blob: de1ab7b909de52f2e550589d7620b06699b60726 [file] [log] [blame]
// Copyright 2016 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "Renderer.hpp"
#include "Clipper.hpp"
#include "Surface.hpp"
#include "Primitive.hpp"
#include "Polygon.hpp"
#include "Main/FrameBuffer.hpp"
#include "Main/SwiftConfig.hpp"
#include "Reactor/Reactor.hpp"
#include "Shader/Constants.hpp"
#include "Common/MutexLock.hpp"
#include "Common/CPUID.hpp"
#include "Common/Memory.hpp"
#include "Common/Resource.hpp"
#include "Common/Half.hpp"
#include "Common/Math.hpp"
#include "Common/Timer.hpp"
#include "Common/Debug.hpp"
#undef max
bool disableServer = true;
#ifndef NDEBUG
unsigned int minPrimitives = 1;
unsigned int maxPrimitives = 1 << 21;
#endif
namespace sw
{
extern bool halfIntegerCoordinates; // Pixel centers are not at integer coordinates
extern bool symmetricNormalizedDepth; // [-1, 1] instead of [0, 1]
extern bool booleanFaceRegister;
extern bool fullPixelPositionRegister;
extern bool leadingVertexFirst; // Flat shading uses first vertex, else last
extern bool secondaryColor; // Specular lighting is applied after texturing
extern bool colorsDefaultToZero;
extern bool forceWindowed;
extern bool complementaryDepthBuffer;
extern bool postBlendSRGB;
extern bool exactColorRounding;
extern TransparencyAntialiasing transparencyAntialiasing;
extern bool forceClearRegisters;
extern bool precacheVertex;
extern bool precacheSetup;
extern bool precachePixel;
static const int batchSize = 128;
AtomicInt threadCount(1);
AtomicInt Renderer::unitCount(1);
AtomicInt Renderer::clusterCount(1);
TranscendentalPrecision logPrecision = ACCURATE;
TranscendentalPrecision expPrecision = ACCURATE;
TranscendentalPrecision rcpPrecision = ACCURATE;
TranscendentalPrecision rsqPrecision = ACCURATE;
bool perspectiveCorrection = true;
static void setGlobalRenderingSettings(Conventions conventions, bool exactColorRounding)
{
static bool initialized = false;
if(!initialized)
{
sw::halfIntegerCoordinates = conventions.halfIntegerCoordinates;
sw::symmetricNormalizedDepth = conventions.symmetricNormalizedDepth;
sw::booleanFaceRegister = conventions.booleanFaceRegister;
sw::fullPixelPositionRegister = conventions.fullPixelPositionRegister;
sw::leadingVertexFirst = conventions.leadingVertexFirst;
sw::secondaryColor = conventions.secondaryColor;
sw::colorsDefaultToZero = conventions.colorsDefaultToZero;
sw::exactColorRounding = exactColorRounding;
initialized = true;
}
}
struct Parameters
{
Renderer *renderer;
int threadIndex;
};
Query::Query(Type type) : building(false), data(0), type(type), reference(1)
{
}
void Query::addRef()
{
++reference; // Atomic
}
void Query::release()
{
int ref = reference--; // Atomic
ASSERT(ref >= 0);
if(ref == 0)
{
delete this;
}
}
DrawCall::DrawCall()
{
queries = 0;
vsDirtyConstF = VERTEX_UNIFORM_VECTORS + 1;
vsDirtyConstI = 16;
vsDirtyConstB = 16;
psDirtyConstF = FRAGMENT_UNIFORM_VECTORS;
psDirtyConstI = 16;
psDirtyConstB = 16;
references = -1;
data = (DrawData*)allocate(sizeof(DrawData));
data->constants = &constants;
}
DrawCall::~DrawCall()
{
delete queries;
deallocate(data);
}
Renderer::Renderer(Context *context, Conventions conventions, bool exactColorRounding) : VertexProcessor(context), PixelProcessor(context), SetupProcessor(context), context(context), viewport()
{
setGlobalRenderingSettings(conventions, exactColorRounding);
setRenderTarget(0, 0);
clipper = new Clipper(symmetricNormalizedDepth);
blitter = new Blitter;
updateViewMatrix = true;
updateBaseMatrix = true;
updateProjectionMatrix = true;
updateClipPlanes = true;
#if PERF_HUD
resetTimers();
#endif
for(int i = 0; i < 16; i++)
{
vertexTask[i] = 0;
worker[i] = 0;
resume[i] = 0;
suspend[i] = 0;
}
threadsAwake = 0;
resumeApp = new Event();
currentDraw = 0;
nextDraw = 0;
qHead = 0;
qSize = 0;
for(int i = 0; i < 16; i++)
{
triangleBatch[i] = 0;
primitiveBatch[i] = 0;
}
for(int draw = 0; draw < DRAW_COUNT; draw++)
{
drawCall[draw] = new DrawCall();
drawList[draw] = drawCall[draw];
}
for(int unit = 0; unit < 16; unit++)
{
primitiveProgress[unit].init();
}
for(int cluster = 0; cluster < 16; cluster++)
{
pixelProgress[cluster].init();
}
clipFlags = 0;
swiftConfig = new SwiftConfig(disableServer);
updateConfiguration(true);
sync = new Resource(0);
}
Renderer::~Renderer()
{
sync->lock(EXCLUSIVE);
sync->destruct();
terminateThreads();
sync->unlock();
delete clipper;
clipper = nullptr;
delete blitter;
blitter = nullptr;
delete resumeApp;
resumeApp = nullptr;
for(int draw = 0; draw < DRAW_COUNT; draw++)
{
delete drawCall[draw];
drawCall[draw] = nullptr;
}
delete swiftConfig;
swiftConfig = nullptr;
}
// This object has to be mem aligned
void* Renderer::operator new(size_t size)
{
ASSERT(size == sizeof(Renderer)); // This operator can't be called from a derived class
return sw::allocate(sizeof(Renderer), 16);
}
void Renderer::operator delete(void * mem)
{
sw::deallocate(mem);
}
void Renderer::draw(DrawType drawType, unsigned int indexOffset, unsigned int count, bool update)
{
#ifndef NDEBUG
if(count < minPrimitives || count > maxPrimitives)
{
return;
}
#endif
context->drawType = drawType;
updateConfiguration();
updateClipper();
int ss = context->getSuperSampleCount();
int ms = context->getMultiSampleCount();
bool requiresSync = false;
for(int q = 0; q < ss; q++)
{
unsigned int oldMultiSampleMask = context->multiSampleMask;
context->multiSampleMask = (context->sampleMask >> (ms * q)) & ((unsigned)0xFFFFFFFF >> (32 - ms));
if(!context->multiSampleMask)
{
continue;
}
sync->lock(sw::PRIVATE);
if(update || oldMultiSampleMask != context->multiSampleMask)
{
vertexState = VertexProcessor::update(drawType);
setupState = SetupProcessor::update();
pixelState = PixelProcessor::update();
vertexRoutine = VertexProcessor::routine(vertexState);
setupRoutine = SetupProcessor::routine(setupState);
pixelRoutine = PixelProcessor::routine(pixelState);
}
int batch = batchSize / ms;
int (Renderer::*setupPrimitives)(int batch, int count);
if(context->isDrawTriangle())
{
switch(context->fillMode)
{
case FILL_SOLID:
setupPrimitives = &Renderer::setupSolidTriangles;
break;
case FILL_WIREFRAME:
setupPrimitives = &Renderer::setupWireframeTriangle;
batch = 1;
break;
case FILL_VERTEX:
setupPrimitives = &Renderer::setupVertexTriangle;
batch = 1;
break;
default:
ASSERT(false);
return;
}
}
else if(context->isDrawLine())
{
setupPrimitives = &Renderer::setupLines;
}
else // Point draw
{
setupPrimitives = &Renderer::setupPoints;
}
DrawCall *draw = nullptr;
