| //===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Loops should be simplified before this analysis. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/BlockFrequencyInfoImpl.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/GraphTraits.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/SCCIterator.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/Support/BlockFrequency.h" |
| #include "llvm/Support/BranchProbability.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ScaledNumber.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <iterator> |
| #include <list> |
| #include <numeric> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| using namespace llvm::bfi_detail; |
| |
| #define DEBUG_TYPE "block-freq" |
| |
| ScaledNumber<uint64_t> BlockMass::toScaled() const { |
| if (isFull()) |
| return ScaledNumber<uint64_t>(1, 0); |
| return ScaledNumber<uint64_t>(getMass() + 1, -64); |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void BlockMass::dump() const { print(dbgs()); } |
| #endif |
| |
| static char getHexDigit(int N) { |
| assert(N < 16); |
| if (N < 10) |
| return '0' + N; |
| return 'a' + N - 10; |
| } |
| |
| raw_ostream &BlockMass::print(raw_ostream &OS) const { |
| for (int Digits = 0; Digits < 16; ++Digits) |
| OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf); |
| return OS; |
| } |
| |
| namespace { |
| |
| using BlockNode = BlockFrequencyInfoImplBase::BlockNode; |
| using Distribution = BlockFrequencyInfoImplBase::Distribution; |
| using WeightList = BlockFrequencyInfoImplBase::Distribution::WeightList; |
| using Scaled64 = BlockFrequencyInfoImplBase::Scaled64; |
| using LoopData = BlockFrequencyInfoImplBase::LoopData; |
| using Weight = BlockFrequencyInfoImplBase::Weight; |
| using FrequencyData = BlockFrequencyInfoImplBase::FrequencyData; |
| |
| /// Dithering mass distributer. |
| /// |
| /// This class splits up a single mass into portions by weight, dithering to |
| /// spread out error. No mass is lost. The dithering precision depends on the |
| /// precision of the product of \a BlockMass and \a BranchProbability. |
| /// |
| /// The distribution algorithm follows. |
| /// |
| /// 1. Initialize by saving the sum of the weights in \a RemWeight and the |
| /// mass to distribute in \a RemMass. |
| /// |
| /// 2. For each portion: |
| /// |
| /// 1. Construct a branch probability, P, as the portion's weight divided |
| /// by the current value of \a RemWeight. |
| /// 2. Calculate the portion's mass as \a RemMass times P. |
| /// 3. Update \a RemWeight and \a RemMass at each portion by subtracting |
| /// the current portion's weight and mass. |
| struct DitheringDistributer { |
| uint32_t RemWeight; |
| BlockMass RemMass; |
| |
| DitheringDistributer(Distribution &Dist, const BlockMass &Mass); |
| |
| BlockMass takeMass(uint32_t Weight); |
| }; |
| |
| } // end anonymous namespace |
| |
| DitheringDistributer::DitheringDistributer(Distribution &Dist, |
| const BlockMass &Mass) { |
| Dist.normalize(); |
| RemWeight = Dist.Total; |
| RemMass = Mass; |
| } |
| |
| BlockMass DitheringDistributer::takeMass(uint32_t Weight) { |
| assert(Weight && "invalid weight"); |
| assert(Weight <= RemWeight); |
| BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight); |
| |
| // Decrement totals (dither). |
| RemWeight -= Weight; |
| RemMass -= Mass; |
| return Mass; |
| } |
| |
| void Distribution::add(const BlockNode &Node, uint64_t Amount, |
| Weight::DistType Type) { |
| assert(Amount && "invalid weight of 0"); |
