| //===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file |
| /// This file defines the pass that looks through the machine instructions |
| /// late in the compilation, and finds byte or word instructions that |
| /// can be profitably replaced with 32 bit instructions that give equivalent |
| /// results for the bits of the results that are used. There are two possible |
| /// reasons to do this. |
| /// |
| /// One reason is to avoid false-dependences on the upper portions |
| /// of the registers. Only instructions that have a destination register |
| /// which is not in any of the source registers can be affected by this. |
| /// Any instruction where one of the source registers is also the destination |
| /// register is unaffected, because it has a true dependence on the source |
| /// register already. So, this consideration primarily affects load |
| /// instructions and register-to-register moves. It would |
| /// seem like cmov(s) would also be affected, but because of the way cmov is |
| /// really implemented by most machines as reading both the destination and |
| /// and source registers, and then "merging" the two based on a condition, |
| /// it really already should be considered as having a true dependence on the |
| /// destination register as well. |
| /// |
| /// The other reason to do this is for potential code size savings. Word |
| /// operations need an extra override byte compared to their 32 bit |
| /// versions. So this can convert many word operations to their larger |
| /// size, saving a byte in encoding. This could introduce partial register |
| /// dependences where none existed however. As an example take: |
| /// orw ax, $0x1000 |
| /// addw ax, $3 |
| /// now if this were to get transformed into |
| /// orw ax, $1000 |
| /// addl eax, $3 |
| /// because the addl encodes shorter than the addw, this would introduce |
| /// a use of a register that was only partially written earlier. On older |
| /// Intel processors this can be quite a performance penalty, so this should |
| /// probably only be done when it can be proven that a new partial dependence |
| /// wouldn't be created, or when your know a newer processor is being |
| /// targeted, or when optimizing for minimum code size. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86.h" |
| #include "X86InstrInfo.h" |
| #include "X86Subtarget.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/ProfileSummaryInfo.h" |
| #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h" |
| #include "llvm/CodeGen/LivePhysRegs.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/MachineSizeOpts.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace llvm; |
| |
| #define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup" |
| #define FIXUPBW_NAME "x86-fixup-bw-insts" |
| |
| #define DEBUG_TYPE FIXUPBW_NAME |
| |
| // Option to allow this optimization pass to have fine-grained control. |
| static cl::opt<bool> |
| FixupBWInsts("fixup-byte-word-insts", |
| cl::desc("Change byte and word instructions to larger sizes"), |
| cl::init(true), cl::Hidden); |
| |
| namespace { |
| class FixupBWInstPass : public MachineFunctionPass { |
| /// Loop over all of the instructions in the basic block replacing applicable |
| /// byte or word instructions with better alternatives. |
| void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB); |
| |
| /// This sets the \p SuperDestReg to the 32 bit super reg of the original |
| /// destination register of the MachineInstr passed in. It returns true if |
| /// that super register is dead just prior to \p OrigMI, and false if not. |
| bool getSuperRegDestIfDead(MachineInstr *OrigMI, |
| Register &SuperDestReg) const; |
| |
| /// Change the MachineInstr \p MI into the equivalent extending load to 32 bit |