do
{
for(int i = 0; i < DRAW_COUNT; i++)
{
if(drawCall[i]->references == -1)
{
draw = drawCall[i];
drawList[nextDraw & DRAW_COUNT_BITS] = draw;
break;
}
}
if(!draw)
{
resumeApp->wait();
}
}
while(!draw);
DrawData *data = draw->data;
if(queries.size() != 0)
{
draw->queries = new std::list<Query*>();
bool includePrimitivesWrittenQueries = vertexState.transformFeedbackQueryEnabled && vertexState.transformFeedbackEnabled;
for(auto &query : queries)
{
if(includePrimitivesWrittenQueries || (query->type != Query::TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN))
{
query->addRef();
draw->queries->push_back(query);
}
}
}
draw->drawType = drawType;
draw->batchSize = batch;
draw->vertexRoutine = vertexRoutine;
draw->setupRoutine = setupRoutine;
draw->pixelRoutine = pixelRoutine;
draw->vertexPointer = (VertexProcessor::RoutinePointer)vertexRoutine->getEntry();
draw->setupPointer = (SetupProcessor::RoutinePointer)setupRoutine->getEntry();
draw->pixelPointer = (PixelProcessor::RoutinePointer)pixelRoutine->getEntry();
draw->setupPrimitives = setupPrimitives;
draw->setupState = setupState;
for(int i = 0; i < MAX_VERTEX_INPUTS; i++)
{
draw->vertexStream[i] = context->input[i].resource;
data->input[i] = context->input[i].buffer;
data->stride[i] = context->input[i].stride;
if(draw->vertexStream[i])
{
draw->vertexStream[i]->lock(PUBLIC, PRIVATE);
}
}
if(context->indexBuffer)
{
data->indices = (unsigned char*)context->indexBuffer->lock(PUBLIC, PRIVATE) + indexOffset;
}
draw->indexBuffer = context->indexBuffer;
for(int sampler = 0; sampler < TOTAL_IMAGE_UNITS; sampler++)
{
draw->texture[sampler] = 0;
}
for(int sampler = 0; sampler < TEXTURE_IMAGE_UNITS; sampler++)
{
if(pixelState.sampler[sampler].textureType != TEXTURE_NULL)
{
draw->texture[sampler] = context->texture[sampler];
draw->texture[sampler]->lock(PUBLIC, isReadWriteTexture(sampler) ? MANAGED : PRIVATE); // If the texure is both read and written, use the same read/write lock as render targets
data->mipmap[sampler] = context->sampler[sampler].getTextureData();
requiresSync |= context->sampler[sampler].requiresSync();
}
}
if(context->pixelShader)
{
if(draw->psDirtyConstF)
{
memcpy(&data->ps.cW, PixelProcessor::cW, sizeof(word4) * 4 * (draw->psDirtyConstF < 8 ? draw->psDirtyConstF : 8));
memcpy(&data->ps.c, PixelProcessor::c, sizeof(float4) * draw->psDirtyConstF);
draw->psDirtyConstF = 0;
}
if(draw->psDirtyConstI)
{
memcpy(&data->ps.i, PixelProcessor::i, sizeof(int4) * draw->psDirtyConstI);
draw->psDirtyConstI = 0;
}
if(draw->psDirtyConstB)
{
memcpy(&data->ps.b, PixelProcessor::b, sizeof(bool) * draw->psDirtyConstB);
draw->psDirtyConstB = 0;
}
PixelProcessor::lockUniformBuffers(data->ps.u, draw->pUniformBuffers);
}
else
{
for(int i = 0; i < MAX_UNIFORM_BUFFER_BINDINGS; i++)
{
draw->pUniformBuffers[i] = nullptr;
}
}
if(context->pixelShaderModel() <= 0x0104)
{
for(int stage = 0; stage < 8; stage++)
{
if(pixelState.textureStage[stage].stageOperation != TextureStage::STAGE_DISABLE || context->pixelShader)
{
data->textureStage[stage] = context->textureStage[stage].uniforms;
}
else break;
}
}
if(context->vertexShader)
{
if(context->vertexShader->getShaderModel() >= 0x0300)
{
for(int sampler = 0; sampler < VERTEX_TEXTURE_IMAGE_UNITS; sampler++)
{
if(vertexState.sampler[sampler].textureType != TEXTURE_NULL)
{
draw->texture[TEXTURE_IMAGE_UNITS + sampler] = context->texture[TEXTURE_IMAGE_UNITS + sampler];
draw->texture[TEXTURE_IMAGE_UNITS + sampler]->lock(PUBLIC, PRIVATE);
data->mipmap[TEXTURE_IMAGE_UNITS + sampler] = context->sampler[TEXTURE_IMAGE_UNITS + sampler].getTextureData();
requiresSync |= context->sampler[TEXTURE_IMAGE_UNITS + sampler].requiresSync();
}
}
}
if(draw->vsDirtyConstF)
{
memcpy(&data->vs.c, VertexProcessor::c, sizeof(float4) * draw->vsDirtyConstF);
draw->vsDirtyConstF = 0;
}
if(draw->vsDirtyConstI)
{
memcpy(&data->vs.i, VertexProcessor::i, sizeof(int4) * draw->vsDirtyConstI);
draw->vsDirtyConstI = 0;
}
if(draw->vsDirtyConstB)
{
memcpy(&data->vs.b, VertexProcessor::b, sizeof(bool) * draw->vsDirtyConstB);
draw->vsDirtyConstB = 0;
}
if(context->vertexShader->isInstanceIdDeclared())
{
data->instanceID = context->instanceID;
}
VertexProcessor::lockUniformBuffers(data->vs.u, draw->vUniformBuffers);
VertexProcessor::lockTransformFeedbackBuffers(data->vs.t, data->vs.reg, data->vs.row, data->vs.col, data->vs.str, draw->transformFeedbackBuffers);
}
else
{
data->ff = ff;
draw->vsDirtyConstF = VERTEX_UNIFORM_VECTORS + 1;
draw->vsDirtyConstI = 16;
draw->vsDirtyConstB = 16;
for(int i = 0; i < MAX_UNIFORM_BUFFER_BINDINGS; i++)
{
draw->vUniformBuffers[i] = nullptr;
}
for(int i = 0; i < MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS; i++)
{
draw->transformFeedbackBuffers[i] = nullptr;
}
}
if(pixelState.stencilActive)
{
data->stencil[0] = stencil;
data->stencil[1] = stencilCCW;
}
if(pixelState.fogActive)
{
data->fog = fog;
}
if(setupState.isDrawPoint)
{
data->point = point;
}
data->lineWidth = context->lineWidth;
data->factor = factor;
if(pixelState.transparencyAntialiasing == TRANSPARENCY_ALPHA_TO_COVERAGE)
{
float ref = context->alphaReference * (1.0f / 255.0f);
float margin = sw::min(ref, 1.0f - ref);
if(ms == 4)
{
data->a2c0 = replicate(ref - margin * 0.6f);
data->a2c1 = replicate(ref - margin * 0.2f);
data->a2c2 = replicate(ref + margin * 0.2f);
data->a2c3 = replicate(ref + margin * 0.6f);
}
else if(ms == 2)
{
data->a2c0 = replicate(ref - margin * 0.3f);
data->a2c1 = replicate(ref + margin * 0.3f);
}
else ASSERT(false);
}
if(pixelState.occlusionEnabled)
{
for(int cluster = 0; cluster < clusterCount; cluster++)
{
data->occlusion[cluster] = 0;
}
}
#if PERF_PROFILE
for(int cluster = 0; cluster < clusterCount; cluster++)
{
for(int i = 0; i < PERF_TIMERS; i++)
{
data->cycles[i][cluster] = 0;
}
}
#endif
// Viewport
{
float W = 0.5f * viewport.width;
float H = 0.5f * viewport.height;
float X0 = viewport.x0 + W;
float Y0 = viewport.y0 + H;
float N = viewport.minZ;
float F = viewport.maxZ;
float Z = F - N;
if(context->isDrawTriangle(false))
{
N += context->depthBias;
}
if(complementaryDepthBuffer)
{
Z = -Z;
N = 1 - N;
}
static const float X[5][16] = // Fragment offsets
{
{+0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f}, // 1 sample
{-0.2500f, +0.2500f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f}, // 2 samples
{-0.3000f, +0.1000f, +0.3000f, -0.1000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f}, // 4 samples
