| //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the LoopInfo class that is used to identify natural loops |
| // and determine the loop depth of various nodes of the CFG. Note that the |
| // loops identified may actually be several natural loops that share the same |
| // header node... not just a single natural loop. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/ScopeExit.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/Analysis/IVDescriptors.h" |
| #include "llvm/Analysis/LoopInfoImpl.h" |
| #include "llvm/Analysis/LoopIterator.h" |
| #include "llvm/Analysis/MemorySSA.h" |
| #include "llvm/Analysis/MemorySSAUpdater.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/IRPrintingPasses.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. |
| template class llvm::LoopBase<BasicBlock, Loop>; |
| template class llvm::LoopInfoBase<BasicBlock, Loop>; |
| |
| // Always verify loopinfo if expensive checking is enabled. |
| #ifdef EXPENSIVE_CHECKS |
| bool llvm::VerifyLoopInfo = true; |
| #else |
| bool llvm::VerifyLoopInfo = false; |
| #endif |
| static cl::opt<bool, true> |
| VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), |
| cl::Hidden, cl::desc("Verify loop info (time consuming)")); |
| |
| //===----------------------------------------------------------------------===// |
| // Loop implementation |
| // |
| |
| bool Loop::isLoopInvariant(const Value *V) const { |
| if (const Instruction *I = dyn_cast<Instruction>(V)) |
| return !contains(I); |
| return true; // All non-instructions are loop invariant |
| } |
| |
| bool Loop::hasLoopInvariantOperands(const Instruction *I) const { |
| return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); }); |
| } |
| |
| bool Loop::makeLoopInvariant(Value *V, bool &Changed, Instruction *InsertPt, |
| MemorySSAUpdater *MSSAU) const { |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| return makeLoopInvariant(I, Changed, InsertPt, MSSAU); |
| return true; // All non-instructions are loop-invariant. |
| } |
| |
| bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, |
| Instruction *InsertPt, |
| MemorySSAUpdater *MSSAU) const { |
| // Test if the value is already loop-invariant. |
| if (isLoopInvariant(I)) |
| return true; |
| if (!isSafeToSpeculativelyExecute(I)) |
| return false; |
| if (I->mayReadFromMemory()) |
| return false; |
| // EH block instructions are immobile. |
| if (I->isEHPad()) |
| return false; |
| // Determine the insertion point, unless one was given. |
| if (!InsertPt) { |
| BasicBlock *Preheader = getLoopPreheader(); |
| // Without a preheader, hoisting is not feasible. |
| if (!Preheader) |
| return false; |
| InsertPt = Preheader->getTerminator(); |
| } |
| // Don't hoist instructions with loop-variant operands. |
| for (Value *Operand : I->operands()) |
| if (!makeLoopInvariant(Operand, Changed, InsertPt, MSSAU)) |
| return false; |
| |
| // Hoist. |
| I->moveBefore(InsertPt); |
| if (MSSAU) |
| if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(I)) |
| MSSAU->moveToPlace(MUD, InsertPt->getParent(), |
| MemorySSA::BeforeTerminator); |
| |
| // There is possibility of hoisting this instruction above some arbitrary |
| // condition. Any metadata defined on it can be control dependent on this |
| // condition. Conservatively strip it here so that we don't give any wrong |
| // information to the optimizer. |
| I->dropUnknownNonDebugMetadata(); |
| |
| Changed = true; |
| return true; |
| } |
| |
| bool Loop::getIncomingAndBackEdge(BasicBlock *&Incoming, |
| BasicBlock *&Backedge) const { |
| BasicBlock *H = getHeader(); |
| |
| Incoming = nullptr; |
| Backedge = nullptr; |
| pred_iterator PI = pred_begin(H); |
| assert(PI != pred_end(H) && "Loop must have at least one backedge!"); |
| Backedge = *PI++; |
| if (PI == pred_end(H)) |
| return false; // dead loop |
| Incoming = *PI++; |
| if (PI != pred_end(H)) |
| return false; // multiple backedges? |
| |
| if (contains(Incoming)) { |
| if (contains(Backedge)) |
| return false; |
| std::swap(Incoming, Backedge); |
| } else if (!contains(Backedge)) |
| return false; |
| |
| assert(Incoming && Backedge && "expected non-null incoming and backedges"); |
| return true; |
| } |
| |
| PHINode *Loop::getCanonicalInductionVariable() const { |
| BasicBlock *H = getHeader(); |
| |
| BasicBlock *Incoming = nullptr, *Backedge = nullptr; |
| if (!getIncomingAndBackEdge(Incoming, Backedge)) |
| return nullptr; |
| |
| // Loop over all of the PHI nodes, looking for a canonical indvar. |
| for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { |
| PHINode *PN = cast<PHINode>(I); |
| if (ConstantInt *CI = |
| dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) |
| if (CI->isZero()) |
| if (Instruction *Inc = |
| dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) |
| if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) |
| if (CI->isOne()) |
| return PN; |
| } |
| return nullptr; |
| } |
| |
| /// Get the latch condition instruction. |
| static ICmpInst *getLatchCmpInst(const Loop &L) { |
| if (BasicBlock *Latch = L.getLoopLatch()) |
| if (BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator())) |
| if (BI->isConditional()) |
| return dyn_cast<ICmpInst>(BI->getCondition()); |
| |
| return nullptr; |
| } |
| |
| /// Return the final value of the loop induction variable if found. |
| static Value *findFinalIVValue(const Loop &L, const PHINode &IndVar, |
| const Instruction &StepInst) { |
| ICmpInst *LatchCmpInst = getLatchCmpInst(L); |
| if (!LatchCmpInst) |
| return nullptr; |
| |
| Value *Op0 = LatchCmpInst->getOperand(0); |
| Value *Op1 = LatchCmpInst->getOperand(1); |
| if (Op0 == &IndVar || Op0 == &StepInst) |
| return Op1; |
| |
| if (Op1 == &IndVar || Op1 == &StepInst) |
| return Op0; |
| |
| return nullptr; |
| } |
| |
| Optional<Loop::LoopBounds> Loop::LoopBounds::getBounds(const Loop &L, |
| PHINode &IndVar, |
| ScalarEvolution &SE) { |
| InductionDescriptor IndDesc; |
| if (!InductionDescriptor::isInductionPHI(&IndVar, &L, &SE, IndDesc)) |
| return None; |
| |
| Value *InitialIVValue = IndDesc.getStartValue(); |
| Instruction *StepInst = IndDesc.getInductionBinOp(); |
| if (!InitialIVValue || !StepInst) |
| return None; |
| |
| const SCEV *Step = IndDesc.getStep(); |
| Value *StepInstOp1 = StepInst->getOperand(1); |
| Value *StepInstOp0 = StepInst->getOperand(0); |
| Value *StepValue = nullptr; |
| if (SE.getSCEV(StepInstOp1) == Step) |
| StepValue = StepInstOp1; |
| else if (SE.getSCEV(StepInstOp0) == Step) |
| StepValue = StepInstOp0; |
| |
| Value *FinalIVValue = findFinalIVValue(L, IndVar, *StepInst); |
| if (!FinalIVValue) |
| return None; |
| |
| return LoopBounds(L, *InitialIVValue, *StepInst, StepValue, *FinalIVValue, |
| SE); |
| } |
| |
| using Direction = Loop::LoopBounds::Direction; |
| |
| ICmpInst::Predicate Loop::LoopBounds::getCanonicalPredicate() const { |
| BasicBlock *Latch = L.getLoopLatch(); |
| assert(Latch && "Expecting valid latch"); |
| |
| BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator()); |
| assert(BI && BI->isConditional() && "Expecting conditional latch branch"); |
| |
| ICmpInst *LatchCmpInst = dyn_cast<ICmpInst>(BI->getCondition()); |
| assert(LatchCmpInst && |
| "Expecting the latch compare instruction to be a CmpInst"); |
| |
| // Need to inverse the predicate when first successor is not the loop |
| // header |
| ICmpInst::Predicate Pred = (BI->getSuccessor(0) == L.getHeader()) |
| ? LatchCmpInst->getPredicate() |
| : LatchCmpInst->getInversePredicate(); |
| |
| if (LatchCmpInst->getOperand(0) == &getFinalIVValue()) |
| Pred = ICmpInst::getSwappedPredicate(Pred); |
| |
| // Need to flip strictness of the predicate when the latch compare instruction |
| // is not using StepInst |
| if (LatchCmpInst->getOperand(0) == &getStepInst() || |
| LatchCmpInst->getOperand(1) == &getStepInst()) |
| return Pred; |
| |
| // Cannot flip strictness of NE and EQ |
| if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) |
| return ICmpInst::getFlippedStrictnessPredicate(Pred); |
| |
| Direction D = getDirection(); |
| if (D == Direction::Increasing) |
| return ICmpInst::ICMP_SLT; |
| |
| if (D == Direction::Decreasing) |
| return ICmpInst::ICMP_SGT; |
| |
| // If cannot determine the direction, then unable to find the canonical |
| // predicate |
| return ICmpInst::BAD_ICMP_PREDICATE; |
| } |
| |
| Direction Loop::LoopBounds::getDirection() const { |
| if (const SCEVAddRecExpr *StepAddRecExpr = |
| dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&getStepInst()))) |
| if (const SCEV *StepRecur = StepAddRecExpr->getStepRecurrence(SE)) { |
| if (SE.isKnownPositive(StepRecur)) |
| return Direction::Increasing; |
| if (SE.isKnownNegative(StepRecur)) |
| return Direction::Decreasing; |
| } |
| |
| return Direction::Unknown; |
| } |
| |
| Optional<Loop::LoopBounds> Loop::getBounds(ScalarEvolution &SE) const { |
| if (PHINode *IndVar = getInductionVariable(SE)) |
| return LoopBounds::getBounds(*this, *IndVar, SE); |
| |
| return None; |
| } |
| |
| PHINode *Loop::getInductionVariable(ScalarEvolution &SE) const { |
| if (!isLoopSimplifyForm()) |
| return nullptr; |
