| //===- LowerInvoke.cpp - Eliminate Invoke & Unwind instructions -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This transformation is designed for use by code generators which do not yet |
| // support stack unwinding. This pass supports two models of exception handling |
| // lowering, the 'cheap' support and the 'expensive' support. |
| // |
| // 'Cheap' exception handling support gives the program the ability to execute |
| // any program which does not "throw an exception", by turning 'invoke' |
| // instructions into calls and by turning 'unwind' instructions into calls to |
| // abort(). If the program does dynamically use the unwind instruction, the |
| // program will print a message then abort. |
| // |
| // 'Expensive' exception handling support gives the full exception handling |
| // support to the program at the cost of making the 'invoke' instruction |
| // really expensive. It basically inserts setjmp/longjmp calls to emulate the |
| // exception handling as necessary. |
| // |
| // Because the 'expensive' support slows down programs a lot, and EH is only |
| // used for a subset of the programs, it must be specifically enabled by an |
| // option. |
| // |
| // Note that after this pass runs the CFG is not entirely accurate (exceptional |
| // control flow edges are not correct anymore) so only very simple things should |
| // be done after the lowerinvoke pass has run (like generation of native code). |
| // This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't |
| // support the invoke instruction yet" lowering pass. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "lowerinvoke" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/LLVMContext.h" |
| #include "llvm/Module.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include <csetjmp> |
| #include <set> |
| using namespace llvm; |
| |
| STATISTIC(NumInvokes, "Number of invokes replaced"); |
| STATISTIC(NumUnwinds, "Number of unwinds replaced"); |
| STATISTIC(NumSpilled, "Number of registers live across unwind edges"); |
| |
| static cl::opt<bool> ExpensiveEHSupport("enable-correct-eh-support", |
| cl::desc("Make the -lowerinvoke pass insert expensive, but correct, EH code")); |
| |
| namespace { |
| class LowerInvoke : public FunctionPass { |
| // Used for both models. |
| Constant *AbortFn; |
| |
| // Used for expensive EH support. |
| StructType *JBLinkTy; |
| GlobalVariable *JBListHead; |
| Constant *SetJmpFn, *LongJmpFn, *StackSaveFn, *StackRestoreFn; |
| bool useExpensiveEHSupport; |
| |
| // We peek in TLI to grab the target's jmp_buf size and alignment |
| const TargetLowering *TLI; |
| |
| public: |
| static char ID; // Pass identification, replacement for typeid |
| explicit LowerInvoke(const TargetLowering *tli = NULL, |
| bool useExpensiveEHSupport = ExpensiveEHSupport) |
| : FunctionPass(ID), useExpensiveEHSupport(useExpensiveEHSupport), |
| TLI(tli) { |
| initializeLowerInvokePass(*PassRegistry::getPassRegistry()); |
| } |
| bool doInitialization(Module &M); |
| bool runOnFunction(Function &F); |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| // This is a cluster of orthogonal Transforms |
| AU.addPreserved("mem2reg"); |
| AU.addPreservedID(LowerSwitchID); |
| } |
| |
| private: |
| bool insertCheapEHSupport(Function &F); |
| void splitLiveRangesLiveAcrossInvokes(SmallVectorImpl<InvokeInst*>&Invokes); |
| void rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo, |
| AllocaInst *InvokeNum, AllocaInst *StackPtr, |
| SwitchInst *CatchSwitch); |
| bool insertExpensiveEHSupport(Function &F); |
| }; |
| } |
| |
| char LowerInvoke::ID = 0; |
| INITIALIZE_PASS(LowerInvoke, "lowerinvoke", |
| "Lower invoke and unwind, for unwindless code generators", |
| false, false) |
| |
| char &llvm::LowerInvokePassID = LowerInvoke::ID; |
| |
| // Public Interface To the LowerInvoke pass. |
| FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI) { |
| return new LowerInvoke(TLI, ExpensiveEHSupport); |
| } |
| FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI, |
| bool useExpensiveEHSupport) { |
