|  | //===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file declares the CodeGenDAGPatterns class, which is used to read and | 
|  | // represent the patterns present in a .td file for instructions. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef CODEGEN_DAGPATTERNS_H | 
|  | #define CODEGEN_DAGPATTERNS_H | 
|  |  | 
|  | #include "CodeGenTarget.h" | 
|  | #include "CodeGenIntrinsics.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringMap.h" | 
|  | #include <set> | 
|  | #include <algorithm> | 
|  | #include <vector> | 
|  | #include <map> | 
|  |  | 
|  | namespace llvm { | 
|  | class Record; | 
|  | class Init; | 
|  | class ListInit; | 
|  | class DagInit; | 
|  | class SDNodeInfo; | 
|  | class TreePattern; | 
|  | class TreePatternNode; | 
|  | class CodeGenDAGPatterns; | 
|  | class ComplexPattern; | 
|  |  | 
|  | /// EEVT::DAGISelGenValueType - These are some extended forms of | 
|  | /// MVT::SimpleValueType that we use as lattice values during type inference. | 
|  | /// The existing MVT iAny, fAny and vAny types suffice to represent | 
|  | /// arbitrary integer, floating-point, and vector types, so only an unknown | 
|  | /// value is needed. | 
|  | namespace EEVT { | 
|  | /// TypeSet - This is either empty if it's completely unknown, or holds a set | 
|  | /// of types.  It is used during type inference because register classes can | 
|  | /// have multiple possible types and we don't know which one they get until | 
|  | /// type inference is complete. | 
|  | /// | 
|  | /// TypeSet can have three states: | 
|  | ///    Vector is empty: The type is completely unknown, it can be any valid | 
|  | ///       target type. | 
|  | ///    Vector has multiple constrained types: (e.g. v4i32 + v4f32) it is one | 
|  | ///       of those types only. | 
|  | ///    Vector has one concrete type: The type is completely known. | 
|  | /// | 
|  | class TypeSet { | 
|  | SmallVector<MVT::SimpleValueType, 4> TypeVec; | 
|  | public: | 
|  | TypeSet() {} | 
|  | TypeSet(MVT::SimpleValueType VT, TreePattern &TP); | 
|  | TypeSet(const std::vector<MVT::SimpleValueType> &VTList); | 
|  |  | 
|  | bool isCompletelyUnknown() const { return TypeVec.empty(); } | 
|  |  | 
|  | bool isConcrete() const { | 
|  | if (TypeVec.size() != 1) return false; | 
|  | unsigned char T = TypeVec[0]; (void)T; | 
|  | assert(T < MVT::LAST_VALUETYPE || T == MVT::iPTR || T == MVT::iPTRAny); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | MVT::SimpleValueType getConcrete() const { | 
|  | assert(isConcrete() && "Type isn't concrete yet"); | 
|  | return (MVT::SimpleValueType)TypeVec[0]; | 
|  | } | 
|  |  | 
|  | bool isDynamicallyResolved() const { | 
|  | return getConcrete() == MVT::iPTR || getConcrete() == MVT::iPTRAny; | 
|  | } | 
|  |  | 
|  | const SmallVectorImpl<MVT::SimpleValueType> &getTypeList() const { | 
|  | assert(!TypeVec.empty() && "Not a type list!"); | 
|  | return TypeVec; | 
|  | } | 
|  |  | 
|  | bool isVoid() const { | 
|  | return TypeVec.size() == 1 && TypeVec[0] == MVT::isVoid; | 
|  | } | 
|  |  | 
|  | /// hasIntegerTypes - Return true if this TypeSet contains any integer value | 
|  | /// types. | 
|  | bool hasIntegerTypes() const; | 
|  |  | 
|  | /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or | 
|  | /// a floating point value type. | 
|  | bool hasFloatingPointTypes() const; | 
|  |  | 
|  | /// hasVectorTypes - Return true if this TypeSet contains a vector value | 
|  | /// type. | 
|  | bool hasVectorTypes() const; | 
|  |  | 
|  | /// getName() - Return this TypeSet as a string. | 
|  | std::string getName() const; | 
|  |  | 
|  | /// MergeInTypeInfo - This merges in type information from the specified | 
|  | /// argument.  If 'this' changes, it returns true.  If the two types are | 
|  | /// contradictory (e.g. merge f32 into i32) then this throws an exception. | 
|  | bool MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP); | 
|  |  | 
|  | bool MergeInTypeInfo(MVT::SimpleValueType InVT, TreePattern &TP) { | 
|  | return MergeInTypeInfo(EEVT::TypeSet(InVT, TP), TP); | 
|  | } | 
|  |  | 
|  | /// Force this type list to only contain integer types. | 