| |
| BasicBlock *Header = getHeader(); |
| assert(Header && "Expected a valid loop header"); |
| ICmpInst *CmpInst = getLatchCmpInst(*this); |
| if (!CmpInst) |
| return nullptr; |
| |
| Instruction *LatchCmpOp0 = dyn_cast<Instruction>(CmpInst->getOperand(0)); |
| Instruction *LatchCmpOp1 = dyn_cast<Instruction>(CmpInst->getOperand(1)); |
| |
| for (PHINode &IndVar : Header->phis()) { |
| InductionDescriptor IndDesc; |
| if (!InductionDescriptor::isInductionPHI(&IndVar, this, &SE, IndDesc)) |
| continue; |
| |
| Instruction *StepInst = IndDesc.getInductionBinOp(); |
| |
| // case 1: |
| // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}] |
| // StepInst = IndVar + step |
| // cmp = StepInst < FinalValue |
| if (StepInst == LatchCmpOp0 || StepInst == LatchCmpOp1) |
| return &IndVar; |
| |
| // case 2: |
| // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}] |
| // StepInst = IndVar + step |
| // cmp = IndVar < FinalValue |
| if (&IndVar == LatchCmpOp0 || &IndVar == LatchCmpOp1) |
| return &IndVar; |
| } |
| |
| return nullptr; |
| } |
| |
| bool Loop::getInductionDescriptor(ScalarEvolution &SE, |
| InductionDescriptor &IndDesc) const { |
| if (PHINode *IndVar = getInductionVariable(SE)) |
| return InductionDescriptor::isInductionPHI(IndVar, this, &SE, IndDesc); |
| |
| return false; |
| } |
| |
| bool Loop::isAuxiliaryInductionVariable(PHINode &AuxIndVar, |
| ScalarEvolution &SE) const { |
| // Located in the loop header |
| BasicBlock *Header = getHeader(); |
| if (AuxIndVar.getParent() != Header) |
| return false; |
| |
| // No uses outside of the loop |
| for (User *U : AuxIndVar.users()) |
| if (const Instruction *I = dyn_cast<Instruction>(U)) |
| if (!contains(I)) |
| return false; |
| |
| InductionDescriptor IndDesc; |
| if (!InductionDescriptor::isInductionPHI(&AuxIndVar, this, &SE, IndDesc)) |
| return false; |
| |
| // The step instruction opcode should be add or sub. |
| if (IndDesc.getInductionOpcode() != Instruction::Add && |
| IndDesc.getInductionOpcode() != Instruction::Sub) |
| return false; |
| |
| // Incremented by a loop invariant step for each loop iteration |
| return SE.isLoopInvariant(IndDesc.getStep(), this); |
| } |
| |
| BranchInst *Loop::getLoopGuardBranch() const { |
| if (!isLoopSimplifyForm()) |
| return nullptr; |
| |
| BasicBlock *Preheader = getLoopPreheader(); |
| assert(Preheader && getLoopLatch() && |
| "Expecting a loop with valid preheader and latch"); |
| |
| // Loop should be in rotate form. |
| if (!isRotatedForm()) |
| return nullptr; |
| |
| // Disallow loops with more than one unique exit block, as we do not verify |
| // that GuardOtherSucc post dominates all exit blocks. |
| BasicBlock *ExitFromLatch = getUniqueExitBlock(); |
| if (!ExitFromLatch) |
| return nullptr; |
| |
| BasicBlock *ExitFromLatchSucc = ExitFromLatch->getUniqueSuccessor(); |
| if (!ExitFromLatchSucc) |
| return nullptr; |
| |
| BasicBlock *GuardBB = Preheader->getUniquePredecessor(); |
| if (!GuardBB) |
| return nullptr; |
| |
| assert(GuardBB->getTerminator() && "Expecting valid guard terminator"); |
| |
| BranchInst *GuardBI = dyn_cast<BranchInst>(GuardBB->getTerminator()); |
| if (!GuardBI || GuardBI->isUnconditional()) |
| return nullptr; |
| |
| BasicBlock *GuardOtherSucc = (GuardBI->getSuccessor(0) == Preheader) |
| ? GuardBI->getSuccessor(1) |
| : GuardBI->getSuccessor(0); |
| return (GuardOtherSucc == ExitFromLatchSucc) ? GuardBI : nullptr; |
| } |
| |
| bool Loop::isCanonical(ScalarEvolution &SE) const { |
| InductionDescriptor IndDesc; |
| if (!getInductionDescriptor(SE, IndDesc)) |
| return false; |
| |
| ConstantInt *Init = dyn_cast_or_null<ConstantInt>(IndDesc.getStartValue()); |
| if (!Init || !Init->isZero()) |
| return false; |
| |
| if (IndDesc.getInductionOpcode() != Instruction::Add) |
| return false; |
| |
| ConstantInt *Step = IndDesc.getConstIntStepValue(); |
| if (!Step || !Step->isOne()) |
| return false; |
| |
| return true; |
| } |
| |
| // Check that 'BB' doesn't have any uses outside of the 'L' |
| static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB, |
| DominatorTree &DT) { |
| for (const Instruction &I : BB) { |
| // Tokens can't be used in PHI nodes and live-out tokens prevent loop |
| // optimizations, so for the purposes of considered LCSSA form, we |
| // can ignore them. |
| if (I.getType()->isTokenTy()) |
| continue; |
| |
| for (const Use &U : I.uses()) { |
| const Instruction *UI = cast<Instruction>(U.getUser()); |
| const BasicBlock *UserBB = UI->getParent(); |
| if (const PHINode *P = dyn_cast<PHINode>(UI)) |