{+0.1875f, -0.3125f, +0.3125f, -0.4375f, -0.0625f, +0.4375f, +0.0625f, -0.1875f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f}, // 8 samples
{+0.2553f, -0.1155f, +0.1661f, -0.1828f, +0.2293f, -0.4132f, -0.1773f, -0.0577f, +0.3891f, -0.4656f, +0.4103f, +0.4248f, -0.2109f, +0.3966f, -0.2664f, -0.3872f} // 16 samples
};
static const float Y[5][16] = // Fragment offsets
{
{+0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f}, // 1 sample
{-0.2500f, +0.2500f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f}, // 2 samples
{-0.1000f, -0.3000f, +0.1000f, +0.3000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f}, // 4 samples
{-0.4375f, -0.3125f, -0.1875f, -0.0625f, +0.0625f, +0.1875f, +0.3125f, +0.4375f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f, +0.0000f}, // 8 samples
{-0.4503f, +0.1883f, +0.3684f, -0.4668f, -0.0690f, -0.1315f, +0.4999f, +0.0728f, +0.1070f, -0.3086f, +0.3725f, -0.1547f, -0.1102f, -0.3588f, +0.1789f, +0.0269f} // 16 samples
};
int s = sw::log2(ss);
data->Wx16 = replicate(W * 16);
data->Hx16 = replicate(H * 16);
data->X0x16 = replicate(X0 * 16 - 8);
data->Y0x16 = replicate(Y0 * 16 - 8);
data->XXXX = replicate(X[s][q] / W);
data->YYYY = replicate(Y[s][q] / H);
data->halfPixelX = replicate(0.5f / W);
data->halfPixelY = replicate(0.5f / H);
data->viewportHeight = abs(viewport.height);
data->slopeDepthBias = context->slopeDepthBias;
data->depthRange = Z;
data->depthNear = N;
draw->clipFlags = clipFlags;
if(clipFlags)
{
if(clipFlags & Clipper::CLIP_PLANE0) data->clipPlane[0] = clipPlane[0];
if(clipFlags & Clipper::CLIP_PLANE1) data->clipPlane[1] = clipPlane[1];
if(clipFlags & Clipper::CLIP_PLANE2) data->clipPlane[2] = clipPlane[2];
if(clipFlags & Clipper::CLIP_PLANE3) data->clipPlane[3] = clipPlane[3];
if(clipFlags & Clipper::CLIP_PLANE4) data->clipPlane[4] = clipPlane[4];
if(clipFlags & Clipper::CLIP_PLANE5) data->clipPlane[5] = clipPlane[5];
}
}
// Target
{
for(int index = 0; index < RENDERTARGETS; index++)
{
draw->renderTarget[index] = context->renderTarget[index];
if(draw->renderTarget[index])
{
unsigned int layer = context->renderTargetLayer[index];
requiresSync |= context->renderTarget[index]->requiresSync();
data->colorBuffer[index] = (unsigned int*)context->renderTarget[index]->lockInternal(0, 0, layer, LOCK_READWRITE, MANAGED);
data->colorBuffer[index] += q * ms * context->renderTarget[index]->getSliceB(true);
data->colorPitchB[index] = context->renderTarget[index]->getInternalPitchB();
data->colorSliceB[index] = context->renderTarget[index]->getInternalSliceB();
}
}
draw->depthBuffer = context->depthBuffer;
draw->stencilBuffer = context->stencilBuffer;
if(draw->depthBuffer)
{
unsigned int layer = context->depthBufferLayer;
requiresSync |= context->depthBuffer->requiresSync();
data->depthBuffer = (float*)context->depthBuffer->lockInternal(0, 0, layer, LOCK_READWRITE, MANAGED);
data->depthBuffer += q * ms * context->depthBuffer->getSliceB(true);
data->depthPitchB = context->depthBuffer->getInternalPitchB();
data->depthSliceB = context->depthBuffer->getInternalSliceB();
}
if(draw->stencilBuffer)
{
unsigned int layer = context->stencilBufferLayer;
requiresSync |= context->stencilBuffer->requiresSync();
data->stencilBuffer = (unsigned char*)context->stencilBuffer->lockStencil(0, 0, layer, MANAGED);
data->stencilBuffer += q * ms * context->stencilBuffer->getSliceB(true);
data->stencilPitchB = context->stencilBuffer->getStencilPitchB();
data->stencilSliceB = context->stencilBuffer->getStencilSliceB();
}
}
// Scissor
{
data->scissorX0 = scissor.x0;
data->scissorX1 = scissor.x1;
data->scissorY0 = scissor.y0;
data->scissorY1 = scissor.y1;
}
draw->primitive = 0;
draw->count = count;
draw->references = (count + batch - 1) / batch;
schedulerMutex.lock();
++nextDraw; // Atomic
schedulerMutex.unlock();
#ifndef NDEBUG
if(threadCount == 1) // Use main thread for draw execution
{
threadsAwake = 1;
task[0].type = Task::RESUME;
taskLoop(0);
}
else
#endif
{
if(!threadsAwake)
{
suspend[0]->wait();
threadsAwake = 1;
task[0].type = Task::RESUME;
resume[0]->signal();
}
}
}
// TODO(sugoi): This is a temporary brute-force workaround to ensure IOSurface synchronization.
if(requiresSync)
{
synchronize();
}
}
void Renderer::clear(void *value, Format format, Surface *dest, const Rect &clearRect, unsigned int rgbaMask)
{
blitter->clear(value, format, dest, clearRect, rgbaMask);
}
void Renderer::blit(Surface *source, const SliceRectF &sRect, Surface *dest, const SliceRect &dRect, bool filter, bool isStencil, bool sRGBconversion)
{
blitter->blit(source, sRect, dest, dRect, {filter, isStencil, sRGBconversion});
}
void Renderer::blit3D(Surface *source, Surface *dest)
{
blitter->blit3D(source, dest);
}
void Renderer::threadFunction(void *parameters)
{
Renderer *renderer = static_cast<Parameters*>(parameters)->renderer;
int threadIndex = static_cast<Parameters*>(parameters)->threadIndex;
if(logPrecision < IEEE)
{
CPUID::setFlushToZero(true);
CPUID::setDenormalsAreZero(true);
}
renderer->threadLoop(threadIndex);
}
void Renderer::threadLoop(int threadIndex)
{
while(!exitThreads)
{
taskLoop(threadIndex);
suspend[threadIndex]->signal();
resume[threadIndex]->wait();
}
}
void Renderer::taskLoop(int threadIndex)
{
while(task[threadIndex].type != Task::SUSPEND)
{
scheduleTask(threadIndex);
executeTask(threadIndex);
}
}
void Renderer::findAvailableTasks()
{
// Find pixel tasks
for(int cluster = 0; cluster < clusterCount; cluster++)
{
if(!pixelProgress[cluster].executing)
{
for(int unit = 0; unit < unitCount; unit++)
{
if(primitiveProgress[unit].references > 0) // Contains processed primitives
{
if(pixelProgress[cluster].drawCall == primitiveProgress[unit].drawCall)
{
if(pixelProgress[cluster].processedPrimitives == primitiveProgress[unit].firstPrimitive) // Previous primitives have been rendered
{
Task &task = taskQueue[qHead];
task.type = Task::PIXELS;
task.primitiveUnit = unit;
task.pixelCluster = cluster;
pixelProgress[cluster].executing = true;
// Commit to the task queue
qHead = (qHead + 1) & TASK_COUNT_BITS;
qSize++;
break;
}
}
}
}
}
}
// Find primitive tasks
if(currentDraw == nextDraw)
{
return; // No more primitives to process
}
for(int unit = 0; unit < unitCount; unit++)
{
DrawCall *draw = drawList[currentDraw & DRAW_COUNT_BITS];
int primitive = draw->primitive;
int count = draw->count;
if(primitive >= count)
{
++currentDraw; // Atomic
if(currentDraw == nextDraw)
{
return; // No more primitives to process
}
draw = drawList[currentDraw & DRAW_COUNT_BITS];
}