|  | bool EnforceInteger(TreePattern &TP); | 
|  |  | 
|  | /// Force this type list to only contain floating point types. | 
|  | bool EnforceFloatingPoint(TreePattern &TP); | 
|  |  | 
|  | /// EnforceScalar - Remove all vector types from this type list. | 
|  | bool EnforceScalar(TreePattern &TP); | 
|  |  | 
|  | /// EnforceVector - Remove all non-vector types from this type list. | 
|  | bool EnforceVector(TreePattern &TP); | 
|  |  | 
|  | /// EnforceSmallerThan - 'this' must be a smaller VT than Other.  Update | 
|  | /// this an other based on this information. | 
|  | bool EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP); | 
|  |  | 
|  | /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type | 
|  | /// whose element is VT. | 
|  | bool EnforceVectorEltTypeIs(EEVT::TypeSet &VT, TreePattern &TP); | 
|  |  | 
|  | /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to | 
|  | /// be a vector type VT. | 
|  | bool EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VT, TreePattern &TP); | 
|  |  | 
|  | bool operator!=(const TypeSet &RHS) const { return TypeVec != RHS.TypeVec; } | 
|  | bool operator==(const TypeSet &RHS) const { return TypeVec == RHS.TypeVec; } | 
|  |  | 
|  | private: | 
|  | /// FillWithPossibleTypes - Set to all legal types and return true, only | 
|  | /// valid on completely unknown type sets.  If Pred is non-null, only MVTs | 
|  | /// that pass the predicate are added. | 
|  | bool FillWithPossibleTypes(TreePattern &TP, | 
|  | bool (*Pred)(MVT::SimpleValueType) = 0, | 
|  | const char *PredicateName = 0); | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// Set type used to track multiply used variables in patterns | 
|  | typedef std::set<std::string> MultipleUseVarSet; | 
|  |  | 
|  | /// SDTypeConstraint - This is a discriminated union of constraints, | 
|  | /// corresponding to the SDTypeConstraint tablegen class in Target.td. | 
|  | struct SDTypeConstraint { | 
|  | SDTypeConstraint(Record *R); | 
|  |  | 
|  | unsigned OperandNo;   // The operand # this constraint applies to. | 
|  | enum { | 
|  | SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs, | 
|  | SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec, | 
|  | SDTCisSubVecOfVec | 
|  | } ConstraintType; | 
|  |  | 
|  | union {   // The discriminated union. | 
|  | struct { | 
|  | MVT::SimpleValueType VT; | 
|  | } SDTCisVT_Info; | 
|  | struct { | 
|  | unsigned OtherOperandNum; | 
|  | } SDTCisSameAs_Info; | 
|  | struct { | 
|  | unsigned OtherOperandNum; | 
|  | } SDTCisVTSmallerThanOp_Info; | 
|  | struct { | 
|  | unsigned BigOperandNum; | 
|  | } SDTCisOpSmallerThanOp_Info; | 
|  | struct { | 
|  | unsigned OtherOperandNum; | 
|  | } SDTCisEltOfVec_Info; | 
|  | struct { | 
|  | unsigned OtherOperandNum; | 
|  | } SDTCisSubVecOfVec_Info; | 
|  | } x; | 
|  |  | 
|  | /// ApplyTypeConstraint - Given a node in a pattern, apply this type | 
|  | /// constraint to the nodes operands.  This returns true if it makes a | 
|  | /// change, false otherwise.  If a type contradiction is found, throw an | 
|  | /// exception. | 
|  | bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo, | 
|  | TreePattern &TP) const; | 
|  | }; | 
|  |  | 
|  | /// SDNodeInfo - One of these records is created for each SDNode instance in | 
|  | /// the target .td file.  This represents the various dag nodes we will be | 
|  | /// processing. | 
|  | class SDNodeInfo { | 
|  | Record *Def; | 
|  | std::string EnumName; | 
|  | std::string SDClassName; | 
|  | unsigned Properties; | 
|  | unsigned NumResults; | 
|  | int NumOperands; | 
|  | std::vector<SDTypeConstraint> TypeConstraints; | 
|  | public: | 
|  | SDNodeInfo(Record *R);  // Parse the specified record. | 
|  |  | 
|  | unsigned getNumResults() const { return NumResults; } | 
|  |  | 
|  | /// getNumOperands - This is the number of operands required or -1 if | 
|  | /// variadic. | 
|  | int getNumOperands() const { return NumOperands; } | 
|  | Record *getRecord() const { return Def; } | 
|  | const std::string &getEnumName() const { return EnumName; } | 
|  | const std::string &getSDClassName() const { return SDClassName; } | 
|  |  | 
