| //===- X86OptimizeLEAs.cpp - optimize usage of LEA instructions -----------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the pass that performs some optimizations with LEA |
| // instructions in order to improve performance and code size. |
| // Currently, it does two things: |
| // 1) If there are two LEA instructions calculating addresses which only differ |
| // by displacement inside a basic block, one of them is removed. |
| // 2) Address calculations in load and store instructions are replaced by |
| // existing LEA def registers where possible. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "MCTargetDesc/X86BaseInfo.h" |
| #include "X86.h" |
| #include "X86InstrInfo.h" |
| #include "X86Subtarget.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseMapInfo.h" |
| #include "llvm/ADT/Hashing.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/ProfileSummaryInfo.h" |
| #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/MachineSizeOpts.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "x86-optimize-LEAs" |
| |
| static cl::opt<bool> |
| DisableX86LEAOpt("disable-x86-lea-opt", cl::Hidden, |
| cl::desc("X86: Disable LEA optimizations."), |
| cl::init(false)); |
| |
| STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions"); |
| STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed"); |
| |
| /// Returns true if two machine operands are identical and they are not |
| /// physical registers. |
| static inline bool isIdenticalOp(const MachineOperand &MO1, |
| const MachineOperand &MO2); |
| |
| /// Returns true if two address displacement operands are of the same |
| /// type and use the same symbol/index/address regardless of the offset. |
| static bool isSimilarDispOp(const MachineOperand &MO1, |
| const MachineOperand &MO2); |
| |
| /// Returns true if the instruction is LEA. |
| static inline bool isLEA(const MachineInstr &MI); |
| |
| namespace { |
| |
| /// A key based on instruction's memory operands. |
| class MemOpKey { |
| public: |
| MemOpKey(const MachineOperand *Base, const MachineOperand *Scale, |
| const MachineOperand *Index, const MachineOperand *Segment, |
| const MachineOperand *Disp) |
| : Disp(Disp) { |
| Operands[0] = Base; |
| Operands[1] = Scale; |
| Operands[2] = Index; |
| Operands[3] = Segment; |
| } |
| |
| bool operator==(const MemOpKey &Other) const { |
| // Addresses' bases, scales, indices and segments must be identical. |
| for (int i = 0; i < 4; ++i) |
| if (!isIdenticalOp(*Operands[i], *Other.Operands[i])) |
| return false; |
| |
| // Addresses' displacements don't have to be exactly the same. It only |
| // matters that they use the same symbol/index/address. Immediates' or |
| // offsets' differences will be taken care of during instruction |
| // substitution. |
| return isSimilarDispOp(*Disp, *Other.Disp); |
| } |
| |
| // Address' base, scale, index and segment operands. |
| const MachineOperand *Operands[4]; |
| |
| // Address' displacement operand. |
| const MachineOperand *Disp; |
| }; |
| |
| } // end anonymous namespace |
| |
| namespace llvm { |
| |
| /// Provide DenseMapInfo for MemOpKey. |
| template <> struct DenseMapInfo<MemOpKey> { |
| using PtrInfo = DenseMapInfo<const MachineOperand *>; |
| |
| static inline MemOpKey getEmptyKey() { |
| return MemOpKey(PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(), |
| PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(), |
| PtrInfo::getEmptyKey()); |
| } |
| |
| static inline MemOpKey getTombstoneKey() { |
| return MemOpKey(PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(), |
| PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(), |
| PtrInfo::getTombstoneKey()); |
| } |
| |
| static unsigned getHashValue(const MemOpKey &Val) { |
| // Checking any field of MemOpKey is enough to determine if the key is |
| // empty or tombstone. |
| assert(Val.Disp != PtrInfo::getEmptyKey() && "Cannot hash the empty key"); |
| assert(Val.Disp != PtrInfo::getTombstoneKey() && |
