blob: 96156f89a7445c1292f21107d6b779403418d7ef [file] [log] [blame]
//===- llvm/unittests/IR/DeferredDominanceTest.cpp - DDT unit tests -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/SourceMgr.h"
#include "gtest/gtest.h"
using namespace llvm;
static std::unique_ptr<Module> makeLLVMModule(LLVMContext &Context,
StringRef ModuleStr) {
SMDiagnostic Err;
std::unique_ptr<Module> M = parseAssemblyString(ModuleStr, Err, Context);
assert(M && "Bad LLVM IR?");
return M;
}
TEST(DeferredDominance, BasicOperations) {
StringRef FuncName = "f";
StringRef ModuleString =
"define i32 @f(i32 %i, i32 *%p) {\n"
" bb0:\n"
" store i32 %i, i32 *%p\n"
" switch i32 %i, label %bb1 [\n"
" i32 0, label %bb2\n"
" i32 1, label %bb2\n"
" i32 2, label %bb3\n"
" ]\n"
" bb1:\n"
" ret i32 1\n"
" bb2:\n"
" ret i32 2\n"
" bb3:\n"
" ret i32 3\n"
"}\n";
// Make the module.
LLVMContext Context;
std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleString);
Function *F = M->getFunction(FuncName);
ASSERT_NE(F, nullptr) << "Couldn't get function " << FuncName << ".";
// Make the DDT.
DominatorTree DT(*F);
DeferredDominance DDT(DT);
ASSERT_TRUE(DDT.flush().verify());
Function::iterator FI = F->begin();
BasicBlock *BB0 = &*FI++;
BasicBlock *BB1 = &*FI++;
BasicBlock *BB2 = &*FI++;
BasicBlock *BB3 = &*FI++;
// Test discards of invalid self-domination updates. These use the single
// short-hand interface but are still queued inside DDT.
DDT.deleteEdge(BB0, BB0);
DDT.insertEdge(BB1, BB1);
// Delete edge bb0 -> bb3 and push the update twice to verify duplicate
// entries are discarded.
std::vector<DominatorTree::UpdateType> Updates;
Updates.reserve(4);
Updates.push_back({DominatorTree::Delete, BB0, BB3});
Updates.push_back({DominatorTree::Delete, BB0, BB3});
// Unnecessary Insert: no edge bb1 -> bb2 after change to bb0.
Updates.push_back({DominatorTree::Insert, BB1, BB2});
// Unnecessary Delete: edge exists bb0 -> bb1 after change to bb0.
Updates.push_back({DominatorTree::Delete, BB0, BB1});
// CFG Change: remove edge bb0 -> bb3 and one duplicate edge bb0 -> bb2.
EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 4u);
BB0->getTerminator()->eraseFromParent();
BranchInst::Create(BB1, BB2, ConstantInt::getTrue(F->getContext()), BB0);
EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 2u);
// Deletion of a BasicBlock is an immediate event. We remove all uses to the
// contained Instructions and change the Terminator to "unreachable" when
// queued for deletion. Its parent is still F until DDT.flush() is called. We
// don't defer this action because it can cause problems for other transforms
// or analysis as it's part of the actual CFG. We only defer updates to the
// DominatorTree. This code will crash if it is placed before the
// BranchInst::Create() call above.
ASSERT_FALSE(isa<UnreachableInst>(BB3->getTerminator()));
EXPECT_FALSE(DDT.pendingDeletedBB(BB3));
DDT.deleteBB(BB3);
EXPECT_TRUE(DDT.pendingDeletedBB(BB3));
ASSERT_TRUE(isa<UnreachableInst>(BB3->getTerminator()));
EXPECT_EQ(BB3->getParent(), F);
// Verify. Updates to DDT must be applied *after* all changes to the CFG
// (including block deletion).
DDT.applyUpdates(Updates);
ASSERT_TRUE(DDT.flush().verify());
}
TEST(DeferredDominance, PairedUpdate) {
StringRef FuncName = "f";
StringRef ModuleString =
"define i32 @f(i32 %i, i32 *%p) {\n"
" bb0:\n"
" store i32 %i, i32 *%p\n"
" switch i32 %i, label %bb1 [\n"
" i32 0, label %bb2\n"
" i32 1, label %bb2\n"
" ]\n"
" bb1:\n"
" ret i32 1\n"
" bb2:\n"
" ret i32 2\n"
"}\n";
// Make the module.
