|  | //===-- Uops.cpp ------------------------------------------------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "Uops.h" | 
|  |  | 
|  | #include "Assembler.h" | 
|  | #include "BenchmarkRunner.h" | 
|  | #include "MCInstrDescView.h" | 
|  | #include "PerfHelper.h" | 
|  |  | 
|  | // FIXME: Load constants into registers (e.g. with fld1) to not break | 
|  | // instructions like x87. | 
|  |  | 
|  | // Ideally we would like the only limitation on executing uops to be the issue | 
|  | // ports. Maximizing port pressure increases the likelihood that the load is | 
|  | // distributed evenly across possible ports. | 
|  |  | 
|  | // To achieve that, one approach is to generate instructions that do not have | 
|  | // data dependencies between them. | 
|  | // | 
|  | // For some instructions, this is trivial: | 
|  | //    mov rax, qword ptr [rsi] | 
|  | //    mov rax, qword ptr [rsi] | 
|  | //    mov rax, qword ptr [rsi] | 
|  | //    mov rax, qword ptr [rsi] | 
|  | // For the above snippet, haswell just renames rax four times and executes the | 
|  | // four instructions two at a time on P23 and P0126. | 
|  | // | 
|  | // For some instructions, we just need to make sure that the source is | 
|  | // different from the destination. For example, IDIV8r reads from GPR and | 
|  | // writes to AX. We just need to ensure that the Var is assigned a | 
|  | // register which is different from AX: | 
|  | //    idiv bx | 
|  | //    idiv bx | 
|  | //    idiv bx | 
|  | //    idiv bx | 
|  | // The above snippet will be able to fully saturate the ports, while the same | 
|  | // with ax would issue one uop every `latency(IDIV8r)` cycles. | 
|  | // | 
|  | // Some instructions make this harder because they both read and write from | 
|  | // the same register: | 
|  | //    inc rax | 
|  | //    inc rax | 
|  | //    inc rax | 
|  | //    inc rax | 
|  | // This has a data dependency from each instruction to the next, limit the | 
|  | // number of instructions that can be issued in parallel. | 
|  | // It turns out that this is not a big issue on recent Intel CPUs because they | 
|  | // have heuristics to balance port pressure. In the snippet above, subsequent | 
|  | // instructions will end up evenly distributed on {P0,P1,P5,P6}, but some CPUs | 
|  | // might end up executing them all on P0 (just because they can), or try | 
|  | // avoiding P5 because it's usually under high pressure from vector | 
|  | // instructions. | 
|  | // This issue is even more important for high-latency instructions because | 
|  | // they increase the idle time of the CPU, e.g. : | 
|  | //    imul rax, rbx | 
|  | //    imul rax, rbx | 
|  | //    imul rax, rbx | 
|  | //    imul rax, rbx | 
|  | // | 
|  | // To avoid that, we do the renaming statically by generating as many | 
|  | // independent exclusive assignments as possible (until all possible registers | 
|  | // are exhausted) e.g.: | 
|  | //    imul rax, rbx | 
|  | //    imul rcx, rbx | 
|  | //    imul rdx, rbx | 
|  | //    imul r8,  rbx | 
|  | // | 
|  | // Some instruction even make the above static renaming impossible because | 
|  | // they implicitly read and write from the same operand, e.g. ADC16rr reads | 
|  | // and writes from EFLAGS. | 
|  | // In that case we just use a greedy register assignment and hope for the | 
