| //===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the X86 implementation of the TargetInstrInfo class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_LIB_TARGET_X86_X86INSTRINFO_H |
| #define LLVM_LIB_TARGET_X86_X86INSTRINFO_H |
| |
| #include "MCTargetDesc/X86BaseInfo.h" |
| #include "X86InstrFMA3Info.h" |
| #include "X86RegisterInfo.h" |
| #include "llvm/CodeGen/ISDOpcodes.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include <vector> |
| |
| #define GET_INSTRINFO_HEADER |
| #include "X86GenInstrInfo.inc" |
| |
| namespace llvm { |
| class X86Subtarget; |
| |
| namespace X86 { |
| |
| enum AsmComments { |
| // For instr that was compressed from EVEX to VEX. |
| AC_EVEX_2_VEX = MachineInstr::TAsmComments |
| }; |
| |
| /// Return a pair of condition code for the given predicate and whether |
| /// the instruction operands should be swaped to match the condition code. |
| std::pair<CondCode, bool> getX86ConditionCode(CmpInst::Predicate Predicate); |
| |
| /// Return a cmov opcode for the given register size in bytes, and operand type. |
| unsigned getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand = false); |
| |
| /// Return the source operand # for condition code by \p MCID. If the |
| /// instruction doesn't have a condition code, return -1. |
| int getCondSrcNoFromDesc(const MCInstrDesc &MCID); |
| |
| /// Return the condition code of the instruction. If the instruction doesn't |
| /// have a condition code, return X86::COND_INVALID. |
| CondCode getCondFromMI(const MachineInstr &MI); |
| |
| // Turn JCC instruction into condition code. |
| CondCode getCondFromBranch(const MachineInstr &MI); |
| |
| // Turn SETCC instruction into condition code. |
| CondCode getCondFromSETCC(const MachineInstr &MI); |
| |
| // Turn CMOV instruction into condition code. |
| CondCode getCondFromCMov(const MachineInstr &MI); |
| |
| /// GetOppositeBranchCondition - Return the inverse of the specified cond, |
| /// e.g. turning COND_E to COND_NE. |
| CondCode GetOppositeBranchCondition(CondCode CC); |
| |
| /// Get the VPCMP immediate for the given condition. |
| unsigned getVPCMPImmForCond(ISD::CondCode CC); |
| |
| /// Get the VPCMP immediate if the opcodes are swapped. |
| unsigned getSwappedVPCMPImm(unsigned Imm); |
| |
| /// Get the VPCOM immediate if the opcodes are swapped. |
| unsigned getSwappedVPCOMImm(unsigned Imm); |
| |
| /// Get the VCMP immediate if the opcodes are swapped. |
| unsigned getSwappedVCMPImm(unsigned Imm); |
| |
| /// Check if the instruction is X87 instruction. |
| bool isX87Instruction(MachineInstr &MI); |
| } // namespace X86 |
| |
| /// isGlobalStubReference - Return true if the specified TargetFlag operand is |
| /// a reference to a stub for a global, not the global itself. |
| inline static bool isGlobalStubReference(unsigned char TargetFlag) { |
| switch (TargetFlag) { |
| case X86II::MO_DLLIMPORT: // dllimport stub. |
| case X86II::MO_GOTPCREL: // rip-relative GOT reference. |
| case X86II::MO_GOTPCREL_NORELAX: // rip-relative GOT reference. |
| case X86II::MO_GOT: // normal GOT reference. |
| case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref. |
| case X86II::MO_DARWIN_NONLAZY: // Normal $non_lazy_ptr ref. |
| case X86II::MO_COFFSTUB: // COFF .refptr stub. |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| /// isGlobalRelativeToPICBase - Return true if the specified global value |
| /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg). If this |
| /// is true, the addressing mode has the PIC base register added in (e.g. EBX). |
| inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) { |
| switch (TargetFlag) { |
| case X86II::MO_GOTOFF: // isPICStyleGOT: local global. |
| case X86II::MO_GOT: // isPICStyleGOT: other global. |
| case X86II::MO_PIC_BASE_OFFSET: // Darwin local global. |
| case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global. |
| case X86II::MO_TLVP: // ??? Pretty sure.. |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| inline static bool isScale(const MachineOperand &MO) { |
| return MO.isImm() && (MO.getImm() == 1 || MO.getImm() == 2 || |
| MO.getImm() == 4 || MO.getImm() == 8); |
| } |
| |