| return new LowerInvoke(TLI, useExpensiveEHSupport); |
| } |
| |
| // doInitialization - Make sure that there is a prototype for abort in the |
| // current module. |
| bool LowerInvoke::doInitialization(Module &M) { |
| Type *VoidPtrTy = Type::getInt8PtrTy(M.getContext()); |
| if (useExpensiveEHSupport) { |
| // Insert a type for the linked list of jump buffers. |
| unsigned JBSize = TLI ? TLI->getJumpBufSize() : 0; |
| JBSize = JBSize ? JBSize : 200; |
| Type *JmpBufTy = ArrayType::get(VoidPtrTy, JBSize); |
| |
| JBLinkTy = StructType::create(M.getContext(), "llvm.sjljeh.jmpbufty"); |
| Type *Elts[] = { JmpBufTy, PointerType::getUnqual(JBLinkTy) }; |
| JBLinkTy->setBody(Elts); |
| |
| Type *PtrJBList = PointerType::getUnqual(JBLinkTy); |
| |
| // Now that we've done that, insert the jmpbuf list head global, unless it |
| // already exists. |
| if (!(JBListHead = M.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList))) { |
| JBListHead = new GlobalVariable(M, PtrJBList, false, |
| GlobalValue::LinkOnceAnyLinkage, |
| Constant::getNullValue(PtrJBList), |
| "llvm.sjljeh.jblist"); |
| } |
| |
| // VisualStudio defines setjmp as _setjmp |
| #if defined(_MSC_VER) && defined(setjmp) && \ |
| !defined(setjmp_undefined_for_msvc) |
| # pragma push_macro("setjmp") |
| # undef setjmp |
| # define setjmp_undefined_for_msvc |
| #endif |
| |
| SetJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::setjmp); |
| |
| #if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc) |
| // let's return it to _setjmp state |
| # pragma pop_macro("setjmp") |
| # undef setjmp_undefined_for_msvc |
| #endif |
| |
| LongJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::longjmp); |
| StackSaveFn = Intrinsic::getDeclaration(&M, Intrinsic::stacksave); |
| StackRestoreFn = Intrinsic::getDeclaration(&M, Intrinsic::stackrestore); |
| } |
| |
| // We need the 'write' and 'abort' functions for both models. |
| AbortFn = M.getOrInsertFunction("abort", Type::getVoidTy(M.getContext()), |
| (Type *)0); |
| return true; |
| } |
| |
| bool LowerInvoke::insertCheapEHSupport(Function &F) { |
| bool Changed = false; |
| for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) |
| if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { |
| SmallVector<Value*,16> CallArgs(II->op_begin(), II->op_end() - 3); |
| // Insert a normal call instruction... |
| CallInst *NewCall = CallInst::Create(II->getCalledValue(), |
| CallArgs, "", II); |
| NewCall->takeName(II); |
| NewCall->setCallingConv(II->getCallingConv()); |
| NewCall->setAttributes(II->getAttributes()); |
| NewCall->setDebugLoc(II->getDebugLoc()); |
| II->replaceAllUsesWith(NewCall); |
| |
| // Insert an unconditional branch to the normal destination. |
| BranchInst::Create(II->getNormalDest(), II); |
| |
| // Remove any PHI node entries from the exception destination. |
| II->getUnwindDest()->removePredecessor(BB); |
| |
| // Remove the invoke instruction now. |
| BB->getInstList().erase(II); |
| |
| ++NumInvokes; Changed = true; |
| } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { |
| // Insert a call to abort() |
| CallInst::Create(AbortFn, "", UI)->setTailCall(); |
| |
| // Insert a return instruction. This really should be a "barrier", as it |
| // is unreachable. |
| ReturnInst::Create(F.getContext(), |
| F.getReturnType()->isVoidTy() ? |
| 0 : Constant::getNullValue(F.getReturnType()), UI); |
| |
| // Remove the unwind instruction now. |
| BB->getInstList().erase(UI); |
| |
| ++NumUnwinds; Changed = true; |
| } |
| return Changed; |
| } |
| |
| /// rewriteExpensiveInvoke - Insert code and hack the function to replace the |
| /// specified invoke instruction with a call. |
| void LowerInvoke::rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo, |
| AllocaInst *InvokeNum, |
| AllocaInst *StackPtr, |
| SwitchInst *CatchSwitch) { |
| ConstantInt *InvokeNoC = ConstantInt::get(Type::getInt32Ty(II->getContext()), |
| InvokeNo); |
| |
| // If the unwind edge has phi nodes, split the edge. |
| if (isa<PHINode>(II->getUnwindDest()->begin())) { |
| SplitCriticalEdge(II, 1, this); |
| |