|  | const std::vector<SDTypeConstraint> &getTypeConstraints() const { | 
|  | return TypeConstraints; | 
|  | } | 
|  |  | 
|  | /// getKnownType - If the type constraints on this node imply a fixed type | 
|  | /// (e.g. all stores return void, etc), then return it as an | 
|  | /// MVT::SimpleValueType.  Otherwise, return MVT::Other. | 
|  | MVT::SimpleValueType getKnownType(unsigned ResNo) const; | 
|  |  | 
|  | /// hasProperty - Return true if this node has the specified property. | 
|  | /// | 
|  | bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); } | 
|  |  | 
|  | /// ApplyTypeConstraints - Given a node in a pattern, apply the type | 
|  | /// constraints for this node to the operands of the node.  This returns | 
|  | /// true if it makes a change, false otherwise.  If a type contradiction is | 
|  | /// found, throw an exception. | 
|  | bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const { | 
|  | bool MadeChange = false; | 
|  | for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) | 
|  | MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP); | 
|  | return MadeChange; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// TreePredicateFn - This is an abstraction that represents the predicates on | 
|  | /// a PatFrag node.  This is a simple one-word wrapper around a pointer to | 
|  | /// provide nice accessors. | 
|  | class TreePredicateFn { | 
|  | /// PatFragRec - This is the TreePattern for the PatFrag that we | 
|  | /// originally came from. | 
|  | TreePattern *PatFragRec; | 
|  | public: | 
|  | /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag. | 
|  | TreePredicateFn(TreePattern *N); | 
|  |  | 
|  |  | 
|  | TreePattern *getOrigPatFragRecord() const { return PatFragRec; } | 
|  |  | 
|  | /// isAlwaysTrue - Return true if this is a noop predicate. | 
|  | bool isAlwaysTrue() const; | 
|  |  | 
|  | bool isImmediatePattern() const { return !getImmCode().empty(); } | 
|  |  | 
|  | /// getImmediatePredicateCode - Return the code that evaluates this pattern if | 
|  | /// this is an immediate predicate.  It is an error to call this on a | 
|  | /// non-immediate pattern. | 
|  | std::string getImmediatePredicateCode() const { | 
|  | std::string Result = getImmCode(); | 
|  | assert(!Result.empty() && "Isn't an immediate pattern!"); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool operator==(const TreePredicateFn &RHS) const { | 
|  | return PatFragRec == RHS.PatFragRec; | 
|  | } | 
|  |  | 
|  | bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); } | 
|  |  | 
|  | /// Return the name to use in the generated code to reference this, this is | 
|  | /// "Predicate_foo" if from a pattern fragment "foo". | 
|  | std::string getFnName() const; | 
|  |  | 
|  | /// getCodeToRunOnSDNode - Return the code for the function body that | 
|  | /// evaluates this predicate.  The argument is expected to be in "Node", | 
|  | /// not N.  This handles casting and conversion to a concrete node type as | 
|  | /// appropriate. | 
|  | std::string getCodeToRunOnSDNode() const; | 
|  |  | 
|  | private: | 
|  | std::string getPredCode() const; | 
|  | std::string getImmCode() const; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /// FIXME: TreePatternNode's can be shared in some cases (due to dag-shaped | 
|  | /// patterns), and as such should be ref counted.  We currently just leak all | 
|  | /// TreePatternNode objects! | 
|  | class TreePatternNode { | 
|  | /// The type of each node result.  Before and during type inference, each | 
|  | /// result may be a set of possible types.  After (successful) type inference, | 
|  | /// each is a single concrete type. | 
|  | SmallVector<EEVT::TypeSet, 1> Types; | 
|  |  | 
|  | /// Operator - The Record for the operator if this is an interior node (not | 
|  | /// a leaf). | 
|  | Record *Operator; | 
|  |  | 
|  | /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf. | 
|  | /// | 
|  | Init *Val; | 
|  |  | 
|  | /// Name - The name given to this node with the :$foo notation. | 
|  | /// | 
|  | std::string Name; | 
|  |  | 
|  | /// PredicateFns - The predicate functions to execute on this node to check | 