| inline static bool isLeaMem(const MachineInstr &MI, unsigned Op) { |
| if (MI.getOperand(Op).isFI()) |
| return true; |
| return Op + X86::AddrSegmentReg <= MI.getNumOperands() && |
| MI.getOperand(Op + X86::AddrBaseReg).isReg() && |
| isScale(MI.getOperand(Op + X86::AddrScaleAmt)) && |
| MI.getOperand(Op + X86::AddrIndexReg).isReg() && |
| (MI.getOperand(Op + X86::AddrDisp).isImm() || |
| MI.getOperand(Op + X86::AddrDisp).isGlobal() || |
| MI.getOperand(Op + X86::AddrDisp).isCPI() || |
| MI.getOperand(Op + X86::AddrDisp).isJTI()); |
| } |
| |
| inline static bool isMem(const MachineInstr &MI, unsigned Op) { |
| if (MI.getOperand(Op).isFI()) |
| return true; |
| return Op + X86::AddrNumOperands <= MI.getNumOperands() && |
| MI.getOperand(Op + X86::AddrSegmentReg).isReg() && isLeaMem(MI, Op); |
| } |
| |
| class X86InstrInfo final : public X86GenInstrInfo { |
| X86Subtarget &Subtarget; |
| const X86RegisterInfo RI; |
| |
| virtual void anchor(); |
| |
| bool AnalyzeBranchImpl(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, |
| MachineBasicBlock *&FBB, |
| SmallVectorImpl<MachineOperand> &Cond, |
| SmallVectorImpl<MachineInstr *> &CondBranches, |
| bool AllowModify) const; |
| |
| public: |
| explicit X86InstrInfo(X86Subtarget &STI); |
| |
| /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As |
| /// such, whenever a client has an instance of instruction info, it should |
| /// always be able to get register info as well (through this method). |
| /// |
| const X86RegisterInfo &getRegisterInfo() const { return RI; } |
| |
| /// Returns the stack pointer adjustment that happens inside the frame |
| /// setup..destroy sequence (e.g. by pushes, or inside the callee). |
| int64_t getFrameAdjustment(const MachineInstr &I) const { |
| assert(isFrameInstr(I)); |
| if (isFrameSetup(I)) |
| return I.getOperand(2).getImm(); |
| return I.getOperand(1).getImm(); |
| } |
| |
| /// Sets the stack pointer adjustment made inside the frame made up by this |
| /// instruction. |
| void setFrameAdjustment(MachineInstr &I, int64_t V) const { |
| assert(isFrameInstr(I)); |
| if (isFrameSetup(I)) |
| I.getOperand(2).setImm(V); |
| else |
| I.getOperand(1).setImm(V); |
| } |
| |
| /// getSPAdjust - This returns the stack pointer adjustment made by |
| /// this instruction. For x86, we need to handle more complex call |
| /// sequences involving PUSHes. |
| int getSPAdjust(const MachineInstr &MI) const override; |
| |
| /// isCoalescableExtInstr - Return true if the instruction is a "coalescable" |
| /// extension instruction. That is, it's like a copy where it's legal for the |
| /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns |
| /// true, then it's expected the pre-extension value is available as a subreg |
| /// of the result register. This also returns the sub-register index in |
| /// SubIdx. |
| bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg, |
| Register &DstReg, unsigned &SubIdx) const override; |
| |
| /// Returns true if the instruction has no behavior (specified or otherwise) |
| /// that is based on the value of any of its register operands |
| /// |
| /// Instructions are considered data invariant even if they set EFLAGS. |
| /// |
| /// A classical example of something that is inherently not data invariant is |
| /// an indirect jump -- the destination is loaded into icache based on the |
| /// bits set in the jump destination register. |
| /// |
| /// FIXME: This should become part of our instruction tables. |
| static bool isDataInvariant(MachineInstr &MI); |
| |
| /// Returns true if the instruction has no behavior (specified or otherwise) |
| /// that is based on the value loaded from memory or the value of any |
| /// non-address register operands. |
| /// |
| /// For example, if the latency of the instruction is dependent on the |
| /// particular bits set in any of the registers *or* any of the bits loaded |
| /// from memory. |
| /// |
| /// Instructions are considered data invariant even if they set EFLAGS. |
| /// |
| /// A classical example of something that is inherently not data invariant is |
| /// an indirect jump -- the destination is loaded into icache based on the |