| uint64_t NewTotal = Total + Amount; |
| |
| // Check for overflow. It should be impossible to overflow twice. |
| bool IsOverflow = NewTotal < Total; |
| assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow"); |
| DidOverflow |= IsOverflow; |
| |
| // Update the total. |
| Total = NewTotal; |
| |
| // Save the weight. |
| Weights.push_back(Weight(Type, Node, Amount)); |
| } |
| |
| static void combineWeight(Weight &W, const Weight &OtherW) { |
| assert(OtherW.TargetNode.isValid()); |
| if (!W.Amount) { |
| W = OtherW; |
| return; |
| } |
| assert(W.Type == OtherW.Type); |
| assert(W.TargetNode == OtherW.TargetNode); |
| assert(OtherW.Amount && "Expected non-zero weight"); |
| if (W.Amount > W.Amount + OtherW.Amount) |
| // Saturate on overflow. |
| W.Amount = UINT64_MAX; |
| else |
| W.Amount += OtherW.Amount; |
| } |
| |
| static void combineWeightsBySorting(WeightList &Weights) { |
| // Sort so edges to the same node are adjacent. |
| llvm::sort(Weights, [](const Weight &L, const Weight &R) { |
| return L.TargetNode < R.TargetNode; |
| }); |
| |
| // Combine adjacent edges. |
| WeightList::iterator O = Weights.begin(); |
| for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E; |
| ++O, (I = L)) { |
| *O = *I; |
| |
| // Find the adjacent weights to the same node. |
| for (++L; L != E && I->TargetNode == L->TargetNode; ++L) |
| combineWeight(*O, *L); |
| } |
| |
| // Erase extra entries. |
| Weights.erase(O, Weights.end()); |
| } |
| |
| static void combineWeightsByHashing(WeightList &Weights) { |
| // Collect weights into a DenseMap. |
| using HashTable = DenseMap<BlockNode::IndexType, Weight>; |
| |
| HashTable Combined(NextPowerOf2(2 * Weights.size())); |
| for (const Weight &W : Weights) |
| combineWeight(Combined[W.TargetNode.Index], W); |
| |
| // Check whether anything changed. |
| if (Weights.size() == Combined.size()) |
| return; |
| |
| // Fill in the new weights. |
| Weights.clear(); |
| Weights.reserve(Combined.size()); |
| for (const auto &I : Combined) |
| Weights.push_back(I.second); |
| } |
| |
| static void combineWeights(WeightList &Weights) { |
| // Use a hash table for many successors to keep this linear. |
| if (Weights.size() > 128) { |
| combineWeightsByHashing(Weights); |
| return; |
| } |
| |
| combineWeightsBySorting(Weights); |
| } |
| |
| static uint64_t shiftRightAndRound(uint64_t N, int Shift) { |
| assert(Shift >= 0); |
| assert(Shift < 64); |
| if (!Shift) |
| return N; |
| return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1)); |
| } |
| |
| void Distribution::normalize() { |
| // Early exit for termination nodes. |
| if (Weights.empty()) |
| return; |
| |
| // Only bother if there are multiple successors. |
| if (Weights.size() > 1) |
| combineWeights(Weights); |
| |
| // Early exit when combined into a single successor. |
| if (Weights.size() == 1) { |
| Total = 1; |
| Weights.front().Amount = 1; |
| return; |
| } |
| |
| // Determine how much to shift right so that the total fits into 32-bits. |
| // |
| // If we shift at all, shift by 1 extra. Otherwise, the lower limit of 1 |
| // for each weight can cause a 32-bit overflow. |
| int Shift = 0; |
| if (DidOverflow) |
| Shift = 33; |
| else if (Total > UINT32_MAX) |
| Shift = 33 - countLeadingZeros(Total); |
| |
| // Early exit if nothing needs to be scaled. |
| if (!Shift) { |
| // If we didn't overflow then combineWeights() shouldn't have changed the |
| // sum of the weights, but let's double-check. |
| assert(Total == std::accumulate(Weights.begin(), Weights.end(), UINT64_C(0), |