| UserBB = P->getIncomingBlock(U); |
| |
| // Check the current block, as a fast-path, before checking whether |
| // the use is anywhere in the loop. Most values are used in the same |
| // block they are defined in. Also, blocks not reachable from the |
| // entry are special; uses in them don't need to go through PHIs. |
| if (UserBB != &BB && !L.contains(UserBB) && |
| DT.isReachableFromEntry(UserBB)) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool Loop::isLCSSAForm(DominatorTree &DT) const { |
| // For each block we check that it doesn't have any uses outside of this loop. |
| return all_of(this->blocks(), [&](const BasicBlock *BB) { |
| return isBlockInLCSSAForm(*this, *BB, DT); |
| }); |
| } |
| |
| bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const { |
| // For each block we check that it doesn't have any uses outside of its |
| // innermost loop. This process will transitively guarantee that the current |
| // loop and all of the nested loops are in LCSSA form. |
| return all_of(this->blocks(), [&](const BasicBlock *BB) { |
| return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT); |
| }); |
| } |
| |
| bool Loop::isLoopSimplifyForm() const { |
| // Normal-form loops have a preheader, a single backedge, and all of their |
| // exits have all their predecessors inside the loop. |
| return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); |
| } |
| |
| // Routines that reform the loop CFG and split edges often fail on indirectbr. |
| bool Loop::isSafeToClone() const { |
| // Return false if any loop blocks contain indirectbrs, or there are any calls |
| // to noduplicate functions. |
| // FIXME: it should be ok to clone CallBrInst's if we correctly update the |
| // operand list to reflect the newly cloned labels. |
| for (BasicBlock *BB : this->blocks()) { |
| if (isa<IndirectBrInst>(BB->getTerminator()) || |
| isa<CallBrInst>(BB->getTerminator())) |
| return false; |
| |
| for (Instruction &I : *BB) |
| if (auto CS = CallSite(&I)) |
| if (CS.cannotDuplicate()) |
| return false; |
| } |
| return true; |
| } |
| |
| MDNode *Loop::getLoopID() const { |
| MDNode *LoopID = nullptr; |
| |
| // Go through the latch blocks and check the terminator for the metadata. |
| SmallVector<BasicBlock *, 4> LatchesBlocks; |
| getLoopLatches(LatchesBlocks); |
| for (BasicBlock *BB : LatchesBlocks) { |
| Instruction *TI = BB->getTerminator(); |
| MDNode *MD = TI->getMetadata(LLVMContext::MD_loop); |
| |
| if (!MD) |
| return nullptr; |
| |
| if (!LoopID) |
| LoopID = MD; |
| else if (MD != LoopID) |
| return nullptr; |
| } |
| if (!LoopID || LoopID->getNumOperands() == 0 || |
| LoopID->getOperand(0) != LoopID) |
| return nullptr; |
| return LoopID; |
| } |
| |
| void Loop::setLoopID(MDNode *LoopID) const { |
| assert((!LoopID || LoopID->getNumOperands() > 0) && |
| "Loop ID needs at least one operand"); |
| assert((!LoopID || LoopID->getOperand(0) == LoopID) && |
| "Loop ID should refer to itself"); |
| |
| SmallVector<BasicBlock *, 4> LoopLatches; |
| getLoopLatches(LoopLatches); |
| for (BasicBlock *BB : LoopLatches) |
| BB->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID); |
| } |
| |
| void Loop::setLoopAlreadyUnrolled() { |
| LLVMContext &Context = getHeader()->getContext(); |
| |
| MDNode *DisableUnrollMD = |
| MDNode::get(Context, MDString::get(Context, "llvm.loop.unroll.disable")); |
| MDNode *LoopID = getLoopID(); |
| MDNode *NewLoopID = makePostTransformationMetadata( |
| Context, LoopID, {"llvm.loop.unroll."}, {DisableUnrollMD}); |
| setLoopID(NewLoopID); |
| } |
| |
| bool Loop::isAnnotatedParallel() const { |
| MDNode *DesiredLoopIdMetadata = getLoopID(); |
| |
| if (!DesiredLoopIdMetadata) |
| return false; |
| |
| MDNode *ParallelAccesses = |
| findOptionMDForLoop(this, "llvm.loop.parallel_accesses"); |
| SmallPtrSet<MDNode *, 4> |
| ParallelAccessGroups; // For scalable 'contains' check. |
| if (ParallelAccesses) { |
| for (const MDOperand &MD : drop_begin(ParallelAccesses->operands(), 1)) { |
| MDNode *AccGroup = cast<MDNode>(MD.get()); |
| assert(isValidAsAccessGroup(AccGroup) && |
| "List item must be an access group"); |
| ParallelAccessGroups.insert(AccGroup); |
| } |
| } |
| |
| // The loop branch contains the parallel loop metadata. In order to ensure |
| // that any parallel-loop-unaware optimization pass hasn't added loop-carried |
| // dependencies (thus converted the loop back to a sequential loop), check |
| // that all the memory instructions in the loop belong to an access group that |
| // is parallel to this loop. |