| /// register if it is safe to do so. Return the replacement instruction if |
| /// OK, otherwise return nullptr. |
| MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, MachineInstr *MI) const; |
| |
| /// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is |
| /// safe to do so. Return the replacement instruction if OK, otherwise return |
| /// nullptr. |
| MachineInstr *tryReplaceCopy(MachineInstr *MI) const; |
| |
| /// Change the MachineInstr \p MI into the equivalent extend to 32 bit |
| /// register if it is safe to do so. Return the replacement instruction if |
| /// OK, otherwise return nullptr. |
| MachineInstr *tryReplaceExtend(unsigned New32BitOpcode, |
| MachineInstr *MI) const; |
| |
| // Change the MachineInstr \p MI into an eqivalent 32 bit instruction if |
| // possible. Return the replacement instruction if OK, return nullptr |
| // otherwise. |
| MachineInstr *tryReplaceInstr(MachineInstr *MI, MachineBasicBlock &MBB) const; |
| |
| public: |
| static char ID; |
| |
| StringRef getPassName() const override { return FIXUPBW_DESC; } |
| |
| FixupBWInstPass() : MachineFunctionPass(ID) { } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<MachineLoopInfo>(); // Machine loop info is used to |
| // guide some heuristics. |
| AU.addRequired<ProfileSummaryInfoWrapperPass>(); |
| AU.addRequired<LazyMachineBlockFrequencyInfoPass>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| /// Loop over all of the basic blocks, replacing byte and word instructions by |
| /// equivalent 32 bit instructions where performance or code size can be |
| /// improved. |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| |
| MachineFunctionProperties getRequiredProperties() const override { |
| return MachineFunctionProperties().set( |
| MachineFunctionProperties::Property::NoVRegs); |
| } |
| |
| private: |
| MachineFunction *MF = nullptr; |
| |
| /// Machine instruction info used throughout the class. |
| const X86InstrInfo *TII = nullptr; |
| |
| const TargetRegisterInfo *TRI = nullptr; |
| |
| /// Local member for function's OptForSize attribute. |
| bool OptForSize = false; |
| |
| /// Machine loop info used for guiding some heruistics. |
| MachineLoopInfo *MLI = nullptr; |
| |
| /// Register Liveness information after the current instruction. |
| LivePhysRegs LiveRegs; |
| |
| ProfileSummaryInfo *PSI; |
| MachineBlockFrequencyInfo *MBFI; |
| }; |
| char FixupBWInstPass::ID = 0; |
| } |
| |
| INITIALIZE_PASS(FixupBWInstPass, FIXUPBW_NAME, FIXUPBW_DESC, false, false) |
| |
| FunctionPass *llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); } |
| |
| bool FixupBWInstPass::runOnMachineFunction(MachineFunction &MF) { |
| if (!FixupBWInsts || skipFunction(MF.getFunction())) |
| return false; |
| |
| this->MF = &MF; |
| TII = MF.getSubtarget<X86Subtarget>().getInstrInfo(); |
| TRI = MF.getRegInfo().getTargetRegisterInfo(); |
| MLI = &getAnalysis<MachineLoopInfo>(); |
| PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); |
| MBFI = (PSI && PSI->hasProfileSummary()) ? |
| &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() : |
| nullptr; |
| LiveRegs.init(TII->getRegisterInfo()); |
| |
| LLVM_DEBUG(dbgs() << "Start X86FixupBWInsts\n";); |
| |
| // Process all basic blocks. |
| for (auto &MBB : MF) |
| processBasicBlock(MF, MBB); |
| |
| LLVM_DEBUG(dbgs() << "End X86FixupBWInsts\n";); |
| |
| return true; |
| } |
| |
| /// Check if after \p OrigMI the only portion of super register |
| /// of the destination register of \p OrigMI that is alive is that |
| /// destination register. |
| /// |
| /// If so, return that super register in \p SuperDestReg. |
| bool FixupBWInstPass::getSuperRegDestIfDead(MachineInstr *OrigMI, |
| Register &SuperDestReg) const { |
| const X86RegisterInfo *TRI = &TII->getRegisterInfo(); |