| "Cannot hash the tombstone key"); |
| |
| hash_code Hash = hash_combine(*Val.Operands[0], *Val.Operands[1], |
| *Val.Operands[2], *Val.Operands[3]); |
| |
| // If the address displacement is an immediate, it should not affect the |
| // hash so that memory operands which differ only be immediate displacement |
| // would have the same hash. If the address displacement is something else, |
| // we should reflect symbol/index/address in the hash. |
| switch (Val.Disp->getType()) { |
| case MachineOperand::MO_Immediate: |
| break; |
| case MachineOperand::MO_ConstantPoolIndex: |
| case MachineOperand::MO_JumpTableIndex: |
| Hash = hash_combine(Hash, Val.Disp->getIndex()); |
| break; |
| case MachineOperand::MO_ExternalSymbol: |
| Hash = hash_combine(Hash, Val.Disp->getSymbolName()); |
| break; |
| case MachineOperand::MO_GlobalAddress: |
| Hash = hash_combine(Hash, Val.Disp->getGlobal()); |
| break; |
| case MachineOperand::MO_BlockAddress: |
| Hash = hash_combine(Hash, Val.Disp->getBlockAddress()); |
| break; |
| case MachineOperand::MO_MCSymbol: |
| Hash = hash_combine(Hash, Val.Disp->getMCSymbol()); |
| break; |
| case MachineOperand::MO_MachineBasicBlock: |
| Hash = hash_combine(Hash, Val.Disp->getMBB()); |
| break; |
| default: |
| llvm_unreachable("Invalid address displacement operand"); |
| } |
| |
| return (unsigned)Hash; |
| } |
| |
| static bool isEqual(const MemOpKey &LHS, const MemOpKey &RHS) { |
| // Checking any field of MemOpKey is enough to determine if the key is |
| // empty or tombstone. |
| if (RHS.Disp == PtrInfo::getEmptyKey()) |
| return LHS.Disp == PtrInfo::getEmptyKey(); |
| if (RHS.Disp == PtrInfo::getTombstoneKey()) |
| return LHS.Disp == PtrInfo::getTombstoneKey(); |
| return LHS == RHS; |
| } |
| }; |
| |
| } // end namespace llvm |
| |
| /// Returns a hash table key based on memory operands of \p MI. The |
| /// number of the first memory operand of \p MI is specified through \p N. |
| static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N) { |
| assert((isLEA(MI) || MI.mayLoadOrStore()) && |
| "The instruction must be a LEA, a load or a store"); |
| return MemOpKey(&MI.getOperand(N + X86::AddrBaseReg), |
| &MI.getOperand(N + X86::AddrScaleAmt), |
| &MI.getOperand(N + X86::AddrIndexReg), |
| &MI.getOperand(N + X86::AddrSegmentReg), |
| &MI.getOperand(N + X86::AddrDisp)); |
| } |
| |
| static inline bool isIdenticalOp(const MachineOperand &MO1, |
| const MachineOperand &MO2) { |
| return MO1.isIdenticalTo(MO2) && (!MO1.isReg() || !MO1.getReg().isPhysical()); |
| } |
| |
| #ifndef NDEBUG |
| static bool isValidDispOp(const MachineOperand &MO) { |
| return MO.isImm() || MO.isCPI() || MO.isJTI() || MO.isSymbol() || |
| MO.isGlobal() || MO.isBlockAddress() || MO.isMCSymbol() || MO.isMBB(); |
| } |
| #endif |
| |
| static bool isSimilarDispOp(const MachineOperand &MO1, |
| const MachineOperand &MO2) { |
| assert(isValidDispOp(MO1) && isValidDispOp(MO2) && |
| "Address displacement operand is not valid"); |
| return (MO1.isImm() && MO2.isImm()) || |
| (MO1.isCPI() && MO2.isCPI() && MO1.getIndex() == MO2.getIndex()) || |
| (MO1.isJTI() && MO2.isJTI() && MO1.getIndex() == MO2.getIndex()) || |
| (MO1.isSymbol() && MO2.isSymbol() && |
| MO1.getSymbolName() == MO2.getSymbolName()) || |
| (MO1.isGlobal() && MO2.isGlobal() && |
| MO1.getGlobal() == MO2.getGlobal()) || |
| (MO1.isBlockAddress() && MO2.isBlockAddress() && |
| MO1.getBlockAddress() == MO2.getBlockAddress()) || |
| (MO1.isMCSymbol() && MO2.isMCSymbol() && |
| MO1.getMCSymbol() == MO2.getMCSymbol()) || |
| (MO1.isMBB() && MO2.isMBB() && MO1.getMBB() == MO2.getMBB()); |
| } |
| |
| static inline bool isLEA(const MachineInstr &MI) { |
| unsigned Opcode = MI.getOpcode(); |
| return Opcode == X86::LEA16r || Opcode == X86::LEA32r || |
| Opcode == X86::LEA64r || Opcode == X86::LEA64_32r; |
| } |
| |
| namespace { |
| |
| class X86OptimizeLEAPass : public MachineFunctionPass { |
| public: |
| X86OptimizeLEAPass() : MachineFunctionPass(ID) {} |