| for (BasicBlock *BB : this->blocks()) { |
| for (Instruction &I : *BB) { |
| if (!I.mayReadOrWriteMemory()) |
| continue; |
| |
| if (MDNode *AccessGroup = I.getMetadata(LLVMContext::MD_access_group)) { |
| auto ContainsAccessGroup = [&ParallelAccessGroups](MDNode *AG) -> bool { |
| if (AG->getNumOperands() == 0) { |
| assert(isValidAsAccessGroup(AG) && "Item must be an access group"); |
| return ParallelAccessGroups.count(AG); |
| } |
| |
| for (const MDOperand &AccessListItem : AG->operands()) { |
| MDNode *AccGroup = cast<MDNode>(AccessListItem.get()); |
| assert(isValidAsAccessGroup(AccGroup) && |
| "List item must be an access group"); |
| if (ParallelAccessGroups.count(AccGroup)) |
| return true; |
| } |
| return false; |
| }; |
| |
| if (ContainsAccessGroup(AccessGroup)) |
| continue; |
| } |
| |
| // The memory instruction can refer to the loop identifier metadata |
| // directly or indirectly through another list metadata (in case of |
| // nested parallel loops). The loop identifier metadata refers to |
| // itself so we can check both cases with the same routine. |
| MDNode *LoopIdMD = |
| I.getMetadata(LLVMContext::MD_mem_parallel_loop_access); |
| |
| if (!LoopIdMD) |
| return false; |
| |
| bool LoopIdMDFound = false; |
| for (const MDOperand &MDOp : LoopIdMD->operands()) { |
| if (MDOp == DesiredLoopIdMetadata) { |
| LoopIdMDFound = true; |
| break; |
| } |
| } |
| |
| if (!LoopIdMDFound) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); } |
| |
| Loop::LocRange Loop::getLocRange() const { |
| // If we have a debug location in the loop ID, then use it. |
| if (MDNode *LoopID = getLoopID()) { |
| DebugLoc Start; |
| // We use the first DebugLoc in the header as the start location of the loop |
| // and if there is a second DebugLoc in the header we use it as end location |
| // of the loop. |
| for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { |
| if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) { |
| if (!Start) |
| Start = DebugLoc(L); |
| else |
| return LocRange(Start, DebugLoc(L)); |
| } |
| } |
| |
| if (Start) |
| return LocRange(Start); |
| } |
| |
| // Try the pre-header first. |
| if (BasicBlock *PHeadBB = getLoopPreheader()) |
| if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc()) |
| return LocRange(DL); |
| |
| // If we have no pre-header or there are no instructions with debug |
| // info in it, try the header. |
| if (BasicBlock *HeadBB = getHeader()) |
| return LocRange(HeadBB->getTerminator()->getDebugLoc()); |
| |
| return LocRange(); |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); } |
| |
| LLVM_DUMP_METHOD void Loop::dumpVerbose() const { |
| print(dbgs(), /*Depth=*/0, /*Verbose=*/true); |
| } |
| #endif |
| |
| //===----------------------------------------------------------------------===// |
| // UnloopUpdater implementation |
| // |
| |
| namespace { |
| /// Find the new parent loop for all blocks within the "unloop" whose last |
| /// backedges has just been removed. |
| class UnloopUpdater { |
| Loop &Unloop; |
| LoopInfo *LI; |
| |
| LoopBlocksDFS DFS; |
| |
| // Map unloop's immediate subloops to their nearest reachable parents. Nested |
| // loops within these subloops will not change parents. However, an immediate |
| // subloop's new parent will be the nearest loop reachable from either its own |
| // exits *or* any of its nested loop's exits. |
| DenseMap<Loop *, Loop *> SubloopParents; |
| |
| // Flag the presence of an irreducible backedge whose destination is a block |
| // directly contained by the original unloop. |
| bool FoundIB; |
| |
| public: |
| UnloopUpdater(Loop *UL, LoopInfo *LInfo) |
| : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {} |
| |
| void updateBlockParents(); |
| |
| void removeBlocksFromAncestors(); |
| |
| void updateSubloopParents(); |
| |
| protected: |
| Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); |
| }; |
| } // end anonymous namespace |
| |
| /// Update the parent loop for all blocks that are directly contained within the |
| /// original "unloop". |
| void UnloopUpdater::updateBlockParents() { |
| if (Unloop.getNumBlocks()) { |
| // Perform a post order CFG traversal of all blocks within this loop, |
| // propagating the nearest loop from successors to predecessors. |
| LoopBlocksTraversal Traversal(DFS, LI); |
| for (BasicBlock *POI : Traversal) { |
| |
| Loop *L = LI->getLoopFor(POI); |
| Loop *NL = getNearestLoop(POI, L); |
| |
| if (NL != L) { |
| // For reducible loops, NL is now an ancestor of Unloop. |
| assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) && |
| "uninitialized successor"); |
| LI->changeLoopFor(POI, NL); |
| } else { |
| // Or the current block is part of a subloop, in which case its parent |
| // is unchanged. |
| assert((FoundIB || Unloop.contains(L)) && "uninitialized successor"); |
| } |
| } |
| } |
| // Each irreducible loop within the unloop induces a round of iteration using |
| // the DFS result cached by Traversal. |
| bool Changed = FoundIB; |
| for (unsigned NIters = 0; Changed; ++NIters) { |
| assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm"); |
| |
| // Iterate over the postorder list of blocks, propagating the nearest loop |
| // from successors to predecessors as before. |
| Changed = false; |
| for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), |
| POE = DFS.endPostorder(); |
| POI != POE; ++POI) { |
| |
| Loop *L = LI->getLoopFor(*POI); |
| Loop *NL = getNearestLoop(*POI, L); |
| if (NL != L) { |
| assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) && |
| "uninitialized successor"); |
| LI->changeLoopFor(*POI, NL); |
| Changed = true; |
| } |
| } |
| } |
| } |
| |
| /// Remove unloop's blocks from all ancestors below their new parents. |
| void UnloopUpdater::removeBlocksFromAncestors() { |
| // Remove all unloop's blocks (including those in nested subloops) from |
| // ancestors below the new parent loop. |
| for (Loop::block_iterator BI = Unloop.block_begin(), BE = Unloop.block_end(); |
| BI != BE; ++BI) { |
| Loop *OuterParent = LI->getLoopFor(*BI); |
| if (Unloop.contains(OuterParent)) { |
| while (OuterParent->getParentLoop() != &Unloop) |
| OuterParent = OuterParent->getParentLoop(); |
| OuterParent = SubloopParents[OuterParent]; |
| } |
| // Remove blocks from former Ancestors except Unloop itself which will be |
| // deleted. |
| for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent; |
| OldParent = OldParent->getParentLoop()) { |
| assert(OldParent && "new loop is not an ancestor of the original"); |
| OldParent->removeBlockFromLoop(*BI); |
| } |
| } |
| } |
| |
| /// Update the parent loop for all subloops directly nested within unloop. |
| void UnloopUpdater::updateSubloopParents() { |
| while (!Unloop.empty()) { |
| Loop *Subloop = *std::prev(Unloop.end()); |
| Unloop.removeChildLoop(std::prev(Unloop.end())); |
| |
| assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); |
| if (Loop *Parent = SubloopParents[Subloop]) |
| Parent->addChildLoop(Subloop); |
| else |
| LI->addTopLevelLoop(Subloop); |
| } |
| } |
| |
| /// Return the nearest parent loop among this block's successors. If a successor |
| /// is a subloop header, consider its parent to be the nearest parent of the |
| /// subloop's exits. |
| /// |
| /// For subloop blocks, simply update SubloopParents and return NULL. |
| Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { |
| |
| // Initially for blocks directly contained by Unloop, NearLoop == Unloop and |
| // is considered uninitialized. |
| Loop *NearLoop = BBLoop; |
| |
| Loop *Subloop = nullptr; |
| if (NearLoop != &Unloop && Unloop.contains(NearLoop)) { |
| Subloop = NearLoop; |
| // Find the subloop ancestor that is directly contained within Unloop. |
| while (Subloop->getParentLoop() != &Unloop) { |
| Subloop = Subloop->getParentLoop(); |
| assert(Subloop && "subloop is not an ancestor of the original loop"); |
| } |
| // Get the current nearest parent of the Subloop exits, initially Unloop. |
| NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second; |
| } |
| |
| succ_iterator I = succ_begin(BB), E = succ_end(BB); |
| if (I == E) { |
| assert(!Subloop && "subloop blocks must have a successor"); |
| NearLoop = nullptr; // unloop blocks may now exit the function. |
| } |
| for (; I != E; ++I) { |
| if (*I == BB) |
| continue; // self loops are uninteresting |
| |
| Loop *L = LI->getLoopFor(*I); |
| if (L == &Unloop) { |
| // This successor has not been processed. This path must lead to an |
| // irreducible backedge. |
| assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); |
| FoundIB = true; |
| } |
| if (L != &Unloop && Unloop.contains(L)) { |
| // Successor is in a subloop. |
| if (Subloop) |
| continue; // Branching within subloops. Ignore it. |
| |
| // BB branches from the original into a subloop header. |
| assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops"); |
| |
| // Get the current nearest parent of the Subloop's exits. |
| L = SubloopParents[L]; |
| // L could be Unloop if the only exit was an irreducible backedge. |
| } |
| if (L == &Unloop) { |
| continue; |