| /// bits set in the jump destination register. |
| /// |
| /// FIXME: This should become part of our instruction tables. |
| static bool isDataInvariantLoad(MachineInstr &MI); |
| |
| unsigned isLoadFromStackSlot(const MachineInstr &MI, |
| int &FrameIndex) const override; |
| unsigned isLoadFromStackSlot(const MachineInstr &MI, |
| int &FrameIndex, |
| unsigned &MemBytes) const override; |
| /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination |
| /// stack locations as well. This uses a heuristic so it isn't |
| /// reliable for correctness. |
| unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI, |
| int &FrameIndex) const override; |
| |
| unsigned isStoreToStackSlot(const MachineInstr &MI, |
| int &FrameIndex) const override; |
| unsigned isStoreToStackSlot(const MachineInstr &MI, |
| int &FrameIndex, |
| unsigned &MemBytes) const override; |
| /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination |
| /// stack locations as well. This uses a heuristic so it isn't |
| /// reliable for correctness. |
| unsigned isStoreToStackSlotPostFE(const MachineInstr &MI, |
| int &FrameIndex) const override; |
| |
| bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const override; |
| void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, |
| Register DestReg, unsigned SubIdx, |
| const MachineInstr &Orig, |
| const TargetRegisterInfo &TRI) const override; |
| |
| /// Given an operand within a MachineInstr, insert preceding code to put it |
| /// into the right format for a particular kind of LEA instruction. This may |
| /// involve using an appropriate super-register instead (with an implicit use |
| /// of the original) or creating a new virtual register and inserting COPY |
| /// instructions to get the data into the right class. |
| /// |
| /// Reference parameters are set to indicate how caller should add this |
| /// operand to the LEA instruction. |
| bool classifyLEAReg(MachineInstr &MI, const MachineOperand &Src, |
| unsigned LEAOpcode, bool AllowSP, Register &NewSrc, |
| bool &isKill, MachineOperand &ImplicitOp, |
| LiveVariables *LV, LiveIntervals *LIS) const; |
| |
| /// convertToThreeAddress - This method must be implemented by targets that |
| /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target |
| /// may be able to convert a two-address instruction into a true |
| /// three-address instruction on demand. This allows the X86 target (for |
| /// example) to convert ADD and SHL instructions into LEA instructions if they |
| /// would require register copies due to two-addressness. |
| /// |
| /// This method returns a null pointer if the transformation cannot be |
| /// performed, otherwise it returns the new instruction. |
| /// |
| MachineInstr *convertToThreeAddress(MachineInstr &MI, LiveVariables *LV, |
| LiveIntervals *LIS) const override; |
| |
| /// Returns true iff the routine could find two commutable operands in the |
| /// given machine instruction. |
| /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their |
| /// input values can be re-defined in this method only if the input values |
| /// are not pre-defined, which is designated by the special value |
| /// 'CommuteAnyOperandIndex' assigned to it. |
| /// If both of indices are pre-defined and refer to some operands, then the |
| /// method simply returns true if the corresponding operands are commutable |
| /// and returns false otherwise. |
| /// |
| /// For example, calling this method this way: |
| /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex; |
| /// findCommutedOpIndices(MI, Op1, Op2); |
| /// can be interpreted as a query asking to find an operand that would be |
| /// commutable with the operand#1. |
| bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1, |
| unsigned &SrcOpIdx2) const override; |
| |
| /// Returns true if we have preference on the operands order in MI, the |
| /// commute decision is returned in Commute. |
| bool hasCommutePreference(MachineInstr &MI, bool &Commute) const override; |
| |
| /// Returns an adjusted FMA opcode that must be used in FMA instruction that |
| /// performs the same computations as the given \p MI but which has the |