| |
| StringRef getPassName() const override { return "X86 LEA Optimize"; } |
| |
| /// Loop over all of the basic blocks, replacing address |
| /// calculations in load and store instructions, if it's already |
| /// been calculated by LEA. Also, remove redundant LEAs. |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| |
| static char ID; |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<ProfileSummaryInfoWrapperPass>(); |
| AU.addRequired<LazyMachineBlockFrequencyInfoPass>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| private: |
| using MemOpMap = DenseMap<MemOpKey, SmallVector<MachineInstr *, 16>>; |
| |
| /// Returns a distance between two instructions inside one basic block. |
| /// Negative result means, that instructions occur in reverse order. |
| int calcInstrDist(const MachineInstr &First, const MachineInstr &Last); |
| |
| /// Choose the best \p LEA instruction from the \p List to replace |
| /// address calculation in \p MI instruction. Return the address displacement |
| /// and the distance between \p MI and the chosen \p BestLEA in |
| /// \p AddrDispShift and \p Dist. |
| bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List, |
| const MachineInstr &MI, MachineInstr *&BestLEA, |
| int64_t &AddrDispShift, int &Dist); |
| |
| /// Returns the difference between addresses' displacements of \p MI1 |
| /// and \p MI2. The numbers of the first memory operands for the instructions |
| /// are specified through \p N1 and \p N2. |
| int64_t getAddrDispShift(const MachineInstr &MI1, unsigned N1, |
| const MachineInstr &MI2, unsigned N2) const; |
| |
| /// Returns true if the \p Last LEA instruction can be replaced by the |
| /// \p First. The difference between displacements of the addresses calculated |
| /// by these LEAs is returned in \p AddrDispShift. It'll be used for proper |
| /// replacement of the \p Last LEA's uses with the \p First's def register. |
| bool isReplaceable(const MachineInstr &First, const MachineInstr &Last, |
| int64_t &AddrDispShift) const; |
| |
| /// Find all LEA instructions in the basic block. Also, assign position |
| /// numbers to all instructions in the basic block to speed up calculation of |
| /// distance between them. |
| void findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs); |
| |
| /// Removes redundant address calculations. |
| bool removeRedundantAddrCalc(MemOpMap &LEAs); |
| |
| /// Replace debug value MI with a new debug value instruction using register |
| /// VReg with an appropriate offset and DIExpression to incorporate the |
| /// address displacement AddrDispShift. Return new debug value instruction. |
| MachineInstr *replaceDebugValue(MachineInstr &MI, unsigned OldReg, |
| unsigned NewReg, int64_t AddrDispShift); |
| |
| /// Removes LEAs which calculate similar addresses. |
| bool removeRedundantLEAs(MemOpMap &LEAs); |
| |
| DenseMap<const MachineInstr *, unsigned> InstrPos; |
| |
| MachineRegisterInfo *MRI = nullptr; |
| const X86InstrInfo *TII = nullptr; |
| const X86RegisterInfo *TRI = nullptr; |
| }; |
| |
| } // end anonymous namespace |
| |
| char X86OptimizeLEAPass::ID = 0; |
| |
| FunctionPass *llvm::createX86OptimizeLEAs() { return new X86OptimizeLEAPass(); } |
| INITIALIZE_PASS(X86OptimizeLEAPass, DEBUG_TYPE, "X86 optimize LEA pass", false, |
| false) |
| |
| int X86OptimizeLEAPass::calcInstrDist(const MachineInstr &First, |
| const MachineInstr &Last) { |
| // Both instructions must be in the same basic block and they must be |
| // presented in InstrPos. |
| assert(Last.getParent() == First.getParent() && |
| "Instructions are in different basic blocks"); |
| assert(InstrPos.find(&First) != InstrPos.end() && |
| InstrPos.find(&Last) != InstrPos.end() && |
| "Instructions' positions are undefined"); |
| |
| return InstrPos[&Last] - InstrPos[&First]; |
| } |
| |
| // Find the best LEA instruction in the List to replace address recalculation in |
| // MI. Such LEA must meet these requirements: |
