| //===- subzero/crosstest/test_arith_main.cpp - Driver for tests -----------===// |
| // |
| // The Subzero Code Generator |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Driver for crosstesting arithmetic operations |
| // |
| //===----------------------------------------------------------------------===// |
| |
| /* crosstest.py --test=test_arith.cpp --test=test_arith_frem.ll \ |
| --test=test_arith_sqrt.ll --driver=test_arith_main.cpp \ |
| --prefix=Subzero_ --output=test_arith */ |
| |
| #include <stdint.h> |
| |
| #include <cfloat> |
| #include <climits> // CHAR_BIT |
| #include <cmath> // fmodf |
| #include <cstring> // memcmp |
| #include <iostream> |
| #include <limits> |
| |
| // Include test_arith.h twice - once normally, and once within the |
| // Subzero_ namespace, corresponding to the llc and Subzero translated |
| // object files, respectively. |
| #include "test_arith.h" |
| |
| namespace Subzero_ { |
| #include "test_arith.h" |
| } |
| |
| #include "insertelement.h" |
| #include "xdefs.h" |
| |
| template <class T> bool inputsMayTriggerException(T Value1, T Value2) { |
| // Avoid HW divide-by-zero exception. |
| if (Value2 == 0) |
| return true; |
| // Avoid HW overflow exception (on x86-32). TODO: adjust |
| // for other architecture. |
| if (Value1 == std::numeric_limits<T>::min() && Value2 == -1) |
| return true; |
| return false; |
| } |
| |
| template <typename TypeUnsigned, typename TypeSigned> |
| void testsInt(size_t &TotalTests, size_t &Passes, size_t &Failures) { |
| typedef TypeUnsigned (*FuncTypeUnsigned)(TypeUnsigned, TypeUnsigned); |
| typedef TypeSigned (*FuncTypeSigned)(TypeSigned, TypeSigned); |
| volatile unsigned Values[] = INT_VALUE_ARRAY; |
| const static size_t NumValues = sizeof(Values) / sizeof(*Values); |
| static struct { |
| // For functions that operate on unsigned values, the |
| // FuncLlcSigned and FuncSzSigned fields are NULL. For functions |
| // that operate on signed values, the FuncLlcUnsigned and |
| // FuncSzUnsigned fields are NULL. |
| const char *Name; |
| FuncTypeUnsigned FuncLlcUnsigned; |
| FuncTypeUnsigned FuncSzUnsigned; |
| FuncTypeSigned FuncLlcSigned; |
| FuncTypeSigned FuncSzSigned; |
| bool ExcludeDivExceptions; // for divide related tests |
| } Funcs[] = { |
| #define X(inst, op, isdiv, isshift) \ |
| {STR(inst), test##inst, Subzero_::test##inst, NULL, NULL, isdiv}, |
| UINTOP_TABLE |
| #undef X |
| #define X(inst, op, isdiv, isshift) \ |
| {STR(inst), NULL, NULL, test##inst, Subzero_::test##inst, isdiv}, |
| SINTOP_TABLE |
| #undef X |
| #define X(mult_by) \ |
| {"Mult-By-" STR(mult_by), \ |
| testMultiplyBy##mult_by, \ |
| Subzero_::testMultiplyBy##mult_by, \ |
| NULL, \ |
| NULL, \ |
| false}, \ |
| {"Mult-By-Neg-" STR(mult_by), \ |
| testMultiplyByNeg##mult_by, \ |
| Subzero_::testMultiplyByNeg##mult_by, \ |
| NULL, \ |
| NULL, \ |
| false}, |
| MULIMM_TABLE}; |
| #undef X |
| const static size_t NumFuncs = sizeof(Funcs) / sizeof(*Funcs); |
| |
| if (sizeof(TypeUnsigned) <= sizeof(uint32_t)) { |
| // This is the "normal" version of the loop nest, for 32-bit or |
| // narrower types. |
| for (size_t f = 0; f < NumFuncs; ++f) { |
| for (size_t i = 0; i < NumValues; ++i) { |
| for (size_t j = 0; j < NumValues; ++j) { |
| TypeUnsigned Value1 = Values[i]; |
| TypeUnsigned Value2 = Values[j]; |
| // Avoid HW divide-by-zero exception. |
| if (Funcs[f].ExcludeDivExceptions && |
| inputsMayTriggerException<TypeSigned>(Value1, Value2)) |
| continue; |
| ++TotalTests; |
| TypeUnsigned ResultSz, ResultLlc; |
