| //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the X86 specific subclass of TargetMachine. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86TargetMachine.h" |
| #include "MCTargetDesc/X86MCTargetDesc.h" |
| #include "TargetInfo/X86TargetInfo.h" |
| #include "X86.h" |
| #include "X86CallLowering.h" |
| #include "X86LegalizerInfo.h" |
| #include "X86MachineFunctionInfo.h" |
| #include "X86MacroFusion.h" |
| #include "X86Subtarget.h" |
| #include "X86TargetObjectFile.h" |
| #include "X86TargetTransformInfo.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/CodeGen/ExecutionDomainFix.h" |
| #include "llvm/CodeGen/GlobalISel/CSEInfo.h" |
| #include "llvm/CodeGen/GlobalISel/CallLowering.h" |
| #include "llvm/CodeGen/GlobalISel/IRTranslator.h" |
| #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" |
| #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" |
| #include "llvm/CodeGen/GlobalISel/Legalizer.h" |
| #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" |
| #include "llvm/CodeGen/MachineScheduler.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/RegAllocRegistry.h" |
| #include "llvm/CodeGen/TargetPassConfig.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/TargetRegistry.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/CodeGen.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Target/TargetLoweringObjectFile.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Transforms/CFGuard.h" |
| #include <memory> |
| #include <optional> |
| #include <string> |
| |
| using namespace llvm; |
| |
| static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner", |
| cl::desc("Enable the machine combiner pass"), |
| cl::init(true), cl::Hidden); |
| |
| static cl::opt<bool> |
| EnableTileRAPass("x86-tile-ra", |
| cl::desc("Enable the tile register allocation pass"), |
| cl::init(true), cl::Hidden); |
| |
| extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Target() { |
| // Register the target. |
| RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target()); |
| RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target()); |
| |
| PassRegistry &PR = *PassRegistry::getPassRegistry(); |
| initializeX86LowerAMXIntrinsicsLegacyPassPass(PR); |
| initializeX86LowerAMXTypeLegacyPassPass(PR); |
| initializeX86PreAMXConfigPassPass(PR); |
| initializeX86PreTileConfigPass(PR); |
| initializeGlobalISel(PR); |
| initializeWinEHStatePassPass(PR); |
| initializeFixupBWInstPassPass(PR); |
| initializeEvexToVexInstPassPass(PR); |
| initializeFixupLEAPassPass(PR); |
| initializeFPSPass(PR); |
| initializeX86FixupSetCCPassPass(PR); |
| initializeX86CallFrameOptimizationPass(PR); |
| initializeX86CmovConverterPassPass(PR); |
| initializeX86TileConfigPass(PR); |
| initializeX86FastPreTileConfigPass(PR); |
| initializeX86FastTileConfigPass(PR); |
| initializeX86KCFIPass(PR); |
| initializeX86LowerTileCopyPass(PR); |
| initializeX86ExpandPseudoPass(PR); |
| initializeX86ExecutionDomainFixPass(PR); |
| initializeX86DomainReassignmentPass(PR); |
| initializeX86AvoidSFBPassPass(PR); |
| initializeX86AvoidTrailingCallPassPass(PR); |
| initializeX86SpeculativeLoadHardeningPassPass(PR); |
| initializeX86SpeculativeExecutionSideEffectSuppressionPass(PR); |
| initializeX86FlagsCopyLoweringPassPass(PR); |
| initializeX86LoadValueInjectionLoadHardeningPassPass(PR); |
| initializeX86LoadValueInjectionRetHardeningPassPass(PR); |
| initializeX86OptimizeLEAPassPass(PR); |
| initializeX86PartialReductionPass(PR); |
| initializePseudoProbeInserterPass(PR); |
| initializeX86ReturnThunksPass(PR); |
| initializeX86DAGToDAGISelPass(PR); |
| } |
| |
| static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { |
| if (TT.isOSBinFormatMachO()) { |
| if (TT.getArch() == Triple::x86_64) |
| return std::make_unique<X86_64MachoTargetObjectFile>(); |