| // 1) The address calculated by the LEA differs only by the displacement from |
| // the address used in MI. |
| // 2) The register class of the definition of the LEA is compatible with the |
| // register class of the address base register of MI. |
| // 3) Displacement of the new memory operand should fit in 1 byte if possible. |
| // 4) The LEA should be as close to MI as possible, and prior to it if |
| // possible. |
| bool X86OptimizeLEAPass::chooseBestLEA( |
| const SmallVectorImpl<MachineInstr *> &List, const MachineInstr &MI, |
| MachineInstr *&BestLEA, int64_t &AddrDispShift, int &Dist) { |
| const MachineFunction *MF = MI.getParent()->getParent(); |
| const MCInstrDesc &Desc = MI.getDesc(); |
| int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags) + |
| X86II::getOperandBias(Desc); |
| |
| BestLEA = nullptr; |
| |
| // Loop over all LEA instructions. |
| for (auto *DefMI : List) { |
| // Get new address displacement. |
| int64_t AddrDispShiftTemp = getAddrDispShift(MI, MemOpNo, *DefMI, 1); |
| |
| // Make sure address displacement fits 4 bytes. |
| if (!isInt<32>(AddrDispShiftTemp)) |
| continue; |
| |
| // Check that LEA def register can be used as MI address base. Some |
| // instructions can use a limited set of registers as address base, for |
| // example MOV8mr_NOREX. We could constrain the register class of the LEA |
| // def to suit MI, however since this case is very rare and hard to |
| // reproduce in a test it's just more reliable to skip the LEA. |
| if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) != |
| MRI->getRegClass(DefMI->getOperand(0).getReg())) |
| continue; |
| |
| // Choose the closest LEA instruction from the list, prior to MI if |
| // possible. Note that we took into account resulting address displacement |
| // as well. Also note that the list is sorted by the order in which the LEAs |
| // occur, so the break condition is pretty simple. |
| int DistTemp = calcInstrDist(*DefMI, MI); |
| assert(DistTemp != 0 && |
| "The distance between two different instructions cannot be zero"); |
| if (DistTemp > 0 || BestLEA == nullptr) { |
| // Do not update return LEA, if the current one provides a displacement |
| // which fits in 1 byte, while the new candidate does not. |
| if (BestLEA != nullptr && !isInt<8>(AddrDispShiftTemp) && |
| isInt<8>(AddrDispShift)) |
| continue; |
| |
| BestLEA = DefMI; |
| AddrDispShift = AddrDispShiftTemp; |
| Dist = DistTemp; |
| } |
| |
| // FIXME: Maybe we should not always stop at the first LEA after MI. |
| if (DistTemp < 0) |
| break; |
| } |
| |
| return BestLEA != nullptr; |
| } |
| |
| // Get the difference between the addresses' displacements of the two |
| // instructions \p MI1 and \p MI2. The numbers of the first memory operands are |
| // passed through \p N1 and \p N2. |
| int64_t X86OptimizeLEAPass::getAddrDispShift(const MachineInstr &MI1, |
| unsigned N1, |
| const MachineInstr &MI2, |
| unsigned N2) const { |
| const MachineOperand &Op1 = MI1.getOperand(N1 + X86::AddrDisp); |
| const MachineOperand &Op2 = MI2.getOperand(N2 + X86::AddrDisp); |
| |
| assert(isSimilarDispOp(Op1, Op2) && |
| "Address displacement operands are not compatible"); |
| |
| // After the assert above we can be sure that both operands are of the same |
| // valid type and use the same symbol/index/address, thus displacement shift |
| // calculation is rather simple. |
| if (Op1.isJTI()) |
| return 0; |
| return Op1.isImm() ? Op1.getImm() - Op2.getImm() |
| : Op1.getOffset() - Op2.getOffset(); |
| } |
| |
| // Check that the Last LEA can be replaced by the First LEA. To be so, |
| // these requirements must be met: |
| // 1) Addresses calculated by LEAs differ only by displacement. |
| // 2) Def registers of LEAs belong to the same class. |
| // 3) All uses of the Last LEA def register are replaceable, thus the |
| // register is used only as address base. |
| bool X86OptimizeLEAPass::isReplaceable(const MachineInstr &First, |
