| // Copyright (c) 2018 Google LLC |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #ifndef SOURCE_UTIL_SMALL_VECTOR_H_ |
| #define SOURCE_UTIL_SMALL_VECTOR_H_ |
| |
| #include <array> |
| #include <cassert> |
| #include <cstddef> |
| #include <iostream> |
| #include <memory> |
| #include <utility> |
| #include <vector> |
| |
| #include "source/util/make_unique.h" |
| |
| namespace spvtools { |
| namespace utils { |
| |
| // The |SmallVector| class is intended to be a drop-in replacement for |
| // |std::vector|. The difference is in the implementation. A |SmallVector| is |
| // optimized for when the number of elements in the vector are small. Small is |
| // defined by the template parameter |small_size|. |
| // |
| // Note that |SmallVector| is not always faster than an |std::vector|, so you |
| // should experiment with different values for |small_size| and compare to |
| // using and |std::vector|. |
| // |
| // TODO: I have implemented the public member functions from |std::vector| that |
| // I needed. If others are needed they should be implemented. Do not implement |
| // public member functions that are not defined by std::vector. |
| template <class T, size_t small_size> |
| class SmallVector { |
| public: |
| using iterator = T*; |
| using const_iterator = const T*; |
| |
| SmallVector() |
| : size_(0), |
| small_data_(reinterpret_cast<T*>(buffer)), |
| large_data_(nullptr) {} |
| |
| SmallVector(const SmallVector& that) : SmallVector() { *this = that; } |
| |
| SmallVector(SmallVector&& that) : SmallVector() { *this = std::move(that); } |
| |
| SmallVector(const std::vector<T>& vec) : SmallVector() { |
| if (vec.size() > small_size) { |
| large_data_ = MakeUnique<std::vector<T>>(vec); |
| } else { |
| size_ = vec.size(); |
| for (uint32_t i = 0; i < size_; i++) { |
| new (small_data_ + i) T(vec[i]); |
| } |
| } |
| } |
| |
| template <class InputIt> |
| SmallVector(InputIt first, InputIt last) : SmallVector() { |
| insert(end(), first, last); |
| } |
| |
| SmallVector(std::vector<T>&& vec) : SmallVector() { |
| if (vec.size() > small_size) { |
| large_data_ = MakeUnique<std::vector<T>>(std::move(vec)); |
| } else { |
| size_ = vec.size(); |
| for (uint32_t i = 0; i < size_; i++) { |
| new (small_data_ + i) T(std::move(vec[i])); |
| } |
| } |
| vec.clear(); |
| } |
| |
| SmallVector(std::initializer_list<T> init_list) : SmallVector() { |
| if (init_list.size() < small_size) { |
| for (auto it = init_list.begin(); it != init_list.end(); ++it) { |
| new (small_data_ + (size_++)) T(std::move(*it)); |
| } |
| } else { |
| large_data_ = MakeUnique<std::vector<T>>(std::move(init_list)); |
| } |
| } |
| |
| SmallVector(size_t s, const T& v) : SmallVector() { resize(s, v); } |
| |
| virtual ~SmallVector() { |
| for (T* p = small_data_; p < small_data_ + size_; ++p) { |
| p->~T(); |
| } |
| } |
| |
| SmallVector& operator=(const SmallVector& that) { |
| assert(small_data_); |
| if (that.large_data_) { |
| if (large_data_) { |
| *large_data_ = *that.large_data_; |
| } else { |
| large_data_ = MakeUnique<std::vector<T>>(*that.large_data_); |
| } |
| } else { |
| large_data_.reset(nullptr); |
| size_t i = 0; |
| // Do a copy for any element in |this| that is already constructed. |
| for (; i < size_ && i < that.size_; ++i) { |
| small_data_[i] = that.small_data_[i]; |
| } |
| |
| if (i >= that.size_) { |
| // If the size of |this| becomes smaller after the assignment, then |
| // destroy any extra elements. |
| for (; i < size_; ++i) { |
| small_data_[i].~T(); |
| } |
| } else { |
| // If the size of |this| becomes larger after the assignement, copy |
| // construct the new elements that are needed. |
| for (; i < that.size_; ++i) { |
| new (small_data_ + i) T(that.small_data_[i]); |
| } |
| } |
| size_ = that.size_; |
| } |
| return *this; |
| } |
| |
| SmallVector& operator=(SmallVector&& that) { |
| if (that.large_data_) { |
| large_data_.reset(that.large_data_.release()); |
| } else { |
| large_data_.reset(nullptr); |
| size_t i = 0; |
| // Do a move for any element in |this| that is already constructed. |
| for (; i < size_ && i < that.size_; ++i) { |
| small_data_[i] = std::move(that.small_data_[i]); |
| } |
| |
| if (i >= that.size_) { |
| // If the size of |this| becomes smaller after the assignment, then |