|  | // best. | 
|  |  | 
|  | namespace exegesis { | 
|  |  | 
|  | static bool hasUnknownOperand(const llvm::MCOperandInfo &OpInfo) { | 
|  | return OpInfo.OperandType == llvm::MCOI::OPERAND_UNKNOWN; | 
|  | } | 
|  |  | 
|  | // FIXME: Handle memory, see PR36905. | 
|  | static bool hasMemoryOperand(const llvm::MCOperandInfo &OpInfo) { | 
|  | return OpInfo.OperandType == llvm::MCOI::OPERAND_MEMORY; | 
|  | } | 
|  |  | 
|  | llvm::Error | 
|  | UopsBenchmarkRunner::isInfeasible(const llvm::MCInstrDesc &MCInstrDesc) const { | 
|  | if (llvm::any_of(MCInstrDesc.operands(), hasUnknownOperand)) | 
|  | return llvm::make_error<BenchmarkFailure>( | 
|  | "Infeasible : has unknown operands"); | 
|  | if (llvm::any_of(MCInstrDesc.operands(), hasMemoryOperand)) | 
|  | return llvm::make_error<BenchmarkFailure>( | 
|  | "Infeasible : has memory operands"); | 
|  | return llvm::Error::success(); | 
|  | } | 
|  |  | 
|  | // Returns whether this Variable ties Use and Def operands together. | 
|  | static bool hasTiedOperands(const Instruction &Instr, const Variable &Var) { | 
|  | bool HasUse = false; | 
|  | bool HasDef = false; | 
|  | for (const unsigned OpIndex : Var.TiedOperands) { | 
|  | const Operand &Op = Instr.Operands[OpIndex]; | 
|  | if (Op.IsDef) | 
|  | HasDef = true; | 
|  | else | 
|  | HasUse = true; | 
|  | } | 
|  | return HasUse && HasDef; | 
|  | } | 
|  |  | 
|  | static llvm::SmallVector<const Variable *, 8> | 
|  | getTiedVariables(const Instruction &Instr) { | 
|  | llvm::SmallVector<const Variable *, 8> Result; | 
|  | for (const auto &Var : Instr.Variables) | 
|  | if (hasTiedOperands(Instr, Var)) | 
|  | Result.push_back(&Var); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | static void remove(llvm::BitVector &a, const llvm::BitVector &b) { | 
|  | assert(a.size() == b.size()); | 
|  | for (auto I : b.set_bits()) | 
|  | a.reset(I); | 
|  | } | 
|  |  | 
|  | UopsBenchmarkRunner::~UopsBenchmarkRunner() = default; | 
|  |  | 
|  | llvm::Expected<SnippetPrototype> | 
|  | UopsBenchmarkRunner::generatePrototype(unsigned Opcode) const { | 
|  | const auto &InstrDesc = State.getInstrInfo().get(Opcode); | 
|  | if (auto E = isInfeasible(InstrDesc)) | 
|  | return std::move(E); | 
|  | const Instruction Instr(InstrDesc, RATC); | 
|  | const AliasingConfigurations SelfAliasing(Instr, Instr); | 
|  | if (SelfAliasing.empty()) { | 
|  | return generateUnconstrainedPrototype(Instr, "instruction is parallel"); | 
|  | } | 
|  | if (SelfAliasing.hasImplicitAliasing()) { | 
|  | return generateUnconstrainedPrototype(Instr, "instruction is serial"); | 
|  | } | 
|  | const auto TiedVariables = getTiedVariables(Instr); | 
|  | if (!TiedVariables.empty()) { | 
|  | if (TiedVariables.size() > 1) | 
|  | return llvm::make_error<llvm::StringError>( | 
|  | "Infeasible : don't know how to handle several tied variables", | 
|  | llvm::inconvertibleErrorCode()); | 
|  | const Variable *Var = TiedVariables.front(); | 
|  | assert(Var); | 
|  | assert(!Var->TiedOperands.empty()); | 
|  | const Operand &Op = Instr.Operands[Var->TiedOperands.front()]; | 
|  | assert(Op.Tracker); | 
|  | SnippetPrototype Prototype; | 
|  | Prototype.Explanation = | 
|  | "instruction has tied variables using static renaming."; | 