| if (Funcs[f].FuncSzUnsigned) { |
| ResultSz = Funcs[f].FuncSzUnsigned(Value1, Value2); |
| ResultLlc = Funcs[f].FuncLlcUnsigned(Value1, Value2); |
| } else { |
| ResultSz = Funcs[f].FuncSzSigned(Value1, Value2); |
| ResultLlc = Funcs[f].FuncLlcSigned(Value1, Value2); |
| } |
| if (ResultSz == ResultLlc) { |
| ++Passes; |
| } else { |
| ++Failures; |
| std::cout << "test" << Funcs[f].Name |
| << (CHAR_BIT * sizeof(TypeUnsigned)) << "(" << Value1 |
| << ", " << Value2 << "): sz=" << (unsigned)ResultSz |
| << " llc=" << (unsigned)ResultLlc << "\n"; |
| } |
| } |
| } |
| } |
| } else { |
| // This is the 64-bit version. Test values are synthesized from |
| // the 32-bit values in Values[]. |
| for (size_t f = 0; f < NumFuncs; ++f) { |
| for (size_t iLo = 0; iLo < NumValues; ++iLo) { |
| for (size_t iHi = 0; iHi < NumValues; ++iHi) { |
| for (size_t jLo = 0; jLo < NumValues; ++jLo) { |
| for (size_t jHi = 0; jHi < NumValues; ++jHi) { |
| TypeUnsigned Value1 = |
| (((TypeUnsigned)Values[iHi]) << 32) + Values[iLo]; |
| TypeUnsigned Value2 = |
| (((TypeUnsigned)Values[jHi]) << 32) + Values[jLo]; |
| if (Funcs[f].ExcludeDivExceptions && |
| inputsMayTriggerException<TypeSigned>(Value1, Value2)) |
| continue; |
| ++TotalTests; |
| TypeUnsigned ResultSz, ResultLlc; |
| if (Funcs[f].FuncSzUnsigned) { |
| ResultSz = Funcs[f].FuncSzUnsigned(Value1, Value2); |
| ResultLlc = Funcs[f].FuncLlcUnsigned(Value1, Value2); |
| } else { |
| ResultSz = Funcs[f].FuncSzSigned(Value1, Value2); |
| ResultLlc = Funcs[f].FuncLlcSigned(Value1, Value2); |
| } |
| if (ResultSz == ResultLlc) { |
| ++Passes; |
| } else { |
| ++Failures; |
| std::cout << "test" << Funcs[f].Name |
| << (CHAR_BIT * sizeof(TypeUnsigned)) << "(" << Value1 |
| << ", " << Value2 << "): sz=" << (uint64)ResultSz |
| << " llc=" << (uint64)ResultLlc << "\n"; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| const static size_t MaxTestsPerFunc = 100000; |
| |
| template <typename TypeUnsignedLabel, typename TypeSignedLabel> |
| void testsVecInt(size_t &TotalTests, size_t &Passes, size_t &Failures) { |
| typedef typename Vectors<TypeUnsignedLabel>::Ty TypeUnsigned; |
| typedef typename Vectors<TypeSignedLabel>::Ty TypeSigned; |
| typedef typename Vectors<TypeUnsignedLabel>::ElementTy ElementTypeUnsigned; |
| typedef typename Vectors<TypeSignedLabel>::ElementTy ElementTypeSigned; |
| |
| typedef TypeUnsigned (*FuncTypeUnsigned)(TypeUnsigned, TypeUnsigned); |
| typedef TypeSigned (*FuncTypeSigned)(TypeSigned, TypeSigned); |
| volatile unsigned Values[] = INT_VALUE_ARRAY; |
| const static size_t NumValues = sizeof(Values) / sizeof(*Values); |
| static struct { |
| // For functions that operate on unsigned values, the |
| // FuncLlcSigned and FuncSzSigned fields are NULL. For functions |
| // that operate on signed values, the FuncLlcUnsigned and |
| // FuncSzUnsigned fields are NULL. |
| const char *Name; |
| FuncTypeUnsigned FuncLlcUnsigned; |
| FuncTypeUnsigned FuncSzUnsigned; |
| FuncTypeSigned FuncLlcSigned; |
| FuncTypeSigned FuncSzSigned; |
| bool ExcludeDivExceptions; // for divide related tests |
| bool MaskShiftOperations; // for shift related tests |
| } Funcs[] = { |
| #define X(inst, op, isdiv, isshift) \ |
| {STR(inst), test##inst, Subzero_::test##inst, NULL, NULL, isdiv, isshift}, |
| UINTOP_TABLE |
| #undef X |
| #define X(inst, op, isdiv, isshift) \ |
| {STR(inst), NULL, NULL, test##inst, Subzero_::test##inst, isdiv, isshift}, |
| SINTOP_TABLE |
| #undef X |
| }; |
