blob: 2429b85cf868e67d3795d03d638f75a8ef0043d9 [file] [log] [blame]
//===- Target/X86/X86PreAMXConfig.cpp - ------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// Insert tilecfg for each area of key AMX intrinsic.
/// All the key AMX intrinsic's tile operand must come from tileload. And the
/// def tile of key AMX intrinsic must be tilestored.
/// take tdpbssd for example:
/// --------------------------------------------------------------------------
/// %t1 = call x86_amx @llvm.x86.tileloadd64.internal(...) key
/// %t2 = call x86_amx @llvm.x86.tileloadd64.internal(...) |
/// %t3 = call x86_amx @llvm.x86.tileloadd64.internal(...) amx
/// %td = tail call x86_amx @llvm.x86.tdpbssd.internal(t1, t2, t3) |
/// call void @llvm.x86.tilestored64.internal(... td) area
/// --------------------------------------------------------------------------
/// This pass will insert tilecfg before every key-amx-area, some like:
/// --------------------------------------------------------------------------
/// %cfgmem = alloca <16 x i32>, align 4 * allocate mem
/// store <16 x i32> zeroinitializer, <16 x i32>* %cfgmem * zero init
/// ...
/// ... pre-config shape of %t1 *
/// store volatile i8 %m, i8* %amx.tmm.0.shape.row, align 1 *
/// store volatile i16 %k, i16* %amx.tmm.0.shape.col, align 2 * pre-config
/// ... *
/// ... pre-config shape of %t2 * shapes
/// store volatile i8 %k, i8* %amx.tmm.1.shape.row, align 1 *
/// store volatile i16 %n, i16* %amx.tmm.1.shape.col, align 2 *
/// ...
/// call void @llvm.x86.ldtilecfg(i8* %cfgmem) * tile config
//
//===----------------------------------------------------------------------===//
//
#include "X86.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsX86.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "pre-amx-config"
static bool isAMXIntrinsic(IntrinsicInst *II) {
for (Value *Operand : II->operands())
if (Operand->getType()->isX86_AMXTy())
return true;
return II->getType()->isX86_AMXTy();
}
static bool isTileLoad(IntrinsicInst *II) {
return II->getIntrinsicID() == Intrinsic::x86_tileloadd64_internal ||
II->getIntrinsicID() == Intrinsic::x86_tileloaddt164_internal;
}
static bool isTileStore(IntrinsicInst *II) {
return II->getIntrinsicID() == Intrinsic::x86_tilestored64_internal;
}
#ifndef NDEBUG
static bool onlyTileDef(IntrinsicInst *II) {
for (Value *Operand : II->operands())
if (Operand->getType()->isX86_AMXTy())
return false;
return II->getType()->isX86_AMXTy();
}
static bool brokenVolatile(Instruction *I) {
// Todo: it is weak to identify a normal call here.
if ((isa<CallInst>(I) && !isa<IntrinsicInst>(I)) || I->isTerminator())
return true;
return false;
}
#endif
namespace {
class X86PreAMXConfig {
using PosAndShapesMap = MapVector<Instruction *, SmallVector<Value *, 8>>;
Function &F;
public:
X86PreAMXConfig(Function &Func) : F(Func) {}
bool preTileConfig();
void addTileConfig(Instruction *ModelStart, SmallVector<Value *, 8> &Shapes);
bool findConfigShapes(PosAndShapesMap &PosAndShapes);
bool getKeyAMXShapes(IntrinsicInst *KeyAMX, SmallVector<Value *, 8> &Shapes);
void preWriteTileCfg(Value *I8Ptr, IRBuilderBase &Builder,
SmallVector<Value *, 8> &Shapes);
BasicBlock::iterator
getShapesAndConfigPosEnd(BasicBlock::iterator Iter,
SmallVector<Value *, 8> &Shapes);
bool checkVolatileModel(SmallSet<Value *, 4> &Loads, IntrinsicInst *Store,
IntrinsicInst *KeyAMX);
};
// Orderly write the shapes in tilecfg's mem. This maybe not right.
// Because the first shape may not corresponding to the first tmm register,
// so we need to handle at at X86FastTileConfig::materializeTileCfg()
// after register allocation.