| const MachineInstr &Last, |
| int64_t &AddrDispShift) const { |
| assert(isLEA(First) && isLEA(Last) && |
| "The function works only with LEA instructions"); |
| |
| // Make sure that LEA def registers belong to the same class. There may be |
| // instructions (like MOV8mr_NOREX) which allow a limited set of registers to |
| // be used as their operands, so we must be sure that replacing one LEA |
| // with another won't lead to putting a wrong register in the instruction. |
| if (MRI->getRegClass(First.getOperand(0).getReg()) != |
| MRI->getRegClass(Last.getOperand(0).getReg())) |
| return false; |
| |
| // Get new address displacement. |
| AddrDispShift = getAddrDispShift(Last, 1, First, 1); |
| |
| // Loop over all uses of the Last LEA to check that its def register is |
| // used only as address base for memory accesses. If so, it can be |
| // replaced, otherwise - no. |
| for (auto &MO : MRI->use_nodbg_operands(Last.getOperand(0).getReg())) { |
| MachineInstr &MI = *MO.getParent(); |
| |
| // Get the number of the first memory operand. |
| const MCInstrDesc &Desc = MI.getDesc(); |
| int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags); |
| |
| // If the use instruction has no memory operand - the LEA is not |
| // replaceable. |
| if (MemOpNo < 0) |
| return false; |
| |
| MemOpNo += X86II::getOperandBias(Desc); |
| |
| // If the address base of the use instruction is not the LEA def register - |
| // the LEA is not replaceable. |
| if (!isIdenticalOp(MI.getOperand(MemOpNo + X86::AddrBaseReg), MO)) |
| return false; |
| |
| // If the LEA def register is used as any other operand of the use |
| // instruction - the LEA is not replaceable. |
| for (unsigned i = 0; i < MI.getNumOperands(); i++) |
| if (i != (unsigned)(MemOpNo + X86::AddrBaseReg) && |
| isIdenticalOp(MI.getOperand(i), MO)) |
| return false; |
| |
| // Check that the new address displacement will fit 4 bytes. |
| if (MI.getOperand(MemOpNo + X86::AddrDisp).isImm() && |
| !isInt<32>(MI.getOperand(MemOpNo + X86::AddrDisp).getImm() + |
| AddrDispShift)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void X86OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB, |
| MemOpMap &LEAs) { |
| unsigned Pos = 0; |
| for (auto &MI : MBB) { |
| // Assign the position number to the instruction. Note that we are going to |
| // move some instructions during the optimization however there will never |
| // be a need to move two instructions before any selected instruction. So to |
| // avoid multiple positions' updates during moves we just increase position |
| // counter by two leaving a free space for instructions which will be moved. |
| InstrPos[&MI] = Pos += 2; |
| |
| if (isLEA(MI)) |
| LEAs[getMemOpKey(MI, 1)].push_back(const_cast<MachineInstr *>(&MI)); |
| } |
| } |
| |
| // Try to find load and store instructions which recalculate addresses already |
| // calculated by some LEA and replace their memory operands with its def |
| // register. |
| bool X86OptimizeLEAPass::removeRedundantAddrCalc(MemOpMap &LEAs) { |
| bool Changed = false; |
| |
| assert(!LEAs.empty()); |
| MachineBasicBlock *MBB = (*LEAs.begin()->second.begin())->getParent(); |
| |
| // Process all instructions in basic block. |
| for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) { |
| // Instruction must be load or store. |
| if (!MI.mayLoadOrStore()) |
| continue; |
| |
| // Get the number of the first memory operand. |
| const MCInstrDesc &Desc = MI.getDesc(); |
| int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags); |
| |
| // If instruction has no memory operand - skip it. |
| if (MemOpNo < 0) |
| continue; |
| |
| MemOpNo += X86II::getOperandBias(Desc); |
| |
| // Do not call chooseBestLEA if there was no matching LEA |
| auto Insns = LEAs.find(getMemOpKey(MI, MemOpNo)); |
| if (Insns == LEAs.end()) |
| continue; |
| |
| // Get the best LEA instruction to replace address calculation. |
| MachineInstr *DefMI; |
| int64_t AddrDispShift; |