if(!primitiveProgress[unit].references) // Task not already being executed and not still in use by a pixel unit
{
primitive = draw->primitive;
count = draw->count;
int batch = draw->batchSize;
primitiveProgress[unit].drawCall = currentDraw;
primitiveProgress[unit].firstPrimitive = primitive;
primitiveProgress[unit].primitiveCount = count - primitive >= batch ? batch : count - primitive;
draw->primitive += batch;
Task &task = taskQueue[qHead];
task.type = Task::PRIMITIVES;
task.primitiveUnit = unit;
primitiveProgress[unit].references = -1;
// Commit to the task queue
qHead = (qHead + 1) & TASK_COUNT_BITS;
qSize++;
}
}
}
void Renderer::scheduleTask(int threadIndex)
{
schedulerMutex.lock();
int curThreadsAwake = threadsAwake;
if((int)qSize < threadCount - curThreadsAwake + 1)
{
findAvailableTasks();
}
if(qSize != 0)
{
task[threadIndex] = taskQueue[(qHead - qSize) & TASK_COUNT_BITS];
qSize--;
if(curThreadsAwake != threadCount)
{
int wakeup = qSize - curThreadsAwake + 1;
for(int i = 0; i < threadCount && wakeup > 0; i++)
{
if(task[i].type == Task::SUSPEND)
{
suspend[i]->wait();
task[i].type = Task::RESUME;
resume[i]->signal();
++threadsAwake; // Atomic
wakeup--;
}
}
}
}
else
{
task[threadIndex].type = Task::SUSPEND;
--threadsAwake; // Atomic
}
schedulerMutex.unlock();
}
void Renderer::executeTask(int threadIndex)
{
#if PERF_HUD
int64_t startTick = Timer::ticks();
#endif
switch(task[threadIndex].type)
{
case Task::PRIMITIVES:
{
int unit = task[threadIndex].primitiveUnit;
int input = primitiveProgress[unit].firstPrimitive;
int count = primitiveProgress[unit].primitiveCount;
DrawCall *draw = drawList[primitiveProgress[unit].drawCall & DRAW_COUNT_BITS];
int (Renderer::*setupPrimitives)(int batch, int count) = draw->setupPrimitives;
processPrimitiveVertices(unit, input, count, draw->count, threadIndex);
#if PERF_HUD
int64_t time = Timer::ticks();
vertexTime[threadIndex] += time - startTick;
startTick = time;
#endif
int visible = 0;
if(!draw->setupState.rasterizerDiscard)
{
visible = (this->*setupPrimitives)(unit, count);
}
primitiveProgress[unit].visible = visible;
primitiveProgress[unit].references = clusterCount;
#if PERF_HUD
setupTime[threadIndex] += Timer::ticks() - startTick;
#endif
}
break;
case Task::PIXELS:
{
int unit = task[threadIndex].primitiveUnit;
int visible = primitiveProgress[unit].visible;
if(visible > 0)
{
int cluster = task[threadIndex].pixelCluster;
Primitive *primitive = primitiveBatch[unit];
DrawCall *draw = drawList[pixelProgress[cluster].drawCall & DRAW_COUNT_BITS];
DrawData *data = draw->data;
PixelProcessor::RoutinePointer pixelRoutine = draw->pixelPointer;
pixelRoutine(primitive, visible, cluster, data);
}
finishRendering(task[threadIndex]);
#if PERF_HUD
pixelTime[threadIndex] += Timer::ticks() - startTick;
#endif
}
break;
case Task::RESUME:
break;
case Task::SUSPEND:
break;
default:
ASSERT(false);
}
}
void Renderer::synchronize()
{
sync->lock(sw::PUBLIC);
sync->unlock();
}
void Renderer::finishRendering(Task &pixelTask)
{
int unit = pixelTask.primitiveUnit;
int cluster = pixelTask.pixelCluster;
DrawCall &draw = *drawList[primitiveProgress[unit].drawCall & DRAW_COUNT_BITS];
DrawData &data = *draw.data;
int primitive = primitiveProgress[unit].firstPrimitive;
int count = primitiveProgress[unit].primitiveCount;
int processedPrimitives = primitive + count;
pixelProgress[cluster].processedPrimitives = processedPrimitives;
if(pixelProgress[cluster].processedPrimitives >= draw.count)
{
++pixelProgress[cluster].drawCall; // Atomic
pixelProgress[cluster].processedPrimitives = 0;
}
int ref = primitiveProgress[unit].references--; // Atomic
if(ref == 0)
{
ref = draw.references--; // Atomic
if(ref == 0)
{
#if PERF_PROFILE
for(int cluster = 0; cluster < clusterCount; cluster++)
{
for(int i = 0; i < PERF_TIMERS; i++)
{
profiler.cycles[i] += data.cycles[i][cluster];
}
}
#endif
if(draw.queries)
{
for(auto &query : *(draw.queries))
{
switch(query->type)
{
case Query::FRAGMENTS_PASSED:
for(int cluster = 0; cluster < clusterCount; cluster++)
{
query->data += data.occlusion[cluster];
}
break;
case Query::TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN:
query->data += processedPrimitives;
break;
default:
break;
}
query->release();
}
delete draw.queries;
draw.queries = 0;
}
for(int i = 0; i < RENDERTARGETS; i++)
{
if(draw.renderTarget[i])
{
draw.renderTarget[i]->unlockInternal();
}
}
if(draw.depthBuffer)
{
draw.depthBuffer->unlockInternal();
}
if(draw.stencilBuffer)
{
draw.stencilBuffer->unlockStencil();
}
for(int i = 0; i < TOTAL_IMAGE_UNITS; i++)
{
if(draw.texture[i])
{
draw.texture[i]->unlock();
}
}
for(int i = 0; i < MAX_VERTEX_INPUTS; i++)
{
if(draw.vertexStream[i])
{
draw.vertexStream[i]->unlock();
}
}
if(draw.indexBuffer)
{
draw.indexBuffer->unlock();
}
for(int i = 0; i < MAX_UNIFORM_BUFFER_BINDINGS; i++)
{
if(draw.pUniformBuffers[i])
{
draw.pUniformBuffers[i]->unlock();
}
if(draw.vUniformBuffers[i])
{
draw.vUniformBuffers[i]->unlock();
}
}
for(int i = 0; i < MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS; i++)
{
if(draw.transformFeedbackBuffers[i])
{
draw.transformFeedbackBuffers[i]->unlock();
}
}
draw.vertexRoutine.reset();
draw.setupRoutine.reset();
draw.pixelRoutine.reset();
sync->unlock();
draw.references = -1;
resumeApp->signal();
}
}
pixelProgress[cluster].executing = false;
}
void Renderer::processPrimitiveVertices(int unit, unsigned int start, unsigned int triangleCount, unsigned int loop, int thread)
{
Triangle *triangle = triangleBatch[unit];
int primitiveDrawCall = primitiveProgress[unit].drawCall;
DrawCall *draw = drawList[primitiveDrawCall & DRAW_COUNT_BITS];
DrawData *data = draw->data;
VertexTask *task = vertexTask[thread];
const void *indices = data->indices;
VertexProcessor::RoutinePointer vertexRoutine = draw->vertexPointer;
if(task->vertexCache.drawCall != primitiveDrawCall)
{
task->vertexCache.clear();
task->vertexCache.drawCall = primitiveDrawCall;
}
unsigned int batch[128][3]; // FIXME: Adjust to dynamic batch size
switch(draw->drawType)
{
case DRAW_POINTLIST:
{
unsigned int index = start;
for(unsigned int i = 0; i < triangleCount; i++)
{
batch[i][0] = index;
batch[i][1] = index;
batch[i][2] = index;
index += 1;
}
}
break;
case DRAW_LINELIST:
{
unsigned int index = 2 * start;
for(unsigned int i = 0; i < triangleCount; i++)
{
batch[i][0] = index + 0;
batch[i][1] = index + 1;
batch[i][2] = index + 1;
index += 2;
}
}
break;
case DRAW_LINESTRIP:
{
unsigned int index = start;
for(unsigned int i = 0; i < triangleCount; i++)
{