| // destroy any extra elements. |
| for (; i < size_; ++i) { |
| small_data_[i].~T(); |
| } |
| } else { |
| // If the size of |this| becomes larger after the assignement, move |
| // construct the new elements that are needed. |
| for (; i < that.size_; ++i) { |
| new (small_data_ + i) T(std::move(that.small_data_[i])); |
| } |
| } |
| size_ = that.size_; |
| } |
| |
| // Reset |that| because all of the data has been moved to |this|. |
| that.DestructSmallData(); |
| return *this; |
| } |
| |
| template <class OtherVector> |
| friend bool operator==(const SmallVector& lhs, const OtherVector& rhs) { |
| if (lhs.size() != rhs.size()) { |
| return false; |
| } |
| |
| auto rit = rhs.begin(); |
| for (auto lit = lhs.begin(); lit != lhs.end(); ++lit, ++rit) { |
| if (*lit != *rit) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // Avoid infinite recursion from rewritten operators in C++20 |
| #if __cplusplus <= 201703L |
| friend bool operator==(const std::vector<T>& lhs, const SmallVector& rhs) { |
| return rhs == lhs; |
| } |
| #endif |
| |
| friend bool operator!=(const SmallVector& lhs, const std::vector<T>& rhs) { |
| return !(lhs == rhs); |
| } |
| |
| friend bool operator!=(const std::vector<T>& lhs, const SmallVector& rhs) { |
| return rhs != lhs; |
| } |
| |
| T& operator[](size_t i) { |
| if (!large_data_) { |
| return small_data_[i]; |
| } else { |
| return (*large_data_)[i]; |
| } |
| } |
| |
| const T& operator[](size_t i) const { |
| if (!large_data_) { |
| return small_data_[i]; |
| } else { |
| return (*large_data_)[i]; |
| } |
| } |
| |
| size_t size() const { |
| if (!large_data_) { |
| return size_; |
| } else { |
| return large_data_->size(); |
| } |
| } |
| |
| iterator begin() { |
| if (large_data_) { |
| return large_data_->data(); |
| } else { |
| return small_data_; |
| } |
| } |
| |
| const_iterator begin() const { |
| if (large_data_) { |
| return large_data_->data(); |
| } else { |
| return small_data_; |
| } |
| } |
| |
| const_iterator cbegin() const { return begin(); } |
| |
| iterator end() { |
| if (large_data_) { |
| return large_data_->data() + large_data_->size(); |
| } else { |
| return small_data_ + size_; |
| } |
| } |
| |
| const_iterator end() const { |
| if (large_data_) { |
| return large_data_->data() + large_data_->size(); |
| } else { |
| return small_data_ + size_; |
| } |
| } |
| |
| const_iterator cend() const { return end(); } |
| |
| T* data() { return begin(); } |
| |
| const T* data() const { return cbegin(); } |
| |
| T& front() { return (*this)[0]; } |
| |
| const T& front() const { return (*this)[0]; } |
| |
| iterator erase(const_iterator pos) { return erase(pos, pos + 1); } |
| |
| iterator erase(const_iterator first, const_iterator last) { |
| if (large_data_) { |
| size_t start_index = first - large_data_->data(); |
| size_t end_index = last - large_data_->data(); |
| auto r = large_data_->erase(large_data_->begin() + start_index, |
| large_data_->begin() + end_index); |
| return large_data_->data() + (r - large_data_->begin()); |
| } |
| |
| // Since C++11, std::vector has |const_iterator| for the parameters, so I |
| // follow that. However, I need iterators to modify the current container, |
| // which is not const. This is why I cast away the const. |
| iterator f = const_cast<iterator>(first); |
| iterator l = const_cast<iterator>(last); |
| iterator e = end(); |
| |
| size_t num_of_del_elements = last - first; |
| iterator ret = f; |
| if (first == last) { |
| return ret; |
| } |
| |
| // Move |last| and any elements after it their earlier position. |
| while (l != e) { |
| *f = std::move(*l); |
| ++f; |
| ++l; |
| } |
| |
| // Destroy the elements that were supposed to be deleted. |
| while (f != l) { |
| f->~T(); |
| ++f; |
| } |
| |
| // Update the size. |
| size_ -= num_of_del_elements; |
| return ret; |
| } |
| |
| void push_back(const T& value) { |
| if (!large_data_ && size_ == small_size) { |
| MoveToLargeData(); |
| } |
| |
| if (large_data_) { |
| large_data_->push_back(value); |
| return; |
| } |
| |
| new (small_data_ + size_) T(value); |
| ++size_; |
| } |
| |
| void push_back(T&& value) { |
| if (!large_data_ && size_ == small_size) { |
| MoveToLargeData(); |
| } |
| |