| } |
| // Handle critical edges from Unloop into a sibling loop. |
| if (L && !L->contains(&Unloop)) { |
| L = L->getParentLoop(); |
| } |
| // Remember the nearest parent loop among successors or subloop exits. |
| if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L)) |
| NearLoop = L; |
| } |
| if (Subloop) { |
| SubloopParents[Subloop] = NearLoop; |
| return BBLoop; |
| } |
| return NearLoop; |
| } |
| |
| LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); } |
| |
| bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA, |
| FunctionAnalysisManager::Invalidator &) { |
| // Check whether the analysis, all analyses on functions, or the function's |
| // CFG have been preserved. |
| auto PAC = PA.getChecker<LoopAnalysis>(); |
| return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || |
| PAC.preservedSet<CFGAnalyses>()); |
| } |
| |
| void LoopInfo::erase(Loop *Unloop) { |
| assert(!Unloop->isInvalid() && "Loop has already been erased!"); |
| |
| auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); }); |
| |
| // First handle the special case of no parent loop to simplify the algorithm. |
| if (!Unloop->getParentLoop()) { |
| // Since BBLoop had no parent, Unloop blocks are no longer in a loop. |
| for (Loop::block_iterator I = Unloop->block_begin(), |
| E = Unloop->block_end(); |
| I != E; ++I) { |
| |
| // Don't reparent blocks in subloops. |
| if (getLoopFor(*I) != Unloop) |
| continue; |
| |
| // Blocks no longer have a parent but are still referenced by Unloop until |
| // the Unloop object is deleted. |
| changeLoopFor(*I, nullptr); |
| } |
| |
| // Remove the loop from the top-level LoopInfo object. |
| for (iterator I = begin();; ++I) { |
| assert(I != end() && "Couldn't find loop"); |
| if (*I == Unloop) { |
| removeLoop(I); |
| break; |
| } |
| } |
| |
| // Move all of the subloops to the top-level. |
| while (!Unloop->empty()) |
| addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end()))); |
| |
| return; |
| } |
| |
| // Update the parent loop for all blocks within the loop. Blocks within |
| // subloops will not change parents. |
| UnloopUpdater Updater(Unloop, this); |
| Updater.updateBlockParents(); |
| |
| // Remove blocks from former ancestor loops. |
| Updater.removeBlocksFromAncestors(); |
| |
| // Add direct subloops as children in their new parent loop. |
| Updater.updateSubloopParents(); |
| |
| // Remove unloop from its parent loop. |
| Loop *ParentLoop = Unloop->getParentLoop(); |
| for (Loop::iterator I = ParentLoop->begin();; ++I) { |
| assert(I != ParentLoop->end() && "Couldn't find loop"); |
| if (*I == Unloop) { |
| ParentLoop->removeChildLoop(I); |
| break; |
| } |
| } |
| } |
| |
| AnalysisKey LoopAnalysis::Key; |
| |
| LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) { |
| // FIXME: Currently we create a LoopInfo from scratch for every function. |
| // This may prove to be too wasteful due to deallocating and re-allocating |
| // memory each time for the underlying map and vector datastructures. At some |
| // point it may prove worthwhile to use a freelist and recycle LoopInfo |
| // objects. I don't want to add that kind of complexity until the scope of |
| // the problem is better understood. |
| LoopInfo LI; |
| LI.analyze(AM.getResult<DominatorTreeAnalysis>(F)); |
| return LI; |
| } |
| |
| PreservedAnalyses LoopPrinterPass::run(Function &F, |
| FunctionAnalysisManager &AM) { |
| AM.getResult<LoopAnalysis>(F).print(OS); |
| return PreservedAnalyses::all(); |
| } |
| |
| void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) { |
| |
| if (forcePrintModuleIR()) { |
| // handling -print-module-scope |
| OS << Banner << " (loop: "; |
| L.getHeader()->printAsOperand(OS, false); |
| OS << ")\n"; |
| |
| // printing whole module |
| OS << *L.getHeader()->getModule(); |
| return; |
| } |
| |
| OS << Banner; |
| |
| auto *PreHeader = L.getLoopPreheader(); |
| if (PreHeader) { |
| OS << "\n; Preheader:"; |
| PreHeader->print(OS); |
| OS << "\n; Loop:"; |
| } |
| |
| for (auto *Block : L.blocks()) |
| if (Block) |
| Block->print(OS); |
| else |
| OS << "Printing <null> block"; |
| |
| SmallVector<BasicBlock *, 8> ExitBlocks; |
| L.getExitBlocks(ExitBlocks); |
| if (!ExitBlocks.empty()) { |
| OS << "\n; Exit blocks"; |
| for (auto *Block : ExitBlocks) |
| if (Block) |
| Block->print(OS); |
| else |
| OS << "Printing <null> block"; |
| } |
| } |
| |
| MDNode *llvm::findOptionMDForLoopID(MDNode *LoopID, StringRef Name) { |
| // No loop metadata node, no loop properties. |
| if (!LoopID) |
| return nullptr; |
| |
