blob: 1606413c382b32a6a0225cf7e7933be308a26415 [file] [log] [blame]
//===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the X86 implementation of TargetFrameLowering class.
//
//===----------------------------------------------------------------------===//
#include "X86FrameLowering.h"
#include "MCTargetDesc/X86MCTargetDesc.h"
#include "X86InstrBuilder.h"
#include "X86InstrInfo.h"
#include "X86MachineFunctionInfo.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetOptions.h"
#include <cstdlib>
#define DEBUG_TYPE "x86-fl"
STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue");
STATISTIC(NumFrameExtraProbe,
"Number of extra stack probes generated in prologue");
using namespace llvm;
X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
MaybeAlign StackAlignOverride)
: TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(),
STI.is64Bit() ? -8 : -4),
STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
// Cache a bunch of frame-related predicates for this subtarget.
SlotSize = TRI->getSlotSize();
Is64Bit = STI.is64Bit();
IsLP64 = STI.isTarget64BitLP64();
// standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
StackPtr = TRI->getStackRegister();
}
bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
return !MF.getFrameInfo().hasVarSizedObjects() &&
!MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() &&
!MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall();
}
/// canSimplifyCallFramePseudos - If there is a reserved call frame, the
/// call frame pseudos can be simplified. Having a FP, as in the default
/// implementation, is not sufficient here since we can't always use it.
/// Use a more nuanced condition.
bool
X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
return hasReservedCallFrame(MF) ||
MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() ||
(hasFP(MF) && !TRI->hasStackRealignment(MF)) ||
TRI->hasBasePointer(MF);
}
// needsFrameIndexResolution - Do we need to perform FI resolution for
// this function. Normally, this is required only when the function
// has any stack objects. However, FI resolution actually has another job,
// not apparent from the title - it resolves callframesetup/destroy
// that were not simplified earlier.
// So, this is required for x86 functions that have push sequences even
// when there are no stack objects.
bool
X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
return MF.getFrameInfo().hasStackObjects() ||
MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
}
/// hasFP - Return true if the specified function should have a dedicated frame
/// pointer register. This is true if the function has variable sized allocas
/// or if frame pointer elimination is disabled.
bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
TRI->hasStackRealignment(MF) || MFI.hasVarSizedObjects() ||
MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() ||
MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() ||
MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() ||
MFI.hasStackMap() || MFI.hasPatchPoint() ||
(isWin64Prologue(MF) && MFI.hasCopyImplyingStackAdjustment()));
}
static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) {
if (IsLP64) {
if (isInt<8>(Imm))
return X86::SUB64ri8;
return X86::SUB64ri32;
} else {
if (isInt<8>(Imm))
return X86::SUB32ri8;
return X86::SUB32ri;
}
}
static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) {
if (IsLP64) {
if (isInt<8>(Imm))
return X86::ADD64ri8;
return X86::ADD64ri32;
} else {
if (isInt<8>(Imm))
return X86::ADD32ri8;
return X86::ADD32ri;
}
}
static unsigned getSUBrrOpcode(bool IsLP64) {
return IsLP64 ? X86::SUB64rr : X86::SUB32rr;
}
static unsigned getADDrrOpcode(bool IsLP64) {
return IsLP64 ? X86::ADD64rr : X86::ADD32rr;
}
static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
if (IsLP64) {
if (isInt<8>(Imm))
return X86::AND64ri8;
return X86::AND64ri32;
}
if (isInt<8>(Imm))
return X86::AND32ri8;
return X86::AND32ri;
}
static unsigned getLEArOpcode(bool IsLP64) {
return IsLP64 ? X86::LEA64r : X86::LEA32r;
}
static unsigned getMOVriOpcode(bool Use64BitReg, int64_t Imm) {
if (Use64BitReg) {
if (isUInt<32>(Imm))
return X86::MOV32ri64;
if (isInt<32>(Imm))
return X86::MOV64ri32;
return X86::MOV64ri;
}
return X86::MOV32ri;
}
static bool isEAXLiveIn(MachineBasicBlock &MBB) {
for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) {
unsigned Reg = RegMask.PhysReg;
if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
Reg == X86::AH || Reg == X86::AL)
return true;
}
return false;
}
/// Check if the flags need to be preserved before the terminators.
/// This would be the case, if the eflags is live-in of the region
/// composed by the terminators or live-out of that region, without
/// being defined by a terminator.
static bool
flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
for (const MachineInstr &MI : MBB.terminators()) {
bool BreakNext = false;
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isReg())
continue;
Register Reg = MO.getReg();
if (Reg != X86::EFLAGS)
continue;
// This terminator needs an eflags that is not defined
// by a previous another terminator:
// EFLAGS is live-in of the region composed by the terminators.
if (!MO.isDef())
return true;
// This terminator defines the eflags, i.e., we don't need to preserve it.
// However, we still need to check this specific terminator does not
// read a live-in value.
BreakNext = true;
}
// We found a definition of the eflags, no need to preserve them.
if (BreakNext)
return false;
}
// None of the terminators use or define the eflags.
// Check if they are live-out, that would imply we need to preserve them.
for (const MachineBasicBlock *Succ : MBB.successors())
if (Succ->isLiveIn(X86::EFLAGS))
return true;
return false;
}
/// emitSPUpdate - Emit a series of instructions to increment / decrement the
/// stack pointer by a constant value.
void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
const DebugLoc &DL,
int64_t NumBytes, bool InEpilogue) const {
bool isSub = NumBytes < 0;
uint64_t Offset = isSub ? -NumBytes : NumBytes;
MachineInstr::MIFlag Flag =
isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy;
uint64_t Chunk = (1LL << 31) - 1;
MachineFunction &MF = *MBB.getParent();
const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
const X86TargetLowering &TLI = *STI.getTargetLowering();
const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF);
// It's ok to not take into account large chunks when probing, as the
// allocation is split in smaller chunks anyway.
if (EmitInlineStackProbe && !InEpilogue) {
// This pseudo-instruction is going to be expanded, potentially using a
// loop, by inlineStackProbe().
BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset);
return;
} else if (Offset > Chunk) {
// Rather than emit a long series of instructions for large offsets,
// load the offset into a register and do one sub/add
unsigned Reg = 0;
unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
if (isSub && !isEAXLiveIn(MBB))
Reg = Rax;
else
Reg = TRI->findDeadCallerSavedReg(MBB, MBBI);
unsigned AddSubRROpc =
isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit);
if (Reg) {
BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Offset)), Reg)
.addImm(Offset)
.setMIFlag(Flag);
MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr)
.addReg(StackPtr)
.addReg(Reg);
MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
return;
} else if (Offset > 8 * Chunk) {
// If we would need more than 8 add or sub instructions (a >16GB stack
// frame), it's worth spilling RAX to materialize this immediate.
// pushq %rax
// movabsq +-$Offset+-SlotSize, %rax
// addq %rsp, %rax
// xchg %rax, (%rsp)
// movq (%rsp), %rsp
assert(Is64Bit && "can't have 32-bit 16GB stack frame");
BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
.addReg(Rax, RegState::Kill)
.setMIFlag(Flag);
// Subtract is not commutative, so negate the offset and always use add.
// Subtract 8 less and add 8 more to account for the PUSH we just did.
if (isSub)
Offset = -(Offset - SlotSize);
else
Offset = Offset + SlotSize;
BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Offset)), Rax)
.addImm(Offset)
.setMIFlag(Flag);
MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax)
.addReg(Rax)
.addReg(StackPtr);
MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
// Exchange the new SP in RAX with the top of the stack.
addRegOffset(
BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax),
StackPtr, false, 0);
// Load new SP from the top of the stack into RSP.
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr),
StackPtr, false, 0);
return;
}
}
while (Offset) {
uint64_t ThisVal = std::min(Offset, Chunk);
if (ThisVal == SlotSize) {
// Use push / pop for slot sized adjustments as a size optimization. We
// need to find a dead register when using pop.
unsigned Reg = isSub
? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
: TRI->findDeadCallerSavedReg(MBB, MBBI);
if (Reg) {
unsigned Opc = isSub
? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
: (Is64Bit ? X86::POP64r : X86::POP32r);
BuildMI(MBB, MBBI, DL, TII.get(Opc))
.addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub))
.setMIFlag(Flag);
Offset -= ThisVal;
continue;
}
}
BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue)
.setMIFlag(Flag);
Offset -= ThisVal;
}
}
MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
const DebugLoc &DL, int64_t Offset, bool InEpilogue) const {
assert(Offset != 0 && "zero offset stack adjustment requested");
// On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
// is tricky.
bool UseLEA;
if (!InEpilogue) {
// Check if inserting the prologue at the beginning
// of MBB would require to use LEA operations.
// We need to use LEA operations if EFLAGS is live in, because
// it means an instruction will read it before it gets defined.
UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
} else {
// If we can use LEA for SP but we shouldn't, check that none
// of the terminators uses the eflags. Otherwise we will insert
// a ADD that will redefine the eflags and break the condition.
// Alternatively, we could move the ADD, but this may not be possible
// and is an optimization anyway.
UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
if (UseLEA && !STI.useLeaForSP())
UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
// If that assert breaks, that means we do not do the right thing
// in canUseAsEpilogue.
assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
"We shouldn't have allowed this insertion point");
}
MachineInstrBuilder MI;
if (UseLEA) {
MI = addRegOffset(BuildMI(MBB, MBBI, DL,
TII.get(getLEArOpcode(Uses64BitFramePtr)),
StackPtr),
StackPtr, false, Offset);
} else {
bool IsSub = Offset < 0;
uint64_t AbsOffset = IsSub ? -Offset : Offset;
const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset)
: getADDriOpcode(Uses64BitFramePtr, AbsOffset);
MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
.addReg(StackPtr)
.addImm(AbsOffset);
MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
}
return MI;
}
int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
bool doMergeWithPrevious) const {
if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
(!doMergeWithPrevious && MBBI == MBB.end()))
return 0;
MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
PI = skipDebugInstructionsBackward(PI, MBB.begin());
// It is assumed that ADD/SUB/LEA instruction is succeded by one CFI
// instruction, and that there are no DBG_VALUE or other instructions between
// ADD/SUB/LEA and its corresponding CFI instruction.
/* TODO: Add support for the case where there are multiple CFI instructions
below the ADD/SUB/LEA, e.g.:
...
add
cfi_def_cfa_offset
cfi_offset
...
*/
if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction())
PI = std::prev(PI);
unsigned Opc = PI->getOpcode();
int Offset = 0;
if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
PI->getOperand(0).getReg() == StackPtr){
assert(PI->getOperand(1).getReg() == StackPtr);
Offset = PI->getOperand(2).getImm();
} else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
PI->getOperand(0).getReg() == StackPtr &&
PI->getOperand(1).getReg() == StackPtr &&
PI->getOperand(2).getImm() == 1 &&
PI->getOperand(3).getReg() == X86::NoRegister &&
PI->getOperand(5).getReg() == X86::NoRegister) {
// For LEAs we have: def = lea SP, FI, noreg, Offset, noreg.
Offset = PI->getOperand(4).getImm();
} else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
PI->getOperand(0).getReg() == StackPtr) {
assert(PI->getOperand(1).getReg() == StackPtr);
Offset = -PI->getOperand(2).getImm();
} else
return 0;
PI = MBB.erase(PI);
if (PI != MBB.end() && PI->isCFIInstruction()) {
auto CIs = MBB.getParent()->getFrameInstructions();
MCCFIInstruction CI = CIs[PI->getOperand(0).getCFIIndex()];
if (CI.getOperation() == MCCFIInstruction::OpDefCfaOffset ||
CI.getOperation() == MCCFIInstruction::OpAdjustCfaOffset)
PI = MBB.erase(PI);
}
if (!doMergeWithPrevious)
MBBI = skipDebugInstructionsForward(PI, MBB.end());
return Offset;
}
void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
const DebugLoc &DL,
const MCCFIInstruction &CFIInst,
MachineInstr::MIFlag Flag) const {
MachineFunction &MF = *MBB.getParent();
unsigned CFIIndex = MF.addFrameInst(CFIInst);
BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlag(Flag);
}
/// Emits Dwarf Info specifying offsets of callee saved registers and
/// frame pointer. This is called only when basic block sections are enabled.
void X86FrameLowering::emitCalleeSavedFrameMovesFullCFA(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
MachineFunction &MF = *MBB.getParent();
if (!hasFP(MF)) {
emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true);
return;
}
const MachineModuleInfo &MMI = MF.getMMI();
const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
const Register FramePtr = TRI->getFrameRegister(MF);
const Register MachineFramePtr =
STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FramePtr, 64))
: FramePtr;
unsigned DwarfReg = MRI->getDwarfRegNum(MachineFramePtr, true);
// Offset = space for return address + size of the frame pointer itself.
unsigned Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4);
BuildCFI(MBB, MBBI, DebugLoc{},
MCCFIInstruction::createOffset(nullptr, DwarfReg, -Offset));
emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true);
}
void X86FrameLowering::emitCalleeSavedFrameMoves(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
const DebugLoc &DL, bool IsPrologue) const {
MachineFunction &MF = *MBB.getParent();
MachineFrameInfo &MFI = MF.getFrameInfo();
MachineModuleInfo &MMI = MF.getMMI();
const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
// Add callee saved registers to move list.
const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
// Calculate offsets.
for (const CalleeSavedInfo &I : CSI) {
int64_t Offset = MFI.getObjectOffset(I.getFrameIdx());
Register Reg = I.getReg();
unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
if (IsPrologue) {
BuildCFI(MBB, MBBI, DL,
MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
} else {
BuildCFI(MBB, MBBI, DL,
MCCFIInstruction::createRestore(nullptr, DwarfReg));
}
}
}
void X86FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero,
MachineBasicBlock &MBB) const {
const MachineFunction &MF = *MBB.getParent();
// Insertion point.
MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
// Fake a debug loc.
DebugLoc DL;
if (MBBI != MBB.end())
DL = MBBI->getDebugLoc();
// Zero out FP stack if referenced. Do this outside of the loop below so that
// it's done only once.
const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
for (MCRegister Reg : RegsToZero.set_bits()) {
if (!X86::RFP80RegClass.contains(Reg))
continue;
unsigned NumFPRegs = ST.is64Bit() ? 8 : 7;
for (unsigned i = 0; i != NumFPRegs; ++i)
BuildMI(MBB, MBBI, DL, TII.get(X86::LD_F0));
for (unsigned i = 0; i != NumFPRegs; ++i)
BuildMI(MBB, MBBI, DL, TII.get(X86::ST_FPrr)).addReg(X86::ST0);
break;
}
// For GPRs, we only care to clear out the 32-bit register.