// For example:
// --------------------------------------------------------------------------
// zeroinitialize tilecfg's mem (of ldtilecfg)
// --------------------------------------------------------------------------
// ... pre-config shape of %t1 *
// %amx.tmm.0.shape.row = getelementptr i8, i8* %mem, i64 48 *
// %amx.tmm.0.shape.col = getelementptr i16, i16* %mem, i64 16 *
// store volatile i8 %m, i8* %amx.tmm.0.shape.row, align 1 *
// store volatile i16 %k, i16* %amx.tmm.0.shape.col, align 2 * pre-config
// ... *
// ... pre-config shape of %t2 *
// %amx.tmm.1.shape.row = getelementptr i8, i8* %mem, i64 49 *
// %amx.tmm.1.shape.col = getelementptr i16, i16* %mem, i64 18 *
// store volatile i8 %k, i8* %amx.tmm.1.shape.row, align 1 * shapes
// store volatile i16 %n, i16* %amx.tmm.1.shape.col, align 2 *
// ... *
// ... pre-config shape of %t3 * of
// %amx.tmm.2.shape.row = getelementptr i8, i8* %mem, i64 50 *
// %amx.tmm.2.shape.col = getelementptr i16, i16* %mem, i64 20 *
// store volatile i8 %m, i8* %amx.tmm.2.shape.row, align 1 *
// store volatile i16 %n, i16* %amx.tmm.2.shape.col, align 2 *
// ... * tiles
// ... pre-config shape of %td *
// %amx.tmm.3.shape.row = getelementptr i8, i8* %mem, i64 51 *
// %amx.tmm.3.shape.col = getelementptr i16, i16* %mem, i64 22 *
// store volatile i8 %m, i8* %amx.tmm.3.shape.row, align 1 *
// store volatile i16 %n, i16* %amx.tmm.3.shape.col, align 2 *
// --------------------------------------------------------------------------
// call void @llvm.x86.ldtilecfg(i8* %mem) * tile config
// --------------------------------------------------------------------------
// %t1 = call x86_amx @llvm.x86.tileloadd64.internal(m, k, ...) key
// %t2 = call x86_amx @llvm.x86.tileloadd64.internal(k, n, ...)
// %t3 = call x86_amx @llvm.x86.tileloadd64.internal(m, n, ...) amx
// %td = tail call x86_amx @llvm.x86.tdpbssd.internal(m, n, k, t1, t2, t3)
// call void @llvm.x86.tilestored64.internal(... td) area
// --------------------------------------------------------------------------
void X86PreAMXConfig::preWriteTileCfg(Value *I8Ptr, IRBuilderBase &Builder,
SmallVector<Value *, 8> &Shapes) {
LLVMContext &Ctx = Builder.getContext();
Type *I8Ty = Type::getInt8Ty(Ctx);
Type *I16Ty = Type::getInt16Ty(Ctx);
// TODO: Currently we defaultly set Palette = 1, it may be assigned to
// other value in the future.
Value *PaletteOffset = ConstantInt::get(Type::getInt64Ty(Ctx), 0);
Value *PaletteValue = ConstantInt::get(Type::getInt8Ty(Ctx), 1);
Value *PalettePos = Builder.CreateGEP(I8Ty, I8Ptr, PaletteOffset);
Builder.CreateStore(PaletteValue, PalettePos);
for (int I = 0, E = Shapes.size() / 2; I < E; I++) {
Value *RowOffset = ConstantInt::get(Type::getInt64Ty(Ctx), 48 + I);
Value *ColOffset = ConstantInt::get(Type::getInt64Ty(Ctx), 16 + I * 2);
const std::string ShapeName = "amx.tmm." + itostr(I);
Value *RowPos = Builder.CreateGEP(I8Ty, I8Ptr, RowOffset,
ShapeName + ".shape.row");
Value *ColPos = Builder.CreateGEP(I8Ty, I8Ptr, ColOffset);
ColPos = Builder.CreateBitCast(ColPos, PointerType::get(I16Ty, 0),
ShapeName + ".shape.col");
Value *Row = Shapes[I * 2];
Value *Col = Shapes[I * 2 + 1];
Row = Builder.CreateTrunc(Row, I8Ty);
Builder.CreateStore(Row, RowPos);
Builder.CreateStore(Col, ColPos);
}
}
void X86PreAMXConfig::addTileConfig(Instruction *ModelStart,
SmallVector<Value *, 8> &Shapes) {
Module *M = F.getParent();
IRBuilder<> Builder(ModelStart);
const DataLayout &DL = M->getDataLayout();
unsigned AddrSpace = DL.getAllocaAddrSpace();
LLVMContext &Ctx = Builder.getContext();
Type *V512Ty = VectorType::get(Builder.getInt32Ty(), 16, false);
Align Alignment = DL.getPrefTypeAlign(Type::getInt32Ty(Ctx));
AllocaInst *Addr =
new AllocaInst(V512Ty, AddrSpace, "", &F.getEntryBlock().front());
Addr->setAlignment(Alignment);
Value *I8Ptr = Builder.CreateBitCast(Addr, Builder.getInt8PtrTy());
Builder.CreateAlignedStore(Constant::getNullValue(V512Ty), Addr, Alignment);
preWriteTileCfg(I8Ptr, Builder, Shapes);
Builder.CreateIntrinsic(Intrinsic::x86_ldtilecfg_internal, std::nullopt,
{I8Ptr});
}
// Todo: We may need to handle "more than one store" case in the future.