| [](uint64_t Sum, const Weight &W) { |
| return Sum + W.Amount; |
| }) && |
| "Expected total to be correct"); |
| return; |
| } |
| |
| // Recompute the total through accumulation (rather than shifting it) so that |
| // it's accurate after shifting and any changes combineWeights() made above. |
| Total = 0; |
| |
| // Sum the weights to each node and shift right if necessary. |
| for (Weight &W : Weights) { |
| // Scale down below UINT32_MAX. Since Shift is larger than necessary, we |
| // can round here without concern about overflow. |
| assert(W.TargetNode.isValid()); |
| W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift)); |
| assert(W.Amount <= UINT32_MAX); |
| |
| // Update the total. |
| Total += W.Amount; |
| } |
| assert(Total <= UINT32_MAX); |
| } |
| |
| void BlockFrequencyInfoImplBase::clear() { |
| // Swap with a default-constructed std::vector, since std::vector<>::clear() |
| // does not actually clear heap storage. |
| std::vector<FrequencyData>().swap(Freqs); |
| IsIrrLoopHeader.clear(); |
| std::vector<WorkingData>().swap(Working); |
| Loops.clear(); |
| } |
| |
| /// Clear all memory not needed downstream. |
| /// |
| /// Releases all memory not used downstream. In particular, saves Freqs. |
| static void cleanup(BlockFrequencyInfoImplBase &BFI) { |
| std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs)); |
| SparseBitVector<> SavedIsIrrLoopHeader(std::move(BFI.IsIrrLoopHeader)); |
| BFI.clear(); |
| BFI.Freqs = std::move(SavedFreqs); |
| BFI.IsIrrLoopHeader = std::move(SavedIsIrrLoopHeader); |
| } |
| |
| bool BlockFrequencyInfoImplBase::addToDist(Distribution &Dist, |
| const LoopData *OuterLoop, |
| const BlockNode &Pred, |
| const BlockNode &Succ, |
| uint64_t Weight) { |
| if (!Weight) |
| Weight = 1; |
| |
| auto isLoopHeader = [&OuterLoop](const BlockNode &Node) { |
| return OuterLoop && OuterLoop->isHeader(Node); |
| }; |
| |
| BlockNode Resolved = Working[Succ.Index].getResolvedNode(); |
| |
| #ifndef NDEBUG |
| auto debugSuccessor = [&](const char *Type) { |
| dbgs() << " =>" |
| << " [" << Type << "] weight = " << Weight; |
| if (!isLoopHeader(Resolved)) |
| dbgs() << ", succ = " << getBlockName(Succ); |
| if (Resolved != Succ) |
| dbgs() << ", resolved = " << getBlockName(Resolved); |
| dbgs() << "\n"; |
| }; |
| (void)debugSuccessor; |
| #endif |
| |
| if (isLoopHeader(Resolved)) { |
| LLVM_DEBUG(debugSuccessor("backedge")); |
| Dist.addBackedge(Resolved, Weight); |
| return true; |
| } |
| |
| if (Working[Resolved.Index].getContainingLoop() != OuterLoop) { |
| LLVM_DEBUG(debugSuccessor(" exit ")); |
| Dist.addExit(Resolved, Weight); |
| return true; |
| } |
| |
| if (Resolved < Pred) { |
| if (!isLoopHeader(Pred)) { |
| // If OuterLoop is an irreducible loop, we can't actually handle this. |
| assert((!OuterLoop || !OuterLoop->isIrreducible()) && |
| "unhandled irreducible control flow"); |
| |
| // Irreducible backedge. Abort. |
| LLVM_DEBUG(debugSuccessor("abort!!!")); |
| return false; |
| } |
| |
| // If "Pred" is a loop header, then this isn't really a backedge; rather, |
| // OuterLoop must be irreducible. These false backedges can come only from |
| // secondary loop headers. |
| assert(OuterLoop && OuterLoop->isIrreducible() && !isLoopHeader(Resolved) && |
| "unhandled irreducible control flow"); |
| } |
| |
| LLVM_DEBUG(debugSuccessor(" local ")); |
| Dist.addLocal(Resolved, Weight); |
| return true; |
| } |
| |
| bool BlockFrequencyInfoImplBase::addLoopSuccessorsToDist( |