| int Dist; |
| if (!chooseBestLEA(Insns->second, MI, DefMI, AddrDispShift, Dist)) |
| continue; |
| |
| // If LEA occurs before current instruction, we can freely replace |
| // the instruction. If LEA occurs after, we can lift LEA above the |
| // instruction and this way to be able to replace it. Since LEA and the |
| // instruction have similar memory operands (thus, the same def |
| // instructions for these operands), we can always do that, without |
| // worries of using registers before their defs. |
| if (Dist < 0) { |
| DefMI->removeFromParent(); |
| MBB->insert(MachineBasicBlock::iterator(&MI), DefMI); |
| InstrPos[DefMI] = InstrPos[&MI] - 1; |
| |
| // Make sure the instructions' position numbers are sane. |
| assert(((InstrPos[DefMI] == 1 && |
| MachineBasicBlock::iterator(DefMI) == MBB->begin()) || |
| InstrPos[DefMI] > |
| InstrPos[&*std::prev(MachineBasicBlock::iterator(DefMI))]) && |
| "Instruction positioning is broken"); |
| } |
| |
| // Since we can possibly extend register lifetime, clear kill flags. |
| MRI->clearKillFlags(DefMI->getOperand(0).getReg()); |
| |
| ++NumSubstLEAs; |
| LLVM_DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump();); |
| |
| // Change instruction operands. |
| MI.getOperand(MemOpNo + X86::AddrBaseReg) |
| .ChangeToRegister(DefMI->getOperand(0).getReg(), false); |
| MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1); |
| MI.getOperand(MemOpNo + X86::AddrIndexReg) |
| .ChangeToRegister(X86::NoRegister, false); |
| MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift); |
| MI.getOperand(MemOpNo + X86::AddrSegmentReg) |
| .ChangeToRegister(X86::NoRegister, false); |
| |
| LLVM_DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump();); |
| |
| Changed = true; |
| } |
| |
| return Changed; |
| } |
| |
| MachineInstr *X86OptimizeLEAPass::replaceDebugValue(MachineInstr &MI, |
| unsigned OldReg, |
| unsigned NewReg, |
| int64_t AddrDispShift) { |
| const DIExpression *Expr = MI.getDebugExpression(); |
| if (AddrDispShift != 0) { |
| if (MI.isNonListDebugValue()) { |
| Expr = |
| DIExpression::prepend(Expr, DIExpression::StackValue, AddrDispShift); |
| } else { |
| // Update the Expression, appending an offset of `AddrDispShift` to the |
| // Op corresponding to `OldReg`. |
| SmallVector<uint64_t, 3> Ops; |
| DIExpression::appendOffset(Ops, AddrDispShift); |
| for (MachineOperand &Op : MI.getDebugOperandsForReg(OldReg)) { |
| unsigned OpIdx = MI.getDebugOperandIndex(&Op); |
| Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx); |
| } |
| } |
| } |
| |
| // Replace DBG_VALUE instruction with modified version. |
| MachineBasicBlock *MBB = MI.getParent(); |
| DebugLoc DL = MI.getDebugLoc(); |
| bool IsIndirect = MI.isIndirectDebugValue(); |
| const MDNode *Var = MI.getDebugVariable(); |
| unsigned Opcode = MI.isNonListDebugValue() ? TargetOpcode::DBG_VALUE |
| : TargetOpcode::DBG_VALUE_LIST; |
| if (IsIndirect) |
| assert(MI.getDebugOffset().getImm() == 0 && |
| "DBG_VALUE with nonzero offset"); |
| SmallVector<MachineOperand, 4> NewOps; |
| // If we encounter an operand using the old register, replace it with an |
| // operand that uses the new register; otherwise keep the old operand. |
| auto replaceOldReg = [OldReg, NewReg](const MachineOperand &Op) { |
| if (Op.isReg() && Op.getReg() == OldReg) |
| return MachineOperand::CreateReg(NewReg, false, false, false, false, |
| false, false, false, false, false, |
| /*IsRenamable*/ true); |
| return Op; |
| }; |
| for (const MachineOperand &Op : MI.debug_operands()) |
| NewOps.push_back(replaceOldReg(Op)); |
| return BuildMI(*MBB, MBB->erase(&MI), DL, TII->get(Opcode), IsIndirect, |
| NewOps, Var, Expr); |
| } |
| |
| // Try to find similar LEAs in the list and replace one with another. |
| bool X86OptimizeLEAPass::removeRedundantLEAs(MemOpMap &LEAs) { |
| bool Changed = false; |
| |
| // Loop over all entries in the table. |
| for (auto &E : LEAs) { |
| auto &List = E.second; |
| |