LLVMContext Context;
std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleString);
Function *F = M->getFunction(FuncName);
ASSERT_NE(F, nullptr) << "Couldn't get function " << FuncName << ".";
// Make the DDT.
DominatorTree DT(*F);
DeferredDominance DDT(DT);
ASSERT_TRUE(DDT.flush().verify());
Function::iterator FI = F->begin();
BasicBlock *BB0 = &*FI++;
BasicBlock *BB1 = &*FI++;
BasicBlock *BB2 = &*FI++;
// CFG Change: only edge from bb0 is bb0 -> bb1.
EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 3u);
BB0->getTerminator()->eraseFromParent();
BranchInst::Create(BB1, BB0);
EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 1u);
// Must be done after the CFG change. The applyUpdate() routine analyzes the
// current state of the CFG.
DDT.deleteEdge(BB0, BB2);
// CFG Change: bb0 now has bb0 -> bb1 and bb0 -> bb2.
// With this change no dominance has been altered from the original IR. DT
// doesn't care if the type of TerminatorInstruction changed, only if the
// unique edges have.
EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 1u);
BB0->getTerminator()->eraseFromParent();
BranchInst::Create(BB1, BB2, ConstantInt::getTrue(F->getContext()), BB0);
EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 2u);
// Must be done after the CFG change. The applyUpdate() routine analyzes the
// current state of the CFG. This DDT update pairs with the previous one and
// is cancelled out before ever applying updates to DT.
DDT.insertEdge(BB0, BB2);
// Test the empty DeletedBB list.
EXPECT_FALSE(DDT.pendingDeletedBB(BB0));
EXPECT_FALSE(DDT.pendingDeletedBB(BB1));
EXPECT_FALSE(DDT.pendingDeletedBB(BB2));
// The DT has no changes, this flush() simply returns a reference to the
// internal DT calculated at the beginning of this test.
ASSERT_TRUE(DDT.flush().verify());
}
TEST(DeferredDominance, ReplaceEntryBB) {
StringRef FuncName = "f";
StringRef ModuleString =
"define i32 @f() {\n"
"bb0:\n"
" br label %bb1\n"
" bb1:\n"
" ret i32 1\n"
"}\n";
// Make the module.
LLVMContext Context;
std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleString);
Function *F = M->getFunction(FuncName);
ASSERT_NE(F, nullptr) << "Couldn't get function " << FuncName << ".";
// Make the DDT.
DominatorTree DT(*F);
DeferredDominance DDT(DT);
ASSERT_TRUE(DDT.flush().verify());
Function::iterator FI = F->begin();
BasicBlock *BB0 = &*FI++;
BasicBlock *BB1 = &*FI++;
// Add a block as the new function entry BB. We also link it to BB0.
BasicBlock *NewEntry =
BasicBlock::Create(F->getContext(), "new_entry", F, BB0);
BranchInst::Create(BB0, NewEntry);
EXPECT_EQ(F->begin()->getName(), NewEntry->getName());
EXPECT_TRUE(&F->getEntryBlock() == NewEntry);
// Insert the new edge between new_eentry -> bb0. Without this the
// recalculate() call below will not actually recalculate the DT as there
// are no changes pending and no blocks deleted.
DDT.insertEdge(NewEntry, BB0);
// Changing the Entry BB requires a full recalulation.
DDT.recalculate(*F);
ASSERT_TRUE(DDT.flush().verify());
// CFG Change: remove new_edge -> bb0 and redirect to new_edge -> bb1.
EXPECT_EQ(NewEntry->getTerminator()->getNumSuccessors(), 1u);
NewEntry->getTerminator()->eraseFromParent();
BranchInst::Create(BB1, NewEntry);
EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 1u);
// Update the DDT. At this point bb0 now has no predecessors but is still a
// Child of F.
DDT.applyUpdates({{DominatorTree::Delete, NewEntry, BB0},
{DominatorTree::Insert, NewEntry, BB1}});
ASSERT_TRUE(DDT.flush().verify());
// Now remove bb0 from F.
ASSERT_FALSE(isa<UnreachableInst>(BB0->getTerminator()));
EXPECT_FALSE(DDT.pendingDeletedBB(BB0));
DDT.deleteBB(BB0);
EXPECT_TRUE(DDT.pendingDeletedBB(BB0));
ASSERT_TRUE(isa<UnreachableInst>(BB0->getTerminator()));
EXPECT_EQ(BB0->getParent(), F);
// Perform a full recalculation of the DDT. It is not necessary here but we
// do this to test the case when there are no pending DT updates but there are
// pending deleted BBs.