BitVector GPRsToZero(TRI->getNumRegs());
for (MCRegister Reg : RegsToZero.set_bits())
if (TRI->isGeneralPurposeRegister(MF, Reg)) {
GPRsToZero.set(getX86SubSuperRegisterOrZero(Reg, 32));
RegsToZero.reset(Reg);
}
for (MCRegister Reg : GPRsToZero.set_bits())
BuildMI(MBB, MBBI, DL, TII.get(X86::XOR32rr), Reg)
.addReg(Reg, RegState::Undef)
.addReg(Reg, RegState::Undef);
// Zero out registers.
for (MCRegister Reg : RegsToZero.set_bits()) {
if (ST.hasMMX() && X86::VR64RegClass.contains(Reg))
// FIXME: Ignore MMX registers?
continue;
unsigned XorOp;
if (X86::VR128RegClass.contains(Reg)) {
// XMM#
if (!ST.hasSSE1())
continue;
XorOp = X86::PXORrr;
} else if (X86::VR256RegClass.contains(Reg)) {
// YMM#
if (!ST.hasAVX())
continue;
XorOp = X86::VPXORrr;
} else if (X86::VR512RegClass.contains(Reg)) {
// ZMM#
if (!ST.hasAVX512())
continue;
XorOp = X86::VPXORYrr;
} else if (X86::VK1RegClass.contains(Reg) ||
X86::VK2RegClass.contains(Reg) ||
X86::VK4RegClass.contains(Reg) ||
X86::VK8RegClass.contains(Reg) ||
X86::VK16RegClass.contains(Reg)) {
if (!ST.hasVLX())
continue;
XorOp = ST.hasBWI() ? X86::KXORQrr : X86::KXORWrr;
} else {
continue;
}
BuildMI(MBB, MBBI, DL, TII.get(XorOp), Reg)
.addReg(Reg, RegState::Undef)
.addReg(Reg, RegState::Undef);
}
}
void X86FrameLowering::emitStackProbe(
MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog,
std::optional<MachineFunction::DebugInstrOperandPair> InstrNum) const {
const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
if (STI.isTargetWindowsCoreCLR()) {
if (InProlog) {
BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING))
.addImm(0 /* no explicit stack size */);
} else {
emitStackProbeInline(MF, MBB, MBBI, DL, false);
}
} else {
emitStackProbeCall(MF, MBB, MBBI, DL, InProlog, InstrNum);
}
}
bool X86FrameLowering::stackProbeFunctionModifiesSP() const {
return STI.isOSWindows() && !STI.isTargetWin64();
}
void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
MachineBasicBlock &PrologMBB) const {
auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) {
return MI.getOpcode() == X86::STACKALLOC_W_PROBING;
});
if (Where != PrologMBB.end()) {
DebugLoc DL = PrologMBB.findDebugLoc(Where);
emitStackProbeInline(MF, PrologMBB, Where, DL, true);
Where->eraseFromParent();
}
}
void X86FrameLowering::emitStackProbeInline(MachineFunction &MF,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
const DebugLoc &DL,
bool InProlog) const {
const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
if (STI.isTargetWindowsCoreCLR() && STI.is64Bit())
emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog);
else
emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog);
}
void X86FrameLowering::emitStackProbeInlineGeneric(
MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
MachineInstr &AllocWithProbe = *MBBI;
uint64_t Offset = AllocWithProbe.getOperand(0).getImm();
const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
const X86TargetLowering &TLI = *STI.getTargetLowering();
assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) &&
"different expansion expected for CoreCLR 64 bit");
const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
uint64_t ProbeChunk = StackProbeSize * 8;
uint64_t MaxAlign =
TRI->hasStackRealignment(MF) ? calculateMaxStackAlign(MF) : 0;
// Synthesize a loop or unroll it, depending on the number of iterations.
// BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left
// between the unaligned rsp and current rsp.
if (Offset > ProbeChunk) {
emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset,
MaxAlign % StackProbeSize);
} else {
emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset,
MaxAlign % StackProbeSize);
}
}
void X86FrameLowering::emitStackProbeInlineGenericBlock(
MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset,
uint64_t AlignOffset) const {
const bool NeedsDwarfCFI = needsDwarfCFI(MF);
const bool HasFP = hasFP(MF);
const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
const X86TargetLowering &TLI = *STI.getTargetLowering();
const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
uint64_t CurrentOffset = 0;
assert(AlignOffset < StackProbeSize);
// If the offset is so small it fits within a page, there's nothing to do.
if (StackProbeSize < Offset + AlignOffset) {
uint64_t StackAdjustment = StackProbeSize - AlignOffset;
BuildStackAdjustment(MBB, MBBI, DL, -StackAdjustment, /*InEpilogue=*/false)
.setMIFlag(MachineInstr::FrameSetup);
if (!HasFP && NeedsDwarfCFI) {
BuildCFI(
MBB, MBBI, DL,
MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
}
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
.setMIFlag(MachineInstr::FrameSetup),
StackPtr, false, 0)
.addImm(0)
.setMIFlag(MachineInstr::FrameSetup);
NumFrameExtraProbe++;
CurrentOffset = StackProbeSize - AlignOffset;
}
// For the next N - 1 pages, just probe. I tried to take advantage of
// natural probes but it implies much more logic and there was very few
// interesting natural probes to interleave.
while (CurrentOffset + StackProbeSize < Offset) {
BuildStackAdjustment(MBB, MBBI, DL, -StackProbeSize, /*InEpilogue=*/false)
.setMIFlag(MachineInstr::FrameSetup);
if (!HasFP && NeedsDwarfCFI) {
BuildCFI(
MBB, MBBI, DL,
MCCFIInstruction::createAdjustCfaOffset(nullptr, StackProbeSize));
}
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
.setMIFlag(MachineInstr::FrameSetup),
StackPtr, false, 0)
.addImm(0)
.setMIFlag(MachineInstr::FrameSetup);
NumFrameExtraProbe++;
CurrentOffset += StackProbeSize;
}
// No need to probe the tail, it is smaller than a Page.
uint64_t ChunkSize = Offset - CurrentOffset;
if (ChunkSize == SlotSize) {
// Use push for slot sized adjustments as a size optimization,
// like emitSPUpdate does when not probing.
unsigned Reg = Is64Bit ? X86::RAX : X86::EAX;
unsigned Opc = Is64Bit ? X86::PUSH64r : X86::PUSH32r;
BuildMI(MBB, MBBI, DL, TII.get(Opc))
.addReg(Reg, RegState::Undef)
.setMIFlag(MachineInstr::FrameSetup);
} else {
BuildStackAdjustment(MBB, MBBI, DL, -ChunkSize, /*InEpilogue=*/false)
.setMIFlag(MachineInstr::FrameSetup);
}
// No need to adjust Dwarf CFA offset here, the last position of the stack has
// been defined
}
void X86FrameLowering::emitStackProbeInlineGenericLoop(
MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset,
uint64_t AlignOffset) const {
assert(Offset && "null offset");
assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) !=
MachineBasicBlock::LQR_Live &&
"Inline stack probe loop will clobber live EFLAGS.");
const bool NeedsDwarfCFI = needsDwarfCFI(MF);
const bool HasFP = hasFP(MF);
const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
const X86TargetLowering &TLI = *STI.getTargetLowering();
const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
if (AlignOffset) {
if (AlignOffset < StackProbeSize) {
// Perform a first smaller allocation followed by a probe.
BuildStackAdjustment(MBB, MBBI, DL, -AlignOffset, /*InEpilogue=*/false)
.setMIFlag(MachineInstr::FrameSetup);
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
.setMIFlag(MachineInstr::FrameSetup),
StackPtr, false, 0)
.addImm(0)
.setMIFlag(MachineInstr::FrameSetup);
NumFrameExtraProbe++;
Offset -= AlignOffset;
}
}
// Synthesize a loop
NumFrameLoopProbe++;
const BasicBlock *LLVM_BB = MBB.getBasicBlock();
MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB);
MachineFunction::iterator MBBIter = ++MBB.getIterator();
MF.insert(MBBIter, testMBB);
MF.insert(MBBIter, tailMBB);
Register FinalStackProbed = Uses64BitFramePtr ? X86::R11
: Is64Bit ? X86::R11D
: X86::EAX;
BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed)
.addReg(StackPtr)
.setMIFlag(MachineInstr::FrameSetup);
// save loop bound
{
const unsigned BoundOffset = alignDown(Offset, StackProbeSize);
const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, BoundOffset);
BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), FinalStackProbed)
.addReg(FinalStackProbed)
.addImm(BoundOffset)
.setMIFlag(MachineInstr::FrameSetup);
// while in the loop, use loop-invariant reg for CFI,
// instead of the stack pointer, which changes during the loop
if (!HasFP && NeedsDwarfCFI) {
// x32 uses the same DWARF register numbers as x86-64,
// so there isn't a register number for r11d, we must use r11 instead
const Register DwarfFinalStackProbed =
STI.isTarget64BitILP32()
? Register(getX86SubSuperRegister(FinalStackProbed, 64))
: FinalStackProbed;
BuildCFI(MBB, MBBI, DL,
MCCFIInstruction::createDefCfaRegister(
nullptr, TRI->getDwarfRegNum(DwarfFinalStackProbed, true)));
BuildCFI(MBB, MBBI, DL,
MCCFIInstruction::createAdjustCfaOffset(nullptr, BoundOffset));
}
}
// allocate a page
BuildStackAdjustment(*testMBB, testMBB->end(), DL, -StackProbeSize,
/*InEpilogue=*/false)
.setMIFlag(MachineInstr::FrameSetup);
// touch the page
addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc))
.setMIFlag(MachineInstr::FrameSetup),
StackPtr, false, 0)
.addImm(0)
.setMIFlag(MachineInstr::FrameSetup);
// cmp with stack pointer bound
BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
.addReg(StackPtr)
.addReg(FinalStackProbed)
.setMIFlag(MachineInstr::FrameSetup);
// jump
BuildMI(testMBB, DL, TII.get(X86::JCC_1))
.addMBB(testMBB)
.addImm(X86::COND_NE)
.setMIFlag(MachineInstr::FrameSetup);
testMBB->addSuccessor(testMBB);
testMBB->addSuccessor(tailMBB);
// BB management
tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end());
tailMBB->transferSuccessorsAndUpdatePHIs(&MBB);
MBB.addSuccessor(testMBB);
// handle tail
const uint64_t TailOffset = Offset % StackProbeSize;
MachineBasicBlock::iterator TailMBBIter = tailMBB->begin();
if (TailOffset) {
BuildStackAdjustment(*tailMBB, TailMBBIter, DL, -TailOffset,
/*InEpilogue=*/false)
.setMIFlag(MachineInstr::FrameSetup);
}
// after the loop, switch back to stack pointer for CFI
if (!HasFP && NeedsDwarfCFI) {
// x32 uses the same DWARF register numbers as x86-64,
// so there isn't a register number for esp, we must use rsp instead
const Register DwarfStackPtr =
STI.isTarget64BitILP32()
? Register(getX86SubSuperRegister(StackPtr, 64))
: Register(StackPtr);
BuildCFI(*tailMBB, TailMBBIter, DL,
MCCFIInstruction::createDefCfaRegister(
nullptr, TRI->getDwarfRegNum(DwarfStackPtr, true)));
}
// Update Live In information
recomputeLiveIns(*testMBB);
recomputeLiveIns(*tailMBB);
}
void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64(
MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
assert(STI.is64Bit() && "different expansion needed for 32 bit");
assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
const TargetInstrInfo &TII = *STI.getInstrInfo();
const BasicBlock *LLVM_BB = MBB.getBasicBlock();
assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) !=
MachineBasicBlock::LQR_Live &&
"Inline stack probe loop will clobber live EFLAGS.");
// RAX contains the number of bytes of desired stack adjustment.
// The handling here assumes this value has already been updated so as to
// maintain stack alignment.
//
// We need to exit with RSP modified by this amount and execute suitable
// page touches to notify the OS that we're growing the stack responsibly.
// All stack probing must be done without modifying RSP.
//
// MBB:
// SizeReg = RAX;
// ZeroReg = 0
// CopyReg = RSP
// Flags, TestReg = CopyReg - SizeReg
// FinalReg = !Flags.Ovf ? TestReg : ZeroReg
// LimitReg = gs magic thread env access
// if FinalReg >= LimitReg goto ContinueMBB
// RoundBB:
// RoundReg = page address of FinalReg
// LoopMBB:
// LoopReg = PHI(LimitReg,ProbeReg)
// ProbeReg = LoopReg - PageSize
// [ProbeReg] = 0
// if (ProbeReg > RoundReg) goto LoopMBB
// ContinueMBB:
// RSP = RSP - RAX
// [rest of original MBB]
// Set up the new basic blocks
MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);
MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
MF.insert(MBBIter, RoundMBB);
MF.insert(MBBIter, LoopMBB);
MF.insert(MBBIter, ContinueMBB);
// Split MBB and move the tail portion down to ContinueMBB.
MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);
// Some useful constants
const int64_t ThreadEnvironmentStackLimit = 0x10;
const int64_t PageSize = 0x1000;
const int64_t PageMask = ~(PageSize - 1);
// Registers we need. For the normal case we use virtual
// registers. For the prolog expansion we use RAX, RCX and RDX.
MachineRegisterInfo &MRI = MF.getRegInfo();
const TargetRegisterClass *RegClass = &X86::GR64RegClass;
const Register SizeReg = InProlog ? X86::RAX
: MRI.createVirtualRegister(RegClass),
ZeroReg = InProlog ? X86::RCX
: MRI.createVirtualRegister(RegClass),
CopyReg = InProlog ? X86::RDX
: MRI.createVirtualRegister(RegClass),
TestReg = InProlog ? X86::RDX
: MRI.createVirtualRegister(RegClass),
FinalReg = InProlog ? X86::RDX
: MRI.createVirtualRegister(RegClass),
RoundedReg = InProlog ? X86::RDX
: MRI.createVirtualRegister(RegClass),
LimitReg = InProlog ? X86::RCX
: MRI.createVirtualRegister(RegClass),
JoinReg = InProlog ? X86::RCX
: MRI.createVirtualRegister(RegClass),
ProbeReg = InProlog ? X86::RCX
: MRI.createVirtualRegister(RegClass);
// SP-relative offsets where we can save RCX and RDX.
int64_t RCXShadowSlot = 0;
int64_t RDXShadowSlot = 0;
// If inlining in the prolog, save RCX and RDX.
if (InProlog) {
// Compute the offsets. We need to account for things already
// pushed onto the stack at this point: return address, frame
// pointer (if used), and callee saves.
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
const bool HasFP = hasFP(MF);
// Check if we need to spill RCX and/or RDX.