batch[i][0] = index + 0;
batch[i][1] = index + 1;
batch[i][2] = index + 1;
index += 1;
}
}
break;
case DRAW_LINELOOP:
{
unsigned int index = start;
for(unsigned int i = 0; i < triangleCount; i++)
{
batch[i][0] = (index + 0) % loop;
batch[i][1] = (index + 1) % loop;
batch[i][2] = (index + 1) % loop;
index += 1;
}
}
break;
case DRAW_TRIANGLELIST:
{
unsigned int index = 3 * start;
for(unsigned int i = 0; i < triangleCount; i++)
{
batch[i][0] = index + 0;
batch[i][1] = index + 1;
batch[i][2] = index + 2;
index += 3;
}
}
break;
case DRAW_TRIANGLESTRIP:
{
unsigned int index = start;
for(unsigned int i = 0; i < triangleCount; i++)
{
if(leadingVertexFirst)
{
batch[i][0] = index + 0;
batch[i][1] = index + (index & 1) + 1;
batch[i][2] = index + (~index & 1) + 1;
}
else
{
batch[i][0] = index + (index & 1);
batch[i][1] = index + (~index & 1);
batch[i][2] = index + 2;
}
index += 1;
}
}
break;
case DRAW_TRIANGLEFAN:
{
unsigned int index = start;
for(unsigned int i = 0; i < triangleCount; i++)
{
if(leadingVertexFirst)
{
batch[i][0] = index + 1;
batch[i][1] = index + 2;
batch[i][2] = 0;
}
else
{
batch[i][0] = 0;
batch[i][1] = index + 1;
batch[i][2] = index + 2;
}
index += 1;
}
}
break;
case DRAW_INDEXEDPOINTLIST8:
{
const unsigned char *index = (const unsigned char*)indices + start;
for(unsigned int i = 0; i < triangleCount; i++)
{
batch[i][0] = *index;
batch[i][1] = *index;
batch[i][2] = *index;
index += 1;
}
}
break;
case DRAW_INDEXEDPOINTLIST16:
{
const unsigned short *index = (const unsigned short*)indices + start;
for(unsigned int i = 0; i < triangleCount; i++)
{
batch[i][0] = *index;
batch[i][1] = *index;
batch[i][2] = *index;
index += 1;
}
}
break;
case DRAW_INDEXEDPOINTLIST32:
{
const unsigned int *index = (const unsigned int*)indices + start;
for(unsigned int i = 0; i < triangleCount; i++)
{
batch[i][0] = *index;
batch[i][1] = *index;
batch[i][2] = *index;
index += 1;
}
}
break;
case DRAW_INDEXEDLINELIST8:
{
const unsigned char *index = (const unsigned char*)indices + 2 * start;
for(unsigned int i = 0; i < triangleCount; i++)
{
batch[i][0] = index[0];
batch[i][1] = index[1];
batch[i][2] = index[1];
index += 2;
}
}
break;
case DRAW_INDEXEDLINELIST16:
{
const unsigned short *index = (const unsigned short*)indices + 2 * start;
for(unsigned int i = 0; i < triangleCount; i++)
{
batch[i][0] = index[0];
batch[i][1] = index[1];
batch[i][2] = index[1];
index += 2;
}
}
break;
case DRAW_INDEXEDLINELIST32:
{
const unsigned int *index = (const unsigned int*)indices + 2 * start;
for(unsigned int i = 0; i < triangleCount; i++)
{
batch[i][0] = index[0];
batch[i][1] = index[1];
batch[i][2] = index[1];
index += 2;
}
}
break;
case DRAW_INDEXEDLINESTRIP8:
{
const unsigned char *index = (const unsigned char*)indices + start;
for(unsigned int i = 0; i < triangleCount; i++)
{
batch[i][0] = index[0];
batch[i][1] = index[1];
batch[i][2] = index[1];
index += 1;
}
}
break;
case DRAW_INDEXEDLINESTRIP16:
{
const unsigned short *index = (const unsigned short*)indices + start;
for(unsigned int i = 0; i < triangleCount; i++)
{
batch[i][0] = index[0];
batch[i][1] = index[1];
batch[i][2] = index[1];
index += 1;
}
}
break;
case DRAW_INDEXEDLINESTRIP32:
{
const unsigned int *index = (const unsigned int*)indices + start;
for(unsigned int i = 0; i < triangleCount; i++)
{
batch[i][0] = index[0];
batch[i][1] = index[1];
batch[i][2] = index[1];
index += 1;
}
}
break;
case DRAW_INDEXEDLINELOOP8:
{
const unsigned char *index = (const unsigned char*)indices;
for(unsigned int i = 0; i < triangleCount; i++)
{
batch[i][0] = index[(start + i + 0) % loop];
batch[i][1] = index[(start + i + 1) % loop];
batch[i][2] = index[(start + i + 1) % loop];
}
}
break;
case DRAW_INDEXEDLINELOOP16:
{
const unsigned short *index = (const unsigned short*)indices;
for(unsigned int i = 0; i < triangleCount; i++)
{
batch[i][0] = index[(start + i + 0) % loop];
batch[i][1] = index[(start + i + 1) % loop];
batch[i][2] = index[(start + i + 1) % loop];
}
}
break;
case DRAW_INDEXEDLINELOOP32:
{
const unsigned int *index = (const unsigned int*)indices;
for(unsigned int i = 0; i < triangleCount; i++)
{
batch[i][0] = index[(start + i + 0) % loop];
batch[i][1] = index[(start + i + 1) % loop];
batch[i][2] = index[(start + i + 1) % loop];
}
}
break;
case DRAW_INDEXEDTRIANGLELIST8:
{
const unsigned char *index = (const unsigned char*)indices + 3 * start;
for(unsigned int i = 0; i < triangleCount; i++)
{
batch[i][0] = index[0];
batch[i][1] = index[1];
batch[i][2] = index[2];
index += 3;
}
}
break;
case DRAW_INDEXEDTRIANGLELIST16:
{
const unsigned short *index = (const unsigned short*)indices + 3 * start;
for(unsigned int i = 0; i < triangleCount; i++)
{
batch[i][0] = index[0];
batch[i][1] = index[1];
batch[i][2] = index[2];
index += 3;
}
}
break;
case DRAW_INDEXEDTRIANGLELIST32:
{
const unsigned int *index = (const unsigned int*)indices + 3 * start;
for(unsigned int i = 0; i < triangleCount; i++)
{
batch[i][0] = index[0];
batch[i][1] = index[1];
batch[i][2] = index[2];
index += 3;
}
}
break;
case DRAW_INDEXEDTRIANGLESTRIP8:
{
const unsigned char *index = (const unsigned char*)indices + start;
for(unsigned int i = 0; i < triangleCount; i++)
{
batch[i][0] = index[0];
batch[i][1] = index[((start + i) & 1) + 1];
batch[i][2] = index[(~(start + i) & 1) + 1];
index += 1;
}
}
break;
case DRAW_INDEXEDTRIANGLESTRIP16:
{
const unsigned short *index = (const unsigned short*)indices + start;
for(unsigned int i = 0; i < triangleCount; i++)
{
batch[i][0] = index[0];
batch[i][1] = index[((start + i) & 1) + 1];
batch[i][2] = index[(~(start + i) & 1) + 1];
index += 1;
}
}
break;
case DRAW_INDEXEDTRIANGLESTRIP32:
{
const unsigned int *index = (const unsigned int*)indices + start;
for(unsigned int i = 0; i < triangleCount; i++)
{
batch[i][0] = index[0];
batch[i][1] = index[((start + i) & 1) + 1];
batch[i][2] = index[(~(start + i) & 1) + 1];
index += 1;
}
}
break;
case DRAW_INDEXEDTRIANGLEFAN8:
{
const unsigned char *index = (const unsigned char*)indices;
for(unsigned int i = 0; i < triangleCount; i++)
{
batch[i][0] = index[start + i + 1];
batch[i][1] = index[start + i + 2];
batch[i][2] = index[0];
}
}
break;
case DRAW_INDEXEDTRIANGLEFAN16:
{
const unsigned short *index = (const unsigned short*)indices;
for(unsigned int i = 0; i < triangleCount; i++)
{
batch[i][0] = index[start + i + 1];
batch[i][1] = index[start + i + 2];
batch[i][2] = index[0];
}
}
break;
case DRAW_INDEXEDTRIANGLEFAN32:
{
const unsigned int *index = (const unsigned int*)indices;
