| //===- LoopUnrollAnalyzer.cpp - Unrolling Effect Estimation -----*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements UnrolledInstAnalyzer class. It's used for predicting |
| // potential effects that loop unrolling might have, such as enabling constant |
| // propagation and other optimizations. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/LoopUnrollAnalyzer.h" |
| |
| using namespace llvm; |
| |
| /// Try to simplify instruction \param I using its SCEV expression. |
| /// |
| /// The idea is that some AddRec expressions become constants, which then |
| /// could trigger folding of other instructions. However, that only happens |
| /// for expressions whose start value is also constant, which isn't always the |
| /// case. In another common and important case the start value is just some |
| /// address (i.e. SCEVUnknown) - in this case we compute the offset and save |
| /// it along with the base address instead. |
| bool UnrolledInstAnalyzer::simplifyInstWithSCEV(Instruction *I) { |
| if (!SE.isSCEVable(I->getType())) |
| return false; |
| |
| const SCEV *S = SE.getSCEV(I); |
| if (auto *SC = dyn_cast<SCEVConstant>(S)) { |
| SimplifiedValues[I] = SC->getValue(); |
| return true; |
| } |
| |
| auto *AR = dyn_cast<SCEVAddRecExpr>(S); |
| if (!AR || AR->getLoop() != L) |
| return false; |
| |
| const SCEV *ValueAtIteration = AR->evaluateAtIteration(IterationNumber, SE); |
| // Check if the AddRec expression becomes a constant. |
| if (auto *SC = dyn_cast<SCEVConstant>(ValueAtIteration)) { |
| SimplifiedValues[I] = SC->getValue(); |
| return true; |
| } |
| |
| // Check if the offset from the base address becomes a constant. |
| auto *Base = dyn_cast<SCEVUnknown>(SE.getPointerBase(S)); |
| if (!Base) |
| return false; |
| auto *Offset = |
| dyn_cast<SCEVConstant>(SE.getMinusSCEV(ValueAtIteration, Base)); |
| if (!Offset) |
| return false; |
| SimplifiedAddress Address; |
| Address.Base = Base->getValue(); |
| Address.Offset = Offset->getValue(); |
| SimplifiedAddresses[I] = Address; |
| return false; |
| } |
| |
| /// Try to simplify binary operator I. |
| /// |
| /// TODO: Probably it's worth to hoist the code for estimating the |
| /// simplifications effects to a separate class, since we have a very similar |
| /// code in InlineCost already. |
| bool UnrolledInstAnalyzer::visitBinaryOperator(BinaryOperator &I) { |
| Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); |
| if (!isa<Constant>(LHS)) |
| if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS)) |
| LHS = SimpleLHS; |
| if (!isa<Constant>(RHS)) |
| if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS)) |
| RHS = SimpleRHS; |
| |
| Value *SimpleV = nullptr; |
| const DataLayout &DL = I.getModule()->getDataLayout(); |
| if (auto FI = dyn_cast<FPMathOperator>(&I)) |
| SimpleV = |
| SimplifyBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL); |
| else |
| SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL); |
| |
| if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) |
| SimplifiedValues[&I] = C; |
| |
| if (SimpleV) |
| return true; |
| return Base::visitBinaryOperator(I); |
| } |
| |
| /// Try to fold load I. |
| bool UnrolledInstAnalyzer::visitLoad(LoadInst &I) { |
| Value *AddrOp = I.getPointerOperand(); |
| |
| auto AddressIt = SimplifiedAddresses.find(AddrOp); |
| if (AddressIt == SimplifiedAddresses.end()) |
| return false; |
| ConstantInt *SimplifiedAddrOp = AddressIt->second.Offset; |
| |
| auto *GV = dyn_cast<GlobalVariable>(AddressIt->second.Base); |
| // We're only interested in loads that can be completely folded to a |
| // constant. |
| if (!GV || !GV->hasDefinitiveInitializer() || !GV->isConstant()) |