| // First operand should refer to the metadata node itself, for legacy reasons. |
| assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); |
| assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); |
| |
| // Iterate over the metdata node operands and look for MDString metadata. |
| for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { |
| MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); |
| if (!MD || MD->getNumOperands() < 1) |
| continue; |
| MDString *S = dyn_cast<MDString>(MD->getOperand(0)); |
| if (!S) |
| continue; |
| // Return the operand node if MDString holds expected metadata. |
| if (Name.equals(S->getString())) |
| return MD; |
| } |
| |
| // Loop property not found. |
| return nullptr; |
| } |
| |
| MDNode *llvm::findOptionMDForLoop(const Loop *TheLoop, StringRef Name) { |
| return findOptionMDForLoopID(TheLoop->getLoopID(), Name); |
| } |
| |
| bool llvm::isValidAsAccessGroup(MDNode *Node) { |
| return Node->getNumOperands() == 0 && Node->isDistinct(); |
| } |
| |
| MDNode *llvm::makePostTransformationMetadata(LLVMContext &Context, |
| MDNode *OrigLoopID, |
| ArrayRef<StringRef> RemovePrefixes, |
| ArrayRef<MDNode *> AddAttrs) { |
| // First remove any existing loop metadata related to this transformation. |
| SmallVector<Metadata *, 4> MDs; |
| |
| // Reserve first location for self reference to the LoopID metadata node. |
| TempMDTuple TempNode = MDNode::getTemporary(Context, None); |
| MDs.push_back(TempNode.get()); |
| |
| // Remove metadata for the transformation that has been applied or that became |
| // outdated. |
| if (OrigLoopID) { |
| for (unsigned i = 1, ie = OrigLoopID->getNumOperands(); i < ie; ++i) { |
| bool IsVectorMetadata = false; |
| Metadata *Op = OrigLoopID->getOperand(i); |
| if (MDNode *MD = dyn_cast<MDNode>(Op)) { |
| const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); |
| if (S) |
| IsVectorMetadata = |
| llvm::any_of(RemovePrefixes, [S](StringRef Prefix) -> bool { |
| return S->getString().startswith(Prefix); |
| }); |
| } |
| if (!IsVectorMetadata) |
| MDs.push_back(Op); |
| } |
| } |
| |
| // Add metadata to avoid reapplying a transformation, such as |
| // llvm.loop.unroll.disable and llvm.loop.isvectorized. |
| MDs.append(AddAttrs.begin(), AddAttrs.end()); |
| |
| MDNode *NewLoopID = MDNode::getDistinct(Context, MDs); |
| // Replace the temporary node with a self-reference. |
| NewLoopID->replaceOperandWith(0, NewLoopID); |
| return NewLoopID; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LoopInfo implementation |
| // |
| |
| LoopInfoWrapperPass::LoopInfoWrapperPass() : FunctionPass(ID) { |
| initializeLoopInfoWrapperPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| char LoopInfoWrapperPass::ID = 0; |
| INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information", |
| true, true) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information", |
| true, true) |
| |
| bool LoopInfoWrapperPass::runOnFunction(Function &) { |
| releaseMemory(); |
| LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree()); |
| return false; |
| } |
| |
| void LoopInfoWrapperPass::verifyAnalysis() const { |
| // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the |
| // function each time verifyAnalysis is called is very expensive. The |
| // -verify-loop-info option can enable this. In order to perform some |
| // checking by default, LoopPass has been taught to call verifyLoop manually |
| // during loop pass sequences. |
| if (VerifyLoopInfo) { |
| auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| LI.verify(DT); |
| } |
| } |
| |
| void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| AU.addRequiredTransitive<DominatorTreeWrapperPass>(); |
| } |
| |
| void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const { |
| LI.print(OS); |
| } |
| |
| PreservedAnalyses LoopVerifierPass::run(Function &F, |
| FunctionAnalysisManager &AM) { |
| LoopInfo &LI = AM.getResult<LoopAnalysis>(F); |
| auto &DT = AM.getResult<DominatorTreeAnalysis>(F); |
| LI.verify(DT); |
| return PreservedAnalyses::all(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LoopBlocksDFS implementation |
| // |
| |
| /// Traverse the loop blocks and store the DFS result. |
| /// Useful for clients that just want the final DFS result and don't need to |
| /// visit blocks during the initial traversal. |
| void LoopBlocksDFS::perform(LoopInfo *LI) { |
| LoopBlocksTraversal Traversal(*this, LI); |
| for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), |
| POE = Traversal.end(); |
| POI != POE; ++POI) |
| ; |
| } |