| // If there are any phi nodes left, they must have a single predecessor. |
| while (PHINode *PN = dyn_cast<PHINode>(II->getUnwindDest()->begin())) { |
| PN->replaceAllUsesWith(PN->getIncomingValue(0)); |
| PN->eraseFromParent(); |
| } |
| } |
| |
| // Insert a store of the invoke num before the invoke and store zero into the |
| // location afterward. |
| new StoreInst(InvokeNoC, InvokeNum, true, II); // volatile |
| |
| // Insert a store of the stack ptr before the invoke, so we can restore it |
| // later in the exception case. |
| CallInst* StackSaveRet = CallInst::Create(StackSaveFn, "ssret", II); |
| new StoreInst(StackSaveRet, StackPtr, true, II); // volatile |
| |
| BasicBlock::iterator NI = II->getNormalDest()->getFirstInsertionPt(); |
| // nonvolatile. |
| new StoreInst(Constant::getNullValue(Type::getInt32Ty(II->getContext())), |
| InvokeNum, false, NI); |
| |
| Instruction* StackPtrLoad = |
| new LoadInst(StackPtr, "stackptr.restore", true, |
| II->getUnwindDest()->getFirstInsertionPt()); |
| CallInst::Create(StackRestoreFn, StackPtrLoad, "")->insertAfter(StackPtrLoad); |
| |
| // Add a switch case to our unwind block. |
| CatchSwitch->addCase(InvokeNoC, II->getUnwindDest()); |
| |
| // Insert a normal call instruction. |
| SmallVector<Value*,16> CallArgs(II->op_begin(), II->op_end() - 3); |
| CallInst *NewCall = CallInst::Create(II->getCalledValue(), |
| CallArgs, "", II); |
| NewCall->takeName(II); |
| NewCall->setCallingConv(II->getCallingConv()); |
| NewCall->setAttributes(II->getAttributes()); |
| NewCall->setDebugLoc(II->getDebugLoc()); |
| II->replaceAllUsesWith(NewCall); |
| |
| // Replace the invoke with an uncond branch. |
| BranchInst::Create(II->getNormalDest(), NewCall->getParent()); |
| II->eraseFromParent(); |
| } |
| |
| /// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until |
| /// we reach blocks we've already seen. |
| static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) { |
| if (!LiveBBs.insert(BB).second) return; // already been here. |
| |
| for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) |
| MarkBlocksLiveIn(*PI, LiveBBs); |
| } |
| |
| // First thing we need to do is scan the whole function for values that are |
| // live across unwind edges. Each value that is live across an unwind edge |
| // we spill into a stack location, guaranteeing that there is nothing live |
| // across the unwind edge. This process also splits all critical edges |
| // coming out of invoke's. |
| void LowerInvoke:: |
| splitLiveRangesLiveAcrossInvokes(SmallVectorImpl<InvokeInst*> &Invokes) { |
| // First step, split all critical edges from invoke instructions. |
| for (unsigned i = 0, e = Invokes.size(); i != e; ++i) { |
| InvokeInst *II = Invokes[i]; |
| SplitCriticalEdge(II, 0, this); |
| SplitCriticalEdge(II, 1, this); |
| assert(!isa<PHINode>(II->getNormalDest()) && |
| !isa<PHINode>(II->getUnwindDest()) && |
| "critical edge splitting left single entry phi nodes?"); |
| } |
| |
| Function *F = Invokes.back()->getParent()->getParent(); |
| |
| // To avoid having to handle incoming arguments specially, we lower each arg |
| // to a copy instruction in the entry block. This ensures that the argument |
| // value itself cannot be live across the entry block. |
| BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin(); |
| while (isa<AllocaInst>(AfterAllocaInsertPt) && |
| isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize())) |
| ++AfterAllocaInsertPt; |
| for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); |
| AI != E; ++AI) { |
| Type *Ty = AI->getType(); |
| // Aggregate types can't be cast, but are legal argument types, so we have |
| // to handle them differently. We use an extract/insert pair as a |
| // lightweight method to achieve the same goal. |
| if (isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) { |
| Instruction *EI = ExtractValueInst::Create(AI, 0, "",AfterAllocaInsertPt); |
| Instruction *NI = InsertValueInst::Create(AI, EI, 0); |
| NI->insertAfter(EI); |
| AI->replaceAllUsesWith(NI); |
| // Set the operand of the instructions back to the AllocaInst. |
| EI->setOperand(0, AI); |