| return std::make_unique<TargetLoweringObjectFileMachO>(); |
| } |
| |
| if (TT.isOSBinFormatCOFF()) |
| return std::make_unique<TargetLoweringObjectFileCOFF>(); |
| return std::make_unique<X86ELFTargetObjectFile>(); |
| } |
| |
| static std::string computeDataLayout(const Triple &TT) { |
| // X86 is little endian |
| std::string Ret = "e"; |
| |
| Ret += DataLayout::getManglingComponent(TT); |
| // X86 and x32 have 32 bit pointers. |
| if (!TT.isArch64Bit() || TT.isX32() || TT.isOSNaCl()) |
| Ret += "-p:32:32"; |
| |
| // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers. |
| Ret += "-p270:32:32-p271:32:32-p272:64:64"; |
| |
| // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32. |
| if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl()) |
| Ret += "-i64:64"; |
| else if (TT.isOSIAMCU()) |
| Ret += "-i64:32-f64:32"; |
| else |
| Ret += "-f64:32:64"; |
| |
| // Some ABIs align long double to 128 bits, others to 32. |
| if (TT.isOSNaCl() || TT.isOSIAMCU()) |
| ; // No f80 |
| else if (TT.isArch64Bit() || TT.isOSDarwin() || TT.isWindowsMSVCEnvironment()) |
| Ret += "-f80:128"; |
| else |
| Ret += "-f80:32"; |
| |
| if (TT.isOSIAMCU()) |
| Ret += "-f128:32"; |
| |
| // The registers can hold 8, 16, 32 or, in x86-64, 64 bits. |
| if (TT.isArch64Bit()) |
| Ret += "-n8:16:32:64"; |
| else |
| Ret += "-n8:16:32"; |
| |
| // The stack is aligned to 32 bits on some ABIs and 128 bits on others. |
| if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU()) |
| Ret += "-a:0:32-S32"; |
| else |
| Ret += "-S128"; |
| |
| return Ret; |
| } |
| |
| static Reloc::Model getEffectiveRelocModel(const Triple &TT, bool JIT, |
| std::optional<Reloc::Model> RM) { |
| bool is64Bit = TT.getArch() == Triple::x86_64; |
| if (!RM) { |
| // JIT codegen should use static relocations by default, since it's |
| // typically executed in process and not relocatable. |
| if (JIT) |
| return Reloc::Static; |
| |
| // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode. |
| // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we |
| // use static relocation model by default. |
| if (TT.isOSDarwin()) { |
| if (is64Bit) |
| return Reloc::PIC_; |
| return Reloc::DynamicNoPIC; |
| } |
| if (TT.isOSWindows() && is64Bit) |
| return Reloc::PIC_; |
| return Reloc::Static; |
| } |
| |
| // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC |
| // is defined as a model for code which may be used in static or dynamic |
| // executables but not necessarily a shared library. On X86-32 we just |
| // compile in -static mode, in x86-64 we use PIC. |
| if (*RM == Reloc::DynamicNoPIC) { |
| if (is64Bit) |
| return Reloc::PIC_; |
| if (!TT.isOSDarwin()) |
| return Reloc::Static; |
| } |
| |
| // If we are on Darwin, disallow static relocation model in X86-64 mode, since |
| // the Mach-O file format doesn't support it. |
| if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit) |
| return Reloc::PIC_; |
| |
| return *RM; |
| } |
| |
| static CodeModel::Model |
| getEffectiveX86CodeModel(std::optional<CodeModel::Model> CM, bool JIT, |
| bool Is64Bit) { |
| if (CM) { |
| if (*CM == CodeModel::Tiny) |
| report_fatal_error("Target does not support the tiny CodeModel", false); |
| return *CM; |
| } |
| if (JIT) |
| return Is64Bit ? CodeModel::Large : CodeModel::Small; |
| return CodeModel::Small; |
| } |
| |
| /// Create an X86 target. |
| /// |
| X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT, |
| StringRef CPU, StringRef FS, |
| const TargetOptions &Options, |
| std::optional<Reloc::Model> RM, |
| std::optional<CodeModel::Model> CM, |
| CodeGenOpt::Level OL, bool JIT) |
| : LLVMTargetMachine( |
| T, computeDataLayout(TT), TT, CPU, FS, Options, |
| getEffectiveRelocModel(TT, JIT, RM), |
| getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64), |
| OL), |
| TLOF(createTLOF(getTargetTriple())), IsJIT(JIT) { |
| // On PS4/PS5, the "return address" of a 'noreturn' call must still be within |
| // the calling function, and TrapUnreachable is an easy way to get that. |
| if (TT.isPS() || TT.isOSBinFormatMachO()) { |
| this->Options.TrapUnreachable = true; |
| this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO(); |
| } |
| |
| setMachineOutliner(true); |
| |
| // x86 supports the debug entry values. |
| setSupportsDebugEntryValues(true); |
| |
| initAsmInfo(); |
| } |
| |
| X86TargetMachine::~X86TargetMachine() = default; |
| |
| const X86Subtarget * |
| X86TargetMachine::getSubtargetImpl(const Function &F) const { |
| Attribute CPUAttr = F.getFnAttribute("target-cpu"); |
| Attribute TuneAttr = F.getFnAttribute("tune-cpu"); |
| Attribute FSAttr = F.getFnAttribute("target-features"); |
| |
| StringRef CPU = |
| CPUAttr.isValid() ? CPUAttr.getValueAsString() : (StringRef)TargetCPU; |
| // "x86-64" is a default target setting for many front ends. In these cases, |
| // they actually request for "generic" tuning unless the "tune-cpu" was |
| // specified. |
| StringRef TuneCPU = TuneAttr.isValid() ? TuneAttr.getValueAsString() |
| : CPU == "x86-64" ? "generic" |
| : (StringRef)CPU; |
| StringRef FS = |
| FSAttr.isValid() ? FSAttr.getValueAsString() : (StringRef)TargetFS; |
| |
| SmallString<512> Key; |
| // The additions here are ordered so that the definitely short strings are |
| // added first so we won't exceed the small size. We append the |
| // much longer FS string at the end so that we only heap allocate at most |
| // one time. |
| |
| // Extract prefer-vector-width attribute. |
| unsigned PreferVectorWidthOverride = 0; |
| Attribute PreferVecWidthAttr = F.getFnAttribute("prefer-vector-width"); |
| if (PreferVecWidthAttr.isValid()) { |
| StringRef Val = PreferVecWidthAttr.getValueAsString(); |
| unsigned Width; |
| if (!Val.getAsInteger(0, Width)) { |
| Key += 'p'; |
| Key += Val; |
| PreferVectorWidthOverride = Width; |
| } |
| } |
| |
| // Extract min-legal-vector-width attribute. |
| unsigned RequiredVectorWidth = UINT32_MAX; |
| Attribute MinLegalVecWidthAttr = F.getFnAttribute("min-legal-vector-width"); |
| if (MinLegalVecWidthAttr.isValid()) { |
| StringRef Val = MinLegalVecWidthAttr.getValueAsString(); |
| unsigned Width; |
| if (!Val.getAsInteger(0, Width)) { |
| Key += 'm'; |
| Key += Val; |
| RequiredVectorWidth = Width; |
| } |
| } |
| |
| // Add CPU to the Key. |
| Key += CPU; |
| |
| // Add tune CPU to the Key. |
| Key += TuneCPU; |
| |
| // Keep track of the start of the feature portion of the string. |
| unsigned FSStart = Key.size(); |
| |
| // FIXME: This is related to the code below to reset the target options, |
| // we need to know whether or not the soft float flag is set on the |
| // function before we can generate a subtarget. We also need to use |
| // it as a key for the subtarget since that can be the only difference |
| // between two functions. |
| bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool(); |
| // If the soft float attribute is set on the function turn on the soft float |
| // subtarget feature. |
| if (SoftFloat) |
| Key += FS.empty() ? "+soft-float" : "+soft-float,"; |
| |
| Key += FS; |
| |
| // We may have added +soft-float to the features so move the StringRef to |
| // point to the full string in the Key. |
| FS = Key.substr(FSStart); |
| |
| auto &I = SubtargetMap[Key]; |
| if (!I) { |
| // This needs to be done before we create a new subtarget since any |
| // creation will depend on the TM and the code generation flags on the |
| // function that reside in TargetOptions. |
| resetTargetOptions(F); |
| I = std::make_unique<X86Subtarget>( |