for(unsigned int i = 0; i < triangleCount; i++)
{
batch[i][0] = index[start + i + 1];
batch[i][1] = index[start + i + 2];
batch[i][2] = index[0];
}
}
break;
case DRAW_QUADLIST:
{
unsigned int index = 4 * start / 2;
for(unsigned int i = 0; i < triangleCount; i += 2)
{
batch[i+0][0] = index + 0;
batch[i+0][1] = index + 1;
batch[i+0][2] = index + 2;
batch[i+1][0] = index + 0;
batch[i+1][1] = index + 2;
batch[i+1][2] = index + 3;
index += 4;
}
}
break;
default:
ASSERT(false);
return;
}
task->primitiveStart = start;
task->vertexCount = triangleCount * 3;
vertexRoutine(&triangle->v0, (unsigned int*)&batch, task, data);
}
int Renderer::setupSolidTriangles(int unit, int count)
{
Triangle *triangle = triangleBatch[unit];
Primitive *primitive = primitiveBatch[unit];
DrawCall &draw = *drawList[primitiveProgress[unit].drawCall & DRAW_COUNT_BITS];
SetupProcessor::State &state = draw.setupState;
const SetupProcessor::RoutinePointer &setupRoutine = draw.setupPointer;
int ms = state.multiSample;
int pos = state.positionRegister;
const DrawData *data = draw.data;
int visible = 0;
for(int i = 0; i < count; i++, triangle++)
{
Vertex &v0 = triangle->v0;
Vertex &v1 = triangle->v1;
Vertex &v2 = triangle->v2;
if((v0.clipFlags & v1.clipFlags & v2.clipFlags) == Clipper::CLIP_FINITE)
{
Polygon polygon(&v0.v[pos], &v1.v[pos], &v2.v[pos]);
int clipFlagsOr = v0.clipFlags | v1.clipFlags | v2.clipFlags | draw.clipFlags;
if(clipFlagsOr != Clipper::CLIP_FINITE)
{
if(!clipper->clip(polygon, clipFlagsOr, draw))
{
continue;
}
}
if(setupRoutine(primitive, triangle, &polygon, data))
{
primitive += ms;
visible++;
}
}
}
return visible;
}
int Renderer::setupWireframeTriangle(int unit, int count)
{
Triangle *triangle = triangleBatch[unit];
Primitive *primitive = primitiveBatch[unit];
int visible = 0;
DrawCall &draw = *drawList[primitiveProgress[unit].drawCall & DRAW_COUNT_BITS];
SetupProcessor::State &state = draw.setupState;
const Vertex &v0 = triangle[0].v0;
const Vertex &v1 = triangle[0].v1;
const Vertex &v2 = triangle[0].v2;
float d = (v0.y * v1.x - v0.x * v1.y) * v2.w + (v0.x * v2.y - v0.y * v2.x) * v1.w + (v2.x * v1.y - v1.x * v2.y) * v0.w;
if(state.cullMode == CULL_CLOCKWISE)
{
if(d >= 0) return 0;
}
else if(state.cullMode == CULL_COUNTERCLOCKWISE)
{
if(d <= 0) return 0;
}
// Copy attributes
triangle[1].v0 = v1;
triangle[1].v1 = v2;
triangle[2].v0 = v2;
triangle[2].v1 = v0;
if(state.color[0][0].flat) // FIXME
{
for(int i = 0; i < 2; i++)
{
triangle[1].v0.C[i] = triangle[0].v0.C[i];
triangle[1].v1.C[i] = triangle[0].v0.C[i];
triangle[2].v0.C[i] = triangle[0].v0.C[i];
triangle[2].v1.C[i] = triangle[0].v0.C[i];
}
}
for(int i = 0; i < 3; i++)
{
if(setupLine(*primitive, *triangle, draw))
{
primitive->area = 0.5f * d;
primitive++;
visible++;
}
triangle++;
}
return visible;
}
int Renderer::setupVertexTriangle(int unit, int count)
{
Triangle *triangle = triangleBatch[unit];
Primitive *primitive = primitiveBatch[unit];
int visible = 0;
DrawCall &draw = *drawList[primitiveProgress[unit].drawCall & DRAW_COUNT_BITS];
SetupProcessor::State &state = draw.setupState;
const Vertex &v0 = triangle[0].v0;
const Vertex &v1 = triangle[0].v1;
const Vertex &v2 = triangle[0].v2;
float d = (v0.y * v1.x - v0.x * v1.y) * v2.w + (v0.x * v2.y - v0.y * v2.x) * v1.w + (v2.x * v1.y - v1.x * v2.y) * v0.w;
if(state.cullMode == CULL_CLOCKWISE)
{
if(d >= 0) return 0;
}
else if(state.cullMode == CULL_COUNTERCLOCKWISE)
{
if(d <= 0) return 0;
}
// Copy attributes
triangle[1].v0 = v1;
triangle[2].v0 = v2;
for(int i = 0; i < 3; i++)
{
if(setupPoint(*primitive, *triangle, draw))
{
primitive->area = 0.5f * d;
primitive++;
visible++;
}
triangle++;
}
return visible;
}
int Renderer::setupLines(int unit, int count)
{
Triangle *triangle = triangleBatch[unit];
Primitive *primitive = primitiveBatch[unit];
int visible = 0;
DrawCall &draw = *drawList[primitiveProgress[unit].drawCall & DRAW_COUNT_BITS];
SetupProcessor::State &state = draw.setupState;
int ms = state.multiSample;
for(int i = 0; i < count; i++)
{
if(setupLine(*primitive, *triangle, draw))
{
primitive += ms;
visible++;
}
triangle++;
}
return visible;
}
int Renderer::setupPoints(int unit, int count)
{
Triangle *triangle = triangleBatch[unit];
Primitive *primitive = primitiveBatch[unit];
int visible = 0;
DrawCall &draw = *drawList[primitiveProgress[unit].drawCall & DRAW_COUNT_BITS];
SetupProcessor::State &state = draw.setupState;
int ms = state.multiSample;
for(int i = 0; i < count; i++)
{
if(setupPoint(*primitive, *triangle, draw))
{
primitive += ms;
visible++;
}
triangle++;
}
return visible;
}
bool Renderer::setupLine(Primitive &primitive, Triangle &triangle, const DrawCall &draw)
{
const SetupProcessor::RoutinePointer &setupRoutine = draw.setupPointer;
const SetupProcessor::State &state = draw.setupState;
const DrawData &data = *draw.data;
float lineWidth = data.lineWidth;
Vertex &v0 = triangle.v0;
Vertex &v1 = triangle.v1;
int pos = state.positionRegister;
const float4 &P0 = v0.v[pos];
const float4 &P1 = v1.v[pos];
if(P0.w <= 0 && P1.w <= 0)
{
return false;
}
const float W = data.Wx16[0] * (1.0f / 16.0f);
const float H = data.Hx16[0] * (1.0f / 16.0f);
float dx = W * (P1.x / P1.w - P0.x / P0.w);
float dy = H * (P1.y / P1.w - P0.y / P0.w);
if(dx == 0 && dy == 0)
{
return false;
}
if(state.multiSample > 1)
{
// Rectangle centered on the line segment
float4 P[4];
int C[4];
P[0] = P0;
P[1] = P1;
P[2] = P1;
P[3] = P0;
float scale = lineWidth * 0.5f / sqrt(dx*dx + dy*dy);
dx *= scale;
dy *= scale;
float dx0h = dx * P0.w / H;
float dy0w = dy * P0.w / W;
float dx1h = dx * P1.w / H;
float dy1w = dy * P1.w / W;
P[0].x += -dy0w;
P[0].y += +dx0h;
C[0] = clipper->computeClipFlags(P[0]);
P[1].x += -dy1w;
P[1].y += +dx1h;
C[1] = clipper->computeClipFlags(P[1]);
P[2].x += +dy1w;
P[2].y += -dx1h;
C[2] = clipper->computeClipFlags(P[2]);
P[3].x += +dy0w;
P[3].y += -dx0h;
C[3] = clipper->computeClipFlags(P[3]);
if((C[0] & C[1] & C[2] & C[3]) == Clipper::CLIP_FINITE)
{
Polygon polygon(P, 4);
int clipFlagsOr = C[0] | C[1] | C[2] | C[3] | draw.clipFlags;
if(clipFlagsOr != Clipper::CLIP_FINITE)
{
if(!clipper->clip(polygon, clipFlagsOr, draw))
{
return false;
}
}
return setupRoutine(&primitive, &triangle, &polygon, &data);
}
}
else if(true)
{
// Connecting diamonds polygon
// This shape satisfies the diamond test convention, except for the exit rule part.
// Line segments with overlapping endpoints have duplicate fragments.
// The ideal algorithm requires half-open line rasterization (b/80135519).