bool X86PreAMXConfig::checkVolatileModel(SmallSet<Value *, 4> &Loads,
IntrinsicInst *Store,
IntrinsicInst *KeyAMX) {
Value *ST = Store->getOperand(4);
// Only has tileload and tilestore.
if (!KeyAMX)
return (Loads.size() == 1) && Loads.contains(ST);
// All Loads should be operands of KeyAMX.
// All tile operands of KeyAMX should come from Loads.
for (Value *Op : KeyAMX->operands()) {
if (Op->getType()->isX86_AMXTy())
if (!Loads.erase(Op))
return false;
}
// The def of KeyAMX should be stored into mem.
// Todo: is it key amx can be no def?
return Loads.empty() && (ST == cast<Value>(KeyAMX));
}
bool X86PreAMXConfig::getKeyAMXShapes(IntrinsicInst *KeyAMX,
SmallVector<Value *, 8> &Shapes) {
for (unsigned I = 0; I < KeyAMX->getNumOperands(); I++) {
Value *Op = KeyAMX->getOperand(I);
if (!Op->getType()->isX86_AMXTy())
continue;
IntrinsicInst *TileDef = dyn_cast<IntrinsicInst>(Op);
assert((TileDef && isTileLoad(TileDef)) &&
"All KeyAMX's tile definiation should comes from TileLoad!");
Shapes.push_back(TileDef->getOperand(0));
Shapes.push_back(TileDef->getOperand(1));
}
if (!isTileStore(KeyAMX)) {
Shapes.push_back(KeyAMX->getOperand(0));
Shapes.push_back(KeyAMX->getOperand(1));
}
return Shapes.size() != 0;
}
// Collect the shapes and skip the area of current key amx intrinsic.
//
// For example:
// ...
// --------------------------------------------------------------------------
// %t1 = call x86_amx @llvm.x86.tileloadd64.internal(m, k, ...) record (m,k)
// %t2 = call x86_amx @llvm.x86.tileloadd64.internal(k, n, ...) record (m,k)
// %t3 = call x86_amx @llvm.x86.tileloadd64.internal(m, n, ...) record (m,k)
// %td = call x86_amx @llvm.x86.tdpbssd.internal(...t1, t2, t3)
// call void @llvm.x86.tilestored64.internal(m, n,... td) <--PosEnd record (m,k)
// --------------------------------------------------------------------------
BasicBlock::iterator
X86PreAMXConfig::getShapesAndConfigPosEnd(BasicBlock::iterator Iter,
SmallVector<Value *, 8> &Shapes) {
IntrinsicInst *KeyAMX = nullptr;
BasicBlock *BB = Iter->getParent();
BasicBlock::iterator PosEnd = BB->end();
SmallSet<Value *, 4> Loads;
// See TileStore as "Config Position End" and check volatile model.
for (auto I = Iter, E = BB->end(); I != E; ++I) {
assert(!brokenVolatile(&*I) && "Not reach tile store!");
IntrinsicInst *II = dyn_cast<IntrinsicInst>(&*I);
if (!II || !isAMXIntrinsic(II))
continue;
if (isTileLoad(II)) {
Loads.insert(II);
} else if (isTileStore(II)) {
if (!checkVolatileModel(Loads, II, KeyAMX))
report_fatal_error("Not Volatile AMX Model!");
PosEnd = I;
break;
} else {
assert(!KeyAMX && "Too many key amx intrinsic!");
KeyAMX = II;
}
}
assert(PosEnd != BB->end() && "Not find TileStore!");
// See KeyAMX as TileStore if only TileLoad and TileStore.
if (!KeyAMX)
KeyAMX = dyn_cast<IntrinsicInst>(&*PosEnd);
// Get Shapes in order.
assert(Shapes.empty() && "Shapes should be clean.");
getKeyAMXShapes(KeyAMX, Shapes);
return PosEnd;
}
// Record a key amx area's shapes with its position.
// Use the first tileload as its position.
// For example:
// ...