| // Loop over all LEA pairs. |
| auto I1 = List.begin(); |
| while (I1 != List.end()) { |
| MachineInstr &First = **I1; |
| auto I2 = std::next(I1); |
| while (I2 != List.end()) { |
| MachineInstr &Last = **I2; |
| int64_t AddrDispShift; |
| |
| // LEAs should be in occurrence order in the list, so we can freely |
| // replace later LEAs with earlier ones. |
| assert(calcInstrDist(First, Last) > 0 && |
| "LEAs must be in occurrence order in the list"); |
| |
| // Check that the Last LEA instruction can be replaced by the First. |
| if (!isReplaceable(First, Last, AddrDispShift)) { |
| ++I2; |
| continue; |
| } |
| |
| // Loop over all uses of the Last LEA and update their operands. Note |
| // that the correctness of this has already been checked in the |
| // isReplaceable function. |
| Register FirstVReg = First.getOperand(0).getReg(); |
| Register LastVReg = Last.getOperand(0).getReg(); |
| // We use MRI->use_empty here instead of the combination of |
| // llvm::make_early_inc_range and MRI->use_operands because we could |
| // replace two or more uses in a debug instruction in one iteration, and |
| // that would deeply confuse llvm::make_early_inc_range. |
| while (!MRI->use_empty(LastVReg)) { |
| MachineOperand &MO = *MRI->use_begin(LastVReg); |
| MachineInstr &MI = *MO.getParent(); |
| |
| if (MI.isDebugValue()) { |
| // Replace DBG_VALUE instruction with modified version using the |
| // register from the replacing LEA and the address displacement |
| // between the LEA instructions. |
| replaceDebugValue(MI, LastVReg, FirstVReg, AddrDispShift); |
| continue; |
| } |
| |
| // Get the number of the first memory operand. |
| const MCInstrDesc &Desc = MI.getDesc(); |
| int MemOpNo = |
| X86II::getMemoryOperandNo(Desc.TSFlags) + |
| X86II::getOperandBias(Desc); |
| |
| // Update address base. |
| MO.setReg(FirstVReg); |
| |
| // Update address disp. |
| MachineOperand &Op = MI.getOperand(MemOpNo + X86::AddrDisp); |
| if (Op.isImm()) |
| Op.setImm(Op.getImm() + AddrDispShift); |
| else if (!Op.isJTI()) |
| Op.setOffset(Op.getOffset() + AddrDispShift); |
| } |
| |
| // Since we can possibly extend register lifetime, clear kill flags. |
| MRI->clearKillFlags(FirstVReg); |
| |
| ++NumRedundantLEAs; |
| LLVM_DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: "; |
| Last.dump();); |
| |
| // By this moment, all of the Last LEA's uses must be replaced. So we |
| // can freely remove it. |
| assert(MRI->use_empty(LastVReg) && |
| "The LEA's def register must have no uses"); |
| Last.eraseFromParent(); |
| |
| // Erase removed LEA from the list. |
| I2 = List.erase(I2); |
| |
| Changed = true; |
| } |
| ++I1; |
| } |
| } |
| |
| return Changed; |
| } |
| |
| bool X86OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) { |
| bool Changed = false; |
| |
| if (DisableX86LEAOpt || skipFunction(MF.getFunction())) |
| return false; |
| |
| MRI = &MF.getRegInfo(); |
| TII = MF.getSubtarget<X86Subtarget>().getInstrInfo(); |
| TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo(); |
| auto *PSI = |
| &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); |
| auto *MBFI = (PSI && PSI->hasProfileSummary()) ? |
| &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() : |
| nullptr; |
| |
| // Process all basic blocks. |
| for (auto &MBB : MF) { |
| MemOpMap LEAs; |
| InstrPos.clear(); |
| |
| // Find all LEA instructions in basic block. |
| findLEAs(MBB, LEAs); |
| |
| // If current basic block has no LEAs, move on to the next one. |
| if (LEAs.empty()) |
| continue; |
| |
| // Remove redundant LEA instructions. |
| Changed |= removeRedundantLEAs(LEAs); |
| |
| // Remove redundant address calculations. Do it only for -Os/-Oz since only |
| // a code size gain is expected from this part of the pass. |
| bool OptForSize = MF.getFunction().hasOptSize() || |
| llvm::shouldOptimizeForSize(&MBB, PSI, MBFI); |
| if (OptForSize) |
| Changed |= removeRedundantAddrCalc(LEAs); |
| } |
| |
| return Changed; |
| } |