| Register OrigDestReg = OrigMI->getOperand(0).getReg(); |
| SuperDestReg = getX86SubSuperRegister(OrigDestReg, 32); |
| |
| const auto SubRegIdx = TRI->getSubRegIndex(SuperDestReg, OrigDestReg); |
| |
| // Make sure that the sub-register that this instruction has as its |
| // destination is the lowest order sub-register of the super-register. |
| // If it isn't, then the register isn't really dead even if the |
| // super-register is considered dead. |
| if (SubRegIdx == X86::sub_8bit_hi) |
| return false; |
| |
| // If neither the destination-super register nor any applicable subregisters |
| // are live after this instruction, then the super register is safe to use. |
| if (!LiveRegs.contains(SuperDestReg)) { |
| // If the original destination register was not the low 8-bit subregister |
| // then the super register check is sufficient. |
| if (SubRegIdx != X86::sub_8bit) |
| return true; |
| // If the original destination register was the low 8-bit subregister and |
| // we also need to check the 16-bit subregister and the high 8-bit |
| // subregister. |
| if (!LiveRegs.contains(getX86SubSuperRegister(OrigDestReg, 16)) && |
| !LiveRegs.contains(getX86SubSuperRegister(SuperDestReg, 8, |
| /*High=*/true))) |
| return true; |
| // Otherwise, we have a little more checking to do. |
| } |
| |
| // If we get here, the super-register destination (or some part of it) is |
| // marked as live after the original instruction. |
| // |
| // The X86 backend does not have subregister liveness tracking enabled, |
| // so liveness information might be overly conservative. Specifically, the |
| // super register might be marked as live because it is implicitly defined |
| // by the instruction we are examining. |
| // |
| // However, for some specific instructions (this pass only cares about MOVs) |
| // we can produce more precise results by analysing that MOV's operands. |
| // |
| // Indeed, if super-register is not live before the mov it means that it |
| // was originally <read-undef> and so we are free to modify these |
| // undef upper bits. That may happen in case where the use is in another MBB |
| // and the vreg/physreg corresponding to the move has higher width than |
| // necessary (e.g. due to register coalescing with a "truncate" copy). |
| // So, we would like to handle patterns like this: |
| // |
| // %bb.2: derived from LLVM BB %if.then |
| // Live Ins: %rdi |
| // Predecessors according to CFG: %bb.0 |
| // %ax<def> = MOV16rm killed %rdi, 1, %noreg, 0, %noreg, implicit-def %eax |
| // ; No implicit %eax |
| // Successors according to CFG: %bb.3(?%) |
| // |
| // %bb.3: derived from LLVM BB %if.end |
| // Live Ins: %eax Only %ax is actually live |
| // Predecessors according to CFG: %bb.2 %bb.1 |
| // %ax = KILL %ax, implicit killed %eax |
| // RET 0, %ax |
| unsigned Opc = OrigMI->getOpcode(); (void)Opc; |
| // These are the opcodes currently known to work with the code below, if |
| // something // else will be added we need to ensure that new opcode has the |
| // same properties. |
| if (Opc != X86::MOV8rm && Opc != X86::MOV16rm && Opc != X86::MOV8rr && |
| Opc != X86::MOV16rr) |
| return false; |
| |
| bool IsDefined = false; |
| for (auto &MO: OrigMI->implicit_operands()) { |
| if (!MO.isReg()) |
| continue; |
| |
| assert((MO.isDef() || MO.isUse()) && "Expected Def or Use only!"); |
| |
| if (MO.isDef() && TRI->isSuperRegisterEq(OrigDestReg, MO.getReg())) |
| IsDefined = true; |
| |
| // If MO is a use of any part of the destination register but is not equal |
| // to OrigDestReg or one of its subregisters, we cannot use SuperDestReg. |
| // For example, if OrigDestReg is %al then an implicit use of %ah, %ax, |
| // %eax, or %rax will prevent us from using the %eax register. |