float4 P[8];
int C[8];
P[0] = P0;
P[1] = P0;
P[2] = P0;
P[3] = P0;
P[4] = P1;
P[5] = P1;
P[6] = P1;
P[7] = P1;
float dx0 = lineWidth * 0.5f * P0.w / W;
float dy0 = lineWidth * 0.5f * P0.w / H;
float dx1 = lineWidth * 0.5f * P1.w / W;
float dy1 = lineWidth * 0.5f * P1.w / H;
P[0].x += -dx0;
C[0] = clipper->computeClipFlags(P[0]);
P[1].y += +dy0;
C[1] = clipper->computeClipFlags(P[1]);
P[2].x += +dx0;
C[2] = clipper->computeClipFlags(P[2]);
P[3].y += -dy0;
C[3] = clipper->computeClipFlags(P[3]);
P[4].x += -dx1;
C[4] = clipper->computeClipFlags(P[4]);
P[5].y += +dy1;
C[5] = clipper->computeClipFlags(P[5]);
P[6].x += +dx1;
C[6] = clipper->computeClipFlags(P[6]);
P[7].y += -dy1;
C[7] = clipper->computeClipFlags(P[7]);
if((C[0] & C[1] & C[2] & C[3] & C[4] & C[5] & C[6] & C[7]) == Clipper::CLIP_FINITE)
{
float4 L[6];
if(dx > -dy)
{
if(dx > dy) // Right
{
L[0] = P[0];
L[1] = P[1];
L[2] = P[5];
L[3] = P[6];
L[4] = P[7];
L[5] = P[3];
}
else // Down
{
L[0] = P[0];
L[1] = P[4];
L[2] = P[5];
L[3] = P[6];
L[4] = P[2];
L[5] = P[3];
}
}
else
{
if(dx > dy) // Up
{
L[0] = P[0];
L[1] = P[1];
L[2] = P[2];
L[3] = P[6];
L[4] = P[7];
L[5] = P[4];
}
else // Left
{
L[0] = P[1];
L[1] = P[2];
L[2] = P[3];
L[3] = P[7];
L[4] = P[4];
L[5] = P[5];
}
}
Polygon polygon(L, 6);
int clipFlagsOr = C[0] | C[1] | C[2] | C[3] | C[4] | C[5] | C[6] | C[7] | draw.clipFlags;
if(clipFlagsOr != Clipper::CLIP_FINITE)
{
if(!clipper->clip(polygon, clipFlagsOr, draw))
{
return false;
}
}
return setupRoutine(&primitive, &triangle, &polygon, &data);
}
}
else
{
// Parallelogram approximating Bresenham line
// This algorithm does not satisfy the ideal diamond-exit rule, but does avoid the
// duplicate fragment rasterization problem and satisfies all of Vulkan's minimum
// requirements for Bresenham line segment rasterization.
float4 P[8];
P[0] = P0;
P[1] = P0;
P[2] = P0;
P[3] = P0;
P[4] = P1;
P[5] = P1;
P[6] = P1;
P[7] = P1;
float dx0 = lineWidth * 0.5f * P0.w / W;
float dy0 = lineWidth * 0.5f * P0.w / H;
float dx1 = lineWidth * 0.5f * P1.w / W;
float dy1 = lineWidth * 0.5f * P1.w / H;
P[0].x += -dx0;
P[1].y += +dy0;
P[2].x += +dx0;
P[3].y += -dy0;
P[4].x += -dx1;
P[5].y += +dy1;
P[6].x += +dx1;
P[7].y += -dy1;
float4 L[4];
if(dx > -dy)
{
if(dx > dy) // Right
{
L[0] = P[1];
L[1] = P[5];
L[2] = P[7];
L[3] = P[3];
}
else // Down
{
L[0] = P[0];
L[1] = P[4];
L[2] = P[6];
L[3] = P[2];
}
}
else
{
if(dx > dy) // Up
{
L[0] = P[0];
L[1] = P[2];
L[2] = P[6];
L[3] = P[4];
}
else // Left
{
L[0] = P[1];
L[1] = P[3];
L[2] = P[7];
L[3] = P[5];
}
}
int C0 = clipper->computeClipFlags(L[0]);
int C1 = clipper->computeClipFlags(L[1]);
int C2 = clipper->computeClipFlags(L[2]);
int C3 = clipper->computeClipFlags(L[3]);
if((C0 & C1 & C2 & C3) == Clipper::CLIP_FINITE)
{
Polygon polygon(L, 4);
int clipFlagsOr = C0 | C1 | C2 | C3;
if(clipFlagsOr != Clipper::CLIP_FINITE)
{
if(!clipper->clip(polygon, clipFlagsOr, draw))
{
return false;
}
}
return setupRoutine(&primitive, &triangle, &polygon, &data);
}
}
return false;
}
bool Renderer::setupPoint(Primitive &primitive, Triangle &triangle, const DrawCall &draw)
{
const SetupProcessor::RoutinePointer &setupRoutine = draw.setupPointer;
const SetupProcessor::State &state = draw.setupState;
const DrawData &data = *draw.data;
Vertex &v = triangle.v0;
float pSize;
int pts = state.pointSizeRegister;
if(state.pointSizeRegister != Unused)
{
pSize = v.v[pts].y;
}
else
{
pSize = data.point.pointSize[0];
}
pSize = clamp(pSize, data.point.pointSizeMin, data.point.pointSizeMax);
float4 P[4];
int C[4];
int pos = state.positionRegister;
P[0] = v.v[pos];
P[1] = v.v[pos];
P[2] = v.v[pos];
P[3] = v.v[pos];
const float X = pSize * P[0].w * data.halfPixelX[0];
const float Y = pSize * P[0].w * data.halfPixelY[0];
P[0].x -= X;
P[0].y += Y;
C[0] = clipper->computeClipFlags(P[0]);
P[1].x += X;
P[1].y += Y;
C[1] = clipper->computeClipFlags(P[1]);
P[2].x += X;
P[2].y -= Y;
C[2] = clipper->computeClipFlags(P[2]);
P[3].x -= X;
P[3].y -= Y;
C[3] = clipper->computeClipFlags(P[3]);
Polygon polygon(P, 4);
if((C[0] & C[1] & C[2] & C[3]) == Clipper::CLIP_FINITE)
{
int clipFlagsOr = C[0] | C[1] | C[2] | C[3] | draw.clipFlags;
if(clipFlagsOr != Clipper::CLIP_FINITE)
{
if(!clipper->clip(polygon, clipFlagsOr, draw))
{
return false;
}
}
triangle.v1 = triangle.v0;
triangle.v2 = triangle.v0;
triangle.v1.X += iround(16 * 0.5f * pSize);
triangle.v2.Y -= iround(16 * 0.5f * pSize) * (data.Hx16[0] > 0.0f ? 1 : -1); // Both Direct3D and OpenGL expect (0, 0) in the top-left corner
return setupRoutine(&primitive, &triangle, &polygon, &data);
}
return false;
}
void Renderer::initializeThreads()
{
unitCount = ceilPow2(threadCount);
clusterCount = ceilPow2(threadCount);
for(int i = 0; i < unitCount; i++)
{
triangleBatch[i] = (Triangle*)allocate(batchSize * sizeof(Triangle));
primitiveBatch[i] = (Primitive*)allocate(batchSize * sizeof(Primitive));
}
for(int i = 0; i < threadCount; i++)
{
vertexTask[i] = (VertexTask*)allocate(sizeof(VertexTask));
vertexTask[i]->vertexCache.drawCall = -1;
task[i].type = Task::SUSPEND;
resume[i] = new Event();
suspend[i] = new Event();
Parameters parameters;
parameters.threadIndex = i;
parameters.renderer = this;
exitThreads = false;
worker[i] = new Thread(threadFunction, &parameters);
suspend[i]->wait();
suspend[i]->signal();
}
}
void Renderer::terminateThreads()
{
while(threadsAwake != 0)
{
Thread::sleep(1);
}
for(int thread = 0; thread < threadCount; thread++)
{
if(worker[thread])
{
exitThreads = true;
resume[thread]->signal();
worker[thread]->join();
delete worker[thread];
worker[thread] = 0;
delete resume[thread];
resume[thread] = 0;
delete suspend[thread];
suspend[thread] = 0;
}
deallocate(vertexTask[thread]);
vertexTask[thread] = 0;
}
for(int i = 0; i < 16; i++)
{
deallocate(triangleBatch[i]);
triangleBatch[i] = 0;
deallocate(primitiveBatch[i]);
primitiveBatch[i] = 0;
}
}
void Renderer::loadConstants(const VertexShader *vertexShader)
{
if(!vertexShader) return;
size_t count = vertexShader->getLength();
for(size_t i = 0; i < count; i++)
{
const Shader::Instruction *instruction = vertexShader->getInstruction(i);
if(instruction->opcode == Shader::OPCODE_DEF)
{
int index = instruction->dst.index;
float value[4];
value[0] = instruction->src[0].value[0];
value[1] = instruction->src[0].value[1];
value[2] = instruction->src[0].value[2];
value[3] = instruction->src[0].value[3];
setVertexShaderConstantF(index, value);
}
else if(instruction->opcode == Shader::OPCODE_DEFI)
{
int index = instruction->dst.index;
int integer[4];
integer[0] = instruction->src[0].integer[0];
integer[1] = instruction->src[0].integer[1];
integer[2] = instruction->src[0].integer[2];
integer[3] = instruction->src[0].integer[3];
setVertexShaderConstantI(index, integer);
}
else if(instruction->opcode == Shader::OPCODE_DEFB)
{
int index = instruction->dst.index;