| TargetTriple, CPU, TuneCPU, FS, *this, |
| MaybeAlign(F.getParent()->getOverrideStackAlignment()), |
| PreferVectorWidthOverride, RequiredVectorWidth); |
| } |
| return I.get(); |
| } |
| |
| bool X86TargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, |
| unsigned DestAS) const { |
| assert(SrcAS != DestAS && "Expected different address spaces!"); |
| if (getPointerSize(SrcAS) != getPointerSize(DestAS)) |
| return false; |
| return SrcAS < 256 && DestAS < 256; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // X86 TTI query. |
| //===----------------------------------------------------------------------===// |
| |
| TargetTransformInfo |
| X86TargetMachine::getTargetTransformInfo(const Function &F) const { |
| return TargetTransformInfo(X86TTIImpl(this, F)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Pass Pipeline Configuration |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| /// X86 Code Generator Pass Configuration Options. |
| class X86PassConfig : public TargetPassConfig { |
| public: |
| X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM) |
| : TargetPassConfig(TM, PM) {} |
| |
| X86TargetMachine &getX86TargetMachine() const { |
| return getTM<X86TargetMachine>(); |
| } |
| |
| ScheduleDAGInstrs * |
| createMachineScheduler(MachineSchedContext *C) const override { |
| ScheduleDAGMILive *DAG = createGenericSchedLive(C); |
| DAG->addMutation(createX86MacroFusionDAGMutation()); |
| return DAG; |
| } |
| |
| ScheduleDAGInstrs * |
| createPostMachineScheduler(MachineSchedContext *C) const override { |
| ScheduleDAGMI *DAG = createGenericSchedPostRA(C); |
| DAG->addMutation(createX86MacroFusionDAGMutation()); |
| return DAG; |
| } |
| |
| void addIRPasses() override; |
| bool addInstSelector() override; |
| bool addIRTranslator() override; |
| bool addLegalizeMachineIR() override; |
| bool addRegBankSelect() override; |
| bool addGlobalInstructionSelect() override; |
| bool addILPOpts() override; |
| bool addPreISel() override; |
| void addMachineSSAOptimization() override; |
| void addPreRegAlloc() override; |
| bool addPostFastRegAllocRewrite() override; |
| void addPostRegAlloc() override; |
| void addPreEmitPass() override; |
| void addPreEmitPass2() override; |
| void addPreSched2() override; |
| bool addRegAssignAndRewriteOptimized() override; |
| |
| std::unique_ptr<CSEConfigBase> getCSEConfig() const override; |
| }; |
| |
| class X86ExecutionDomainFix : public ExecutionDomainFix { |
| public: |
| static char ID; |
| X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {} |
| StringRef getPassName() const override { |
| return "X86 Execution Dependency Fix"; |
| } |
| }; |
| char X86ExecutionDomainFix::ID; |
| |
| } // end anonymous namespace |
| |
| INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix", |
| "X86 Execution Domain Fix", false, false) |
| INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) |
| INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix", |
| "X86 Execution Domain Fix", false, false) |
| |
| TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) { |
| return new X86PassConfig(*this, PM); |
| } |
| |
| MachineFunctionInfo *X86TargetMachine::createMachineFunctionInfo( |
| BumpPtrAllocator &Allocator, const Function &F, |
| const TargetSubtargetInfo *STI) const { |
| return X86MachineFunctionInfo::create<X86MachineFunctionInfo>(Allocator, F, |
| STI); |
| } |
| |
| void X86PassConfig::addIRPasses() { |
| addPass(createAtomicExpandPass()); |
| |
| // We add both pass anyway and when these two passes run, we skip the pass |
| // based on the option level and option attribute. |
| addPass(createX86LowerAMXIntrinsicsPass()); |
| addPass(createX86LowerAMXTypePass()); |
| |
| TargetPassConfig::addIRPasses(); |
| |
| if (TM->getOptLevel() != CodeGenOpt::None) { |