|  | /// for a match.  If this list is empty, no predicate is involved. | 
|  | std::vector<TreePredicateFn> PredicateFns; | 
|  |  | 
|  | /// TransformFn - The transformation function to execute on this node before | 
|  | /// it can be substituted into the resulting instruction on a pattern match. | 
|  | Record *TransformFn; | 
|  |  | 
|  | std::vector<TreePatternNode*> Children; | 
|  | public: | 
|  | TreePatternNode(Record *Op, const std::vector<TreePatternNode*> &Ch, | 
|  | unsigned NumResults) | 
|  | : Operator(Op), Val(0), TransformFn(0), Children(Ch) { | 
|  | Types.resize(NumResults); | 
|  | } | 
|  | TreePatternNode(Init *val, unsigned NumResults)    // leaf ctor | 
|  | : Operator(0), Val(val), TransformFn(0) { | 
|  | Types.resize(NumResults); | 
|  | } | 
|  | ~TreePatternNode(); | 
|  |  | 
|  | const std::string &getName() const { return Name; } | 
|  | void setName(StringRef N) { Name.assign(N.begin(), N.end()); } | 
|  |  | 
|  | bool isLeaf() const { return Val != 0; } | 
|  |  | 
|  | // Type accessors. | 
|  | unsigned getNumTypes() const { return Types.size(); } | 
|  | MVT::SimpleValueType getType(unsigned ResNo) const { | 
|  | return Types[ResNo].getConcrete(); | 
|  | } | 
|  | const SmallVectorImpl<EEVT::TypeSet> &getExtTypes() const { return Types; } | 
|  | const EEVT::TypeSet &getExtType(unsigned ResNo) const { return Types[ResNo]; } | 
|  | EEVT::TypeSet &getExtType(unsigned ResNo) { return Types[ResNo]; } | 
|  | void setType(unsigned ResNo, const EEVT::TypeSet &T) { Types[ResNo] = T; } | 
|  |  | 
|  | bool hasTypeSet(unsigned ResNo) const { | 
|  | return Types[ResNo].isConcrete(); | 
|  | } | 
|  | bool isTypeCompletelyUnknown(unsigned ResNo) const { | 
|  | return Types[ResNo].isCompletelyUnknown(); | 
|  | } | 
|  | bool isTypeDynamicallyResolved(unsigned ResNo) const { | 
|  | return Types[ResNo].isDynamicallyResolved(); | 
|  | } | 
|  |  | 
|  | Init *getLeafValue() const { assert(isLeaf()); return Val; } | 
|  | Record *getOperator() const { assert(!isLeaf()); return Operator; } | 
|  |  | 
|  | unsigned getNumChildren() const { return Children.size(); } | 
|  | TreePatternNode *getChild(unsigned N) const { return Children[N]; } | 
|  | void setChild(unsigned i, TreePatternNode *N) { | 
|  | Children[i] = N; | 
|  | } | 
|  |  | 
|  | /// hasChild - Return true if N is any of our children. | 
|  | bool hasChild(const TreePatternNode *N) const { | 
|  | for (unsigned i = 0, e = Children.size(); i != e; ++i) | 
|  | if (Children[i] == N) return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool hasAnyPredicate() const { return !PredicateFns.empty(); } | 
|  |  | 
|  | const std::vector<TreePredicateFn> &getPredicateFns() const { | 
|  | return PredicateFns; | 
|  | } | 
|  | void clearPredicateFns() { PredicateFns.clear(); } | 
|  | void setPredicateFns(const std::vector<TreePredicateFn> &Fns) { | 
|  | assert(PredicateFns.empty() && "Overwriting non-empty predicate list!"); | 
|  | PredicateFns = Fns; | 
|  | } | 
|  | void addPredicateFn(const TreePredicateFn &Fn) { | 
|  | assert(!Fn.isAlwaysTrue() && "Empty predicate string!"); | 
|  | if (std::find(PredicateFns.begin(), PredicateFns.end(), Fn) == | 
|  | PredicateFns.end()) | 
|  | PredicateFns.push_back(Fn); | 
|  | } | 
|  |  | 
|  | Record *getTransformFn() const { return TransformFn; } | 
|  | void setTransformFn(Record *Fn) { TransformFn = Fn; } | 
|  |  | 
|  | /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the | 
|  | /// CodeGenIntrinsic information for it, otherwise return a null pointer. | 
|  | const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const; | 
|  |  | 
|  | /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, | 
|  | /// return the ComplexPattern information, otherwise return null. | 
|  | const ComplexPattern * | 
|  | getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const; | 
|  |  | 
|  | /// NodeHasProperty - Return true if this node has the specified property. | 
|  | bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; | 
|  |  | 
|  | /// TreeHasProperty - Return true if any node in this tree has the specified | 
|  | /// property. | 
|  | bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; | 