| const LoopData *OuterLoop, LoopData &Loop, Distribution &Dist) { |
| // Copy the exit map into Dist. |
| for (const auto &I : Loop.Exits) |
| if (!addToDist(Dist, OuterLoop, Loop.getHeader(), I.first, |
| I.second.getMass())) |
| // Irreducible backedge. |
| return false; |
| |
| return true; |
| } |
| |
| /// Compute the loop scale for a loop. |
| void BlockFrequencyInfoImplBase::computeLoopScale(LoopData &Loop) { |
| // Compute loop scale. |
| LLVM_DEBUG(dbgs() << "compute-loop-scale: " << getLoopName(Loop) << "\n"); |
| |
| // Infinite loops need special handling. If we give the back edge an infinite |
| // mass, they may saturate all the other scales in the function down to 1, |
| // making all the other region temperatures look exactly the same. Choose an |
| // arbitrary scale to avoid these issues. |
| // |
| // FIXME: An alternate way would be to select a symbolic scale which is later |
| // replaced to be the maximum of all computed scales plus 1. This would |
| // appropriately describe the loop as having a large scale, without skewing |
| // the final frequency computation. |
| const Scaled64 InfiniteLoopScale(1, 12); |
| |
| // LoopScale == 1 / ExitMass |
| // ExitMass == HeadMass - BackedgeMass |
| BlockMass TotalBackedgeMass; |
| for (auto &Mass : Loop.BackedgeMass) |
| TotalBackedgeMass += Mass; |
| BlockMass ExitMass = BlockMass::getFull() - TotalBackedgeMass; |
| |
| // Block scale stores the inverse of the scale. If this is an infinite loop, |
| // its exit mass will be zero. In this case, use an arbitrary scale for the |
| // loop scale. |
| Loop.Scale = |
| ExitMass.isEmpty() ? InfiniteLoopScale : ExitMass.toScaled().inverse(); |
| |
| LLVM_DEBUG(dbgs() << " - exit-mass = " << ExitMass << " (" |
| << BlockMass::getFull() << " - " << TotalBackedgeMass |
| << ")\n" |
| << " - scale = " << Loop.Scale << "\n"); |
| } |
| |
| /// Package up a loop. |
| void BlockFrequencyInfoImplBase::packageLoop(LoopData &Loop) { |
| LLVM_DEBUG(dbgs() << "packaging-loop: " << getLoopName(Loop) << "\n"); |
| |
| // Clear the subloop exits to prevent quadratic memory usage. |
| for (const BlockNode &M : Loop.Nodes) { |
| if (auto *Loop = Working[M.Index].getPackagedLoop()) |
| Loop->Exits.clear(); |
| LLVM_DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n"); |
| } |
| Loop.IsPackaged = true; |
| } |
| |
| #ifndef NDEBUG |
| static void debugAssign(const BlockFrequencyInfoImplBase &BFI, |
| const DitheringDistributer &D, const BlockNode &T, |
| const BlockMass &M, const char *Desc) { |
| dbgs() << " => assign " << M << " (" << D.RemMass << ")"; |
| if (Desc) |
| dbgs() << " [" << Desc << "]"; |
| if (T.isValid()) |
| dbgs() << " to " << BFI.getBlockName(T); |
| dbgs() << "\n"; |
| } |
| #endif |
| |
| void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source, |
| LoopData *OuterLoop, |
| Distribution &Dist) { |
| BlockMass Mass = Working[Source.Index].getMass(); |
| LLVM_DEBUG(dbgs() << " => mass: " << Mass << "\n"); |
| |
| // Distribute mass to successors as laid out in Dist. |
| DitheringDistributer D(Dist, Mass); |
| |
| for (const Weight &W : Dist.Weights) { |
| // Check for a local edge (non-backedge and non-exit). |
| BlockMass Taken = D.takeMass(W.Amount); |
| if (W.Type == Weight::Local) { |
| Working[W.TargetNode.Index].getMass() += Taken; |
| LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr)); |
| continue; |
| } |
| |
| // Backedges and exits only make sense if we're processing a loop. |
| assert(OuterLoop && "backedge or exit outside of loop"); |
| |