| /// operands \p SrcOpIdx1 and \p SrcOpIdx2 commuted. |
| /// It may return 0 if it is unsafe to commute the operands. |
| /// Note that a machine instruction (instead of its opcode) is passed as the |
| /// first parameter to make it possible to analyze the instruction's uses and |
| /// commute the first operand of FMA even when it seems unsafe when you look |
| /// at the opcode. For example, it is Ok to commute the first operand of |
| /// VFMADD*SD_Int, if ONLY the lowest 64-bit element of the result is used. |
| /// |
| /// The returned FMA opcode may differ from the opcode in the given \p MI. |
| /// For example, commuting the operands #1 and #3 in the following FMA |
| /// FMA213 #1, #2, #3 |
| /// results into instruction with adjusted opcode: |
| /// FMA231 #3, #2, #1 |
| unsigned |
| getFMA3OpcodeToCommuteOperands(const MachineInstr &MI, unsigned SrcOpIdx1, |
| unsigned SrcOpIdx2, |
| const X86InstrFMA3Group &FMA3Group) const; |
| |
| // Branch analysis. |
| bool isUnconditionalTailCall(const MachineInstr &MI) const override; |
| bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond, |
| const MachineInstr &TailCall) const override; |
| void replaceBranchWithTailCall(MachineBasicBlock &MBB, |
| SmallVectorImpl<MachineOperand> &Cond, |
| const MachineInstr &TailCall) const override; |
| |
| bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, |
| MachineBasicBlock *&FBB, |
| SmallVectorImpl<MachineOperand> &Cond, |
| bool AllowModify) const override; |
| |
| std::optional<ExtAddrMode> |
| getAddrModeFromMemoryOp(const MachineInstr &MemI, |
| const TargetRegisterInfo *TRI) const override; |
| |
| bool getConstValDefinedInReg(const MachineInstr &MI, const Register Reg, |
| int64_t &ImmVal) const override; |
| |
| bool preservesZeroValueInReg(const MachineInstr *MI, |
| const Register NullValueReg, |
| const TargetRegisterInfo *TRI) const override; |
| |
| bool getMemOperandsWithOffsetWidth( |
| const MachineInstr &LdSt, |
| SmallVectorImpl<const MachineOperand *> &BaseOps, int64_t &Offset, |
| bool &OffsetIsScalable, unsigned &Width, |
| const TargetRegisterInfo *TRI) const override; |
| bool analyzeBranchPredicate(MachineBasicBlock &MBB, |
| TargetInstrInfo::MachineBranchPredicate &MBP, |
| bool AllowModify = false) const override; |
| |
| unsigned removeBranch(MachineBasicBlock &MBB, |
| int *BytesRemoved = nullptr) const override; |
| unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, |
| MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond, |
| const DebugLoc &DL, |
| int *BytesAdded = nullptr) const override; |
| bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond, |
| Register, Register, Register, int &, int &, |
| int &) const override; |
| void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, |
| const DebugLoc &DL, Register DstReg, |
| ArrayRef<MachineOperand> Cond, Register TrueReg, |
| Register FalseReg) const override; |
| void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, |
| const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg, |
| bool KillSrc) const override; |
| void storeRegToStackSlot(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI, Register SrcReg, |
| bool isKill, int FrameIndex, |
| const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI, |
| Register VReg) const override; |
| |
| void loadRegFromStackSlot(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI, Register DestReg, |
| int FrameIndex, const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI, |
| Register VReg) const override; |
| |
| void loadStoreTileReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, |
| unsigned Opc, Register Reg, int FrameIdx, |
| bool isKill = false) const; |
| |
| bool expandPostRAPseudo(MachineInstr &MI) const override; |
| |
| /// Check whether the target can fold a load that feeds a subreg operand |
| /// (or a subreg operand that feeds a store). |
| bool isSubregFoldable() const override { return true; } |
| |
| /// foldMemoryOperand - If this target supports it, fold a load or store of |
| /// the specified stack slot into the specified machine instruction for the |
| /// specified operand(s). If this is possible, the target should perform the |