| if (MO.isUse() && !TRI->isSubRegisterEq(OrigDestReg, MO.getReg()) && |
| TRI->regsOverlap(SuperDestReg, MO.getReg())) |
| return false; |
| } |
| // Reg is not Imp-def'ed -> it's live both before/after the instruction. |
| if (!IsDefined) |
| return false; |
| |
| // Otherwise, the Reg is not live before the MI and the MOV can't |
| // make it really live, so it's in fact dead even after the MI. |
| return true; |
| } |
| |
| MachineInstr *FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode, |
| MachineInstr *MI) const { |
| Register NewDestReg; |
| |
| // We are going to try to rewrite this load to a larger zero-extending |
| // load. This is safe if all portions of the 32 bit super-register |
| // of the original destination register, except for the original destination |
| // register are dead. getSuperRegDestIfDead checks that. |
| if (!getSuperRegDestIfDead(MI, NewDestReg)) |
| return nullptr; |
| |
| // Safe to change the instruction. |
| MachineInstrBuilder MIB = |
| BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg); |
| |
| unsigned NumArgs = MI->getNumOperands(); |
| for (unsigned i = 1; i < NumArgs; ++i) |
| MIB.add(MI->getOperand(i)); |
| |
| MIB.setMemRefs(MI->memoperands()); |
| |
| // If it was debug tracked, record a substitution. |
| if (unsigned OldInstrNum = MI->peekDebugInstrNum()) { |
| unsigned Subreg = TRI->getSubRegIndex(MIB->getOperand(0).getReg(), |
| MI->getOperand(0).getReg()); |
| unsigned NewInstrNum = MIB->getDebugInstrNum(*MF); |
| MF->makeDebugValueSubstitution({OldInstrNum, 0}, {NewInstrNum, 0}, Subreg); |
| } |
| |
| return MIB; |
| } |
| |
| MachineInstr *FixupBWInstPass::tryReplaceCopy(MachineInstr *MI) const { |
| assert(MI->getNumExplicitOperands() == 2); |
| auto &OldDest = MI->getOperand(0); |
| auto &OldSrc = MI->getOperand(1); |
| |
| Register NewDestReg; |
| if (!getSuperRegDestIfDead(MI, NewDestReg)) |
| return nullptr; |
| |
| Register NewSrcReg = getX86SubSuperRegister(OldSrc.getReg(), 32); |
| |
| // This is only correct if we access the same subregister index: otherwise, |
| // we could try to replace "movb %ah, %al" with "movl %eax, %eax". |
| const X86RegisterInfo *TRI = &TII->getRegisterInfo(); |
| if (TRI->getSubRegIndex(NewSrcReg, OldSrc.getReg()) != |
| TRI->getSubRegIndex(NewDestReg, OldDest.getReg())) |
| return nullptr; |
| |
| // Safe to change the instruction. |
| // Don't set src flags, as we don't know if we're also killing the superreg. |
| // However, the superregister might not be defined; make it explicit that |
| // we don't care about the higher bits by reading it as Undef, and adding |
| // an imp-use on the original subregister. |
| MachineInstrBuilder MIB = |
| BuildMI(*MF, MI->getDebugLoc(), TII->get(X86::MOV32rr), NewDestReg) |
| .addReg(NewSrcReg, RegState::Undef) |
| .addReg(OldSrc.getReg(), RegState::Implicit); |
| |
| // Drop imp-defs/uses that would be redundant with the new def/use. |
| for (auto &Op : MI->implicit_operands()) |
| if (Op.getReg() != (Op.isDef() ? NewDestReg : NewSrcReg)) |
| MIB.add(Op); |
| |
| return MIB; |
| } |
| |
| MachineInstr *FixupBWInstPass::tryReplaceExtend(unsigned New32BitOpcode, |
| MachineInstr *MI) const { |
| Register NewDestReg; |
| if (!getSuperRegDestIfDead(MI, NewDestReg)) |
| return nullptr; |
| |
| // Don't interfere with formation of CBW instructions which should be a |
| // shorter encoding than even the MOVSX32rr8. It's also immune to partial |
| // merge issues on Intel CPUs. |
| if (MI->getOpcode() == X86::MOVSX16rr8 && |
| MI->getOperand(0).getReg() == X86::AX && |
| MI->getOperand(1).getReg() == X86::AL) |
| return nullptr; |
| |
| // Safe to change the instruction. |
| MachineInstrBuilder MIB = |
| BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg); |
| |