| // Check for a backedge. |
| if (W.Type == Weight::Backedge) { |
| OuterLoop->BackedgeMass[OuterLoop->getHeaderIndex(W.TargetNode)] += Taken; |
| LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "back")); |
| continue; |
| } |
| |
| // This must be an exit. |
| assert(W.Type == Weight::Exit); |
| OuterLoop->Exits.push_back(std::make_pair(W.TargetNode, Taken)); |
| LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "exit")); |
| } |
| } |
| |
| static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI, |
| const Scaled64 &Min, const Scaled64 &Max) { |
| // Scale the Factor to a size that creates integers. Ideally, integers would |
| // be scaled so that Max == UINT64_MAX so that they can be best |
| // differentiated. However, in the presence of large frequency values, small |
| // frequencies are scaled down to 1, making it impossible to differentiate |
| // small, unequal numbers. When the spread between Min and Max frequencies |
| // fits well within MaxBits, we make the scale be at least 8. |
| const unsigned MaxBits = 64; |
| const unsigned SpreadBits = (Max / Min).lg(); |
| Scaled64 ScalingFactor; |
| if (SpreadBits <= MaxBits - 3) { |
| // If the values are small enough, make the scaling factor at least 8 to |
| // allow distinguishing small values. |
| ScalingFactor = Min.inverse(); |
| ScalingFactor <<= 3; |
| } else { |
| // If the values need more than MaxBits to be represented, saturate small |
| // frequency values down to 1 by using a scaling factor that benefits large |
| // frequency values. |
| ScalingFactor = Scaled64(1, MaxBits) / Max; |
| } |
| |
| // Translate the floats to integers. |
| LLVM_DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max |
| << ", factor = " << ScalingFactor << "\n"); |
| for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) { |
| Scaled64 Scaled = BFI.Freqs[Index].Scaled * ScalingFactor; |
| BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>()); |
| LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = " |
| << BFI.Freqs[Index].Scaled << ", scaled = " << Scaled |
| << ", int = " << BFI.Freqs[Index].Integer << "\n"); |
| } |
| } |
| |
| /// Unwrap a loop package. |
| /// |
| /// Visits all the members of a loop, adjusting their BlockData according to |
| /// the loop's pseudo-node. |
| static void unwrapLoop(BlockFrequencyInfoImplBase &BFI, LoopData &Loop) { |
| LLVM_DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getLoopName(Loop) |
| << ": mass = " << Loop.Mass << ", scale = " << Loop.Scale |
| << "\n"); |
| Loop.Scale *= Loop.Mass.toScaled(); |
| Loop.IsPackaged = false; |
| LLVM_DEBUG(dbgs() << " => combined-scale = " << Loop.Scale << "\n"); |
| |
| // Propagate the head scale through the loop. Since members are visited in |
| // RPO, the head scale will be updated by the loop scale first, and then the |
| // final head scale will be used for updated the rest of the members. |
| for (const BlockNode &N : Loop.Nodes) { |
| const auto &Working = BFI.Working[N.Index]; |
| Scaled64 &F = Working.isAPackage() ? Working.getPackagedLoop()->Scale |
| : BFI.Freqs[N.Index].Scaled; |
| Scaled64 New = Loop.Scale * F; |
| LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(N) << ": " << F << " => " |
| << New << "\n"); |
| F = New; |
| } |
| } |
| |
| void BlockFrequencyInfoImplBase::unwrapLoops() { |
| // Set initial frequencies from loop-local masses. |
| for (size_t Index = 0; Index < Working.size(); ++Index) |
| Freqs[Index].Scaled = Working[Index].Mass.toScaled(); |
| |
| for (LoopData &Loop : Loops) |