|  |  | 
|  | /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is | 
|  | /// marked isCommutative. | 
|  | bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const; | 
|  |  | 
|  | void print(raw_ostream &OS) const; | 
|  | void dump() const; | 
|  |  | 
|  | public:   // Higher level manipulation routines. | 
|  |  | 
|  | /// clone - Return a new copy of this tree. | 
|  | /// | 
|  | TreePatternNode *clone() const; | 
|  |  | 
|  | /// RemoveAllTypes - Recursively strip all the types of this tree. | 
|  | void RemoveAllTypes(); | 
|  |  | 
|  | /// isIsomorphicTo - Return true if this node is recursively isomorphic to | 
|  | /// the specified node.  For this comparison, all of the state of the node | 
|  | /// is considered, except for the assigned name.  Nodes with differing names | 
|  | /// that are otherwise identical are considered isomorphic. | 
|  | bool isIsomorphicTo(const TreePatternNode *N, | 
|  | const MultipleUseVarSet &DepVars) const; | 
|  |  | 
|  | /// SubstituteFormalArguments - Replace the formal arguments in this tree | 
|  | /// with actual values specified by ArgMap. | 
|  | void SubstituteFormalArguments(std::map<std::string, | 
|  | TreePatternNode*> &ArgMap); | 
|  |  | 
|  | /// InlinePatternFragments - If this pattern refers to any pattern | 
|  | /// fragments, inline them into place, giving us a pattern without any | 
|  | /// PatFrag references. | 
|  | TreePatternNode *InlinePatternFragments(TreePattern &TP); | 
|  |  | 
|  | /// ApplyTypeConstraints - Apply all of the type constraints relevant to | 
|  | /// this node and its children in the tree.  This returns true if it makes a | 
|  | /// change, false otherwise.  If a type contradiction is found, throw an | 
|  | /// exception. | 
|  | bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters); | 
|  |  | 
|  | /// UpdateNodeType - Set the node type of N to VT if VT contains | 
|  | /// information.  If N already contains a conflicting type, then throw an | 
|  | /// exception.  This returns true if any information was updated. | 
|  | /// | 
|  | bool UpdateNodeType(unsigned ResNo, const EEVT::TypeSet &InTy, | 
|  | TreePattern &TP) { | 
|  | return Types[ResNo].MergeInTypeInfo(InTy, TP); | 
|  | } | 
|  |  | 
|  | bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy, | 
|  | TreePattern &TP) { | 
|  | return Types[ResNo].MergeInTypeInfo(EEVT::TypeSet(InTy, TP), TP); | 
|  | } | 
|  |  | 
|  | /// ContainsUnresolvedType - Return true if this tree contains any | 
|  | /// unresolved types. | 
|  | bool ContainsUnresolvedType() const { | 
|  | for (unsigned i = 0, e = Types.size(); i != e; ++i) | 
|  | if (!Types[i].isConcrete()) return true; | 
|  |  | 
|  | for (unsigned i = 0, e = getNumChildren(); i != e; ++i) | 
|  | if (getChild(i)->ContainsUnresolvedType()) return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// canPatternMatch - If it is impossible for this pattern to match on this | 
|  | /// target, fill in Reason and return false.  Otherwise, return true. | 
|  | bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP); | 
|  | }; | 
|  |  | 
|  | inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) { | 
|  | TPN.print(OS); | 
|  | return OS; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// TreePattern - Represent a pattern, used for instructions, pattern | 
|  | /// fragments, etc. | 
|  | /// | 
|  | class TreePattern { | 
|  | /// Trees - The list of pattern trees which corresponds to this pattern. | 
|  | /// Note that PatFrag's only have a single tree. | 
|  | /// | 
|  | std::vector<TreePatternNode*> Trees; | 
|  |  | 
|  | /// NamedNodes - This is all of the nodes that have names in the trees in this | 
|  | /// pattern. | 
|  | StringMap<SmallVector<TreePatternNode*,1> > NamedNodes; | 
|  |  | 
|  | /// TheRecord - The actual TableGen record corresponding to this pattern. | 
|  | /// | 
|  | Record *TheRecord; | 
|  |  | 
|  | /// Args - This is a list of all of the arguments to this pattern (for | 
|  | /// PatFrag patterns), which are the 'node' markers in this pattern. | 
|  | std::vector<std::string> Args; | 
|  |  | 
|  | /// CDP - the top-level object coordinating this madness. | 