| const static size_t NumFuncs = sizeof(Funcs) / sizeof(*Funcs); |
| const static size_t NumElementsInType = Vectors<TypeUnsigned>::NumElements; |
| for (size_t f = 0; f < NumFuncs; ++f) { |
| PRNG Index; |
| for (size_t i = 0; i < MaxTestsPerFunc; ++i) { |
| // Initialize the test vectors. |
| TypeUnsigned Value1, Value2; |
| for (size_t j = 0; j < NumElementsInType; ++j) { |
| ElementTypeUnsigned Element1 = Values[Index() % NumValues]; |
| ElementTypeUnsigned Element2 = Values[Index() % NumValues]; |
| if (Funcs[f].ExcludeDivExceptions && |
| inputsMayTriggerException<ElementTypeSigned>(Element1, Element2)) |
| continue; |
| if (Funcs[f].MaskShiftOperations) |
| Element2 &= CHAR_BIT * sizeof(ElementTypeUnsigned) - 1; |
| setElement(Value1, j, Element1); |
| setElement(Value2, j, Element2); |
| } |
| // Perform the test. |
| TypeUnsigned ResultSz, ResultLlc; |
| ++TotalTests; |
| if (Funcs[f].FuncSzUnsigned) { |
| ResultSz = Funcs[f].FuncSzUnsigned(Value1, Value2); |
| ResultLlc = Funcs[f].FuncLlcUnsigned(Value1, Value2); |
| } else { |
| ResultSz = Funcs[f].FuncSzSigned(Value1, Value2); |
| ResultLlc = Funcs[f].FuncLlcSigned(Value1, Value2); |
| } |
| if (!memcmp(&ResultSz, &ResultLlc, sizeof(ResultSz))) { |
| ++Passes; |
| } else { |
| ++Failures; |
| std::cout << "test" << Funcs[f].Name << "v" << NumElementsInType << "i" |
| << (CHAR_BIT * sizeof(ElementTypeUnsigned)) << "(" |
| << vectAsString<TypeUnsignedLabel>(Value1) << "," |
| << vectAsString<TypeUnsignedLabel>(Value2) |
| << "): sz=" << vectAsString<TypeUnsignedLabel>(ResultSz) |
| << " llc=" << vectAsString<TypeUnsignedLabel>(ResultLlc) |
| << "\n"; |
| } |
| } |
| } |
| } |
| |
| template <typename Type> |
| void testsFp(size_t &TotalTests, size_t &Passes, size_t &Failures) { |
| static const Type NegInf = -1.0 / 0.0; |
| static const Type PosInf = 1.0 / 0.0; |
| static const Type Nan = 0.0 / 0.0; |
| static const Type NegNan = -0.0 / 0.0; |
| volatile Type Values[] = FP_VALUE_ARRAY(NegInf, PosInf, NegNan, Nan); |
| const static size_t NumValues = sizeof(Values) / sizeof(*Values); |
| typedef Type (*FuncType)(Type, Type); |
| static struct { |
| const char *Name; |
| FuncType FuncLlc; |
| FuncType FuncSz; |
| } Funcs[] = { |
| #define X(inst, op, func) \ |
| {STR(inst), (FuncType)test##inst, (FuncType)Subzero_::test##inst}, |
| FPOP_TABLE |
| #undef X |
| }; |
| const static size_t NumFuncs = sizeof(Funcs) / sizeof(*Funcs); |
| |
| for (size_t f = 0; f < NumFuncs; ++f) { |
| for (size_t i = 0; i < NumValues; ++i) { |
| for (size_t j = 0; j < NumValues; ++j) { |
| Type Value1 = Values[i]; |
| Type Value2 = Values[j]; |
| ++TotalTests; |
| Type ResultSz = Funcs[f].FuncSz(Value1, Value2); |
| Type ResultLlc = Funcs[f].FuncLlc(Value1, Value2); |
| // Compare results using memcmp() in case they are both NaN. |
| if (!memcmp(&ResultSz, &ResultLlc, sizeof(Type))) { |
| ++Passes; |
| } else { |
| ++Failures; |
| std::cout << std::fixed << "test" << Funcs[f].Name |
| << (CHAR_BIT * sizeof(Type)) << "(" << Value1 << ", " |
| << Value2 << "): sz=" << ResultSz << " llc=" << ResultLlc |
| << "\n"; |
| } |
| } |
| } |
| } |
| for (size_t i = 0; i < NumValues; ++i) { |
| Type Value = Values[i]; |
| ++TotalTests; |
| Type ResultSz = Subzero_::mySqrt(Value); |
| Type ResultLlc = mySqrt(Value); |
| // Compare results using memcmp() in case they are both NaN. |
| if (!memcmp(&ResultSz, &ResultLlc, sizeof(Type))) { |
| ++Passes; |
| } else { |
| ++Failures; |
| std::cout << std::fixed << "test_sqrt" << (CHAR_BIT * sizeof(Type)) << "(" |