| unsigned NumArgs = MI->getNumOperands(); |
| for (unsigned i = 1; i < NumArgs; ++i) |
| MIB.add(MI->getOperand(i)); |
| |
| MIB.setMemRefs(MI->memoperands()); |
| |
| if (unsigned OldInstrNum = MI->peekDebugInstrNum()) { |
| unsigned Subreg = TRI->getSubRegIndex(MIB->getOperand(0).getReg(), |
| MI->getOperand(0).getReg()); |
| unsigned NewInstrNum = MIB->getDebugInstrNum(*MF); |
| MF->makeDebugValueSubstitution({OldInstrNum, 0}, {NewInstrNum, 0}, Subreg); |
| } |
| |
| return MIB; |
| } |
| |
| MachineInstr *FixupBWInstPass::tryReplaceInstr(MachineInstr *MI, |
| MachineBasicBlock &MBB) const { |
| // See if this is an instruction of the type we are currently looking for. |
| switch (MI->getOpcode()) { |
| |
| case X86::MOV8rm: |
| // Replace 8-bit loads with the zero-extending version if not optimizing |
| // for size. The extending op is cheaper across a wide range of uarch and |
| // it avoids a potentially expensive partial register stall. It takes an |
| // extra byte to encode, however, so don't do this when optimizing for size. |
| if (!OptForSize) |
| return tryReplaceLoad(X86::MOVZX32rm8, MI); |
| break; |
| |
| case X86::MOV16rm: |
| // Always try to replace 16 bit load with 32 bit zero extending. |
| // Code size is the same, and there is sometimes a perf advantage |
| // from eliminating a false dependence on the upper portion of |
| // the register. |
| return tryReplaceLoad(X86::MOVZX32rm16, MI); |
| |
| case X86::MOV8rr: |
| case X86::MOV16rr: |
| // Always try to replace 8/16 bit copies with a 32 bit copy. |
| // Code size is either less (16) or equal (8), and there is sometimes a |
| // perf advantage from eliminating a false dependence on the upper portion |
| // of the register. |
| return tryReplaceCopy(MI); |
| |
| case X86::MOVSX16rr8: |
| return tryReplaceExtend(X86::MOVSX32rr8, MI); |
| case X86::MOVSX16rm8: |
| return tryReplaceExtend(X86::MOVSX32rm8, MI); |
| case X86::MOVZX16rr8: |
| return tryReplaceExtend(X86::MOVZX32rr8, MI); |
| case X86::MOVZX16rm8: |
| return tryReplaceExtend(X86::MOVZX32rm8, MI); |
| |
| default: |
| // nothing to do here. |
| break; |
| } |
| |
| return nullptr; |
| } |
| |
| void FixupBWInstPass::processBasicBlock(MachineFunction &MF, |
| MachineBasicBlock &MBB) { |
| |
| // This algorithm doesn't delete the instructions it is replacing |
| // right away. By leaving the existing instructions in place, the |
| // register liveness information doesn't change, and this makes the |
| // analysis that goes on be better than if the replaced instructions |
| // were immediately removed. |
| // |
| // This algorithm always creates a replacement instruction |
| // and notes that and the original in a data structure, until the |
| // whole BB has been analyzed. This keeps the replacement instructions |
| // from making it seem as if the larger register might be live. |
| SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements; |
| |
| // Start computing liveness for this block. We iterate from the end to be able |
| // to update this for each instruction. |
| LiveRegs.clear(); |
| // We run after PEI, so we need to AddPristinesAndCSRs. |
| LiveRegs.addLiveOuts(MBB); |
| |
| OptForSize = MF.getFunction().hasOptSize() || |
| llvm::shouldOptimizeForSize(&MBB, PSI, MBFI); |
| |
| for (MachineInstr &MI : llvm::reverse(MBB)) { |
| if (MachineInstr *NewMI = tryReplaceInstr(&MI, MBB)) |
| MIReplacements.push_back(std::make_pair(&MI, NewMI)); |
| |
| // We're done with this instruction, update liveness for the next one. |
| LiveRegs.stepBackward(MI); |
| } |
| |
| while (!MIReplacements.empty()) { |
| MachineInstr *MI = MIReplacements.back().first; |
| MachineInstr *NewMI = MIReplacements.back().second; |
| MIReplacements.pop_back(); |
| MBB.insert(MI, NewMI); |
| MBB.erase(MI); |
| } |
| } |