|  | /// | 
|  | CodeGenDAGPatterns &CDP; | 
|  |  | 
|  | /// isInputPattern - True if this is an input pattern, something to match. | 
|  | /// False if this is an output pattern, something to emit. | 
|  | bool isInputPattern; | 
|  | public: | 
|  |  | 
|  | /// TreePattern constructor - Parse the specified DagInits into the | 
|  | /// current record. | 
|  | TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, | 
|  | CodeGenDAGPatterns &ise); | 
|  | TreePattern(Record *TheRec, DagInit *Pat, bool isInput, | 
|  | CodeGenDAGPatterns &ise); | 
|  | TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, | 
|  | CodeGenDAGPatterns &ise); | 
|  |  | 
|  | /// getTrees - Return the tree patterns which corresponds to this pattern. | 
|  | /// | 
|  | const std::vector<TreePatternNode*> &getTrees() const { return Trees; } | 
|  | unsigned getNumTrees() const { return Trees.size(); } | 
|  | TreePatternNode *getTree(unsigned i) const { return Trees[i]; } | 
|  | TreePatternNode *getOnlyTree() const { | 
|  | assert(Trees.size() == 1 && "Doesn't have exactly one pattern!"); | 
|  | return Trees[0]; | 
|  | } | 
|  |  | 
|  | const StringMap<SmallVector<TreePatternNode*,1> > &getNamedNodesMap() { | 
|  | if (NamedNodes.empty()) | 
|  | ComputeNamedNodes(); | 
|  | return NamedNodes; | 
|  | } | 
|  |  | 
|  | /// getRecord - Return the actual TableGen record corresponding to this | 
|  | /// pattern. | 
|  | /// | 
|  | Record *getRecord() const { return TheRecord; } | 
|  |  | 
|  | unsigned getNumArgs() const { return Args.size(); } | 
|  | const std::string &getArgName(unsigned i) const { | 
|  | assert(i < Args.size() && "Argument reference out of range!"); | 
|  | return Args[i]; | 
|  | } | 
|  | std::vector<std::string> &getArgList() { return Args; } | 
|  |  | 
|  | CodeGenDAGPatterns &getDAGPatterns() const { return CDP; } | 
|  |  | 
|  | /// InlinePatternFragments - If this pattern refers to any pattern | 
|  | /// fragments, inline them into place, giving us a pattern without any | 
|  | /// PatFrag references. | 
|  | void InlinePatternFragments() { | 
|  | for (unsigned i = 0, e = Trees.size(); i != e; ++i) | 
|  | Trees[i] = Trees[i]->InlinePatternFragments(*this); | 
|  | } | 
|  |  | 
|  | /// InferAllTypes - Infer/propagate as many types throughout the expression | 
|  | /// patterns as possible.  Return true if all types are inferred, false | 
|  | /// otherwise.  Throw an exception if a type contradiction is found. | 
|  | bool InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > | 
|  | *NamedTypes=0); | 
|  |  | 
|  | /// error - Throw an exception, prefixing it with information about this | 
|  | /// pattern. | 
|  | void error(const std::string &Msg) const; | 
|  |  | 
|  | void print(raw_ostream &OS) const; | 
|  | void dump() const; | 
|  |  | 
|  | private: | 
|  | TreePatternNode *ParseTreePattern(Init *DI, StringRef OpName); | 
|  | void ComputeNamedNodes(); | 
|  | void ComputeNamedNodes(TreePatternNode *N); | 
|  | }; | 
|  |  | 
|  | /// DAGDefaultOperand - One of these is created for each PredicateOperand | 
|  | /// or OptionalDefOperand that has a set ExecuteAlways / DefaultOps field. | 
|  | struct DAGDefaultOperand { | 
|  | std::vector<TreePatternNode*> DefaultOps; | 
|  | }; | 
|  |  | 
|  | class DAGInstruction { | 
|  | TreePattern *Pattern; | 
|  | std::vector<Record*> Results; | 
|  | std::vector<Record*> Operands; | 
|  | std::vector<Record*> ImpResults; | 
|  | TreePatternNode *ResultPattern; | 
|  | public: | 
|  | DAGInstruction(TreePattern *TP, | 
|  | const std::vector<Record*> &results, | 
|  | const std::vector<Record*> &operands, | 
|  | const std::vector<Record*> &impresults) | 
|  | : Pattern(TP), Results(results), Operands(operands), | 
|  | ImpResults(impresults), ResultPattern(0) {} | 
|  |  | 
|  | const TreePattern *getPattern() const { return Pattern; } | 
|  | unsigned getNumResults() const { return Results.size(); } | 
|  | unsigned getNumOperands() const { return Operands.size(); } | 
|  | unsigned getNumImpResults() const { return ImpResults.size(); } | 
|  | const std::vector<Record*>& getImpResults() const { return ImpResults; } | 
|  |  | 