| NI->setOperand(0, AI); |
| } else { |
| // This is always a no-op cast because we're casting AI to AI->getType() |
| // so src and destination types are identical. BitCast is the only |
| // possibility. |
| CastInst *NC = new BitCastInst( |
| AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt); |
| AI->replaceAllUsesWith(NC); |
| // Set the operand of the cast instruction back to the AllocaInst. |
| // Normally it's forbidden to replace a CastInst's operand because it |
| // could cause the opcode to reflect an illegal conversion. However, |
| // we're replacing it here with the same value it was constructed with. |
| // We do this because the above replaceAllUsesWith() clobbered the |
| // operand, but we want this one to remain. |
| NC->setOperand(0, AI); |
| } |
| } |
| |
| // Finally, scan the code looking for instructions with bad live ranges. |
| for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) |
| for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) { |
| // Ignore obvious cases we don't have to handle. In particular, most |
| // instructions either have no uses or only have a single use inside the |
| // current block. Ignore them quickly. |
| Instruction *Inst = II; |
| if (Inst->use_empty()) continue; |
| if (Inst->hasOneUse() && |
| cast<Instruction>(Inst->use_back())->getParent() == BB && |
| !isa<PHINode>(Inst->use_back())) continue; |
| |
| // If this is an alloca in the entry block, it's not a real register |
| // value. |
| if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst)) |
| if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin()) |
| continue; |
| |
| // Avoid iterator invalidation by copying users to a temporary vector. |
| SmallVector<Instruction*,16> Users; |
| for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end(); |
| UI != E; ++UI) { |
| Instruction *User = cast<Instruction>(*UI); |
| if (User->getParent() != BB || isa<PHINode>(User)) |
| Users.push_back(User); |
| } |
| |
| // Scan all of the uses and see if the live range is live across an unwind |
| // edge. If we find a use live across an invoke edge, create an alloca |
| // and spill the value. |
| std::set<InvokeInst*> InvokesWithStoreInserted; |
| |
| // Find all of the blocks that this value is live in. |
| std::set<BasicBlock*> LiveBBs; |
| LiveBBs.insert(Inst->getParent()); |
| while (!Users.empty()) { |
| Instruction *U = Users.back(); |
| Users.pop_back(); |
| |
| if (!isa<PHINode>(U)) { |
| MarkBlocksLiveIn(U->getParent(), LiveBBs); |
| } else { |
| // Uses for a PHI node occur in their predecessor block. |
| PHINode *PN = cast<PHINode>(U); |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| if (PN->getIncomingValue(i) == Inst) |
| MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs); |
| } |
| } |
| |
| // Now that we know all of the blocks that this thing is live in, see if |
| // it includes any of the unwind locations. |
| bool NeedsSpill = false; |
| for (unsigned i = 0, e = Invokes.size(); i != e; ++i) { |
| BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest(); |
| if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) { |
| NeedsSpill = true; |
| } |
| } |
| |
| // If we decided we need a spill, do it. |
| if (NeedsSpill) { |
| ++NumSpilled; |
| DemoteRegToStack(*Inst, true); |
| } |
| } |
| } |
| |
| bool LowerInvoke::insertExpensiveEHSupport(Function &F) { |
| SmallVector<ReturnInst*,16> Returns; |
| SmallVector<UnwindInst*,16> Unwinds; |
| SmallVector<InvokeInst*,16> Invokes; |
| UnreachableInst* UnreachablePlaceholder = 0; |
| |
| for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) |
| if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { |
| // Remember all return instructions in case we insert an invoke into this |
| // function. |
| Returns.push_back(RI); |
| } else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { |
| Invokes.push_back(II); |
| } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { |
| Unwinds.push_back(UI); |
| } |
| |
| if (Unwinds.empty() && Invokes.empty()) return false; |
| |
| NumInvokes += Invokes.size(); |