| unwrapLoop(*this, Loop); |
| } |
| |
| void BlockFrequencyInfoImplBase::finalizeMetrics() { |
| // Unwrap loop packages in reverse post-order, tracking min and max |
| // frequencies. |
| auto Min = Scaled64::getLargest(); |
| auto Max = Scaled64::getZero(); |
| for (size_t Index = 0; Index < Working.size(); ++Index) { |
| // Update min/max scale. |
| Min = std::min(Min, Freqs[Index].Scaled); |
| Max = std::max(Max, Freqs[Index].Scaled); |
| } |
| |
| // Convert to integers. |
| convertFloatingToInteger(*this, Min, Max); |
| |
| // Clean up data structures. |
| cleanup(*this); |
| |
| // Print out the final stats. |
| LLVM_DEBUG(dump()); |
| } |
| |
| BlockFrequency |
| BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const { |
| if (!Node.isValid()) |
| return 0; |
| return Freqs[Node.Index].Integer; |
| } |
| |
| Optional<uint64_t> |
| BlockFrequencyInfoImplBase::getBlockProfileCount(const Function &F, |
| const BlockNode &Node, |
| bool AllowSynthetic) const { |
| return getProfileCountFromFreq(F, getBlockFreq(Node).getFrequency(), |
| AllowSynthetic); |
| } |
| |
| Optional<uint64_t> |
| BlockFrequencyInfoImplBase::getProfileCountFromFreq(const Function &F, |
| uint64_t Freq, |
| bool AllowSynthetic) const { |
| auto EntryCount = F.getEntryCount(AllowSynthetic); |
| if (!EntryCount) |
| return None; |
| // Use 128 bit APInt to do the arithmetic to avoid overflow. |
| APInt BlockCount(128, EntryCount.getCount()); |
| APInt BlockFreq(128, Freq); |
| APInt EntryFreq(128, getEntryFreq()); |
| BlockCount *= BlockFreq; |
| // Rounded division of BlockCount by EntryFreq. Since EntryFreq is unsigned |
| // lshr by 1 gives EntryFreq/2. |
| BlockCount = (BlockCount + EntryFreq.lshr(1)).udiv(EntryFreq); |
| return BlockCount.getLimitedValue(); |
| } |
| |
| bool |
| BlockFrequencyInfoImplBase::isIrrLoopHeader(const BlockNode &Node) { |
| if (!Node.isValid()) |
| return false; |
| return IsIrrLoopHeader.test(Node.Index); |
| } |
| |
| Scaled64 |
| BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const { |
| if (!Node.isValid()) |
| return Scaled64::getZero(); |
| return Freqs[Node.Index].Scaled; |
| } |
| |
| void BlockFrequencyInfoImplBase::setBlockFreq(const BlockNode &Node, |
| uint64_t Freq) { |
| assert(Node.isValid() && "Expected valid node"); |
| assert(Node.Index < Freqs.size() && "Expected legal index"); |
| Freqs[Node.Index].Integer = Freq; |
| } |
| |
| std::string |
| BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const { |
| return {}; |
| } |
| |
| std::string |
| BlockFrequencyInfoImplBase::getLoopName(const LoopData &Loop) const { |
| return getBlockName(Loop.getHeader()) + (Loop.isIrreducible() ? "**" : "*"); |
| } |
| |
| raw_ostream & |
| BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS, |
| const BlockNode &Node) const { |
| return OS << getFloatingBlockFreq(Node); |
| } |
| |
| raw_ostream & |
| BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS, |
| const BlockFrequency &Freq) const { |
| Scaled64 Block(Freq.getFrequency(), 0); |
| Scaled64 Entry(getEntryFreq(), 0); |
| |
| return OS << Block / Entry; |
| } |
| |
| void IrreducibleGraph::addNodesInLoop(const BFIBase::LoopData &OuterLoop) { |
| Start = OuterLoop.getHeader(); |
| Nodes.reserve(OuterLoop.Nodes.size()); |
| for (auto N : OuterLoop.Nodes) |
| addNode(N); |
| indexNodes(); |
| } |
| |
| void IrreducibleGraph::addNodesInFunction() { |
| Start = 0; |
| for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index) |
| if (!BFI.Working[Index].isPackaged()) |
| addNode(Index); |