| /// folding and return true, otherwise it should return false. If it folds |
| /// the instruction, it is likely that the MachineInstruction the iterator |
| /// references has been changed. |
| MachineInstr * |
| foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, |
| ArrayRef<unsigned> Ops, |
| MachineBasicBlock::iterator InsertPt, int FrameIndex, |
| LiveIntervals *LIS = nullptr, |
| VirtRegMap *VRM = nullptr) const override; |
| |
| /// foldMemoryOperand - Same as the previous version except it allows folding |
| /// of any load and store from / to any address, not just from a specific |
| /// stack slot. |
| MachineInstr *foldMemoryOperandImpl( |
| MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, |
| MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, |
| LiveIntervals *LIS = nullptr) const override; |
| |
| /// unfoldMemoryOperand - Separate a single instruction which folded a load or |
| /// a store or a load and a store into two or more instruction. If this is |
| /// possible, returns true as well as the new instructions by reference. |
| bool |
| unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg, |
| bool UnfoldLoad, bool UnfoldStore, |
| SmallVectorImpl<MachineInstr *> &NewMIs) const override; |
| |
| bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, |
| SmallVectorImpl<SDNode *> &NewNodes) const override; |
| |
| /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new |
| /// instruction after load / store are unfolded from an instruction of the |
| /// specified opcode. It returns zero if the specified unfolding is not |
| /// possible. If LoadRegIndex is non-null, it is filled in with the operand |
| /// index of the operand which will hold the register holding the loaded |
| /// value. |
| unsigned |
| getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore, |
| unsigned *LoadRegIndex = nullptr) const override; |
| |
| /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler |
| /// to determine if two loads are loading from the same base address. It |
| /// should only return true if the base pointers are the same and the |
| /// only differences between the two addresses are the offset. It also returns |
| /// the offsets by reference. |
| bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1, |
| int64_t &Offset2) const override; |
| |
| /// isSchedulingBoundary - Overrides the isSchedulingBoundary from |
| /// Codegen/TargetInstrInfo.cpp to make it capable of identifying ENDBR |
| /// intructions and prevent it from being re-scheduled. |
| bool isSchedulingBoundary(const MachineInstr &MI, |
| const MachineBasicBlock *MBB, |
| const MachineFunction &MF) const override; |
| |
| /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to |
| /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads |
| /// should be scheduled togther. On some targets if two loads are loading from |
| /// addresses in the same cache line, it's better if they are scheduled |
| /// together. This function takes two integers that represent the load offsets |
| /// from the common base address. It returns true if it decides it's desirable |
| /// to schedule the two loads together. "NumLoads" is the number of loads that |
| /// have already been scheduled after Load1. |
| bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1, |
| int64_t Offset2, |
| unsigned NumLoads) const override; |
| |
| MCInst getNop() const override; |
| |
| bool |
| reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override; |
| |
| /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine |
| /// instruction that defines the specified register class. |
| bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const override; |
| |
| /// True if MI has a condition code def, e.g. EFLAGS, that is |
| /// not marked dead. |
| bool hasLiveCondCodeDef(MachineInstr &MI) const; |
| |
| /// getGlobalBaseReg - Return a virtual register initialized with the |
| /// the global base register value. Output instructions required to |
| /// initialize the register in the function entry block, if necessary. |
| /// |
| unsigned getGlobalBaseReg(MachineFunction *MF) const; |
| |