| NumUnwinds += Unwinds.size(); |
| |
| // TODO: This is not an optimal way to do this. In particular, this always |
| // inserts setjmp calls into the entries of functions with invoke instructions |
| // even though there are possibly paths through the function that do not |
| // execute any invokes. In particular, for functions with early exits, e.g. |
| // the 'addMove' method in hexxagon, it would be nice to not have to do the |
| // setjmp stuff on the early exit path. This requires a bit of dataflow, but |
| // would not be too hard to do. |
| |
| // If we have an invoke instruction, insert a setjmp that dominates all |
| // invokes. After the setjmp, use a cond branch that goes to the original |
| // code path on zero, and to a designated 'catch' block of nonzero. |
| Value *OldJmpBufPtr = 0; |
| if (!Invokes.empty()) { |
| // First thing we need to do is scan the whole function for values that are |
| // live across unwind edges. Each value that is live across an unwind edge |
| // we spill into a stack location, guaranteeing that there is nothing live |
| // across the unwind edge. This process also splits all critical edges |
| // coming out of invoke's. |
| splitLiveRangesLiveAcrossInvokes(Invokes); |
| |
| BasicBlock *EntryBB = F.begin(); |
| |
| // Create an alloca for the incoming jump buffer ptr and the new jump buffer |
| // that needs to be restored on all exits from the function. This is an |
| // alloca because the value needs to be live across invokes. |
| unsigned Align = TLI ? TLI->getJumpBufAlignment() : 0; |
| AllocaInst *JmpBuf = |
| new AllocaInst(JBLinkTy, 0, Align, |
| "jblink", F.begin()->begin()); |
| |
| Value *Idx[] = { Constant::getNullValue(Type::getInt32Ty(F.getContext())), |
| ConstantInt::get(Type::getInt32Ty(F.getContext()), 1) }; |
| OldJmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx, "OldBuf", |
| EntryBB->getTerminator()); |
| |
| // Copy the JBListHead to the alloca. |
| Value *OldBuf = new LoadInst(JBListHead, "oldjmpbufptr", true, |
| EntryBB->getTerminator()); |
| new StoreInst(OldBuf, OldJmpBufPtr, true, EntryBB->getTerminator()); |
| |
| // Add the new jumpbuf to the list. |
| new StoreInst(JmpBuf, JBListHead, true, EntryBB->getTerminator()); |
| |
| // Create the catch block. The catch block is basically a big switch |
| // statement that goes to all of the invoke catch blocks. |
| BasicBlock *CatchBB = |
| BasicBlock::Create(F.getContext(), "setjmp.catch", &F); |
| |
| // Create an alloca which keeps track of the stack pointer before every |
| // invoke, this allows us to properly restore the stack pointer after |
| // long jumping. |
| AllocaInst *StackPtr = new AllocaInst(Type::getInt8PtrTy(F.getContext()), 0, |
| "stackptr", EntryBB->begin()); |
| |
| // Create an alloca which keeps track of which invoke is currently |
| // executing. For normal calls it contains zero. |
| AllocaInst *InvokeNum = new AllocaInst(Type::getInt32Ty(F.getContext()), 0, |
| "invokenum",EntryBB->begin()); |
| new StoreInst(ConstantInt::get(Type::getInt32Ty(F.getContext()), 0), |
| InvokeNum, true, EntryBB->getTerminator()); |
| |
| // Insert a load in the Catch block, and a switch on its value. By default, |
| // we go to a block that just does an unwind (which is the correct action |
| // for a standard call). We insert an unreachable instruction here and |
| // modify the block to jump to the correct unwinding pad later. |
| BasicBlock *UnwindBB = BasicBlock::Create(F.getContext(), "unwindbb", &F); |
| UnreachablePlaceholder = new UnreachableInst(F.getContext(), UnwindBB); |
| |
| Value *CatchLoad = new LoadInst(InvokeNum, "invoke.num", true, CatchBB); |
| SwitchInst *CatchSwitch = |
| SwitchInst::Create(CatchLoad, UnwindBB, Invokes.size(), CatchBB); |
| |
| // Now that things are set up, insert the setjmp call itself. |
| |
| // Split the entry block to insert the conditional branch for the setjmp. |
| BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(), |
| "setjmp.cont"); |
| |
| Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 0); |
| Value *JmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx, "TheJmpBuf", |