| indexNodes(); |
| } |
| |
| void IrreducibleGraph::indexNodes() { |
| for (auto &I : Nodes) |
| Lookup[I.Node.Index] = &I; |
| } |
| |
| void IrreducibleGraph::addEdge(IrrNode &Irr, const BlockNode &Succ, |
| const BFIBase::LoopData *OuterLoop) { |
| if (OuterLoop && OuterLoop->isHeader(Succ)) |
| return; |
| auto L = Lookup.find(Succ.Index); |
| if (L == Lookup.end()) |
| return; |
| IrrNode &SuccIrr = *L->second; |
| Irr.Edges.push_back(&SuccIrr); |
| SuccIrr.Edges.push_front(&Irr); |
| ++SuccIrr.NumIn; |
| } |
| |
| namespace llvm { |
| |
| template <> struct GraphTraits<IrreducibleGraph> { |
| using GraphT = bfi_detail::IrreducibleGraph; |
| using NodeRef = const GraphT::IrrNode *; |
| using ChildIteratorType = GraphT::IrrNode::iterator; |
| |
| static NodeRef getEntryNode(const GraphT &G) { return G.StartIrr; } |
| static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); } |
| static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); } |
| }; |
| |
| } // end namespace llvm |
| |
| /// Find extra irreducible headers. |
| /// |
| /// Find entry blocks and other blocks with backedges, which exist when \c G |
| /// contains irreducible sub-SCCs. |
| static void findIrreducibleHeaders( |
| const BlockFrequencyInfoImplBase &BFI, |
| const IrreducibleGraph &G, |
| const std::vector<const IrreducibleGraph::IrrNode *> &SCC, |
| LoopData::NodeList &Headers, LoopData::NodeList &Others) { |
| // Map from nodes in the SCC to whether it's an entry block. |
| SmallDenseMap<const IrreducibleGraph::IrrNode *, bool, 8> InSCC; |
| |
| // InSCC also acts the set of nodes in the graph. Seed it. |
| for (const auto *I : SCC) |
| InSCC[I] = false; |
| |
| for (auto I = InSCC.begin(), E = InSCC.end(); I != E; ++I) { |
| auto &Irr = *I->first; |
| for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) { |
| if (InSCC.count(P)) |
| continue; |
| |
| // This is an entry block. |
| I->second = true; |
| Headers.push_back(Irr.Node); |
| LLVM_DEBUG(dbgs() << " => entry = " << BFI.getBlockName(Irr.Node) |
| << "\n"); |
| break; |
| } |
| } |
| assert(Headers.size() >= 2 && |
| "Expected irreducible CFG; -loop-info is likely invalid"); |
| if (Headers.size() == InSCC.size()) { |
| // Every block is a header. |
| llvm::sort(Headers); |
| return; |
| } |
| |
| // Look for extra headers from irreducible sub-SCCs. |
| for (const auto &I : InSCC) { |
| // Entry blocks are already headers. |
| if (I.second) |
| continue; |
| |
| auto &Irr = *I.first; |
| for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) { |
| // Skip forward edges. |
| if (P->Node < Irr.Node) |
| continue; |
| |
| // Skip predecessors from entry blocks. These can have inverted |
| // ordering. |
| if (InSCC.lookup(P)) |
| continue; |
| |
| // Store the extra header. |
| Headers.push_back(Irr.Node); |
| LLVM_DEBUG(dbgs() << " => extra = " << BFI.getBlockName(Irr.Node) |
| << "\n"); |
| break; |
| } |
| if (Headers.back() == Irr.Node) |
| // Added this as a header. |
| continue; |
| |
| // This is not a header. |
| Others.push_back(Irr.Node); |
| LLVM_DEBUG(dbgs() << " => other = " << BFI.getBlockName(Irr.Node) << "\n"); |
| } |
| llvm::sort(Headers); |
| llvm::sort(Others); |
| } |
| |
| static void createIrreducibleLoop( |
| BlockFrequencyInfoImplBase &BFI, const IrreducibleGraph &G, |
| LoopData *OuterLoop, std::list<LoopData>::iterator Insert, |
| const std::vector<const IrreducibleGraph::IrrNode *> &SCC) { |
| // Translate the SCC into RPO. |
| LLVM_DEBUG(dbgs() << " - found-scc\n"); |
| |