| std::pair<uint16_t, uint16_t> |
| getExecutionDomain(const MachineInstr &MI) const override; |
| |
| uint16_t getExecutionDomainCustom(const MachineInstr &MI) const; |
| |
| void setExecutionDomain(MachineInstr &MI, unsigned Domain) const override; |
| |
| bool setExecutionDomainCustom(MachineInstr &MI, unsigned Domain) const; |
| |
| unsigned |
| getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum, |
| const TargetRegisterInfo *TRI) const override; |
| unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum, |
| const TargetRegisterInfo *TRI) const override; |
| void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum, |
| const TargetRegisterInfo *TRI) const override; |
| |
| MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, |
| unsigned OpNum, |
| ArrayRef<MachineOperand> MOs, |
| MachineBasicBlock::iterator InsertPt, |
| unsigned Size, Align Alignment, |
| bool AllowCommute) const; |
| |
| bool isHighLatencyDef(int opc) const override; |
| |
| bool hasHighOperandLatency(const TargetSchedModel &SchedModel, |
| const MachineRegisterInfo *MRI, |
| const MachineInstr &DefMI, unsigned DefIdx, |
| const MachineInstr &UseMI, |
| unsigned UseIdx) const override; |
| |
| bool useMachineCombiner() const override { return true; } |
| |
| bool isAssociativeAndCommutative(const MachineInstr &Inst, |
| bool Invert) const override; |
| |
| bool hasReassociableOperands(const MachineInstr &Inst, |
| const MachineBasicBlock *MBB) const override; |
| |
| void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2, |
| MachineInstr &NewMI1, |
| MachineInstr &NewMI2) const override; |
| |
| /// analyzeCompare - For a comparison instruction, return the source registers |
| /// in SrcReg and SrcReg2 if having two register operands, and the value it |
| /// compares against in CmpValue. Return true if the comparison instruction |
| /// can be analyzed. |
| bool analyzeCompare(const MachineInstr &MI, Register &SrcReg, |
| Register &SrcReg2, int64_t &CmpMask, |
| int64_t &CmpValue) const override; |
| |
| /// optimizeCompareInstr - Check if there exists an earlier instruction that |
| /// operates on the same source operands and sets flags in the same way as |
| /// Compare; remove Compare if possible. |
| bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, |
| Register SrcReg2, int64_t CmpMask, int64_t CmpValue, |
| const MachineRegisterInfo *MRI) const override; |
| |
| /// optimizeLoadInstr - Try to remove the load by folding it to a register |
| /// operand at the use. We fold the load instructions if and only if the |
| /// def and use are in the same BB. We only look at one load and see |
| /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register |
| /// defined by the load we are trying to fold. DefMI returns the machine |
| /// instruction that defines FoldAsLoadDefReg, and the function returns |
| /// the machine instruction generated due to folding. |
| MachineInstr *optimizeLoadInstr(MachineInstr &MI, |
| const MachineRegisterInfo *MRI, |
| Register &FoldAsLoadDefReg, |
| MachineInstr *&DefMI) const override; |
| |
| std::pair<unsigned, unsigned> |
| decomposeMachineOperandsTargetFlags(unsigned TF) const override; |
| |
| ArrayRef<std::pair<unsigned, const char *>> |
| getSerializableDirectMachineOperandTargetFlags() const override; |
| |
| outliner::OutlinedFunction getOutliningCandidateInfo( |
| std::vector<outliner::Candidate> &RepeatedSequenceLocs) const override; |
| |
| bool isFunctionSafeToOutlineFrom(MachineFunction &MF, |
| bool OutlineFromLinkOnceODRs) const override; |
| |
| outliner::InstrType |
| getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const override; |
| |
| void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF, |
| const outliner::OutlinedFunction &OF) const override; |
| |
| MachineBasicBlock::iterator |
| insertOutlinedCall(Module &M, MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator &It, MachineFunction &MF, |
| outliner::Candidate &C) const override; |
| |
| bool verifyInstruction(const MachineInstr &MI, |
| StringRef &ErrInfo) const override; |
| #define GET_INSTRINFO_HELPER_DECLS |
| #include "X86GenInstrInfo.inc" |
| |