// Here we assume that no earlier prologue instruction changes RCX and/or
// RDX, so checking the block live-ins is enough.
const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX);
const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX);
int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
// Assign the initial slot to both registers, then change RDX's slot if both
// need to be spilled.
if (IsRCXLiveIn)
RCXShadowSlot = InitSlot;
if (IsRDXLiveIn)
RDXShadowSlot = InitSlot;
if (IsRDXLiveIn && IsRCXLiveIn)
RDXShadowSlot += 8;
// Emit the saves if needed.
if (IsRCXLiveIn)
addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
RCXShadowSlot)
.addReg(X86::RCX);
if (IsRDXLiveIn)
addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
RDXShadowSlot)
.addReg(X86::RDX);
} else {
// Not in the prolog. Copy RAX to a virtual reg.
BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
}
// Add code to MBB to check for overflow and set the new target stack pointer
// to zero if so.
BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
.addReg(ZeroReg, RegState::Undef)
.addReg(ZeroReg, RegState::Undef);
BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
.addReg(CopyReg)
.addReg(SizeReg);
BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg)
.addReg(TestReg)
.addReg(ZeroReg)
.addImm(X86::COND_B);
// FinalReg now holds final stack pointer value, or zero if
// allocation would overflow. Compare against the current stack
// limit from the thread environment block. Note this limit is the
// lowest touched page on the stack, not the point at which the OS
// will cause an overflow exception, so this is just an optimization
// to avoid unnecessarily touching pages that are below the current
// SP but already committed to the stack by the OS.
BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
.addReg(0)
.addImm(1)
.addReg(0)
.addImm(ThreadEnvironmentStackLimit)
.addReg(X86::GS);
BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
// Jump if the desired stack pointer is at or above the stack limit.
BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE);
// Add code to roundMBB to round the final stack pointer to a page boundary.
RoundMBB->addLiveIn(FinalReg);
BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
.addReg(FinalReg)
.addImm(PageMask);
BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
// LimitReg now holds the current stack limit, RoundedReg page-rounded
// final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
// and probe until we reach RoundedReg.
if (!InProlog) {
BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
.addReg(LimitReg)
.addMBB(RoundMBB)
.addReg(ProbeReg)
.addMBB(LoopMBB);
}
LoopMBB->addLiveIn(JoinReg);
addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
false, -PageSize);
// Probe by storing a byte onto the stack.
BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
.addReg(ProbeReg)
.addImm(1)
.addReg(0)
.addImm(0)
.addReg(0)
.addImm(0);
LoopMBB->addLiveIn(RoundedReg);
BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
.addReg(RoundedReg)
.addReg(ProbeReg);
BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE);
MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
// If in prolog, restore RDX and RCX.
if (InProlog) {
if (RCXShadowSlot) // It means we spilled RCX in the prologue.
addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
TII.get(X86::MOV64rm), X86::RCX),
X86::RSP, false, RCXShadowSlot);
if (RDXShadowSlot) // It means we spilled RDX in the prologue.
addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
TII.get(X86::MOV64rm), X86::RDX),
X86::RSP, false, RDXShadowSlot);
}
// Now that the probing is done, add code to continueMBB to update
// the stack pointer for real.
ContinueMBB->addLiveIn(SizeReg);
BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
.addReg(X86::RSP)
.addReg(SizeReg);
// Add the control flow edges we need.
MBB.addSuccessor(ContinueMBB);
MBB.addSuccessor(RoundMBB);
RoundMBB->addSuccessor(LoopMBB);
LoopMBB->addSuccessor(ContinueMBB);
LoopMBB->addSuccessor(LoopMBB);
// Mark all the instructions added to the prolog as frame setup.
if (InProlog) {
for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
BeforeMBBI->setFlag(MachineInstr::FrameSetup);
}
for (MachineInstr &MI : *RoundMBB) {
MI.setFlag(MachineInstr::FrameSetup);
}
for (MachineInstr &MI : *LoopMBB) {
MI.setFlag(MachineInstr::FrameSetup);
}
for (MachineInstr &MI :
llvm::make_range(ContinueMBB->begin(), ContinueMBBI)) {
MI.setFlag(MachineInstr::FrameSetup);
}
}
}
void X86FrameLowering::emitStackProbeCall(
MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog,
std::optional<MachineFunction::DebugInstrOperandPair> InstrNum) const {
bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
// FIXME: Add indirect thunk support and remove this.
if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls())
report_fatal_error("Emitting stack probe calls on 64-bit with the large "
"code model and indirect thunks not yet implemented.");
assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) !=
MachineBasicBlock::LQR_Live &&
"Stack probe calls will clobber live EFLAGS.");
unsigned CallOp;
if (Is64Bit)
CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
else
CallOp = X86::CALLpcrel32;
StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF);
MachineInstrBuilder CI;
MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);
// All current stack probes take AX and SP as input, clobber flags, and
// preserve all registers. x86_64 probes leave RSP unmodified.
if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
// For the large code model, we have to call through a register. Use R11,
// as it is scratch in all supported calling conventions.
BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
.addExternalSymbol(MF.createExternalSymbolName(Symbol));
CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
} else {
CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp))
.addExternalSymbol(MF.createExternalSymbolName(Symbol));
}
unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX;
unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP;
CI.addReg(AX, RegState::Implicit)
.addReg(SP, RegState::Implicit)
.addReg(AX, RegState::Define | RegState::Implicit)
.addReg(SP, RegState::Define | RegState::Implicit)
.addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
MachineInstr *ModInst = CI;
if (STI.isTargetWin64() || !STI.isOSWindows()) {
// MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves.
// MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
// themselves. They also does not clobber %rax so we can reuse it when
// adjusting %rsp.
// All other platforms do not specify a particular ABI for the stack probe
// function, so we arbitrarily define it to not adjust %esp/%rsp itself.
ModInst =
BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP)
.addReg(SP)
.addReg(AX);
}
// DebugInfo variable locations -- if there's an instruction number for the
// allocation (i.e., DYN_ALLOC_*), substitute it for the instruction that
// modifies SP.
if (InstrNum) {
if (STI.isTargetWin64() || !STI.isOSWindows()) {
// Label destination operand of the subtract.
MF.makeDebugValueSubstitution(*InstrNum,
{ModInst->getDebugInstrNum(), 0});
} else {
// Label the call. The operand number is the penultimate operand, zero
// based.
unsigned SPDefOperand = ModInst->getNumOperands() - 2;
MF.makeDebugValueSubstitution(
*InstrNum, {ModInst->getDebugInstrNum(), SPDefOperand});
}
}
if (InProlog) {
// Apply the frame setup flag to all inserted instrs.
for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
}
}
static unsigned calculateSetFPREG(uint64_t SPAdjust) {
// Win64 ABI has a less restrictive limitation of 240; 128 works equally well
// and might require smaller successive adjustments.
const uint64_t Win64MaxSEHOffset = 128;
uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
// Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
return SEHFrameOffset & -16;
}
// If we're forcing a stack realignment we can't rely on just the frame
// info, we need to know the ABI stack alignment as well in case we
// have a call out. Otherwise just make sure we have some alignment - we'll
// go with the minimum SlotSize.
uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment.
Align StackAlign = getStackAlign();
if (MF.getFunction().hasFnAttribute("stackrealign")) {
if (MFI.hasCalls())
MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
else if (MaxAlign < SlotSize)
MaxAlign = Align(SlotSize);
}
return MaxAlign.value();
}
void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
const DebugLoc &DL, unsigned Reg,
uint64_t MaxAlign) const {
uint64_t Val = -MaxAlign;
unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
MachineFunction &MF = *MBB.getParent();
const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
const X86TargetLowering &TLI = *STI.getTargetLowering();
const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF);
// We want to make sure that (in worst case) less than StackProbeSize bytes
// are not probed after the AND. This assumption is used in
// emitStackProbeInlineGeneric.
if (Reg == StackPtr && EmitInlineStackProbe && MaxAlign >= StackProbeSize) {
{
NumFrameLoopProbe++;
MachineBasicBlock *entryMBB =
MF.CreateMachineBasicBlock(MBB.getBasicBlock());
MachineBasicBlock *headMBB =
MF.CreateMachineBasicBlock(MBB.getBasicBlock());
MachineBasicBlock *bodyMBB =
MF.CreateMachineBasicBlock(MBB.getBasicBlock());
MachineBasicBlock *footMBB =
MF.CreateMachineBasicBlock(MBB.getBasicBlock());
MachineFunction::iterator MBBIter = MBB.getIterator();
MF.insert(MBBIter, entryMBB);
MF.insert(MBBIter, headMBB);
MF.insert(MBBIter, bodyMBB);
MF.insert(MBBIter, footMBB);
const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
Register FinalStackProbed = Uses64BitFramePtr ? X86::R11
: Is64Bit ? X86::R11D
: X86::EAX;
// Setup entry block
{
entryMBB->splice(entryMBB->end(), &MBB, MBB.begin(), MBBI);
BuildMI(entryMBB, DL, TII.get(TargetOpcode::COPY), FinalStackProbed)
.addReg(StackPtr)
.setMIFlag(MachineInstr::FrameSetup);
MachineInstr *MI =
BuildMI(entryMBB, DL, TII.get(AndOp), FinalStackProbed)
.addReg(FinalStackProbed)
.addImm(Val)
.setMIFlag(MachineInstr::FrameSetup);
// The EFLAGS implicit def is dead.
MI->getOperand(3).setIsDead();
BuildMI(entryMBB, DL,
TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
.addReg(FinalStackProbed)
.addReg(StackPtr)
.setMIFlag(MachineInstr::FrameSetup);
BuildMI(entryMBB, DL, TII.get(X86::JCC_1))
.addMBB(&MBB)
.addImm(X86::COND_E)
.setMIFlag(MachineInstr::FrameSetup);
entryMBB->addSuccessor(headMBB);
entryMBB->addSuccessor(&MBB);
}
// Loop entry block
{
const unsigned SUBOpc =
getSUBriOpcode(Uses64BitFramePtr, StackProbeSize);
BuildMI(headMBB, DL, TII.get(SUBOpc), StackPtr)
.addReg(StackPtr)
.addImm(StackProbeSize)
.setMIFlag(MachineInstr::FrameSetup);
BuildMI(headMBB, DL,
TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
.addReg(StackPtr)
.addReg(FinalStackProbed)
.setMIFlag(MachineInstr::FrameSetup);
// jump to the footer if StackPtr < FinalStackProbed
BuildMI(headMBB, DL, TII.get(X86::JCC_1))
.addMBB(footMBB)
.addImm(X86::COND_B)
.setMIFlag(MachineInstr::FrameSetup);
headMBB->addSuccessor(bodyMBB);
headMBB->addSuccessor(footMBB);
}
// setup loop body
{
addRegOffset(BuildMI(bodyMBB, DL, TII.get(MovMIOpc))
.setMIFlag(MachineInstr::FrameSetup),
StackPtr, false, 0)
.addImm(0)
.setMIFlag(MachineInstr::FrameSetup);
const unsigned SUBOpc =
getSUBriOpcode(Uses64BitFramePtr, StackProbeSize);
BuildMI(bodyMBB, DL, TII.get(SUBOpc), StackPtr)
.addReg(StackPtr)
.addImm(StackProbeSize)
.setMIFlag(MachineInstr::FrameSetup);
// cmp with stack pointer bound
BuildMI(bodyMBB, DL,
TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
.addReg(FinalStackProbed)
.addReg(StackPtr)
.setMIFlag(MachineInstr::FrameSetup);
// jump back while FinalStackProbed < StackPtr
BuildMI(bodyMBB, DL, TII.get(X86::JCC_1))
.addMBB(bodyMBB)
.addImm(X86::COND_B)
.setMIFlag(MachineInstr::FrameSetup);
bodyMBB->addSuccessor(bodyMBB);
bodyMBB->addSuccessor(footMBB);
}
// setup loop footer
{
BuildMI(footMBB, DL, TII.get(TargetOpcode::COPY), StackPtr)
.addReg(FinalStackProbed)
.setMIFlag(MachineInstr::FrameSetup);
addRegOffset(BuildMI(footMBB, DL, TII.get(MovMIOpc))
.setMIFlag(MachineInstr::FrameSetup),
StackPtr, false, 0)
.addImm(0)
.setMIFlag(MachineInstr::FrameSetup);
footMBB->addSuccessor(&MBB);
}
recomputeLiveIns(*headMBB);
recomputeLiveIns(*bodyMBB);
recomputeLiveIns(*footMBB);
recomputeLiveIns(MBB);
}
} else {
MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
.addReg(Reg)
.addImm(Val)
.setMIFlag(MachineInstr::FrameSetup);
// The EFLAGS implicit def is dead.
MI->getOperand(3).setIsDead();
}
}
bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const {
// x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be
// clobbered by any interrupt handler.
assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
"MF used frame lowering for wrong subtarget");
const Function &Fn = MF.getFunction();
const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv());
return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone);
}
/// Return true if we need to use the restricted Windows x64 prologue and
/// epilogue code patterns that can be described with WinCFI (.seh_*
/// directives).
bool X86FrameLowering::isWin64Prologue(const MachineFunction &MF) const {
return MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
}
bool X86FrameLowering::needsDwarfCFI(const MachineFunction &MF) const {
return !isWin64Prologue(MF) && MF.needsFrameMoves();
}
/// emitPrologue - Push callee-saved registers onto the stack, which
/// automatically adjust the stack pointer. Adjust the stack pointer to allocate
/// space for local variables. Also emit labels used by the exception handler to
/// generate the exception handling frames.
/*
Here's a gist of what gets emitted:
; Establish frame pointer, if needed
[if needs FP]
push %rbp
.cfi_def_cfa_offset 16
.cfi_offset %rbp, -16
.seh_pushreg %rpb
mov %rsp, %rbp
.cfi_def_cfa_register %rbp
; Spill general-purpose registers
[for all callee-saved GPRs]
pushq %<reg>
[if not needs FP]
.cfi_def_cfa_offset (offset from RETADDR)
.seh_pushreg %<reg>
; If the required stack alignment > default stack alignment
; rsp needs to be re-aligned. This creates a "re-alignment gap"
; of unknown size in the stack frame.
[if stack needs re-alignment]
and $MASK, %rsp
; Allocate space for locals
[if target is Windows and allocated space > 4096 bytes]
; Windows needs special care for allocations larger
; than one page.
mov $NNN, %rax
call ___chkstk_ms/___chkstk
sub %rax, %rsp
[else]
sub $NNN, %rsp
[if needs FP]
.seh_stackalloc (size of XMM spill slots)
.seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
[else]
.seh_stackalloc NNN
; Spill XMMs
; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
; they may get spilled on any platform, if the current function
; calls @llvm.eh.unwind.init
[if needs FP]
[for all callee-saved XMM registers]
movaps %<xmm reg>, -MMM(%rbp)
[for all callee-saved XMM registers]
.seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
; i.e. the offset relative to (%rbp - SEHFrameOffset)
[else]
[for all callee-saved XMM registers]
movaps %<xmm reg>, KKK(%rsp)
[for all callee-saved XMM registers]
.seh_savexmm %<xmm reg>, KKK
.seh_endprologue
[if needs base pointer]
mov %rsp, %rbx
[if needs to restore base pointer]
mov %rsp, -MMM(%rbp)
; Emit CFI info
[if needs FP]
[for all callee-saved registers]
.cfi_offset %<reg>, (offset from %rbp)
[else]
.cfi_def_cfa_offset (offset from RETADDR)
[for all callee-saved registers]
.cfi_offset %<reg>, (offset from %rsp)
Notes:
- .seh directives are emitted only for Windows 64 ABI
- .cv_fpo directives are emitted on win32 when emitting CodeView
- .cfi directives are emitted for all other ABIs
- for 32-bit code, substitute %e?? registers for %r??