|  | void setResultPattern(TreePatternNode *R) { ResultPattern = R; } | 
|  |  | 
|  | Record *getResult(unsigned RN) const { | 
|  | assert(RN < Results.size()); | 
|  | return Results[RN]; | 
|  | } | 
|  |  | 
|  | Record *getOperand(unsigned ON) const { | 
|  | assert(ON < Operands.size()); | 
|  | return Operands[ON]; | 
|  | } | 
|  |  | 
|  | Record *getImpResult(unsigned RN) const { | 
|  | assert(RN < ImpResults.size()); | 
|  | return ImpResults[RN]; | 
|  | } | 
|  |  | 
|  | TreePatternNode *getResultPattern() const { return ResultPattern; } | 
|  | }; | 
|  |  | 
|  | /// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns | 
|  | /// processed to produce isel. | 
|  | class PatternToMatch { | 
|  | public: | 
|  | PatternToMatch(Record *srcrecord, ListInit *preds, | 
|  | TreePatternNode *src, TreePatternNode *dst, | 
|  | const std::vector<Record*> &dstregs, | 
|  | unsigned complexity, unsigned uid) | 
|  | : SrcRecord(srcrecord), Predicates(preds), SrcPattern(src), DstPattern(dst), | 
|  | Dstregs(dstregs), AddedComplexity(complexity), ID(uid) {} | 
|  |  | 
|  | Record          *SrcRecord;   // Originating Record for the pattern. | 
|  | ListInit        *Predicates;  // Top level predicate conditions to match. | 
|  | TreePatternNode *SrcPattern;  // Source pattern to match. | 
|  | TreePatternNode *DstPattern;  // Resulting pattern. | 
|  | std::vector<Record*> Dstregs; // Physical register defs being matched. | 
|  | unsigned         AddedComplexity; // Add to matching pattern complexity. | 
|  | unsigned         ID;          // Unique ID for the record. | 
|  |  | 
|  | Record          *getSrcRecord()  const { return SrcRecord; } | 
|  | ListInit        *getPredicates() const { return Predicates; } | 
|  | TreePatternNode *getSrcPattern() const { return SrcPattern; } | 
|  | TreePatternNode *getDstPattern() const { return DstPattern; } | 
|  | const std::vector<Record*> &getDstRegs() const { return Dstregs; } | 
|  | unsigned         getAddedComplexity() const { return AddedComplexity; } | 
|  |  | 
|  | std::string getPredicateCheck() const; | 
|  |  | 
|  | /// Compute the complexity metric for the input pattern.  This roughly | 
|  | /// corresponds to the number of nodes that are covered. | 
|  | unsigned getPatternComplexity(const CodeGenDAGPatterns &CGP) const; | 
|  | }; | 
|  |  | 
|  | // Deterministic comparison of Record*. | 
|  | struct RecordPtrCmp { | 
|  | bool operator()(const Record *LHS, const Record *RHS) const; | 
|  | }; | 
|  |  | 
|  | class CodeGenDAGPatterns { | 
|  | RecordKeeper &Records; | 
|  | CodeGenTarget Target; | 
|  | std::vector<CodeGenIntrinsic> Intrinsics; | 
|  | std::vector<CodeGenIntrinsic> TgtIntrinsics; | 
|  |  | 
|  | std::map<Record*, SDNodeInfo, RecordPtrCmp> SDNodes; | 
|  | std::map<Record*, std::pair<Record*, std::string>, RecordPtrCmp> SDNodeXForms; | 
|  | std::map<Record*, ComplexPattern, RecordPtrCmp> ComplexPatterns; | 
|  | std::map<Record*, TreePattern*, RecordPtrCmp> PatternFragments; | 
|  | std::map<Record*, DAGDefaultOperand, RecordPtrCmp> DefaultOperands; | 
|  | std::map<Record*, DAGInstruction, RecordPtrCmp> Instructions; | 
|  |  | 
|  | // Specific SDNode definitions: | 
|  | Record *intrinsic_void_sdnode; | 
|  | Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode; | 
|  |  | 
|  | /// PatternsToMatch - All of the things we are matching on the DAG.  The first | 
|  | /// value is the pattern to match, the second pattern is the result to | 
|  | /// emit. | 
|  | std::vector<PatternToMatch> PatternsToMatch; | 
|  | public: | 
|  | CodeGenDAGPatterns(RecordKeeper &R); | 
|  | ~CodeGenDAGPatterns(); | 
|  |  | 
|  | CodeGenTarget &getTargetInfo() { return Target; } | 
|  | const CodeGenTarget &getTargetInfo() const { return Target; } | 
|  |  | 
|  | Record *getSDNodeNamed(const std::string &Name) const; | 
|  |  | 
|  | const SDNodeInfo &getSDNodeInfo(Record *R) const { | 
|  | assert(SDNodes.count(R) && "Unknown node!"); | 
|  | return SDNodes.find(R)->second; | 
|  | } | 
|  |  | 
|  | // Node transformation lookups. | 
|  | typedef std::pair<Record*, std::string> NodeXForm; | 
|  | const NodeXForm &getSDNodeTransform(Record *R) const { | 