| if (large_data_) { |
| large_data_->push_back(std::move(value)); |
| return; |
| } |
| |
| new (small_data_ + size_) T(std::move(value)); |
| ++size_; |
| } |
| |
| void pop_back() { |
| if (large_data_) { |
| large_data_->pop_back(); |
| } else { |
| --size_; |
| small_data_[size_].~T(); |
| } |
| } |
| |
| template <class InputIt> |
| iterator insert(iterator pos, InputIt first, InputIt last) { |
| size_t element_idx = (pos - begin()); |
| size_t num_of_new_elements = std::distance(first, last); |
| size_t new_size = size_ + num_of_new_elements; |
| if (!large_data_ && new_size > small_size) { |
| MoveToLargeData(); |
| } |
| |
| if (large_data_) { |
| typename std::vector<T>::iterator new_pos = |
| large_data_->begin() + element_idx; |
| large_data_->insert(new_pos, first, last); |
| return begin() + element_idx; |
| } |
| |
| // Move |pos| and all of the elements after it over |num_of_new_elements| |
| // places. We start at the end and work backwards, to make sure we do not |
| // overwrite data that we have not moved yet. |
| for (iterator i = begin() + new_size - 1, j = end() - 1; j >= pos; |
| --i, --j) { |
| if (i >= begin() + size_) { |
| new (i) T(std::move(*j)); |
| } else { |
| *i = std::move(*j); |
| } |
| } |
| |
| // Copy the new elements into position. |
| iterator p = pos; |
| for (; first != last; ++p, ++first) { |
| if (p >= small_data_ + size_) { |
| new (p) T(*first); |
| } else { |
| *p = *first; |
| } |
| } |
| |
| // Update the size. |
| size_ += num_of_new_elements; |
| return pos; |
| } |
| |
| bool empty() const { |
| if (large_data_) { |
| return large_data_->empty(); |
| } |
| return size_ == 0; |
| } |
| |
| void clear() { |
| if (large_data_) { |
| large_data_->clear(); |
| } else { |
| DestructSmallData(); |
| } |
| } |
| |
| template <class... Args> |
| void emplace_back(Args&&... args) { |
| if (!large_data_ && size_ == small_size) { |
| MoveToLargeData(); |
| } |
| |
| if (large_data_) { |
| large_data_->emplace_back(std::forward<Args>(args)...); |
| } else { |
| new (small_data_ + size_) T(std::forward<Args>(args)...); |
| ++size_; |
| } |
| } |
| |
| void resize(size_t new_size, const T& v) { |
| if (!large_data_ && new_size > small_size) { |
| MoveToLargeData(); |
| } |
| |
| if (large_data_) { |
| large_data_->resize(new_size, v); |
| return; |
| } |
| |
| // If |new_size| < |size_|, then destroy the extra elements. |
| for (size_t i = new_size; i < size_; ++i) { |
| small_data_[i].~T(); |
| } |
| |
| // If |new_size| > |size_|, the copy construct the new elements. |
| for (size_t i = size_; i < new_size; ++i) { |
| new (small_data_ + i) T(v); |
| } |
| |
| // Update the size. |
| size_ = new_size; |
| } |
| |
| private: |
| // Moves all of the element from |small_data_| into a new std::vector that can |
| // be access through |large_data|. |
| void MoveToLargeData() { |
| assert(!large_data_); |
| large_data_ = MakeUnique<std::vector<T>>(); |
| for (size_t i = 0; i < size_; ++i) { |
| large_data_->emplace_back(std::move(small_data_[i])); |
| } |
| DestructSmallData(); |
| } |
| |
| // Destroys all of the elements in |small_data_| that have been constructed. |
| void DestructSmallData() { |
| for (size_t i = 0; i < size_; ++i) { |
| small_data_[i].~T(); |
| } |
| size_ = 0; |
| } |
| |
| // The number of elements in |small_data_| that have been constructed. |
| size_t size_; |
| |
| // A type with the same alignment and size as T, but will is POD. |
| struct alignas(T) PodType { |
| std::array<int8_t, sizeof(T)> data; |
| }; |
| |
| // The actual data used to store the array elements. It must never be used |
| // directly, but must only be accessed through |small_data_|. |
| PodType buffer[small_size]; |
| |
| // The pointed used to access the array of elements when the number of |
| // elements is small. |
| T* small_data_; |
| |
| // A pointer to a vector that is used to store the elements of the vector when |
| // this size exceeds |small_size|. If |large_data_| is nullptr, then the data |
| // is stored in |small_data_|. Otherwise, the data is stored in |
| // |large_data_|. |
| std::unique_ptr<std::vector<T>> large_data_; |
| }; // namespace utils |
| |
| } // namespace utils |
| } // namespace spvtools |
| |
| #endif // SOURCE_UTIL_SMALL_VECTOR_H_ |