int boolean = instruction->src[0].boolean[0];
setVertexShaderConstantB(index, &boolean);
}
}
}
void Renderer::loadConstants(const PixelShader *pixelShader)
{
if(!pixelShader) return;
size_t count = pixelShader->getLength();
for(size_t i = 0; i < count; i++)
{
const Shader::Instruction *instruction = pixelShader->getInstruction(i);
if(instruction->opcode == Shader::OPCODE_DEF)
{
int index = instruction->dst.index;
float value[4];
value[0] = instruction->src[0].value[0];
value[1] = instruction->src[0].value[1];
value[2] = instruction->src[0].value[2];
value[3] = instruction->src[0].value[3];
setPixelShaderConstantF(index, value);
}
else if(instruction->opcode == Shader::OPCODE_DEFI)
{
int index = instruction->dst.index;
int integer[4];
integer[0] = instruction->src[0].integer[0];
integer[1] = instruction->src[0].integer[1];
integer[2] = instruction->src[0].integer[2];
integer[3] = instruction->src[0].integer[3];
setPixelShaderConstantI(index, integer);
}
else if(instruction->opcode == Shader::OPCODE_DEFB)
{
int index = instruction->dst.index;
int boolean = instruction->src[0].boolean[0];
setPixelShaderConstantB(index, &boolean);
}
}
}
void Renderer::setIndexBuffer(Resource *indexBuffer)
{
context->indexBuffer = indexBuffer;
}
void Renderer::setMultiSampleMask(unsigned int mask)
{
context->sampleMask = mask;
}
void Renderer::setTransparencyAntialiasing(TransparencyAntialiasing transparencyAntialiasing)
{
sw::transparencyAntialiasing = transparencyAntialiasing;
}
bool Renderer::isReadWriteTexture(int sampler)
{
for(int index = 0; index < RENDERTARGETS; index++)
{
if(context->renderTarget[index] && context->texture[sampler] == context->renderTarget[index]->getResource())
{
return true;
}
}
if(context->depthBuffer && context->texture[sampler] == context->depthBuffer->getResource())
{
return true;
}
return false;
}
void Renderer::updateClipper()
{
if(updateClipPlanes)
{
if(VertexProcessor::isFixedFunction()) // User plane in world space
{
const Matrix &scissorWorld = getViewTransform();
if(clipFlags & Clipper::CLIP_PLANE0) clipPlane[0] = scissorWorld * userPlane[0];
if(clipFlags & Clipper::CLIP_PLANE1) clipPlane[1] = scissorWorld * userPlane[1];
if(clipFlags & Clipper::CLIP_PLANE2) clipPlane[2] = scissorWorld * userPlane[2];
if(clipFlags & Clipper::CLIP_PLANE3) clipPlane[3] = scissorWorld * userPlane[3];
if(clipFlags & Clipper::CLIP_PLANE4) clipPlane[4] = scissorWorld * userPlane[4];
if(clipFlags & Clipper::CLIP_PLANE5) clipPlane[5] = scissorWorld * userPlane[5];
}
else // User plane in clip space
{
if(clipFlags & Clipper::CLIP_PLANE0) clipPlane[0] = userPlane[0];
if(clipFlags & Clipper::CLIP_PLANE1) clipPlane[1] = userPlane[1];
if(clipFlags & Clipper::CLIP_PLANE2) clipPlane[2] = userPlane[2];
if(clipFlags & Clipper::CLIP_PLANE3) clipPlane[3] = userPlane[3];
if(clipFlags & Clipper::CLIP_PLANE4) clipPlane[4] = userPlane[4];
if(clipFlags & Clipper::CLIP_PLANE5) clipPlane[5] = userPlane[5];
}
updateClipPlanes = false;
}
}
void Renderer::setTextureResource(unsigned int sampler, Resource *resource)
{
ASSERT(sampler < TOTAL_IMAGE_UNITS);
context->texture[sampler] = resource;
}
void Renderer::setTextureLevel(unsigned int sampler, unsigned int face, unsigned int level, Surface *surface, TextureType type)
{
ASSERT(sampler < TOTAL_IMAGE_UNITS && face < 6 && level < MIPMAP_LEVELS);
context->sampler[sampler].setTextureLevel(face, level, surface, type);
}
void Renderer::setTextureFilter(SamplerType type, int sampler, FilterType textureFilter)
{
if(type == SAMPLER_PIXEL)
{
PixelProcessor::setTextureFilter(sampler, textureFilter);
}
else
{
VertexProcessor::setTextureFilter(sampler, textureFilter);
}
}
void Renderer::setMipmapFilter(SamplerType type, int sampler, MipmapType mipmapFilter)
{
if(type == SAMPLER_PIXEL)
{
PixelProcessor::setMipmapFilter(sampler, mipmapFilter);
}
else
{
VertexProcessor::setMipmapFilter(sampler, mipmapFilter);
}
}
void Renderer::setGatherEnable(SamplerType type, int sampler, bool enable)
{
if(type == SAMPLER_PIXEL)
{
PixelProcessor::setGatherEnable(sampler, enable);
}
else
{
VertexProcessor::setGatherEnable(sampler, enable);
}
}
void Renderer::setAddressingModeU(SamplerType type, int sampler, AddressingMode addressMode)
{
if(type == SAMPLER_PIXEL)
{
PixelProcessor::setAddressingModeU(sampler, addressMode);
}
else
{
VertexProcessor::setAddressingModeU(sampler, addressMode);
}
}
void Renderer::setAddressingModeV(SamplerType type, int sampler, AddressingMode addressMode)
{
if(type == SAMPLER_PIXEL)
{
PixelProcessor::setAddressingModeV(sampler, addressMode);
}
else
{
VertexProcessor::setAddressingModeV(sampler, addressMode);
}
}
void Renderer::setAddressingModeW(SamplerType type, int sampler, AddressingMode addressMode)
{
if(type == SAMPLER_PIXEL)
{
PixelProcessor::setAddressingModeW(sampler, addressMode);
}
else
{
VertexProcessor::setAddressingModeW(sampler, addressMode);
}
}
void Renderer::setReadSRGB(SamplerType type, int sampler, bool sRGB)
{
if(type == SAMPLER_PIXEL)
{
PixelProcessor::setReadSRGB(sampler, sRGB);
}
else
{
VertexProcessor::setReadSRGB(sampler, sRGB);
}
}
void Renderer::setMipmapLOD(SamplerType type, int sampler, float bias)
{
if(type == SAMPLER_PIXEL)
{
PixelProcessor::setMipmapLOD(sampler, bias);
}
else
{
VertexProcessor::setMipmapLOD(sampler, bias);
}
}
void Renderer::setBorderColor(SamplerType type, int sampler, const Color<float> &borderColor)
{
if(type == SAMPLER_PIXEL)
{
PixelProcessor::setBorderColor(sampler, borderColor);
}
else
{
VertexProcessor::setBorderColor(sampler, borderColor);
}
}
void Renderer::setMaxAnisotropy(SamplerType type, int sampler, float maxAnisotropy)
{
if(type == SAMPLER_PIXEL)
{
PixelProcessor::setMaxAnisotropy(sampler, maxAnisotropy);
}
else
{
VertexProcessor::setMaxAnisotropy(sampler, maxAnisotropy);
}
}
void Renderer::setHighPrecisionFiltering(SamplerType type, int sampler, bool highPrecisionFiltering)
{
if(type == SAMPLER_PIXEL)
{
PixelProcessor::setHighPrecisionFiltering(sampler, highPrecisionFiltering);
}
else
{
VertexProcessor::setHighPrecisionFiltering(sampler, highPrecisionFiltering);
}
}
void Renderer::setSwizzleR(SamplerType type, int sampler, SwizzleType swizzleR)
{
if(type == SAMPLER_PIXEL)
{
PixelProcessor::setSwizzleR(sampler, swizzleR);
}
else
{
VertexProcessor::setSwizzleR(sampler, swizzleR);
}
}
void Renderer::setSwizzleG(SamplerType type, int sampler, SwizzleType swizzleG)
{
if(type == SAMPLER_PIXEL)
{
PixelProcessor::setSwizzleG(sampler, swizzleG);
}
else
{
VertexProcessor::setSwizzleG(sampler, swizzleG);
}
}
void Renderer::setSwizzleB(SamplerType type, int sampler, SwizzleType swizzleB)
{
if(type == SAMPLER_PIXEL)
{
PixelProcessor::setSwizzleB(sampler, swizzleB);
}
else
{
VertexProcessor::setSwizzleB(sampler, swizzleB);
}
}
void Renderer::setSwizzleA(SamplerType type, int sampler, SwizzleType swizzleA)