*/
void X86FrameLowering::emitPrologue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
"MF used frame lowering for wrong subtarget");
MachineBasicBlock::iterator MBBI = MBB.begin();
MachineFrameInfo &MFI = MF.getFrameInfo();
const Function &Fn = MF.getFunction();
MachineModuleInfo &MMI = MF.getMMI();
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate.
bool IsFunclet = MBB.isEHFuncletEntry();
EHPersonality Personality = EHPersonality::Unknown;
if (Fn.hasPersonalityFn())
Personality = classifyEHPersonality(Fn.getPersonalityFn());
bool FnHasClrFunclet =
MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
bool HasFP = hasFP(MF);
bool IsWin64Prologue = isWin64Prologue(MF);
bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry();
// FIXME: Emit FPO data for EH funclets.
bool NeedsWinFPO =
!IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag();
bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO;
bool NeedsDwarfCFI = needsDwarfCFI(MF);
Register FramePtr = TRI->getFrameRegister(MF);
const Register MachineFramePtr =
STI.isTarget64BitILP32()
? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;
Register BasePtr = TRI->getBaseRegister();
bool HasWinCFI = false;
// Debug location must be unknown since the first debug location is used
// to determine the end of the prologue.
DebugLoc DL;
// Space reserved for stack-based arguments when making a (ABI-guaranteed)
// tail call.
unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta();
if (TailCallArgReserveSize && IsWin64Prologue)
report_fatal_error("Can't handle guaranteed tail call under win64 yet");
const bool EmitStackProbeCall =
STI.getTargetLowering()->hasStackProbeSymbol(MF);
unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF);
if (HasFP && X86FI->hasSwiftAsyncContext()) {
switch (MF.getTarget().Options.SwiftAsyncFramePointer) {
case SwiftAsyncFramePointerMode::DeploymentBased:
if (STI.swiftAsyncContextIsDynamicallySet()) {
// The special symbol below is absolute and has a *value* suitable to be
// combined with the frame pointer directly.
BuildMI(MBB, MBBI, DL, TII.get(X86::OR64rm), MachineFramePtr)
.addUse(MachineFramePtr)
.addUse(X86::RIP)
.addImm(1)
.addUse(X86::NoRegister)
.addExternalSymbol("swift_async_extendedFramePointerFlags",
X86II::MO_GOTPCREL)
.addUse(X86::NoRegister);
break;
}
[[fallthrough]];
case SwiftAsyncFramePointerMode::Always:
BuildMI(MBB, MBBI, DL, TII.get(X86::BTS64ri8), MachineFramePtr)
.addUse(MachineFramePtr)
.addImm(60)
.setMIFlag(MachineInstr::FrameSetup);
break;
case SwiftAsyncFramePointerMode::Never:
break;
}
}
// Re-align the stack on 64-bit if the x86-interrupt calling convention is
// used and an error code was pushed, since the x86-64 ABI requires a 16-byte
// stack alignment.
if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit &&
Fn.arg_size() == 2) {
StackSize += 8;
MFI.setStackSize(StackSize);
emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false);
}
// If this is x86-64 and the Red Zone is not disabled, if we are a leaf
// function, and use up to 128 bytes of stack space, don't have a frame
// pointer, calls, or dynamic alloca then we do not need to adjust the
// stack pointer (we fit in the Red Zone). We also check that we don't
// push and pop from the stack.
if (has128ByteRedZone(MF) && !TRI->hasStackRealignment(MF) &&
!MFI.hasVarSizedObjects() && // No dynamic alloca.
!MFI.adjustsStack() && // No calls.
!EmitStackProbeCall && // No stack probes.
!MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop.
!MF.shouldSplitStack()) { // Regular stack
uint64_t MinSize =
X86FI->getCalleeSavedFrameSize() - X86FI->getTCReturnAddrDelta();
if (HasFP) MinSize += SlotSize;
X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0);
StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
MFI.setStackSize(StackSize);
}
// Insert stack pointer adjustment for later moving of return addr. Only
// applies to tail call optimized functions where the callee argument stack
// size is bigger than the callers.
if (TailCallArgReserveSize != 0) {
BuildStackAdjustment(MBB, MBBI, DL, -(int)TailCallArgReserveSize,
/*InEpilogue=*/false)
.setMIFlag(MachineInstr::FrameSetup);
}
// Mapping for machine moves:
//
// DST: VirtualFP AND
// SRC: VirtualFP => DW_CFA_def_cfa_offset
// ELSE => DW_CFA_def_cfa
//
// SRC: VirtualFP AND
// DST: Register => DW_CFA_def_cfa_register
//
// ELSE
// OFFSET < 0 => DW_CFA_offset_extended_sf
// REG < 64 => DW_CFA_offset + Reg
// ELSE => DW_CFA_offset_extended
uint64_t NumBytes = 0;
int stackGrowth = -SlotSize;
// Find the funclet establisher parameter
Register Establisher = X86::NoRegister;
if (IsClrFunclet)
Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
else if (IsFunclet)
Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
// Immediately spill establisher into the home slot.
// The runtime cares about this.
// MOV64mr %rdx, 16(%rsp)
unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
.addReg(Establisher)
.setMIFlag(MachineInstr::FrameSetup);
MBB.addLiveIn(Establisher);
}
if (HasFP) {
assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved");
// Calculate required stack adjustment.
uint64_t FrameSize = StackSize - SlotSize;
// If required, include space for extra hidden slot for stashing base pointer.
if (X86FI->getRestoreBasePointer())
FrameSize += SlotSize;
NumBytes = FrameSize -
(X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize);
// Callee-saved registers are pushed on stack before the stack is realigned.
if (TRI->hasStackRealignment(MF) && !IsWin64Prologue)
NumBytes = alignTo(NumBytes, MaxAlign);
// Save EBP/RBP into the appropriate stack slot.
BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
.addReg(MachineFramePtr, RegState::Kill)
.setMIFlag(MachineInstr::FrameSetup);
if (NeedsDwarfCFI) {
// Mark the place where EBP/RBP was saved.
// Define the current CFA rule to use the provided offset.
assert(StackSize);
BuildCFI(MBB, MBBI, DL,
MCCFIInstruction::cfiDefCfaOffset(nullptr, -2 * stackGrowth),
MachineInstr::FrameSetup);
// Change the rule for the FramePtr to be an "offset" rule.
unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
BuildCFI(MBB, MBBI, DL,
MCCFIInstruction::createOffset(nullptr, DwarfFramePtr,
2 * stackGrowth),
MachineInstr::FrameSetup);
}
if (NeedsWinCFI) {
HasWinCFI = true;
BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
.addImm(FramePtr)
.setMIFlag(MachineInstr::FrameSetup);
}
if (!IsFunclet) {
if (X86FI->hasSwiftAsyncContext()) {
const auto &Attrs = MF.getFunction().getAttributes();
// Before we update the live frame pointer we have to ensure there's a
// valid (or null) asynchronous context in its slot just before FP in
// the frame record, so store it now.
if (Attrs.hasAttrSomewhere(Attribute::SwiftAsync)) {
// We have an initial context in r14, store it just before the frame
// pointer.
MBB.addLiveIn(X86::R14);
BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
.addReg(X86::R14)
.setMIFlag(MachineInstr::FrameSetup);
} else {
// No initial context, store null so that there's no pointer that
// could be misused.
BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64i8))
.addImm(0)
.setMIFlag(MachineInstr::FrameSetup);
}
if (NeedsWinCFI) {
HasWinCFI = true;
BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
.addImm(X86::R14)
.setMIFlag(MachineInstr::FrameSetup);
}
BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr)
.addUse(X86::RSP)
.addImm(1)
.addUse(X86::NoRegister)
.addImm(8)
.addUse(X86::NoRegister)
.setMIFlag(MachineInstr::FrameSetup);
BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64ri8), X86::RSP)
.addUse(X86::RSP)
.addImm(8)
.setMIFlag(MachineInstr::FrameSetup);
}
if (!IsWin64Prologue && !IsFunclet) {
// Update EBP with the new base value.
if (!X86FI->hasSwiftAsyncContext())
BuildMI(MBB, MBBI, DL,
TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
FramePtr)
.addReg(StackPtr)
.setMIFlag(MachineInstr::FrameSetup);
if (NeedsDwarfCFI) {
// Mark effective beginning of when frame pointer becomes valid.
// Define the current CFA to use the EBP/RBP register.
unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
BuildCFI(
MBB, MBBI, DL,
MCCFIInstruction::createDefCfaRegister(nullptr, DwarfFramePtr),
MachineInstr::FrameSetup);
}
if (NeedsWinFPO) {
// .cv_fpo_setframe $FramePtr
HasWinCFI = true;
BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
.addImm(FramePtr)
.addImm(0)
.setMIFlag(MachineInstr::FrameSetup);
}
}
}
} else {
assert(!IsFunclet && "funclets without FPs not yet implemented");
NumBytes = StackSize -
(X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize);
}
// Update the offset adjustment, which is mainly used by codeview to translate
// from ESP to VFRAME relative local variable offsets.
if (!IsFunclet) {
if (HasFP && TRI->hasStackRealignment(MF))
MFI.setOffsetAdjustment(-NumBytes);
else
MFI.setOffsetAdjustment(-StackSize);
}
// For EH funclets, only allocate enough space for outgoing calls. Save the
// NumBytes value that we would've used for the parent frame.
unsigned ParentFrameNumBytes = NumBytes;
if (IsFunclet)
NumBytes = getWinEHFuncletFrameSize(MF);
// Skip the callee-saved push instructions.
bool PushedRegs = false;
int StackOffset = 2 * stackGrowth;
while (MBBI != MBB.end() &&
MBBI->getFlag(MachineInstr::FrameSetup) &&
(MBBI->getOpcode() == X86::PUSH32r ||
MBBI->getOpcode() == X86::PUSH64r)) {
PushedRegs = true;
Register Reg = MBBI->getOperand(0).getReg();
++MBBI;
if (!HasFP && NeedsDwarfCFI) {
// Mark callee-saved push instruction.
// Define the current CFA rule to use the provided offset.
assert(StackSize);
BuildCFI(MBB, MBBI, DL,
MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset),
MachineInstr::FrameSetup);
StackOffset += stackGrowth;
}
if (NeedsWinCFI) {
HasWinCFI = true;
BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
.addImm(Reg)
.setMIFlag(MachineInstr::FrameSetup);
}
}
// Realign stack after we pushed callee-saved registers (so that we'll be
// able to calculate their offsets from the frame pointer).
// Don't do this for Win64, it needs to realign the stack after the prologue.
if (!IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) {
assert(HasFP && "There should be a frame pointer if stack is realigned.");
BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
if (NeedsWinCFI) {
HasWinCFI = true;
BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign))
.addImm(MaxAlign)
.setMIFlag(MachineInstr::FrameSetup);
}
}
// If there is an SUB32ri of ESP immediately before this instruction, merge
// the two. This can be the case when tail call elimination is enabled and
// the callee has more arguments then the caller.
NumBytes -= mergeSPUpdates(MBB, MBBI, true);
// Adjust stack pointer: ESP -= numbytes.
// Windows and cygwin/mingw require a prologue helper routine when allocating
// more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw
// uses __alloca. __alloca and the 32-bit version of __chkstk will probe the
// stack and adjust the stack pointer in one go. The 64-bit version of
// __chkstk is only responsible for probing the stack. The 64-bit prologue is
// responsible for adjusting the stack pointer. Touching the stack at 4K
// increments is necessary to ensure that the guard pages used by the OS
// virtual memory manager are allocated in correct sequence.
uint64_t AlignedNumBytes = NumBytes;
if (IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF))
AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign);
if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) {
assert(!X86FI->getUsesRedZone() &&
"The Red Zone is not accounted for in stack probes");
// Check whether EAX is livein for this block.
bool isEAXAlive = isEAXLiveIn(MBB);
if (isEAXAlive) {
if (Is64Bit) {
// Save RAX
BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
.addReg(X86::RAX, RegState::Kill)
.setMIFlag(MachineInstr::FrameSetup);
} else {
// Save EAX
BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
.addReg(X86::EAX, RegState::Kill)
.setMIFlag(MachineInstr::FrameSetup);
}
}
if (Is64Bit) {
// Handle the 64-bit Windows ABI case where we need to call __chkstk.
// Function prologue is responsible for adjusting the stack pointer.
int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes;
BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Alloc)), X86::RAX)
.addImm(Alloc)
.setMIFlag(MachineInstr::FrameSetup);
} else {
// Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
// We'll also use 4 already allocated bytes for EAX.
BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
.addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
.setMIFlag(MachineInstr::FrameSetup);
}
// Call __chkstk, __chkstk_ms, or __alloca.
emitStackProbe(MF, MBB, MBBI, DL, true);
if (isEAXAlive) {
// Restore RAX/EAX
MachineInstr *MI;
if (Is64Bit)
MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX),
StackPtr, false, NumBytes - 8);
else
MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
StackPtr, false, NumBytes - 4);
MI->setFlag(MachineInstr::FrameSetup);
MBB.insert(MBBI, MI);
}
} else if (NumBytes) {
emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false);
}
if (NeedsWinCFI && NumBytes) {
HasWinCFI = true;
BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
.addImm(NumBytes)
.setMIFlag(MachineInstr::FrameSetup);
}
int SEHFrameOffset = 0;
unsigned SPOrEstablisher;
if (IsFunclet) {
if (IsClrFunclet) {
// The establisher parameter passed to a CLR funclet is actually a pointer
// to the (mostly empty) frame of its nearest enclosing funclet; we have
// to find the root function establisher frame by loading the PSPSym from
// the intermediate frame.
unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
MachinePointerInfo NoInfo;
MBB.addLiveIn(Establisher);
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
Establisher, false, PSPSlotOffset)
.addMemOperand(MF.getMachineMemOperand(
NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize)));
;
// Save the root establisher back into the current funclet's (mostly
// empty) frame, in case a sub-funclet or the GC needs it.
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
false, PSPSlotOffset)
.addReg(Establisher)
.addMemOperand(MF.getMachineMemOperand(
NoInfo,
MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
SlotSize, Align(SlotSize)));
}
SPOrEstablisher = Establisher;
} else {
SPOrEstablisher = StackPtr;
}
if (IsWin64Prologue && HasFP) {
// Set RBP to a small fixed offset from RSP. In the funclet case, we base
// this calculation on the incoming establisher, which holds the value of
// RSP from the parent frame at the end of the prologue.
SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
if (SEHFrameOffset)
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
SPOrEstablisher, false, SEHFrameOffset);
else
BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
.addReg(SPOrEstablisher);
// If this is not a funclet, emit the CFI describing our frame pointer.
if (NeedsWinCFI && !IsFunclet) {
assert(!NeedsWinFPO && "this setframe incompatible with FPO data");
HasWinCFI = true;
BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
.addImm(FramePtr)
.addImm(SEHFrameOffset)
.setMIFlag(MachineInstr::FrameSetup);
if (isAsynchronousEHPersonality(Personality))
MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
}
} else if (IsFunclet && STI.is32Bit()) {
// Reset EBP / ESI to something good for funclets.
MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
// If we're a catch funclet, we can be returned to via catchret. Save ESP
// into the registration node so that the runtime will restore it for us.
if (!MBB.isCleanupFuncletEntry()) {
assert(Personality == EHPersonality::MSVC_CXX);
Register FrameReg;
int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg).getFixed();
// ESP is the first field, so no extra displacement is needed.
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
false, EHRegOffset)
.addReg(X86::ESP);
}
}
while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
const MachineInstr &FrameInstr = *MBBI;
++MBBI;
if (NeedsWinCFI) {
int FI;
if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
if (X86::FR64RegClass.contains(Reg)) {
int Offset;
Register IgnoredFrameReg;
if (IsWin64Prologue && IsFunclet)
Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg);
else
Offset =
getFrameIndexReference(MF, FI, IgnoredFrameReg).getFixed() +
SEHFrameOffset;
HasWinCFI = true;
assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data");
BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
.addImm(Reg)
.addImm(Offset)
.setMIFlag(MachineInstr::FrameSetup);
}
}
}
}
if (NeedsWinCFI && HasWinCFI)
BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
.setMIFlag(MachineInstr::FrameSetup);
if (FnHasClrFunclet && !IsFunclet) {
// Save the so-called Initial-SP (i.e. the value of the stack pointer
// immediately after the prolog) into the PSPSlot so that funclets
// and the GC can recover it.
unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
auto PSPInfo = MachinePointerInfo::getFixedStack(
MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
PSPSlotOffset)
.addReg(StackPtr)
.addMemOperand(MF.getMachineMemOperand(
PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
SlotSize, Align(SlotSize)));
}
// Realign stack after we spilled callee-saved registers (so that we'll be
// able to calculate their offsets from the frame pointer).
// Win64 requires aligning the stack after the prologue.
if (IsWin64Prologue && TRI->hasStackRealignment(MF)) {
assert(HasFP && "There should be a frame pointer if stack is realigned.");
BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
}
// We already dealt with stack realignment and funclets above.
if (IsFunclet && STI.is32Bit())
return;
// If we need a base pointer, set it up here. It's whatever the value
// of the stack pointer is at this point. Any variable size objects
// will be allocated after this, so we can still use the base pointer
// to reference locals.
if (TRI->hasBasePointer(MF)) {
// Update the base pointer with the current stack pointer.
unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
.addReg(SPOrEstablisher)
.setMIFlag(MachineInstr::FrameSetup);
if (X86FI->getRestoreBasePointer()) {
// Stash value of base pointer. Saving RSP instead of EBP shortens
// dependence chain. Used by SjLj EH.
unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
FramePtr, true, X86FI->getRestoreBasePointerOffset())
.addReg(SPOrEstablisher)
.setMIFlag(MachineInstr::FrameSetup);
}
if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
// Stash the value of the frame pointer relative to the base pointer for
// Win32 EH. This supports Win32 EH, which does the inverse of the above:
// it recovers the frame pointer from the base pointer rather than the
// other way around.
unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
Register UsedReg;
int Offset =
getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg)
.getFixed();
assert(UsedReg == BasePtr);
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
.addReg(FramePtr)
.setMIFlag(MachineInstr::FrameSetup);
}
}
if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
// Mark end of stack pointer adjustment.
if (!HasFP && NumBytes) {
// Define the current CFA rule to use the provided offset.
assert(StackSize);
BuildCFI(
MBB, MBBI, DL,
MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth),
MachineInstr::FrameSetup);
}
// Emit DWARF info specifying the offsets of the callee-saved registers.
emitCalleeSavedFrameMoves(MBB, MBBI, DL, true);
}
// X86 Interrupt handling function cannot assume anything about the direction
// flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction
// in each prologue of interrupt handler function.
//
// FIXME: Create "cld" instruction only in these cases:
// 1. The interrupt handling function uses any of the "rep" instructions.
// 2. Interrupt handling function calls another function.
//
if (Fn.getCallingConv() == CallingConv::X86_INTR)
BuildMI(MBB, MBBI, DL, TII.get(X86::CLD))
.setMIFlag(MachineInstr::FrameSetup);
// At this point we know if the function has WinCFI or not.
MF.setHasWinCFI(HasWinCFI);
}
bool X86FrameLowering::canUseLEAForSPInEpilogue(
const MachineFunction &MF) const {
// We can't use LEA instructions for adjusting the stack pointer if we don't
// have a frame pointer in the Win64 ABI. Only ADD instructions may be used
// to deallocate the stack.
// This means that we can use LEA for SP in two situations:
// 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
// 2. We *have* a frame pointer which means we are permitted to use LEA.
return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
}
static bool isFuncletReturnInstr(MachineInstr &MI) {
switch (MI.getOpcode()) {
case X86::CATCHRET:
case X86::CLEANUPRET:
return true;
default:
return false;
}
llvm_unreachable("impossible");
}
// CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
// stack. It holds a pointer to the bottom of the root function frame. The
// establisher frame pointer passed to a nested funclet may point to the
// (mostly empty) frame of its parent funclet, but it will need to find
// the frame of the root function to access locals. To facilitate this,
// every funclet copies the pointer to the bottom of the root function
// frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
// same offset for the PSPSym in the root function frame that's used in the
// funclets' frames allows each funclet to dynamically accept any ancestor
// frame as its establisher argument (the runtime doesn't guarantee the
// immediate parent for some reason lost to history), and also allows the GC,
// which uses the PSPSym for some bookkeeping, to find it in any funclet's
// frame with only a single offset reported for the entire method.
unsigned
X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
Register SPReg;
int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg,
/*IgnoreSPUpdates*/ true)
.getFixed();
assert(Offset >= 0 && SPReg == TRI->getStackRegister());
return static_cast<unsigned>(Offset);
}
unsigned
X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
// This is the size of the pushed CSRs.
unsigned CSSize = X86FI->getCalleeSavedFrameSize();
// This is the size of callee saved XMMs.
const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
unsigned XMMSize = WinEHXMMSlotInfo.size() *
TRI->getSpillSize(X86::VR128RegClass);
// This is the amount of stack a funclet needs to allocate.
unsigned UsedSize;
EHPersonality Personality =
classifyEHPersonality(MF.getFunction().getPersonalityFn());
if (Personality == EHPersonality::CoreCLR) {
// CLR funclets need to hold enough space to include the PSPSym, at the
// same offset from the stack pointer (immediately after the prolog) as it
// resides at in the main function.
UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
} else {
// Other funclets just need enough stack for outgoing call arguments.
UsedSize = MF.getFrameInfo().getMaxCallFrameSize();
}
// RBP is not included in the callee saved register block. After pushing RBP,
// everything is 16 byte aligned. Everything we allocate before an outgoing
// call must also be 16 byte aligned.
unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign());
// Subtract out the size of the callee saved registers. This is how much stack
// each funclet will allocate.
return FrameSizeMinusRBP + XMMSize - CSSize;
}
static bool isTailCallOpcode(unsigned Opc) {
return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi ||
Opc == X86::TCRETURNmi ||
Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 ||
Opc == X86::TCRETURNmi64;
}
void X86FrameLowering::emitEpilogue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator();
MachineBasicBlock::iterator MBBI = Terminator;
DebugLoc DL;
if (MBBI != MBB.end())
DL = MBBI->getDebugLoc();
// standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
const bool Is64BitILP32 = STI.isTarget64BitILP32();
Register FramePtr = TRI->getFrameRegister(MF);
Register MachineFramePtr =
Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;
bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
bool NeedsWin64CFI =
IsWin64Prologue && MF.getFunction().needsUnwindTableEntry();
bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI);
// Get the number of bytes to allocate from the FrameInfo.
uint64_t StackSize = MFI.getStackSize();
uint64_t MaxAlign = calculateMaxStackAlign(MF);
unsigned CSSize = X86FI->getCalleeSavedFrameSize();
unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta();
bool HasFP = hasFP(MF);
uint64_t NumBytes = 0;
bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() &&
!MF.getTarget().getTargetTriple().isOSWindows()) &&
MF.needsFrameMoves();
if (IsFunclet) {
assert(HasFP && "EH funclets without FP not yet implemented");
NumBytes = getWinEHFuncletFrameSize(MF);
} else if (HasFP) {
// Calculate required stack adjustment.
uint64_t FrameSize = StackSize - SlotSize;
NumBytes = FrameSize - CSSize - TailCallArgReserveSize;
// Callee-saved registers were pushed on stack before the stack was
// realigned.
if (TRI->hasStackRealignment(MF) && !IsWin64Prologue)
NumBytes = alignTo(FrameSize, MaxAlign);
} else {
NumBytes = StackSize - CSSize - TailCallArgReserveSize;
}
uint64_t SEHStackAllocAmt = NumBytes;
// AfterPop is the position to insert .cfi_restore.
MachineBasicBlock::iterator AfterPop = MBBI;
if (HasFP) {
if (X86FI->hasSwiftAsyncContext()) {
// Discard the context.
int Offset = 16 + mergeSPUpdates(MBB, MBBI, true);
emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue*/true);
}
// Pop EBP.
BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
MachineFramePtr)
.setMIFlag(MachineInstr::FrameDestroy);
// We need to reset FP to its untagged state on return. Bit 60 is currently
// used to show the presence of an extended frame.
if (X86FI->hasSwiftAsyncContext()) {
BuildMI(MBB, MBBI, DL, TII.get(X86::BTR64ri8),
MachineFramePtr)
.addUse(MachineFramePtr)
.addImm(60)
.setMIFlag(MachineInstr::FrameDestroy);
}
if (NeedsDwarfCFI) {
unsigned DwarfStackPtr =
TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true);
BuildCFI(MBB, MBBI, DL,
MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize),
MachineInstr::FrameDestroy);
if (!MBB.succ_empty() && !MBB.isReturnBlock()) {
unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
BuildCFI(MBB, AfterPop, DL,
MCCFIInstruction::createRestore(nullptr, DwarfFramePtr),
MachineInstr::FrameDestroy);
--MBBI;
--AfterPop;
}
--MBBI;
}
}
MachineBasicBlock::iterator FirstCSPop = MBBI;
// Skip the callee-saved pop instructions.
while (MBBI != MBB.begin()) {
MachineBasicBlock::iterator PI = std::prev(MBBI);
unsigned Opc = PI->getOpcode();
if (Opc != X86::DBG_VALUE && !PI->isTerminator()) {
if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
(Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
(Opc != X86::BTR64ri8 || !PI->getFlag(MachineInstr::FrameDestroy)) &&
(Opc != X86::ADD64ri8 || !PI->getFlag(MachineInstr::FrameDestroy)))
break;
FirstCSPop = PI;
}
--MBBI;
}
MBBI = FirstCSPop;
if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET)
emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator);
if (MBBI != MBB.end())
DL = MBBI->getDebugLoc();
// If there is an ADD32ri or SUB32ri of ESP immediately before this
// instruction, merge the two instructions.
if (NumBytes || MFI.hasVarSizedObjects())
NumBytes += mergeSPUpdates(MBB, MBBI, true);
// If dynamic alloca is used, then reset esp to point to the last callee-saved
// slot before popping them off! Same applies for the case, when stack was
// realigned. Don't do this if this was a funclet epilogue, since the funclets
// will not do realignment or dynamic stack allocation.
if (((TRI->hasStackRealignment(MF)) || MFI.hasVarSizedObjects()) &&
!IsFunclet) {
if (TRI->hasStackRealignment(MF))
MBBI = FirstCSPop;
unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
uint64_t LEAAmount =
IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
if (X86FI->hasSwiftAsyncContext())
LEAAmount -= 16;
// There are only two legal forms of epilogue:
// - add SEHAllocationSize, %rsp
// - lea SEHAllocationSize(%FramePtr), %rsp
//
// 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
// However, we may use this sequence if we have a frame pointer because the
// effects of the prologue can safely be undone.
if (LEAAmount != 0) {
unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
FramePtr, false, LEAAmount);
--MBBI;
} else {
unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
.addReg(FramePtr);
--MBBI;
}
} else if (NumBytes) {
// Adjust stack pointer back: ESP += numbytes.
emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true);
if (!HasFP && NeedsDwarfCFI) {
// Define the current CFA rule to use the provided offset.
BuildCFI(MBB, MBBI, DL,
MCCFIInstruction::cfiDefCfaOffset(
nullptr, CSSize + TailCallArgReserveSize + SlotSize),
MachineInstr::FrameDestroy);
}
--MBBI;
}
// Windows unwinder will not invoke function's exception handler if IP is
// either in prologue or in epilogue. This behavior causes a problem when a
// call immediately precedes an epilogue, because the return address points
// into the epilogue. To cope with that, we insert an epilogue marker here,
// then replace it with a 'nop' if it ends up immediately after a CALL in the
// final emitted code.
if (NeedsWin64CFI && MF.hasWinCFI())
BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
if (!HasFP && NeedsDwarfCFI) {
MBBI = FirstCSPop;
int64_t Offset = -CSSize - SlotSize;
// Mark callee-saved pop instruction.
// Define the current CFA rule to use the provided offset.
while (MBBI != MBB.end()) {
MachineBasicBlock::iterator PI = MBBI;
unsigned Opc = PI->getOpcode();
++MBBI;
if (Opc == X86::POP32r || Opc == X86::POP64r) {
Offset += SlotSize;
BuildCFI(MBB, MBBI, DL,
MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset),
MachineInstr::FrameDestroy);
}
}
}
// Emit DWARF info specifying the restores of the callee-saved registers.
// For epilogue with return inside or being other block without successor,
// no need to generate .cfi_restore for callee-saved registers.
if (NeedsDwarfCFI && !MBB.succ_empty())
emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false);
if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) {
// Add the return addr area delta back since we are not tail calling.
int Offset = -1 * X86FI->getTCReturnAddrDelta();
assert(Offset >= 0 && "TCDelta should never be positive");
if (Offset) {
// Check for possible merge with preceding ADD instruction.