| addPass(createInterleavedAccessPass()); |
| addPass(createX86PartialReductionPass()); |
| } |
| |
| // Add passes that handle indirect branch removal and insertion of a retpoline |
| // thunk. These will be a no-op unless a function subtarget has the retpoline |
| // feature enabled. |
| addPass(createIndirectBrExpandPass()); |
| |
| // Add Control Flow Guard checks. |
| const Triple &TT = TM->getTargetTriple(); |
| if (TT.isOSWindows()) { |
| if (TT.getArch() == Triple::x86_64) { |
| addPass(createCFGuardDispatchPass()); |
| } else { |
| addPass(createCFGuardCheckPass()); |
| } |
| } |
| |
| if (TM->Options.JMCInstrument) |
| addPass(createJMCInstrumenterPass()); |
| } |
| |
| bool X86PassConfig::addInstSelector() { |
| // Install an instruction selector. |
| addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel())); |
| |
| // For ELF, cleanup any local-dynamic TLS accesses. |
| if (TM->getTargetTriple().isOSBinFormatELF() && |
| getOptLevel() != CodeGenOpt::None) |
| addPass(createCleanupLocalDynamicTLSPass()); |
| |
| addPass(createX86GlobalBaseRegPass()); |
| return false; |
| } |
| |
| bool X86PassConfig::addIRTranslator() { |
| addPass(new IRTranslator(getOptLevel())); |
| return false; |
| } |
| |
| bool X86PassConfig::addLegalizeMachineIR() { |
| addPass(new Legalizer()); |
| return false; |
| } |
| |
| bool X86PassConfig::addRegBankSelect() { |
| addPass(new RegBankSelect()); |
| return false; |
| } |
| |
| bool X86PassConfig::addGlobalInstructionSelect() { |
| addPass(new InstructionSelect(getOptLevel())); |
| return false; |
| } |
| |
| bool X86PassConfig::addILPOpts() { |
| addPass(&EarlyIfConverterID); |
| if (EnableMachineCombinerPass) |
| addPass(&MachineCombinerID); |
| addPass(createX86CmovConverterPass()); |
| return true; |
| } |
| |
| bool X86PassConfig::addPreISel() { |
| // Only add this pass for 32-bit x86 Windows. |
| const Triple &TT = TM->getTargetTriple(); |
| if (TT.isOSWindows() && TT.getArch() == Triple::x86) |
| addPass(createX86WinEHStatePass()); |
| return true; |
| } |
| |
| void X86PassConfig::addPreRegAlloc() { |
| if (getOptLevel() != CodeGenOpt::None) { |
| addPass(&LiveRangeShrinkID); |
| addPass(createX86FixupSetCC()); |
| addPass(createX86OptimizeLEAs()); |
| addPass(createX86CallFrameOptimization()); |
| addPass(createX86AvoidStoreForwardingBlocks()); |
| } |
| |
| addPass(createX86SpeculativeLoadHardeningPass()); |
| addPass(createX86FlagsCopyLoweringPass()); |
| addPass(createX86DynAllocaExpander()); |
| |
| if (getOptLevel() != CodeGenOpt::None) |
| addPass(createX86PreTileConfigPass()); |
| else |
| addPass(createX86FastPreTileConfigPass()); |
| } |
| |
| void X86PassConfig::addMachineSSAOptimization() { |
| addPass(createX86DomainReassignmentPass()); |
| TargetPassConfig::addMachineSSAOptimization(); |
| } |
| |
| void X86PassConfig::addPostRegAlloc() { |
| addPass(createX86LowerTileCopyPass()); |
| addPass(createX86FloatingPointStackifierPass()); |
| // When -O0 is enabled, the Load Value Injection Hardening pass will fall back |
| // to using the Speculative Execution Side Effect Suppression pass for |
| // mitigation. This is to prevent slow downs due to |
| // analyses needed by the LVIHardening pass when compiling at -O0. |
| if (getOptLevel() != CodeGenOpt::None) |
| addPass(createX86LoadValueInjectionLoadHardeningPass()); |
| } |
| |
| void X86PassConfig::addPreSched2() { |
| addPass(createX86ExpandPseudoPass()); |
| addPass(createX86KCFIPass()); |
| } |
| |
| void X86PassConfig::addPreEmitPass() { |
| if (getOptLevel() != CodeGenOpt::None) { |
| addPass(new X86ExecutionDomainFix()); |
| addPass(createBreakFalseDeps()); |
| } |
| |
| addPass(createX86IndirectBranchTrackingPass()); |
| |
| addPass(createX86IssueVZeroUpperPass()); |
| |