| << Value << "): sz=" << ResultSz << " llc=" << ResultLlc |
| << "\n"; |
| } |
| ++TotalTests; |
| ResultSz = Subzero_::myFabs(Value); |
| ResultLlc = myFabs(Value); |
| // Compare results using memcmp() in case they are both NaN. |
| if (!memcmp(&ResultSz, &ResultLlc, sizeof(Type))) { |
| ++Passes; |
| } else { |
| ++Failures; |
| std::cout << std::fixed << "test_fabs" << (CHAR_BIT * sizeof(Type)) << "(" |
| << Value << "): sz=" << ResultSz << " llc=" << ResultLlc |
| << "\n"; |
| } |
| } |
| } |
| |
| void testsVecFp(size_t &TotalTests, size_t &Passes, size_t &Failures) { |
| static const float NegInf = -1.0 / 0.0; |
| static const float PosInf = 1.0 / 0.0; |
| static const float Nan = 0.0 / 0.0; |
| static const float NegNan = -0.0 / 0.0; |
| volatile float Values[] = FP_VALUE_ARRAY(NegInf, PosInf, NegNan, Nan); |
| const static size_t NumValues = sizeof(Values) / sizeof(*Values); |
| typedef v4f32 (*FuncType)(v4f32, v4f32); |
| static struct { |
| const char *Name; |
| FuncType FuncLlc; |
| FuncType FuncSz; |
| } Funcs[] = { |
| #define X(inst, op, func) \ |
| {STR(inst), (FuncType)test##inst, (FuncType)Subzero_::test##inst}, |
| FPOP_TABLE |
| #undef X |
| }; |
| const static size_t NumFuncs = sizeof(Funcs) / sizeof(*Funcs); |
| const static size_t NumElementsInType = 4; |
| for (size_t f = 0; f < NumFuncs; ++f) { |
| PRNG Index; |
| for (size_t i = 0; i < MaxTestsPerFunc; ++i) { |
| // Initialize the test vectors. |
| v4f32 Value1, Value2; |
| for (size_t j = 0; j < NumElementsInType; ++j) { |
| setElement(Value1, j, Values[Index() % NumValues]); |
| setElement(Value2, j, Values[Index() % NumValues]); |
| } |
| // Perform the test. |
| v4f32 ResultSz = Funcs[f].FuncSz(Value1, Value2); |
| v4f32 ResultLlc = Funcs[f].FuncLlc(Value1, Value2); |
| ++TotalTests; |
| if (!memcmp(&ResultSz, &ResultLlc, sizeof(ResultSz))) { |
| ++Passes; |
| } else { |
| ++Failures; |
| std::cout << "test" << Funcs[f].Name << "v4f32" |
| << "(" << vectAsString<v4f32>(Value1) << "," |
| << vectAsString<v4f32>(Value2) |
| << "): sz=" << vectAsString<v4f32>(ResultSz) << " llc" |
| << vectAsString<v4f32>(ResultLlc) << "\n"; |
| } |
| // Special case for unary fabs operation. Use Value1, ignore Value2. |
| ResultSz = Subzero_::myFabs(Value1); |
| ResultLlc = myFabs(Value1); |
| ++TotalTests; |
| if (!memcmp(&ResultSz, &ResultLlc, sizeof(ResultSz))) { |
| ++Passes; |
| } else { |
| ++Failures; |
| std::cout << "test_fabs_v4f32" |
| << "(" << vectAsString<v4f32>(Value1) |
| << "): sz=" << vectAsString<v4f32>(ResultSz) << " llc" |
| << vectAsString<v4f32>(ResultLlc) << "\n"; |
| } |
| } |
| } |
| } |
| |
| int main(int argc, char *argv[]) { |
| size_t TotalTests = 0; |
| size_t Passes = 0; |
| size_t Failures = 0; |
| |
| testsInt<bool, bool>(TotalTests, Passes, Failures); |
| testsInt<uint8_t, myint8_t>(TotalTests, Passes, Failures); |
| testsInt<uint16_t, int16_t>(TotalTests, Passes, Failures); |
| testsInt<uint32_t, int32_t>(TotalTests, Passes, Failures); |
| testsInt<uint64, int64>(TotalTests, Passes, Failures); |
| testsVecInt<v4ui32, v4si32>(TotalTests, Passes, Failures); |
| testsVecInt<v8ui16, v8si16>(TotalTests, Passes, Failures); |
| testsVecInt<v16ui8, v16si8>(TotalTests, Passes, Failures); |
| testsFp<float>(TotalTests, Passes, Failures); |
| testsFp<double>(TotalTests, Passes, Failures); |
| testsVecFp(TotalTests, Passes, Failures); |
| |
| std::cout << "TotalTests=" << TotalTests << " Passes=" << Passes |
| << " Failures=" << Failures << "\n"; |
| return Failures; |
| } |