| static bool hasLockPrefix(const MachineInstr &MI) { |
| return MI.getDesc().TSFlags & X86II::LOCK; |
| } |
| |
| std::optional<ParamLoadedValue> |
| describeLoadedValue(const MachineInstr &MI, Register Reg) const override; |
| |
| protected: |
| /// Commutes the operands in the given instruction by changing the operands |
| /// order and/or changing the instruction's opcode and/or the immediate value |
| /// operand. |
| /// |
| /// The arguments 'CommuteOpIdx1' and 'CommuteOpIdx2' specify the operands |
| /// to be commuted. |
| /// |
| /// Do not call this method for a non-commutable instruction or |
| /// non-commutable operands. |
| /// Even though the instruction is commutable, the method may still |
| /// fail to commute the operands, null pointer is returned in such cases. |
| MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI, |
| unsigned CommuteOpIdx1, |
| unsigned CommuteOpIdx2) const override; |
| |
| /// If the specific machine instruction is a instruction that moves/copies |
| /// value from one register to another register return destination and source |
| /// registers as machine operands. |
| std::optional<DestSourcePair> |
| isCopyInstrImpl(const MachineInstr &MI) const override; |
| |
| private: |
| /// This is a helper for convertToThreeAddress for 8 and 16-bit instructions. |
| /// We use 32-bit LEA to form 3-address code by promoting to a 32-bit |
| /// super-register and then truncating back down to a 8/16-bit sub-register. |
| MachineInstr *convertToThreeAddressWithLEA(unsigned MIOpc, MachineInstr &MI, |
| LiveVariables *LV, |
| LiveIntervals *LIS, |
| bool Is8BitOp) const; |
| |
| /// Handles memory folding for special case instructions, for instance those |
| /// requiring custom manipulation of the address. |
| MachineInstr *foldMemoryOperandCustom(MachineFunction &MF, MachineInstr &MI, |
| unsigned OpNum, |
| ArrayRef<MachineOperand> MOs, |
| MachineBasicBlock::iterator InsertPt, |
| unsigned Size, Align Alignment) const; |
| |
| /// isFrameOperand - Return true and the FrameIndex if the specified |
| /// operand and follow operands form a reference to the stack frame. |
| bool isFrameOperand(const MachineInstr &MI, unsigned int Op, |
| int &FrameIndex) const; |
| |
| /// Returns true iff the routine could find two commutable operands in the |
| /// given machine instruction with 3 vector inputs. |
| /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their |
| /// input values can be re-defined in this method only if the input values |
| /// are not pre-defined, which is designated by the special value |
| /// 'CommuteAnyOperandIndex' assigned to it. |
| /// If both of indices are pre-defined and refer to some operands, then the |
| /// method simply returns true if the corresponding operands are commutable |
| /// and returns false otherwise. |
| /// |
| /// For example, calling this method this way: |
| /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex; |
| /// findThreeSrcCommutedOpIndices(MI, Op1, Op2); |
| /// can be interpreted as a query asking to find an operand that would be |
| /// commutable with the operand#1. |
| /// |
| /// If IsIntrinsic is set, operand 1 will be ignored for commuting. |
| bool findThreeSrcCommutedOpIndices(const MachineInstr &MI, |
| unsigned &SrcOpIdx1, |
| unsigned &SrcOpIdx2, |
| bool IsIntrinsic = false) const; |
| |
| /// Returns true when instruction \p FlagI produces the same flags as \p OI. |
| /// The caller should pass in the results of calling analyzeCompare on \p OI: |
| /// \p SrcReg, \p SrcReg2, \p ImmMask, \p ImmValue. |
| /// If the flags match \p OI as if it had the input operands swapped then the |
| /// function succeeds and sets \p IsSwapped to true. |
| /// |
| /// Examples of OI, FlagI pairs returning true: |
| /// CMP %1, 42 and CMP %1, 42 |
| /// CMP %1, %2 and %3 = SUB %1, %2 |
| /// TEST %1, %1 and %2 = SUB %1, 0 |
| /// CMP %1, %2 and %3 = SUB %2, %1 ; IsSwapped=true |
| bool isRedundantFlagInstr(const MachineInstr &FlagI, Register SrcReg, |
| Register SrcReg2, int64_t ImmMask, int64_t ImmValue, |
| const MachineInstr &OI, bool *IsSwapped, |
| int64_t *ImmDelta) const; |
| }; |
| |
| } // namespace llvm |
| |
| #endif |