| return false; |
| |
| ConstantDataSequential *CDS = |
| dyn_cast<ConstantDataSequential>(GV->getInitializer()); |
| if (!CDS) |
| return false; |
| |
| // We might have a vector load from an array. FIXME: for now we just bail |
| // out in this case, but we should be able to resolve and simplify such |
| // loads. |
| if (CDS->getElementType() != I.getType()) |
| return false; |
| |
| unsigned ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U; |
| if (SimplifiedAddrOp->getValue().getActiveBits() > 64) |
| return false; |
| int64_t SimplifiedAddrOpV = SimplifiedAddrOp->getSExtValue(); |
| if (SimplifiedAddrOpV < 0) { |
| // FIXME: For now we conservatively ignore out of bound accesses, but |
| // we're allowed to perform the optimization in this case. |
| return false; |
| } |
| uint64_t Index = static_cast<uint64_t>(SimplifiedAddrOpV) / ElemSize; |
| if (Index >= CDS->getNumElements()) { |
| // FIXME: For now we conservatively ignore out of bound accesses, but |
| // we're allowed to perform the optimization in this case. |
| return false; |
| } |
| |
| Constant *CV = CDS->getElementAsConstant(Index); |
| assert(CV && "Constant expected."); |
| SimplifiedValues[&I] = CV; |
| |
| return true; |
| } |
| |
| /// Try to simplify cast instruction. |
| bool UnrolledInstAnalyzer::visitCastInst(CastInst &I) { |
| // Propagate constants through casts. |
| Constant *COp = dyn_cast<Constant>(I.getOperand(0)); |
| if (!COp) |
| COp = SimplifiedValues.lookup(I.getOperand(0)); |
| |
| // If we know a simplified value for this operand and cast is valid, save the |
| // result to SimplifiedValues. |
| // The cast can be invalid, because SimplifiedValues contains results of SCEV |
| // analysis, which operates on integers (and, e.g., might convert i8* null to |
| // i32 0). |
| if (COp && CastInst::castIsValid(I.getOpcode(), COp, I.getType())) { |
| if (Constant *C = |
| ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) { |
| SimplifiedValues[&I] = C; |
| return true; |
| } |
| } |
| |
| return Base::visitCastInst(I); |
| } |
| |
| /// Try to simplify cmp instruction. |
| bool UnrolledInstAnalyzer::visitCmpInst(CmpInst &I) { |
| Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); |
| |
| // First try to handle simplified comparisons. |
| if (!isa<Constant>(LHS)) |
| if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS)) |
| LHS = SimpleLHS; |
| if (!isa<Constant>(RHS)) |
| if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS)) |
| RHS = SimpleRHS; |
| |
| if (!isa<Constant>(LHS) && !isa<Constant>(RHS)) { |
| auto SimplifiedLHS = SimplifiedAddresses.find(LHS); |
| if (SimplifiedLHS != SimplifiedAddresses.end()) { |
| auto SimplifiedRHS = SimplifiedAddresses.find(RHS); |
| if (SimplifiedRHS != SimplifiedAddresses.end()) { |
| SimplifiedAddress &LHSAddr = SimplifiedLHS->second; |
| SimplifiedAddress &RHSAddr = SimplifiedRHS->second; |
| if (LHSAddr.Base == RHSAddr.Base) { |
| LHS = LHSAddr.Offset; |
| RHS = RHSAddr.Offset; |
| } |
| } |
| } |
| } |
| |
| if (Constant *CLHS = dyn_cast<Constant>(LHS)) { |
| if (Constant *CRHS = dyn_cast<Constant>(RHS)) { |
| if (CLHS->getType() == CRHS->getType()) { |
| if (Constant *C = ConstantExpr::getCompare(I.getPredicate(), CLHS, CRHS)) { |
| SimplifiedValues[&I] = C; |
| return true; |
| } |
| } |
| } |
| } |
| |
| return Base::visitCmpInst(I); |
| } |
| |
| bool UnrolledInstAnalyzer::visitPHINode(PHINode &PN) { |
| // Run base visitor first. This way we can gather some useful for later |
| // analysis information. |
| if (Base::visitPHINode(PN)) |
| return true; |
| |
| // The loop induction PHI nodes are definitionally free. |
| return PN.getParent() == L->getHeader(); |
| } |