Offset += mergeSPUpdates(MBB, Terminator, true);
emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true);
}
}
// Emit tilerelease for AMX kernel.
if (X86FI->hasVirtualTileReg())
BuildMI(MBB, Terminator, DL, TII.get(X86::TILERELEASE));
}
StackOffset X86FrameLowering::getFrameIndexReference(const MachineFunction &MF,
int FI,
Register &FrameReg) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
bool IsFixed = MFI.isFixedObjectIndex(FI);
// We can't calculate offset from frame pointer if the stack is realigned,
// so enforce usage of stack/base pointer. The base pointer is used when we
// have dynamic allocas in addition to dynamic realignment.
if (TRI->hasBasePointer(MF))
FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister();
else if (TRI->hasStackRealignment(MF))
FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister();
else
FrameReg = TRI->getFrameRegister(MF);
// Offset will hold the offset from the stack pointer at function entry to the
// object.
// We need to factor in additional offsets applied during the prologue to the
// frame, base, and stack pointer depending on which is used.
int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea();
const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
unsigned CSSize = X86FI->getCalleeSavedFrameSize();
uint64_t StackSize = MFI.getStackSize();
bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
int64_t FPDelta = 0;
// In an x86 interrupt, remove the offset we added to account for the return
// address from any stack object allocated in the caller's frame. Interrupts
// do not have a standard return address. Fixed objects in the current frame,
// such as SSE register spills, should not get this treatment.
if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR &&
Offset >= 0) {
Offset += getOffsetOfLocalArea();
}
if (IsWin64Prologue) {
assert(!MFI.hasCalls() || (StackSize % 16) == 8);
// Calculate required stack adjustment.
uint64_t FrameSize = StackSize - SlotSize;
// If required, include space for extra hidden slot for stashing base pointer.
if (X86FI->getRestoreBasePointer())
FrameSize += SlotSize;
uint64_t NumBytes = FrameSize - CSSize;
uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
if (FI && FI == X86FI->getFAIndex())
return StackOffset::getFixed(-SEHFrameOffset);
// FPDelta is the offset from the "traditional" FP location of the old base
// pointer followed by return address and the location required by the
// restricted Win64 prologue.
// Add FPDelta to all offsets below that go through the frame pointer.
FPDelta = FrameSize - SEHFrameOffset;
assert((!MFI.hasCalls() || (FPDelta % 16) == 0) &&
"FPDelta isn't aligned per the Win64 ABI!");
}
if (FrameReg == TRI->getFramePtr()) {
// Skip saved EBP/RBP
Offset += SlotSize;
// Account for restricted Windows prologue.
Offset += FPDelta;
// Skip the RETADDR move area
int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
if (TailCallReturnAddrDelta < 0)
Offset -= TailCallReturnAddrDelta;
return StackOffset::getFixed(Offset);
}
// FrameReg is either the stack pointer or a base pointer. But the base is
// located at the end of the statically known StackSize so the distinction
// doesn't really matter.
if (TRI->hasStackRealignment(MF) || TRI->hasBasePointer(MF))
assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize)));
return StackOffset::getFixed(Offset + StackSize);
}
int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI,
Register &FrameReg) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
const auto it = WinEHXMMSlotInfo.find(FI);
if (it == WinEHXMMSlotInfo.end())
return getFrameIndexReference(MF, FI, FrameReg).getFixed();
FrameReg = TRI->getStackRegister();
return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) +
it->second;
}
StackOffset
X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, int FI,
Register &FrameReg,
int Adjustment) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
FrameReg = TRI->getStackRegister();
return StackOffset::getFixed(MFI.getObjectOffset(FI) -
getOffsetOfLocalArea() + Adjustment);
}
StackOffset
X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF,
int FI, Register &FrameReg,
bool IgnoreSPUpdates) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
// Does not include any dynamic realign.
const uint64_t StackSize = MFI.getStackSize();
// LLVM arranges the stack as follows:
// ...
// ARG2
// ARG1
// RETADDR
// PUSH RBP <-- RBP points here
// PUSH CSRs
// ~~~~~~~ <-- possible stack realignment (non-win64)
// ...
// STACK OBJECTS
// ... <-- RSP after prologue points here
// ~~~~~~~ <-- possible stack realignment (win64)
//
// if (hasVarSizedObjects()):
// ... <-- "base pointer" (ESI/RBX) points here
// DYNAMIC ALLOCAS
// ... <-- RSP points here
//
// Case 1: In the simple case of no stack realignment and no dynamic
// allocas, both "fixed" stack objects (arguments and CSRs) are addressable
// with fixed offsets from RSP.
//
// Case 2: In the case of stack realignment with no dynamic allocas, fixed
// stack objects are addressed with RBP and regular stack objects with RSP.
//
// Case 3: In the case of dynamic allocas and stack realignment, RSP is used
// to address stack arguments for outgoing calls and nothing else. The "base
// pointer" points to local variables, and RBP points to fixed objects.
//
// In cases 2 and 3, we can only answer for non-fixed stack objects, and the
// answer we give is relative to the SP after the prologue, and not the
// SP in the middle of the function.
if (MFI.isFixedObjectIndex(FI) && TRI->hasStackRealignment(MF) &&
!STI.isTargetWin64())
return getFrameIndexReference(MF, FI, FrameReg);
// If !hasReservedCallFrame the function might have SP adjustement in the
// body. So, even though the offset is statically known, it depends on where
// we are in the function.
if (!IgnoreSPUpdates && !hasReservedCallFrame(MF))
return getFrameIndexReference(MF, FI, FrameReg);
// We don't handle tail calls, and shouldn't be seeing them either.
assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 &&
"we don't handle this case!");
// This is how the math works out:
//
// %rsp grows (i.e. gets lower) left to right. Each box below is
// one word (eight bytes). Obj0 is the stack slot we're trying to
// get to.
//
// ----------------------------------
// | BP | Obj0 | Obj1 | ... | ObjN |
// ----------------------------------
// ^ ^ ^ ^
// A B C E
//
// A is the incoming stack pointer.
// (B - A) is the local area offset (-8 for x86-64) [1]
// (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2]
//
// |(E - B)| is the StackSize (absolute value, positive). For a
// stack that grown down, this works out to be (B - E). [3]
//
// E is also the value of %rsp after stack has been set up, and we
// want (C - E) -- the value we can add to %rsp to get to Obj0. Now
// (C - E) == (C - A) - (B - A) + (B - E)
// { Using [1], [2] and [3] above }
// == getObjectOffset - LocalAreaOffset + StackSize
return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize);
}
bool X86FrameLowering::assignCalleeSavedSpillSlots(
MachineFunction &MF, const TargetRegisterInfo *TRI,
std::vector<CalleeSavedInfo> &CSI) const {
MachineFrameInfo &MFI = MF.getFrameInfo();
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
unsigned CalleeSavedFrameSize = 0;
unsigned XMMCalleeSavedFrameSize = 0;
auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
if (TailCallReturnAddrDelta < 0) {
// create RETURNADDR area
// arg
// arg
// RETADDR
// { ...
// RETADDR area
// ...
// }
// [EBP]
MFI.CreateFixedObject(-TailCallReturnAddrDelta,
TailCallReturnAddrDelta - SlotSize, true);
}
// Spill the BasePtr if it's used.
if (this->TRI->hasBasePointer(MF)) {
// Allocate a spill slot for EBP if we have a base pointer and EH funclets.
if (MF.hasEHFunclets()) {
int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize));
X86FI->setHasSEHFramePtrSave(true);
X86FI->setSEHFramePtrSaveIndex(FI);
}
}
if (hasFP(MF)) {
// emitPrologue always spills frame register the first thing.
SpillSlotOffset -= SlotSize;
MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
// The async context lives directly before the frame pointer, and we
// allocate a second slot to preserve stack alignment.
if (X86FI->hasSwiftAsyncContext()) {
SpillSlotOffset -= SlotSize;
MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
SpillSlotOffset -= SlotSize;
}
// Since emitPrologue and emitEpilogue will handle spilling and restoring of
// the frame register, we can delete it from CSI list and not have to worry
// about avoiding it later.
Register FPReg = TRI->getFrameRegister(MF);
for (unsigned i = 0; i < CSI.size(); ++i) {
if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
CSI.erase(CSI.begin() + i);
break;
}
}
}
// Assign slots for GPRs. It increases frame size.
for (CalleeSavedInfo &I : llvm::reverse(CSI)) {
Register Reg = I.getReg();
if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
continue;
SpillSlotOffset -= SlotSize;
CalleeSavedFrameSize += SlotSize;
int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
I.setFrameIdx(SlotIndex);
}
X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize);
// Assign slots for XMMs.
for (CalleeSavedInfo &I : llvm::reverse(CSI)) {
Register Reg = I.getReg();
if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
continue;
// If this is k-register make sure we lookup via the largest legal type.
MVT VT = MVT::Other;
if (X86::VK16RegClass.contains(Reg))
VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
unsigned Size = TRI->getSpillSize(*RC);
Align Alignment = TRI->getSpillAlign(*RC);
// ensure alignment
assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86");
SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment);
// spill into slot
SpillSlotOffset -= Size;
int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset);
I.setFrameIdx(SlotIndex);
MFI.ensureMaxAlignment(Alignment);
// Save the start offset and size of XMM in stack frame for funclets.
if (X86::VR128RegClass.contains(Reg)) {
WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize;
XMMCalleeSavedFrameSize += Size;
}
}
return true;
}
bool X86FrameLowering::spillCalleeSavedRegisters(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
DebugLoc DL = MBB.findDebugLoc(MI);
// Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
// for us, and there are no XMM CSRs on Win32.
if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
return true;
// Push GPRs. It increases frame size.
const MachineFunction &MF = *MBB.getParent();
unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
for (const CalleeSavedInfo &I : llvm::reverse(CSI)) {
Register Reg = I.getReg();
if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
continue;
const MachineRegisterInfo &MRI = MF.getRegInfo();
bool isLiveIn = MRI.isLiveIn(Reg);
if (!isLiveIn)
MBB.addLiveIn(Reg);
// Decide whether we can add a kill flag to the use.
bool CanKill = !isLiveIn;
// Check if any subregister is live-in
if (CanKill) {
for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) {
if (MRI.isLiveIn(*AReg)) {
CanKill = false;
break;
}
}
}
// Do not set a kill flag on values that are also marked as live-in. This
// happens with the @llvm-returnaddress intrinsic and with arguments
// passed in callee saved registers.
// Omitting the kill flags is conservatively correct even if the live-in
// is not used after all.
BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill))
.setMIFlag(MachineInstr::FrameSetup);
}
// Make XMM regs spilled. X86 does not have ability of push/pop XMM.
// It can be done by spilling XMMs to stack frame.
for (const CalleeSavedInfo &I : llvm::reverse(CSI)) {
Register Reg = I.getReg();
if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
continue;
// If this is k-register make sure we lookup via the largest legal type.
MVT VT = MVT::Other;
if (X86::VK16RegClass.contains(Reg))
VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
// Add the callee-saved register as live-in. It's killed at the spill.
MBB.addLiveIn(Reg);
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
TII.storeRegToStackSlot(MBB, MI, Reg, true, I.getFrameIdx(), RC, TRI,
Register());
--MI;
MI->setFlag(MachineInstr::FrameSetup);
++MI;
}
return true;
}
void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
MachineInstr *CatchRet) const {
// SEH shouldn't use catchret.
assert(!isAsynchronousEHPersonality(classifyEHPersonality(
MBB.getParent()->getFunction().getPersonalityFn())) &&
"SEH should not use CATCHRET");
const DebugLoc &DL = CatchRet->getDebugLoc();
MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB();
// Fill EAX/RAX with the address of the target block.
if (STI.is64Bit()) {
// LEA64r CatchRetTarget(%rip), %rax
BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX)
.addReg(X86::RIP)
.addImm(0)
.addReg(0)
.addMBB(CatchRetTarget)
.addReg(0);
} else {
// MOV32ri $CatchRetTarget, %eax
BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
.addMBB(CatchRetTarget);
}
// Record that we've taken the address of CatchRetTarget and no longer just
// reference it in a terminator.
CatchRetTarget->setMachineBlockAddressTaken();
}
bool X86FrameLowering::restoreCalleeSavedRegisters(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
if (CSI.empty())
return false;
if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) {
// Don't restore CSRs in 32-bit EH funclets. Matches
// spillCalleeSavedRegisters.
if (STI.is32Bit())
return true;
// Don't restore CSRs before an SEH catchret. SEH except blocks do not form
// funclets. emitEpilogue transforms these to normal jumps.
if (MI->getOpcode() == X86::CATCHRET) {
const Function &F = MBB.getParent()->getFunction();
bool IsSEH = isAsynchronousEHPersonality(
classifyEHPersonality(F.getPersonalityFn()));
if (IsSEH)
return true;
}
}
DebugLoc DL = MBB.findDebugLoc(MI);
// Reload XMMs from stack frame.
for (const CalleeSavedInfo &I : CSI) {
Register Reg = I.getReg();
if (X86::GR64RegClass.contains(Reg) ||
X86::GR32RegClass.contains(Reg))
continue;
// If this is k-register make sure we lookup via the largest legal type.
MVT VT = MVT::Other;
if (X86::VK16RegClass.contains(Reg))
VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
TII.loadRegFromStackSlot(MBB, MI, Reg, I.getFrameIdx(), RC, TRI,
Register());
}
// POP GPRs.
unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
for (const CalleeSavedInfo &I : CSI) {
Register Reg = I.getReg();
if (!X86::GR64RegClass.contains(Reg) &&
!X86::GR32RegClass.contains(Reg))
continue;
BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
.setMIFlag(MachineInstr::FrameDestroy);
}
return true;
}
void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
BitVector &SavedRegs,
RegScavenger *RS) const {
TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
// Spill the BasePtr if it's used.
if (TRI->hasBasePointer(MF)){
Register BasePtr = TRI->getBaseRegister();
if (STI.isTarget64BitILP32())
BasePtr = getX86SubSuperRegister(BasePtr, 64);
SavedRegs.set(BasePtr);
}
}
static bool
HasNestArgument(const MachineFunction *MF) {
const Function &F = MF->getFunction();
for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
I != E; I++) {
if (I->hasNestAttr() && !I->use_empty())
return true;
}
return false;
}
/// GetScratchRegister - Get a temp register for performing work in the
/// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
/// and the properties of the function either one or two registers will be
/// needed. Set primary to true for the first register, false for the second.
static unsigned
GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
CallingConv::ID CallingConvention = MF.getFunction().getCallingConv();
// Erlang stuff.
if (CallingConvention == CallingConv::HiPE) {
if (Is64Bit)
return Primary ? X86::R14 : X86::R13;
else
return Primary ? X86::EBX : X86::EDI;
}
if (Is64Bit) {
if (IsLP64)
return Primary ? X86::R11 : X86::R12;
else
return Primary ? X86::R11D : X86::R12D;
}
bool IsNested = HasNestArgument(&MF);
if (CallingConvention == CallingConv::X86_FastCall ||
CallingConvention == CallingConv::Fast ||
CallingConvention == CallingConv::Tail) {
if (IsNested)
report_fatal_error("Segmented stacks does not support fastcall with "
"nested function.");
return Primary ? X86::EAX : X86::ECX;
}
if (IsNested)
return Primary ? X86::EDX : X86::EAX;
return Primary ? X86::ECX : X86::EAX;
}
// The stack limit in the TCB is set to this many bytes above the actual stack
// limit.
static const uint64_t kSplitStackAvailable = 256;
void X86FrameLowering::adjustForSegmentedStacks(
MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
MachineFrameInfo &MFI = MF.getFrameInfo();
uint64_t StackSize;
unsigned TlsReg, TlsOffset;
DebugLoc DL;
// To support shrink-wrapping we would need to insert the new blocks
// at the right place and update the branches to PrologueMBB.
assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
"Scratch register is live-in");
if (MF.getFunction().isVarArg())
report_fatal_error("Segmented stacks do not support vararg functions.");
if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
!STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
!STI.isTargetDragonFly())
report_fatal_error("Segmented stacks not supported on this platform.");
// Eventually StackSize will be calculated by a link-time pass; which will
// also decide whether checking code needs to be injected into this particular
// prologue.
