc simm11:$F, IntRegs:$T, imm:$cc))]>; | |
} | |
let Uses = [ICC] in { | |
def FMOVS_ICC | |
: Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc), | |
"fmovs$cc %icc, $F, $dst", | |
[(set FPRegs:$dst, | |
(SPselecticc FPRegs:$F, FPRegs:$T, imm:$cc))]>; | |
def FMOVD_ICC | |
: Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc), | |
"fmovd$cc %icc, $F, $dst", | |
[(set DFPRegs:$dst, | |
(SPselecticc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>; | |
} | |
let Uses = [FCC] in { | |
def FMOVS_FCC | |
: Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc), | |
"fmovs$cc %fcc0, $F, $dst", | |
[(set FPRegs:$dst, | |
(SPselectfcc FPRegs:$F, FPRegs:$T, imm:$cc))]>; | |
def FMOVD_FCC | |
: Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc), | |
"fmovd$cc %fcc0, $F, $dst", | |
[(set DFPRegs:$dst, | |
(SPselectfcc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>; | |
} | |
} | |
// Floating-Point Move Instructions, p. 164 of the V9 manual. | |
let Predicates = [HasV9] in { | |
def FMOVD : F3_3<2, 0b110100, 0b000000010, | |
(outs DFPRegs:$dst), (ins DFPRegs:$src), | |
"fmovd $src, $dst", []>; | |
def FNEGD : F3_3<2, 0b110100, 0b000000110, | |
(outs DFPRegs:$dst), (ins DFPRegs:$src), | |
"fnegd $src, $dst", | |
[(set DFPRegs:$dst, (fneg DFPRegs:$src))]>; | |
def FABSD : F3_3<2, 0b110100, 0b000001010, | |
(outs DFPRegs:$dst), (ins DFPRegs:$src), | |
"fabsd $src, $dst", | |
[(set DFPRegs:$dst, (fabs DFPRegs:$src))]>; | |
} | |
// POPCrr - This does a ctpop of a 64-bit register. As such, we have to clear | |
// the top 32-bits before using it. To do this clearing, we use a SLLri X,0. | |
def POPCrr : F3_1<2, 0b101110, | |
(outs IntRegs:$dst), (ins IntRegs:$src), | |
"popc $src, $dst", []>, Requires<[HasV9]>; | |
def : Pat<(ctpop IntRegs:$src), | |
(POPCrr (SLLri IntRegs:$src, 0))>; | |
//===----------------------------------------------------------------------===// | |
// Non-Instruction Patterns | |
//===----------------------------------------------------------------------===// | |
// Small immediates. | |
def : Pat<(i32 simm13:$val), | |
(ORri G0, imm:$val)>; | |
// Arbitrary immediates. | |
def : Pat<(i32 imm:$val), | |
(ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>; | |
// subc | |
def : Pat<(subc IntRegs:$b, IntRegs:$c), | |
(SUBCCrr IntRegs:$b, IntRegs:$c)>; | |
def : Pat<(subc IntRegs:$b, simm13:$val), | |
(SUBCCri IntRegs:$b, imm:$val)>; | |
// Global addresses, constant pool entries | |
def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>; | |
def : Pat<(SPlo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>; | |
def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>; | |
def : Pat<(SPlo tconstpool:$in), (ORri G0, tconstpool:$in)>; | |
// Add reg, lo. This is used when taking the addr of a global/constpool entry. | |
def : Pat<(add IntRegs:$r, (SPlo tglobaladdr:$in)), | |
(ADDri IntRegs:$r, tglobaladdr:$in)>; | |
def : Pat<(add IntRegs:$r, (SPlo tconstpool:$in)), | |
(ADDri IntRegs:$r, tconstpool:$in)>; | |
// Calls: | |
def : Pat<(call tglobaladdr:$dst), | |
(CALL tglobaladdr:$dst)>; | |
def : Pat<(call texternalsym:$dst), | |
(CALL texternalsym:$dst)>; | |
// Map integer extload's to zextloads. | |
def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; | |
def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>; | |
def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; | |
def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>; | |
def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>; | |
def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>; | |
// zextload bool -> zextload byte | |
def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; | |
def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>; |