|  | assert(SDNodeXForms.count(R) && "Invalid transform!"); | 
|  | return SDNodeXForms.find(R)->second; | 
|  | } | 
|  |  | 
|  | typedef std::map<Record*, NodeXForm, RecordPtrCmp>::const_iterator | 
|  | nx_iterator; | 
|  | nx_iterator nx_begin() const { return SDNodeXForms.begin(); } | 
|  | nx_iterator nx_end() const { return SDNodeXForms.end(); } | 
|  |  | 
|  |  | 
|  | const ComplexPattern &getComplexPattern(Record *R) const { | 
|  | assert(ComplexPatterns.count(R) && "Unknown addressing mode!"); | 
|  | return ComplexPatterns.find(R)->second; | 
|  | } | 
|  |  | 
|  | const CodeGenIntrinsic &getIntrinsic(Record *R) const { | 
|  | for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) | 
|  | if (Intrinsics[i].TheDef == R) return Intrinsics[i]; | 
|  | for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i) | 
|  | if (TgtIntrinsics[i].TheDef == R) return TgtIntrinsics[i]; | 
|  | assert(0 && "Unknown intrinsic!"); | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const { | 
|  | if (IID-1 < Intrinsics.size()) | 
|  | return Intrinsics[IID-1]; | 
|  | if (IID-Intrinsics.size()-1 < TgtIntrinsics.size()) | 
|  | return TgtIntrinsics[IID-Intrinsics.size()-1]; | 
|  | assert(0 && "Bad intrinsic ID!"); | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | unsigned getIntrinsicID(Record *R) const { | 
|  | for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) | 
|  | if (Intrinsics[i].TheDef == R) return i; | 
|  | for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i) | 
|  | if (TgtIntrinsics[i].TheDef == R) return i + Intrinsics.size(); | 
|  | assert(0 && "Unknown intrinsic!"); | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | const DAGDefaultOperand &getDefaultOperand(Record *R) const { | 
|  | assert(DefaultOperands.count(R) &&"Isn't an analyzed default operand!"); | 
|  | return DefaultOperands.find(R)->second; | 
|  | } | 
|  |  | 
|  | // Pattern Fragment information. | 
|  | TreePattern *getPatternFragment(Record *R) const { | 
|  | assert(PatternFragments.count(R) && "Invalid pattern fragment request!"); | 
|  | return PatternFragments.find(R)->second; | 
|  | } | 
|  | TreePattern *getPatternFragmentIfRead(Record *R) const { | 
|  | if (!PatternFragments.count(R)) return 0; | 
|  | return PatternFragments.find(R)->second; | 
|  | } | 
|  |  | 
|  | typedef std::map<Record*, TreePattern*, RecordPtrCmp>::const_iterator | 
|  | pf_iterator; | 
|  | pf_iterator pf_begin() const { return PatternFragments.begin(); } | 
|  | pf_iterator pf_end() const { return PatternFragments.end(); } | 
|  |  | 
|  | // Patterns to match information. | 
|  | typedef std::vector<PatternToMatch>::const_iterator ptm_iterator; | 
|  | ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); } | 
|  | ptm_iterator ptm_end() const { return PatternsToMatch.end(); } | 
|  |  | 
|  |  | 
|  |  | 
|  | const DAGInstruction &getInstruction(Record *R) const { | 
|  | assert(Instructions.count(R) && "Unknown instruction!"); | 
|  | return Instructions.find(R)->second; | 
|  | } | 
|  |  | 
|  | Record *get_intrinsic_void_sdnode() const { | 
|  | return intrinsic_void_sdnode; | 
|  | } | 
|  | Record *get_intrinsic_w_chain_sdnode() const { | 
|  | return intrinsic_w_chain_sdnode; | 
|  | } | 
|  | Record *get_intrinsic_wo_chain_sdnode() const { | 
|  | return intrinsic_wo_chain_sdnode; | 
|  | } | 
|  |  | 
|  | bool hasTargetIntrinsics() { return !TgtIntrinsics.empty(); } | 
|  |  | 
|  | private: | 
|  | void ParseNodeInfo(); | 
|  | void ParseNodeTransforms(); | 
|  | void ParseComplexPatterns(); | 
|  | void ParsePatternFragments(); | 
|  | void ParseDefaultOperands(); | 
|  | void ParseInstructions(); | 
|  | void ParsePatterns(); | 
|  | void InferInstructionFlags(); | 
|  | void GenerateVariants(); | 
|  |  | 
|  | void AddPatternToMatch(const TreePattern *Pattern, const PatternToMatch &PTM); | 
|  | void FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, | 
|  | std::map<std::string, | 
|  | TreePatternNode*> &InstInputs, | 
|  | std::map<std::string, | 
|  | TreePatternNode*> &InstResults, | 
|  | std::vector<Record*> &InstImpResults); | 
|  | }; | 
|  | } // end namespace llvm | 
|  |  | 
|  | #endif |