| if (getOptLevel() != CodeGenOpt::None) { |
| addPass(createX86FixupBWInsts()); |
| addPass(createX86PadShortFunctions()); |
| addPass(createX86FixupLEAs()); |
| } |
| addPass(createX86EvexToVexInsts()); |
| addPass(createX86DiscriminateMemOpsPass()); |
| addPass(createX86InsertPrefetchPass()); |
| addPass(createX86InsertX87waitPass()); |
| } |
| |
| void X86PassConfig::addPreEmitPass2() { |
| const Triple &TT = TM->getTargetTriple(); |
| const MCAsmInfo *MAI = TM->getMCAsmInfo(); |
| |
| // The X86 Speculative Execution Pass must run after all control |
| // flow graph modifying passes. As a result it was listed to run right before |
| // the X86 Retpoline Thunks pass. The reason it must run after control flow |
| // graph modifications is that the model of LFENCE in LLVM has to be updated |
| // (FIXME: https://bugs.llvm.org/show_bug.cgi?id=45167). Currently the |
| // placement of this pass was hand checked to ensure that the subsequent |
| // passes don't move the code around the LFENCEs in a way that will hurt the |
| // correctness of this pass. This placement has been shown to work based on |
| // hand inspection of the codegen output. |
| addPass(createX86SpeculativeExecutionSideEffectSuppression()); |
| addPass(createX86IndirectThunksPass()); |
| addPass(createX86ReturnThunksPass()); |
| |
| // Insert extra int3 instructions after trailing call instructions to avoid |
| // issues in the unwinder. |
| if (TT.isOSWindows() && TT.getArch() == Triple::x86_64) |
| addPass(createX86AvoidTrailingCallPass()); |
| |
| // Verify basic block incoming and outgoing cfa offset and register values and |
| // correct CFA calculation rule where needed by inserting appropriate CFI |
| // instructions. |
| if (!TT.isOSDarwin() && |
| (!TT.isOSWindows() || |
| MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI)) |
| addPass(createCFIInstrInserter()); |
| |
| if (TT.isOSWindows()) { |
| // Identify valid longjmp targets for Windows Control Flow Guard. |
| addPass(createCFGuardLongjmpPass()); |
| // Identify valid eh continuation targets for Windows EHCont Guard. |
| addPass(createEHContGuardCatchretPass()); |
| } |
| addPass(createX86LoadValueInjectionRetHardeningPass()); |
| |
| // Insert pseudo probe annotation for callsite profiling |
| addPass(createPseudoProbeInserter()); |
| |
| // KCFI indirect call checks are lowered to a bundle, and on Darwin platforms, |
| // also CALL_RVMARKER. |
| addPass(createUnpackMachineBundles([&TT](const MachineFunction &MF) { |
| // Only run bundle expansion if the module uses kcfi, or there are relevant |
| // ObjC runtime functions present in the module. |
| const Function &F = MF.getFunction(); |
| const Module *M = F.getParent(); |
| return M->getModuleFlag("kcfi") || |
| (TT.isOSDarwin() && |
| (M->getFunction("objc_retainAutoreleasedReturnValue") || |
| M->getFunction("objc_unsafeClaimAutoreleasedReturnValue"))); |
| })); |
| } |
| |
| bool X86PassConfig::addPostFastRegAllocRewrite() { |
| addPass(createX86FastTileConfigPass()); |
| return true; |
| } |
| |
| std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const { |
| return getStandardCSEConfigForOpt(TM->getOptLevel()); |
| } |
| |
| static bool onlyAllocateTileRegisters(const TargetRegisterInfo &TRI, |
| const TargetRegisterClass &RC) { |
| return static_cast<const X86RegisterInfo &>(TRI).isTileRegisterClass(&RC); |
| } |
| |
| bool X86PassConfig::addRegAssignAndRewriteOptimized() { |
| // Don't support tile RA when RA is specified by command line "-regalloc". |
| if (!isCustomizedRegAlloc() && EnableTileRAPass) { |
| // Allocate tile register first. |
| addPass(createGreedyRegisterAllocator(onlyAllocateTileRegisters)); |
| addPass(createX86TileConfigPass()); |
| } |
| return TargetPassConfig::addRegAssignAndRewriteOptimized(); |
| } |