|  | for (const llvm::MCPhysReg Reg : Op.Tracker->sourceBits().set_bits()) { | 
|  | Prototype.Snippet.emplace_back(Instr); | 
|  | Prototype.Snippet.back().getValueFor(*Var) = | 
|  | llvm::MCOperand::createReg(Reg); | 
|  | } | 
|  | return std::move(Prototype); | 
|  | } | 
|  | InstructionInstance II(Instr); | 
|  | // No tied variables, we pick random values for defs. | 
|  | llvm::BitVector Defs(State.getRegInfo().getNumRegs()); | 
|  | for (const auto &Op : Instr.Operands) { | 
|  | if (Op.Tracker && Op.IsExplicit && Op.IsDef) { | 
|  | auto PossibleRegisters = Op.Tracker->sourceBits(); | 
|  | remove(PossibleRegisters, RATC.reservedRegisters()); | 
|  | assert(PossibleRegisters.any() && "No register left to choose from"); | 
|  | const auto RandomReg = randomBit(PossibleRegisters); | 
|  | Defs.set(RandomReg); | 
|  | II.getValueFor(Op) = llvm::MCOperand::createReg(RandomReg); | 
|  | } | 
|  | } | 
|  | // And pick random use values that are not reserved and don't alias with defs. | 
|  | const auto DefAliases = getAliasedBits(State.getRegInfo(), Defs); | 
|  | for (const auto &Op : Instr.Operands) { | 
|  | if (Op.Tracker && Op.IsExplicit && !Op.IsDef) { | 
|  | auto PossibleRegisters = Op.Tracker->sourceBits(); | 
|  | remove(PossibleRegisters, RATC.reservedRegisters()); | 
|  | remove(PossibleRegisters, DefAliases); | 
|  | assert(PossibleRegisters.any() && "No register left to choose from"); | 
|  | const auto RandomReg = randomBit(PossibleRegisters); | 
|  | II.getValueFor(Op) = llvm::MCOperand::createReg(RandomReg); | 
|  | } | 
|  | } | 
|  | SnippetPrototype Prototype; | 
|  | Prototype.Explanation = | 
|  | "instruction has no tied variables picking Uses different from defs"; | 
|  | Prototype.Snippet.push_back(std::move(II)); | 
|  | return std::move(Prototype); | 
|  | } | 
|  |  | 
|  | std::vector<BenchmarkMeasure> | 
|  | UopsBenchmarkRunner::runMeasurements(const ExecutableFunction &Function, | 
|  | const unsigned NumRepetitions) const { | 
|  | const auto &SchedModel = State.getSubtargetInfo().getSchedModel(); | 
|  |  | 
|  | std::vector<BenchmarkMeasure> Result; | 
|  | for (unsigned ProcResIdx = 1; | 
|  | ProcResIdx < SchedModel.getNumProcResourceKinds(); ++ProcResIdx) { | 
|  | const char *const PfmCounters = SchedModel.getExtraProcessorInfo() | 
|  | .PfmCounters.IssueCounters[ProcResIdx]; | 
|  | if (!PfmCounters) | 
|  | continue; | 
|  | // We sum counts when there are several counters for a single ProcRes | 
|  | // (e.g. P23 on SandyBridge). | 
|  | int64_t CounterValue = 0; | 
|  | llvm::SmallVector<llvm::StringRef, 2> CounterNames; | 
|  | llvm::StringRef(PfmCounters).split(CounterNames, ','); | 
|  | for (const auto &CounterName : CounterNames) { | 
|  | pfm::PerfEvent UopPerfEvent(CounterName); | 
|  | if (!UopPerfEvent.valid()) | 
|  | llvm::report_fatal_error( | 
|  | llvm::Twine("invalid perf event ").concat(PfmCounters)); | 
|  | pfm::Counter Counter(UopPerfEvent); | 
|  | Counter.start(); | 
|  | Function(); | 
|  | Counter.stop(); | 
|  | CounterValue += Counter.read(); | 
|  | } | 
|  | Result.push_back({llvm::itostr(ProcResIdx), | 
|  | static_cast<double>(CounterValue) / NumRepetitions, | 
|  | SchedModel.getProcResource(ProcResIdx)->Name}); | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | } // namespace exegesis |