StackSize = MFI.getStackSize();
if (!MFI.needsSplitStackProlog())
return;
MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
bool IsNested = false;
// We need to know if the function has a nest argument only in 64 bit mode.
if (Is64Bit)
IsNested = HasNestArgument(&MF);
// The MOV R10, RAX needs to be in a different block, since the RET we emit in
// allocMBB needs to be last (terminating) instruction.
for (const auto &LI : PrologueMBB.liveins()) {
allocMBB->addLiveIn(LI);
checkMBB->addLiveIn(LI);
}
if (IsNested)
allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
MF.push_front(allocMBB);
MF.push_front(checkMBB);
// When the frame size is less than 256 we just compare the stack
// boundary directly to the value of the stack pointer, per gcc.
bool CompareStackPointer = StackSize < kSplitStackAvailable;
// Read the limit off the current stacklet off the stack_guard location.
if (Is64Bit) {
if (STI.isTargetLinux()) {
TlsReg = X86::FS;
TlsOffset = IsLP64 ? 0x70 : 0x40;
} else if (STI.isTargetDarwin()) {
TlsReg = X86::GS;
TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
} else if (STI.isTargetWin64()) {
TlsReg = X86::GS;
TlsOffset = 0x28; // pvArbitrary, reserved for application use
} else if (STI.isTargetFreeBSD()) {
TlsReg = X86::FS;
TlsOffset = 0x18;
} else if (STI.isTargetDragonFly()) {
TlsReg = X86::FS;
TlsOffset = 0x20; // use tls_tcb.tcb_segstack
} else {
report_fatal_error("Segmented stacks not supported on this platform.");
}
if (CompareStackPointer)
ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
else
BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
.addImm(1).addReg(0).addImm(-StackSize).addReg(0);
BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
.addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
} else {
if (STI.isTargetLinux()) {
TlsReg = X86::GS;
TlsOffset = 0x30;
} else if (STI.isTargetDarwin()) {
TlsReg = X86::GS;
TlsOffset = 0x48 + 90*4;
} else if (STI.isTargetWin32()) {
TlsReg = X86::FS;
TlsOffset = 0x14; // pvArbitrary, reserved for application use
} else if (STI.isTargetDragonFly()) {
TlsReg = X86::FS;
TlsOffset = 0x10; // use tls_tcb.tcb_segstack
} else if (STI.isTargetFreeBSD()) {
report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
} else {
report_fatal_error("Segmented stacks not supported on this platform.");
}
if (CompareStackPointer)
ScratchReg = X86::ESP;
else
BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
.addImm(1).addReg(0).addImm(-StackSize).addReg(0);
if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
STI.isTargetDragonFly()) {
BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
.addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
} else if (STI.isTargetDarwin()) {
// TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
unsigned ScratchReg2;
bool SaveScratch2;
if (CompareStackPointer) {
// The primary scratch register is available for holding the TLS offset.
ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
SaveScratch2 = false;
} else {
// Need to use a second register to hold the TLS offset
ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
// Unfortunately, with fastcc the second scratch register may hold an
// argument.
SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
}
// If Scratch2 is live-in then it needs to be saved.
assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
"Scratch register is live-in and not saved");
if (SaveScratch2)
BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
.addReg(ScratchReg2, RegState::Kill);
BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
.addImm(TlsOffset);
BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
.addReg(ScratchReg)
.addReg(ScratchReg2).addImm(1).addReg(0)
.addImm(0)
.addReg(TlsReg);
if (SaveScratch2)
BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
}
}
// This jump is taken if SP >= (Stacklet Limit + Stack Space required).
// It jumps to normal execution of the function body.
BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A);
// On 32 bit we first push the arguments size and then the frame size. On 64
// bit, we pass the stack frame size in r10 and the argument size in r11.
if (Is64Bit) {
// Functions with nested arguments use R10, so it needs to be saved across
// the call to _morestack
const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
if (IsNested)
BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
BuildMI(allocMBB, DL, TII.get(getMOVriOpcode(IsLP64, StackSize)), Reg10)
.addImm(StackSize);
BuildMI(allocMBB, DL,
TII.get(getMOVriOpcode(IsLP64, X86FI->getArgumentStackSize())),
Reg11)
.addImm(X86FI->getArgumentStackSize());
} else {
BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
.addImm(X86FI->getArgumentStackSize());
BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
.addImm(StackSize);
}
// __morestack is in libgcc
if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
// Under the large code model, we cannot assume that __morestack lives
// within 2^31 bytes of the call site, so we cannot use pc-relative
// addressing. We cannot perform the call via a temporary register,
// as the rax register may be used to store the static chain, and all
// other suitable registers may be either callee-save or used for
// parameter passing. We cannot use the stack at this point either
// because __morestack manipulates the stack directly.
//
// To avoid these issues, perform an indirect call via a read-only memory
// location containing the address.
//
// This solution is not perfect, as it assumes that the .rodata section
// is laid out within 2^31 bytes of each function body, but this seems
// to be sufficient for JIT.
// FIXME: Add retpoline support and remove the error here..
if (STI.useIndirectThunkCalls())
report_fatal_error("Emitting morestack calls on 64-bit with the large "
"code model and thunks not yet implemented.");
BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
.addReg(X86::RIP)
.addImm(0)
.addReg(0)
.addExternalSymbol("__morestack_addr")
.addReg(0);
} else {
if (Is64Bit)
BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
.addExternalSymbol("__morestack");
else
BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
.addExternalSymbol("__morestack");
}
if (IsNested)
BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
else
BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
allocMBB->addSuccessor(&PrologueMBB);
checkMBB->addSuccessor(allocMBB, BranchProbability::getZero());
checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne());
#ifdef EXPENSIVE_CHECKS
MF.verify();
#endif
}
/// Lookup an ERTS parameter in the !hipe.literals named metadata node.
/// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets
/// to fields it needs, through a named metadata node "hipe.literals" containing
/// name-value pairs.
static unsigned getHiPELiteral(
NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) {
for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) {
MDNode *Node = HiPELiteralsMD->getOperand(i);
if (Node->getNumOperands() != 2) continue;
MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0));
ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1));
if (!NodeName || !NodeVal) continue;
ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue());
if (ValConst && NodeName->getString() == LiteralName) {
return ValConst->getZExtValue();
}
}
report_fatal_error("HiPE literal " + LiteralName
+ " required but not provided");
}
// Return true if there are no non-ehpad successors to MBB and there are no
// non-meta instructions between MBBI and MBB.end().
static bool blockEndIsUnreachable(const MachineBasicBlock &MBB,
MachineBasicBlock::const_iterator MBBI) {
return llvm::all_of(
MBB.successors(),
[](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) &&
std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) {
return MI.isMetaInstruction();
});
}
/// Erlang programs may need a special prologue to handle the stack size they
/// might need at runtime. That is because Erlang/OTP does not implement a C
/// stack but uses a custom implementation of hybrid stack/heap architecture.
/// (for more information see Eric Stenman's Ph.D. thesis:
/// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
///
/// CheckStack:
/// temp0 = sp - MaxStack
/// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
/// OldStart:
/// ...
/// IncStack:
/// call inc_stack # doubles the stack space
/// temp0 = sp - MaxStack
/// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
void X86FrameLowering::adjustForHiPEPrologue(
MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
MachineFrameInfo &MFI = MF.getFrameInfo();
DebugLoc DL;
// To support shrink-wrapping we would need to insert the new blocks
// at the right place and update the branches to PrologueMBB.
assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
// HiPE-specific values
NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule()
->getNamedMetadata("hipe.literals");
if (!HiPELiteralsMD)
report_fatal_error(
"Can't generate HiPE prologue without runtime parameters");
const unsigned HipeLeafWords
= getHiPELiteral(HiPELiteralsMD,
Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS");
const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
const unsigned Guaranteed = HipeLeafWords * SlotSize;
unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ?
MF.getFunction().arg_size() - CCRegisteredArgs : 0;
unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize;
assert(STI.isTargetLinux() &&
"HiPE prologue is only supported on Linux operating systems.");
// Compute the largest caller's frame that is needed to fit the callees'
// frames. This 'MaxStack' is computed from:
//
// a) the fixed frame size, which is the space needed for all spilled temps,
// b) outgoing on-stack parameter areas, and
// c) the minimum stack space this function needs to make available for the
// functions it calls (a tunable ABI property).
if (MFI.hasCalls()) {
unsigned MoreStackForCalls = 0;
for (auto &MBB : MF) {
for (auto &MI : MBB) {
if (!MI.isCall())
continue;
// Get callee operand.
const MachineOperand &MO = MI.getOperand(0);
// Only take account of global function calls (no closures etc.).
if (!MO.isGlobal())
continue;
const Function *F = dyn_cast<Function>(MO.getGlobal());
if (!F)
continue;
// Do not update 'MaxStack' for primitive and built-in functions
// (encoded with names either starting with "erlang."/"bif_" or not
// having a ".", such as a simple <Module>.<Function>.<Arity>, or an
// "_", such as the BIF "suspend_0") as they are executed on another
// stack.
if (F->getName().contains("erlang.") || F->getName().contains("bif_") ||
F->getName().find_first_of("._") == StringRef::npos)
continue;
unsigned CalleeStkArity =
F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
if (HipeLeafWords - 1 > CalleeStkArity)
MoreStackForCalls = std::max(MoreStackForCalls,
(HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
}
}
MaxStack += MoreStackForCalls;
}
// If the stack frame needed is larger than the guaranteed then runtime checks
// and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
if (MaxStack > Guaranteed) {
MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
for (const auto &LI : PrologueMBB.liveins()) {
stackCheckMBB->addLiveIn(LI);
incStackMBB->addLiveIn(LI);
}
MF.push_front(incStackMBB);
MF.push_front(stackCheckMBB);
unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
unsigned LEAop, CMPop, CALLop;
SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT");
if (Is64Bit) {
SPReg = X86::RSP;
PReg = X86::RBP;
LEAop = X86::LEA64r;
CMPop = X86::CMP64rm;
CALLop = X86::CALL64pcrel32;
} else {
SPReg = X86::ESP;
PReg = X86::EBP;
LEAop = X86::LEA32r;
CMPop = X86::CMP32rm;
CALLop = X86::CALLpcrel32;
}
ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
"HiPE prologue scratch register is live-in");
// Create new MBB for StackCheck:
addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
SPReg, false, -MaxStack);
// SPLimitOffset is in a fixed heap location (pointed by BP).
addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
.addReg(ScratchReg), PReg, false, SPLimitOffset);
BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE);
// Create new MBB for IncStack:
BuildMI(incStackMBB, DL, TII.get(CALLop)).
addExternalSymbol("inc_stack_0");
addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
SPReg, false, -MaxStack);
addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
.addReg(ScratchReg), PReg, false, SPLimitOffset);
BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE);
stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
incStackMBB->addSuccessor(incStackMBB, {1, 100});
}
#ifdef EXPENSIVE_CHECKS
MF.verify();
#endif
}
bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
const DebugLoc &DL,
int Offset) const {
if (Offset <= 0)
return false;
if (Offset % SlotSize)
return false;
int NumPops = Offset / SlotSize;
// This is only worth it if we have at most 2 pops.
if (NumPops != 1 && NumPops != 2)
return false;
// Handle only the trivial case where the adjustment directly follows
// a call. This is the most common one, anyway.
if (MBBI == MBB.begin())
return false;
MachineBasicBlock::iterator Prev = std::prev(MBBI);
if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
return false;
unsigned Regs[2];
unsigned FoundRegs = 0;
const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
const MachineOperand &RegMask = Prev->getOperand(1);
auto &RegClass =
Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
// Try to find up to NumPops free registers.
for (auto Candidate : RegClass) {
// Poor man's liveness:
// Since we're immediately after a call, any register that is clobbered
// by the call and not defined by it can be considered dead.
if (!RegMask.clobbersPhysReg(Candidate))
continue;
// Don't clobber reserved registers
if (MRI.isReserved(Candidate))
continue;
bool IsDef = false;
for (const MachineOperand &MO : Prev->implicit_operands()) {
if (MO.isReg() && MO.isDef() &&
TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) {
IsDef = true;
break;
}
}
if (IsDef)
continue;
Regs[FoundRegs++] = Candidate;
if (FoundRegs == (unsigned)NumPops)
break;
}
if (FoundRegs == 0)
return false;
// If we found only one free register, but need two, reuse the same one twice.
while (FoundRegs < (unsigned)NumPops)
Regs[FoundRegs++] = Regs[0];
for (int i = 0; i < NumPops; ++i)
BuildMI(MBB, MBBI, DL,
TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);
return true;
}
MachineBasicBlock::iterator X86FrameLowering::
eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
bool reserveCallFrame = hasReservedCallFrame(MF);
unsigned Opcode = I->getOpcode();
bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
DebugLoc DL = I->getDebugLoc(); // copy DebugLoc as I will be erased.
uint64_t Amount = TII.getFrameSize(*I);
uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0;
I = MBB.erase(I);
auto InsertPos = skipDebugInstructionsForward(I, MBB.end());
// Try to avoid emitting dead SP adjustments if the block end is unreachable,
// typically because the function is marked noreturn (abort, throw,
// assert_fail, etc).
if (isDestroy && blockEndIsUnreachable(MBB, I))
return I;
if (!reserveCallFrame) {
// If the stack pointer can be changed after prologue, turn the
// adjcallstackup instruction into a 'sub ESP, <amt>' and the
// adjcallstackdown instruction into 'add ESP, <amt>'
// We need to keep the stack aligned properly. To do this, we round the
// amount of space needed for the outgoing arguments up to the next
// alignment boundary.