| EntryBB->getTerminator()); |
| JmpBufPtr = new BitCastInst(JmpBufPtr, |
| Type::getInt8PtrTy(F.getContext()), |
| "tmp", EntryBB->getTerminator()); |
| Value *SJRet = CallInst::Create(SetJmpFn, JmpBufPtr, "sjret", |
| EntryBB->getTerminator()); |
| |
| // Compare the return value to zero. |
| Value *IsNormal = new ICmpInst(EntryBB->getTerminator(), |
| ICmpInst::ICMP_EQ, SJRet, |
| Constant::getNullValue(SJRet->getType()), |
| "notunwind"); |
| // Nuke the uncond branch. |
| EntryBB->getTerminator()->eraseFromParent(); |
| |
| // Put in a new condbranch in its place. |
| BranchInst::Create(ContBlock, CatchBB, IsNormal, EntryBB); |
| |
| // At this point, we are all set up, rewrite each invoke instruction. |
| for (unsigned i = 0, e = Invokes.size(); i != e; ++i) |
| rewriteExpensiveInvoke(Invokes[i], i+1, InvokeNum, StackPtr, CatchSwitch); |
| } |
| |
| // We know that there is at least one unwind. |
| |
| // Create three new blocks, the block to load the jmpbuf ptr and compare |
| // against null, the block to do the longjmp, and the error block for if it |
| // is null. Add them at the end of the function because they are not hot. |
| BasicBlock *UnwindHandler = BasicBlock::Create(F.getContext(), |
| "dounwind", &F); |
| BasicBlock *UnwindBlock = BasicBlock::Create(F.getContext(), "unwind", &F); |
| BasicBlock *TermBlock = BasicBlock::Create(F.getContext(), "unwinderror", &F); |
| |
| // If this function contains an invoke, restore the old jumpbuf ptr. |
| Value *BufPtr; |
| if (OldJmpBufPtr) { |
| // Before the return, insert a copy from the saved value to the new value. |
| BufPtr = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", UnwindHandler); |
| new StoreInst(BufPtr, JBListHead, UnwindHandler); |
| } else { |
| BufPtr = new LoadInst(JBListHead, "ehlist", UnwindHandler); |
| } |
| |
| // Load the JBList, if it's null, then there was no catch! |
| Value *NotNull = new ICmpInst(*UnwindHandler, ICmpInst::ICMP_NE, BufPtr, |
| Constant::getNullValue(BufPtr->getType()), |
| "notnull"); |
| BranchInst::Create(UnwindBlock, TermBlock, NotNull, UnwindHandler); |
| |
| // Create the block to do the longjmp. |
| // Get a pointer to the jmpbuf and longjmp. |
| Value *Idx[] = { Constant::getNullValue(Type::getInt32Ty(F.getContext())), |
| ConstantInt::get(Type::getInt32Ty(F.getContext()), 0) }; |
| Idx[0] = GetElementPtrInst::Create(BufPtr, Idx, "JmpBuf", UnwindBlock); |
| Idx[0] = new BitCastInst(Idx[0], |
| Type::getInt8PtrTy(F.getContext()), |
| "tmp", UnwindBlock); |
| Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 1); |
| CallInst::Create(LongJmpFn, Idx, "", UnwindBlock); |
| new UnreachableInst(F.getContext(), UnwindBlock); |
| |
| // Set up the term block ("throw without a catch"). |
| new UnreachableInst(F.getContext(), TermBlock); |
| |
| // Insert a call to abort() |
| CallInst::Create(AbortFn, "", |
| TermBlock->getTerminator())->setTailCall(); |
| |
| |
| // Replace all unwinds with a branch to the unwind handler. |
| for (unsigned i = 0, e = Unwinds.size(); i != e; ++i) { |
| BranchInst::Create(UnwindHandler, Unwinds[i]); |
| Unwinds[i]->eraseFromParent(); |
| } |
| |
| // Replace the inserted unreachable with a branch to the unwind handler. |
| if (UnreachablePlaceholder) { |
| BranchInst::Create(UnwindHandler, UnreachablePlaceholder); |
| UnreachablePlaceholder->eraseFromParent(); |
| } |
| |
| // Finally, for any returns from this function, if this function contains an |
| // invoke, restore the old jmpbuf pointer to its input value. |
| if (OldJmpBufPtr) { |
| for (unsigned i = 0, e = Returns.size(); i != e; ++i) { |
| ReturnInst *R = Returns[i]; |
| |
| // Before the return, insert a copy from the saved value to the new value. |
| Value *OldBuf = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", true, R); |
| new StoreInst(OldBuf, JBListHead, true, R); |
| } |
| } |
| |
| return true; |
| } |
| |
| bool LowerInvoke::runOnFunction(Function &F) { |
| if (useExpensiveEHSupport) |
| return insertExpensiveEHSupport(F); |
| else |
| return insertCheapEHSupport(F); |
| } |