DDT.recalculate(*F);
ASSERT_TRUE(DDT.flush().verify());
}
TEST(DeferredDominance, InheritedPreds) {
StringRef FuncName = "f";
StringRef ModuleString =
"define i32 @f(i32 %i, i32 *%p) {\n"
" bb0:\n"
" store i32 %i, i32 *%p\n"
" switch i32 %i, label %bb1 [\n"
" i32 2, label %bb2\n"
" i32 3, label %bb3\n"
" ]\n"
" bb1:\n"
" br label %bb3\n"
" bb2:\n"
" br label %bb3\n"
" bb3:\n"
" ret i32 3\n"
"}\n";
// Make the module.
LLVMContext Context;
std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleString);
Function *F = M->getFunction(FuncName);
ASSERT_NE(F, nullptr) << "Couldn't get function " << FuncName << ".";
// Make the DDT.
DominatorTree DT(*F);
DeferredDominance DDT(DT);
ASSERT_TRUE(DDT.flush().verify());
Function::iterator FI = F->begin();
BasicBlock *BB0 = &*FI++;
BasicBlock *BB1 = &*FI++;
BasicBlock *BB2 = &*FI++;
BasicBlock *BB3 = &*FI++;
// There are several CFG locations where we have:
//
// pred1..predN
// | |
// +> curr <+ converted into: pred1..predN curr
// | | |
// v +> succ <+
// succ
//
// There is a specific shape of this we have to be careful of:
//
// pred1..predN
// || |
// |+> curr <+ converted into: pred1..predN curr
// | | | |
// | v +> succ <+
// +-> succ
//
// While the final CFG form is functionally identical the updates to
// DDT are not. In the first case we must have DDT.insertEdge(Pred1, Succ)
// while in the latter case we must *NOT* have DDT.insertEdge(Pred1, Succ).
// CFG Change: bb0 now only has bb0 -> bb1 and bb0 -> bb3. We are preparing to
// remove bb2.
EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 3u);
BB0->getTerminator()->eraseFromParent();
BranchInst::Create(BB1, BB3, ConstantInt::getTrue(F->getContext()), BB0);
EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 2u);
// Remove bb2 from F. This has to happen before the call to applyUpdates() for
// DDT to detect there is no longer an edge between bb2 -> bb3. The deleteBB()
// method converts bb2's TI into "unreachable".
ASSERT_FALSE(isa<UnreachableInst>(BB2->getTerminator()));
EXPECT_FALSE(DDT.pendingDeletedBB(BB2));
DDT.deleteBB(BB2);
EXPECT_TRUE(DDT.pendingDeletedBB(BB2));
ASSERT_TRUE(isa<UnreachableInst>(BB2->getTerminator()));
EXPECT_EQ(BB2->getParent(), F);
// Queue up the DDT updates.
std::vector<DominatorTree::UpdateType> Updates;
Updates.reserve(4);
Updates.push_back({DominatorTree::Delete, BB0, BB2});
Updates.push_back({DominatorTree::Delete, BB2, BB3});
// Handle the specific shape case next.
// CFG Change: bb0 now only branches to bb3. We are preparing to remove bb1.
EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 2u);
BB0->getTerminator()->eraseFromParent();
BranchInst::Create(BB3, BB0);
EXPECT_EQ(BB0->getTerminator()->getNumSuccessors(), 1u);
// Remove bb1 from F. This has to happen before the call to applyUpdates() for
// DDT to detect there is no longer an edge between bb1 -> bb3. The deleteBB()
// method converts bb1's TI into "unreachable".
ASSERT_FALSE(isa<UnreachableInst>(BB1->getTerminator()));
EXPECT_FALSE(DDT.pendingDeletedBB(BB1));
DDT.deleteBB(BB1);
EXPECT_TRUE(DDT.pendingDeletedBB(BB1));
ASSERT_TRUE(isa<UnreachableInst>(BB1->getTerminator()));
EXPECT_EQ(BB1->getParent(), F);
// Update the DDT. In this case we don't call DDT.insertEdge(BB0, BB3) because
// the edge previously existed at the start of this test when DT was first
// created.
Updates.push_back({DominatorTree::Delete, BB0, BB1});
Updates.push_back({DominatorTree::Delete, BB1, BB3});
// Verify everything.
DDT.applyUpdates(Updates);
ASSERT_TRUE(DDT.flush().verify());
}