Amount = alignTo(Amount, getStackAlign());
const Function &F = MF.getFunction();
bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves();
// If we have any exception handlers in this function, and we adjust
// the SP before calls, we may need to indicate this to the unwinder
// using GNU_ARGS_SIZE. Note that this may be necessary even when
// Amount == 0, because the preceding function may have set a non-0
// GNU_ARGS_SIZE.
// TODO: We don't need to reset this between subsequent functions,
// if it didn't change.
bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty();
if (HasDwarfEHHandlers && !isDestroy &&
MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
BuildCFI(MBB, InsertPos, DL,
MCCFIInstruction::createGnuArgsSize(nullptr, Amount));
if (Amount == 0)
return I;
// Factor out the amount that gets handled inside the sequence
// (Pushes of argument for frame setup, callee pops for frame destroy)
Amount -= InternalAmt;
// TODO: This is needed only if we require precise CFA.
// If this is a callee-pop calling convention, emit a CFA adjust for
// the amount the callee popped.
if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
BuildCFI(MBB, InsertPos, DL,
MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));
// Add Amount to SP to destroy a frame, or subtract to setup.
int64_t StackAdjustment = isDestroy ? Amount : -Amount;
if (StackAdjustment) {
// Merge with any previous or following adjustment instruction. Note: the
// instructions merged with here do not have CFI, so their stack
// adjustments do not feed into CfaAdjustment.
StackAdjustment += mergeSPUpdates(MBB, InsertPos, true);
StackAdjustment += mergeSPUpdates(MBB, InsertPos, false);
if (StackAdjustment) {
if (!(F.hasMinSize() &&
adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment)))
BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment,
/*InEpilogue=*/false);
}
}
if (DwarfCFI && !hasFP(MF)) {
// If we don't have FP, but need to generate unwind information,
// we need to set the correct CFA offset after the stack adjustment.
// How much we adjust the CFA offset depends on whether we're emitting
// CFI only for EH purposes or for debugging. EH only requires the CFA
// offset to be correct at each call site, while for debugging we want
// it to be more precise.
int64_t CfaAdjustment = -StackAdjustment;
// TODO: When not using precise CFA, we also need to adjust for the
// InternalAmt here.
if (CfaAdjustment) {
BuildCFI(MBB, InsertPos, DL,
MCCFIInstruction::createAdjustCfaOffset(nullptr,
CfaAdjustment));
}
}
return I;
}
if (InternalAmt) {
MachineBasicBlock::iterator CI = I;
MachineBasicBlock::iterator B = MBB.begin();
while (CI != B && !std::prev(CI)->isCall())
--CI;
BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false);
}
return I;
}
bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
assert(MBB.getParent() && "Block is not attached to a function!");
const MachineFunction &MF = *MBB.getParent();
if (!MBB.isLiveIn(X86::EFLAGS))
return true;
// If stack probes have to loop inline or call, that will clobber EFLAGS.
// FIXME: we could allow cases that will use emitStackProbeInlineGenericBlock.
const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
const X86TargetLowering &TLI = *STI.getTargetLowering();
if (TLI.hasInlineStackProbe(MF) || TLI.hasStackProbeSymbol(MF))
return false;
const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
return !TRI->hasStackRealignment(MF) && !X86FI->hasSwiftAsyncContext();
}
bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
assert(MBB.getParent() && "Block is not attached to a function!");
// Win64 has strict requirements in terms of epilogue and we are
// not taking a chance at messing with them.
// I.e., unless this block is already an exit block, we can't use
// it as an epilogue.
if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
return false;
// Swift async context epilogue has a BTR instruction that clobbers parts of
// EFLAGS.
const MachineFunction &MF = *MBB.getParent();
if (MF.getInfo<X86MachineFunctionInfo>()->hasSwiftAsyncContext())
return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
if (canUseLEAForSPInEpilogue(*MBB.getParent()))
return true;
// If we cannot use LEA to adjust SP, we may need to use ADD, which
// clobbers the EFLAGS. Check that we do not need to preserve it,
// otherwise, conservatively assume this is not
// safe to insert the epilogue here.
return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
}
bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
// If we may need to emit frameless compact unwind information, give
// up as this is currently broken: PR25614.
bool CompactUnwind =
MF.getMMI().getContext().getObjectFileInfo()->getCompactUnwindSection() !=
nullptr;
return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF) ||
!CompactUnwind) &&
// The lowering of segmented stack and HiPE only support entry
// blocks as prologue blocks: PR26107. This limitation may be
// lifted if we fix:
// - adjustForSegmentedStacks
// - adjustForHiPEPrologue
MF.getFunction().getCallingConv() != CallingConv::HiPE &&
!MF.shouldSplitStack();
}
MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
const DebugLoc &DL, bool RestoreSP) const {
assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
assert(STI.is32Bit() && !Uses64BitFramePtr &&
"restoring EBP/ESI on non-32-bit target");
MachineFunction &MF = *MBB.getParent();
Register FramePtr = TRI->getFrameRegister(MF);
Register BasePtr = TRI->getBaseRegister();
WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
MachineFrameInfo &MFI = MF.getFrameInfo();
// FIXME: Don't set FrameSetup flag in catchret case.
int FI = FuncInfo.EHRegNodeFrameIndex;
int EHRegSize = MFI.getObjectSize(FI);
if (RestoreSP) {
// MOV32rm -EHRegSize(%ebp), %esp
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
X86::EBP, true, -EHRegSize)
.setMIFlag(MachineInstr::FrameSetup);
}
Register UsedReg;
int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg).getFixed();
int EndOffset = -EHRegOffset - EHRegSize;
FuncInfo.EHRegNodeEndOffset = EndOffset;
if (UsedReg == FramePtr) {
// ADD $offset, %ebp
unsigned ADDri = getADDriOpcode(false, EndOffset);
BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
.addReg(FramePtr)
.addImm(EndOffset)
.setMIFlag(MachineInstr::FrameSetup)
->getOperand(3)
.setIsDead();
assert(EndOffset >= 0 &&
"end of registration object above normal EBP position!");
} else if (UsedReg == BasePtr) {
// LEA offset(%ebp), %esi
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
FramePtr, false, EndOffset)
.setMIFlag(MachineInstr::FrameSetup);
// MOV32rm SavedEBPOffset(%esi), %ebp
assert(X86FI->getHasSEHFramePtrSave());
int Offset =
getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg)
.getFixed();
assert(UsedReg == BasePtr);
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
UsedReg, true, Offset)
.setMIFlag(MachineInstr::FrameSetup);
} else {
llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
}
return MBBI;
}
int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const {
return TRI->getSlotSize();
}
Register
X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const {
return TRI->getDwarfRegNum(StackPtr, true);
}
namespace {
// Struct used by orderFrameObjects to help sort the stack objects.
struct X86FrameSortingObject {
bool IsValid = false; // true if we care about this Object.
unsigned ObjectIndex = 0; // Index of Object into MFI list.
unsigned ObjectSize = 0; // Size of Object in bytes.
Align ObjectAlignment = Align(1); // Alignment of Object in bytes.
unsigned ObjectNumUses = 0; // Object static number of uses.
};
// The comparison function we use for std::sort to order our local
// stack symbols. The current algorithm is to use an estimated
// "density". This takes into consideration the size and number of
// uses each object has in order to roughly minimize code size.
// So, for example, an object of size 16B that is referenced 5 times
// will get higher priority than 4 4B objects referenced 1 time each.
// It's not perfect and we may be able to squeeze a few more bytes out of
// it (for example : 0(esp) requires fewer bytes, symbols allocated at the
// fringe end can have special consideration, given their size is less
// important, etc.), but the algorithmic complexity grows too much to be
// worth the extra gains we get. This gets us pretty close.
// The final order leaves us with objects with highest priority going
// at the end of our list.
struct X86FrameSortingComparator {
inline bool operator()(const X86FrameSortingObject &A,
const X86FrameSortingObject &B) const {
uint64_t DensityAScaled, DensityBScaled;
// For consistency in our comparison, all invalid objects are placed
// at the end. This also allows us to stop walking when we hit the
// first invalid item after it's all sorted.
if (!A.IsValid)
return false;
if (!B.IsValid)
return true;
// The density is calculated by doing :
// (double)DensityA = A.ObjectNumUses / A.ObjectSize
// (double)DensityB = B.ObjectNumUses / B.ObjectSize
// Since this approach may cause inconsistencies in
// the floating point <, >, == comparisons, depending on the floating
// point model with which the compiler was built, we're going
// to scale both sides by multiplying with
// A.ObjectSize * B.ObjectSize. This ends up factoring away
// the division and, with it, the need for any floating point
// arithmetic.
DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) *
static_cast<uint64_t>(B.ObjectSize);
DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) *
static_cast<uint64_t>(A.ObjectSize);
// If the two densities are equal, prioritize highest alignment
// objects. This allows for similar alignment objects
// to be packed together (given the same density).
// There's room for improvement here, also, since we can pack
// similar alignment (different density) objects next to each
// other to save padding. This will also require further
// complexity/iterations, and the overall gain isn't worth it,
// in general. Something to keep in mind, though.
if (DensityAScaled == DensityBScaled)
return A.ObjectAlignment < B.ObjectAlignment;
return DensityAScaled < DensityBScaled;
}
};
} // namespace
// Order the symbols in the local stack.
// We want to place the local stack objects in some sort of sensible order.
// The heuristic we use is to try and pack them according to static number
// of uses and size of object in order to minimize code size.
void X86FrameLowering::orderFrameObjects(
const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
// Don't waste time if there's nothing to do.
if (ObjectsToAllocate.empty())
return;
// Create an array of all MFI objects. We won't need all of these
// objects, but we're going to create a full array of them to make
// it easier to index into when we're counting "uses" down below.
// We want to be able to easily/cheaply access an object by simply
// indexing into it, instead of having to search for it every time.
std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd());
// Walk the objects we care about and mark them as such in our working
// struct.
for (auto &Obj : ObjectsToAllocate) {
SortingObjects[Obj].IsValid = true;
SortingObjects[Obj].ObjectIndex = Obj;
SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj);
// Set the size.
int ObjectSize = MFI.getObjectSize(Obj);
if (ObjectSize == 0)
// Variable size. Just use 4.
SortingObjects[Obj].ObjectSize = 4;
else
SortingObjects[Obj].ObjectSize = ObjectSize;
}
// Count the number of uses for each object.
for (auto &MBB : MF) {
for (auto &MI : MBB) {
if (MI.isDebugInstr())
continue;
for (const MachineOperand &MO : MI.operands()) {
// Check to see if it's a local stack symbol.
if (!MO.isFI())
continue;
int Index = MO.getIndex();
// Check to see if it falls within our range, and is tagged
// to require ordering.
if (Index >= 0 && Index < MFI.getObjectIndexEnd() &&
SortingObjects[Index].IsValid)
SortingObjects[Index].ObjectNumUses++;
}
}
}
// Sort the objects using X86FrameSortingAlgorithm (see its comment for
// info).
llvm::stable_sort(SortingObjects, X86FrameSortingComparator());
// Now modify the original list to represent the final order that
// we want. The order will depend on whether we're going to access them
// from the stack pointer or the frame pointer. For SP, the list should
// end up with the END containing objects that we want with smaller offsets.
// For FP, it should be flipped.
int i = 0;
for (auto &Obj : SortingObjects) {
// All invalid items are sorted at the end, so it's safe to stop.
if (!Obj.IsValid)
break;
ObjectsToAllocate[i++] = Obj.ObjectIndex;
}
// Flip it if we're accessing off of the FP.
if (!TRI->hasStackRealignment(MF) && hasFP(MF))
std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end());
}
unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
// RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
unsigned Offset = 16;
// RBP is immediately pushed.
Offset += SlotSize;
// All callee-saved registers are then pushed.
Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
// Every funclet allocates enough stack space for the largest outgoing call.
Offset += getWinEHFuncletFrameSize(MF);
return Offset;
}
void X86FrameLowering::processFunctionBeforeFrameFinalized(
MachineFunction &MF, RegScavenger *RS) const {
// Mark the function as not having WinCFI. We will set it back to true in
// emitPrologue if it gets called and emits CFI.
MF.setHasWinCFI(false);
// If we are using Windows x64 CFI, ensure that the stack is always 8 byte
// aligned. The format doesn't support misaligned stack adjustments.
if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI())
MF.getFrameInfo().ensureMaxAlignment(Align(SlotSize));
// If this function isn't doing Win64-style C++ EH, we don't need to do
// anything.
if (STI.is64Bit() && MF.hasEHFunclets() &&
classifyEHPersonality(MF.getFunction().getPersonalityFn()) ==
EHPersonality::MSVC_CXX) {
adjustFrameForMsvcCxxEh(MF);
}
}
void X86FrameLowering::adjustFrameForMsvcCxxEh(MachineFunction &MF) const {
// Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
// relative to RSP after the prologue. Find the offset of the last fixed
// object, so that we can allocate a slot immediately following it. If there
// were no fixed objects, use offset -SlotSize, which is immediately after the
// return address. Fixed objects have negative frame indices.
MachineFrameInfo &MFI = MF.getFrameInfo();
WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
int64_t MinFixedObjOffset = -SlotSize;
for (int I = MFI.getObjectIndexBegin(); I < 0; ++I)
MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I));
for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
for (WinEHHandlerType &H : TBME.HandlerArray) {
int FrameIndex = H.CatchObj.FrameIndex;
if (FrameIndex != INT_MAX) {
// Ensure alignment.
unsigned Align = MFI.getObjectAlign(FrameIndex).value();
MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align;
MinFixedObjOffset -= MFI.getObjectSize(FrameIndex);
MFI.setObjectOffset(FrameIndex, MinFixedObjOffset);
}
}
}
// Ensure alignment.
MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8;
int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
int UnwindHelpFI =
MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false);
EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
// Store -2 into UnwindHelp on function entry. We have to scan forwards past
// other frame setup instructions.
MachineBasicBlock &MBB = MF.front();
auto MBBI = MBB.begin();
while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
++MBBI;
DebugLoc DL = MBB.findDebugLoc(MBBI);
addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
UnwindHelpFI)
.addImm(-2);
}
void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced(
MachineFunction &MF, RegScavenger *RS) const {
if (STI.is32Bit() && MF.hasEHFunclets())
restoreWinEHStackPointersInParent(MF);
}
void X86FrameLowering::restoreWinEHStackPointersInParent(
MachineFunction &MF) const {
// 32-bit functions have to restore stack pointers when control is transferred
// back to the parent function. These blocks are identified as eh pads that
// are not funclet entries.
bool IsSEH = isAsynchronousEHPersonality(
classifyEHPersonality(MF.getFunction().getPersonalityFn()));
for (MachineBasicBlock &MBB : MF) {
bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry();
if (NeedsRestore)
restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(),
/*RestoreSP=*/IsSEH);
}
}