| LoopData::NodeList Headers; |
| LoopData::NodeList Others; |
| findIrreducibleHeaders(BFI, G, SCC, Headers, Others); |
| |
| auto Loop = BFI.Loops.emplace(Insert, OuterLoop, Headers.begin(), |
| Headers.end(), Others.begin(), Others.end()); |
| |
| // Update loop hierarchy. |
| for (const auto &N : Loop->Nodes) |
| if (BFI.Working[N.Index].isLoopHeader()) |
| BFI.Working[N.Index].Loop->Parent = &*Loop; |
| else |
| BFI.Working[N.Index].Loop = &*Loop; |
| } |
| |
| iterator_range<std::list<LoopData>::iterator> |
| BlockFrequencyInfoImplBase::analyzeIrreducible( |
| const IrreducibleGraph &G, LoopData *OuterLoop, |
| std::list<LoopData>::iterator Insert) { |
| assert((OuterLoop == nullptr) == (Insert == Loops.begin())); |
| auto Prev = OuterLoop ? std::prev(Insert) : Loops.end(); |
| |
| for (auto I = scc_begin(G); !I.isAtEnd(); ++I) { |
| if (I->size() < 2) |
| continue; |
| |
| // Translate the SCC into RPO. |
| createIrreducibleLoop(*this, G, OuterLoop, Insert, *I); |
| } |
| |
| if (OuterLoop) |
| return make_range(std::next(Prev), Insert); |
| return make_range(Loops.begin(), Insert); |
| } |
| |
| void |
| BlockFrequencyInfoImplBase::updateLoopWithIrreducible(LoopData &OuterLoop) { |
| OuterLoop.Exits.clear(); |
| for (auto &Mass : OuterLoop.BackedgeMass) |
| Mass = BlockMass::getEmpty(); |
| auto O = OuterLoop.Nodes.begin() + 1; |
| for (auto I = O, E = OuterLoop.Nodes.end(); I != E; ++I) |
| if (!Working[I->Index].isPackaged()) |
| *O++ = *I; |
| OuterLoop.Nodes.erase(O, OuterLoop.Nodes.end()); |
| } |
| |
| void BlockFrequencyInfoImplBase::adjustLoopHeaderMass(LoopData &Loop) { |
| assert(Loop.isIrreducible() && "this only makes sense on irreducible loops"); |
| |
| // Since the loop has more than one header block, the mass flowing back into |
| // each header will be different. Adjust the mass in each header loop to |
| // reflect the masses flowing through back edges. |
| // |
| // To do this, we distribute the initial mass using the backedge masses |
| // as weights for the distribution. |
| BlockMass LoopMass = BlockMass::getFull(); |
| Distribution Dist; |
| |
| LLVM_DEBUG(dbgs() << "adjust-loop-header-mass:\n"); |
| for (uint32_t H = 0; H < Loop.NumHeaders; ++H) { |
| auto &HeaderNode = Loop.Nodes[H]; |
| auto &BackedgeMass = Loop.BackedgeMass[Loop.getHeaderIndex(HeaderNode)]; |
| LLVM_DEBUG(dbgs() << " - Add back edge mass for node " |
| << getBlockName(HeaderNode) << ": " << BackedgeMass |
| << "\n"); |
| if (BackedgeMass.getMass() > 0) |
| Dist.addLocal(HeaderNode, BackedgeMass.getMass()); |
| else |
| LLVM_DEBUG(dbgs() << " Nothing added. Back edge mass is zero\n"); |
| } |
| |
| DitheringDistributer D(Dist, LoopMass); |
| |
| LLVM_DEBUG(dbgs() << " Distribute loop mass " << LoopMass |
| << " to headers using above weights\n"); |
| for (const Weight &W : Dist.Weights) { |
| BlockMass Taken = D.takeMass(W.Amount); |
| assert(W.Type == Weight::Local && "all weights should be local"); |
| Working[W.TargetNode.Index].getMass() = Taken; |
| LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr)); |
| } |
| } |
| |
| void BlockFrequencyInfoImplBase::distributeIrrLoopHeaderMass(Distribution &Dist) { |
| BlockMass LoopMass = BlockMass::getFull(); |
| DitheringDistributer D(Dist, LoopMass); |
| for (const Weight &W : Dist.Weights) { |
| BlockMass Taken = D.takeMass(W.Amount); |
| assert(W.Type == Weight::Local && "all weights should be local"); |
| Working[W.TargetNode.Index].getMass() = Taken; |
| LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr)); |
| } |
| } |