// --------------------------------------------------------------------------
// %t1 = call x86_amx @llvm.x86.tileloadd64.internal(m, k, ...) <-- pos
// %t2 = call x86_amx @llvm.x86.tileloadd64.internal(k, n, ...) /
// %t3 = call x86_amx @llvm.x86.tileloadd64.internal(m, n, ...) shapes:
// %td = call x86_amx @llvm.x86.tdpbssd.internal(...t1, t2, t3) (m,k)(k,n)
// call void @llvm.x86.tilestored64.internal(m, n,... td) (m,n)(m,n)
// --------------------------------------------------------------------------
bool X86PreAMXConfig::findConfigShapes(PosAndShapesMap &PosAndShapes) {
bool Find = false;
for (BasicBlock &BB : F) {
for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
IntrinsicInst *II = dyn_cast<IntrinsicInst>(&*I);
if (!II)
continue;
if (!isAMXIntrinsic(II))
continue;
assert(onlyTileDef(II) && "Not volatile model for AMX at O0!");
I = getShapesAndConfigPosEnd(I, PosAndShapes[&*I]);
Find = true;
}
}
return Find;
}
// Insert ldtilecfg and preconfig the shapes for each area of key AMX intrinsic.
// e.g. (key amx = tdpbssd)
// --------------------------------------------------------------------------
// %cfgmem = alloca <16 x i32>, align 4 * allocate mem
// store <16 x i32> zeroinitializer, <16 x i32>* %cfgmem * zero init
// ...
// ... pre-config shape of %t1 *
// store volatile i8 %m, i8* %amx.tmm.0.shape.row, align 1 *
// store volatile i16 %k, i16* %amx.tmm.0.shape.col, align 2 * pre-config
// ... *
// ... pre-config shape of %t2 *
// store volatile i8 %k, i8* %amx.tmm.1.shape.row, align 1 * shapes
// store volatile i16 %n, i16* %amx.tmm.1.shape.col, align 2 *
// ... *
// ... pre-config shape of %t3 * of
// store volatile i8 %m, i8* %amx.tmm.2.shape.row, align 1 *
// store volatile i16 %n, i16* %amx.tmm.2.shape.col, align 2 *
// ... * tiles
// ... pre-config shape of %td *
// store volatile i8 %m, i8* %amx.tmm.3.shape.row, align 1 *
// store volatile i16 %n, i16* %amx.tmm.3.shape.col, align 2 *
//
// call void @llvm.x86.ldtilecfg(i8* %cfgmem) * pre-config
// --------------------------------------------------------------------------
// %t1 = call x86_amx @llvm.x86.tileloadd64.internal(m, k, ...) key
// %t2 = call x86_amx @llvm.x86.tileloadd64.internal(k, n, ...)
// %t3 = call x86_amx @llvm.x86.tileloadd64.internal(m, n, ...) amx
// %td = tail call x86_amx @llvm.x86.tdpbssd.internal(m, n, k, t1, t2, t3)
// call void @llvm.x86.tilestored64.internal(... td) area
// --------------------------------------------------------------------------
bool X86PreAMXConfig::preTileConfig() {
PosAndShapesMap PosAndShapes;
bool NeedCfg = findConfigShapes(PosAndShapes);
if (!NeedCfg)
return false;
for (auto &IPAndShapes : PosAndShapes)
addTileConfig(IPAndShapes.first, IPAndShapes.second);
return true;
}
} // anonymous namespace
namespace {
class X86PreAMXConfigPass : public FunctionPass {
public:
static char ID;
X86PreAMXConfigPass() : FunctionPass(ID) {
initializeX86PreAMXConfigPassPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
TargetMachine *TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
bool C = false;
// Prepare for fast register allocation at O0.
if (TM->getOptLevel() == CodeGenOpt::None) {
// We pre-config each key AMX intrinsic at O0.
// In theory, one tile config can cover several AMX intrinsics, but
// it is very diffcult to classify the tile shapes at O0. So here we
// let thing be easy, pre-config every key AMX intrinsic.
X86PreAMXConfig PCFG(F);
C = PCFG.preTileConfig();
}
return C;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<TargetPassConfig>();
}
};
} // anonymous namespace
static const char PassName[] = "Pre AMX Tile Config";
char X86PreAMXConfigPass::ID = 0;
INITIALIZE_PASS_BEGIN(X86PreAMXConfigPass, DEBUG_TYPE, PassName, false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(X86PreAMXConfigPass, DEBUG_TYPE, PassName, false, false)
FunctionPass *llvm::createX86PreAMXConfigPass() {
return new X86PreAMXConfigPass();
}