| //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the Base ARM implementation of the TargetInstrInfo class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "ARMBaseInstrInfo.h" |
| #include "ARMBaseRegisterInfo.h" |
| #include "ARMConstantPoolValue.h" |
| #include "ARMFeatures.h" |
| #include "ARMHazardRecognizer.h" |
| #include "ARMMachineFunctionInfo.h" |
| #include "ARMSubtarget.h" |
| #include "MCTargetDesc/ARMAddressingModes.h" |
| #include "MCTargetDesc/ARMBaseInfo.h" |
| #include "MVETailPredUtils.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/CodeGen/DFAPacketizer.h" |
| #include "llvm/CodeGen/LiveVariables.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachinePipeliner.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/MachineScheduler.h" |
| #include "llvm/CodeGen/MultiHazardRecognizer.h" |
| #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSchedule.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| #include "llvm/MC/MCInstrItineraries.h" |
| #include "llvm/Support/BranchProbability.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| #include <new> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "arm-instrinfo" |
| |
| #define GET_INSTRINFO_CTOR_DTOR |
| #include "ARMGenInstrInfo.inc" |
| |
| static cl::opt<bool> |
| EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden, |
| cl::desc("Enable ARM 2-addr to 3-addr conv")); |
| |
| /// ARM_MLxEntry - Record information about MLA / MLS instructions. |
| struct ARM_MLxEntry { |
| uint16_t MLxOpc; // MLA / MLS opcode |
| uint16_t MulOpc; // Expanded multiplication opcode |
| uint16_t AddSubOpc; // Expanded add / sub opcode |
| bool NegAcc; // True if the acc is negated before the add / sub. |
| bool HasLane; // True if instruction has an extra "lane" operand. |
| }; |
| |
| static const ARM_MLxEntry ARM_MLxTable[] = { |
| // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane |
| // fp scalar ops |
| { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false }, |
| { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false }, |
| { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false }, |
| { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false }, |
| { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false }, |
| { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false }, |
| { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false }, |
| { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false }, |
| |
| // fp SIMD ops |
| { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false }, |
| { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false }, |
| { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false }, |
| { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false }, |
| { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true }, |
| { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true }, |
| { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true }, |
| { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true }, |
| }; |
| |
| ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI) |
| : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP), |
| Subtarget(STI) { |
| for (unsigned i = 0, e = std::size(ARM_MLxTable); i != e; ++i) { |
| if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second) |
| llvm_unreachable("Duplicated entries?"); |
| MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc); |
| MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc); |
| } |
| } |
| |
| // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl |
| // currently defaults to no prepass hazard recognizer. |
| ScheduleHazardRecognizer * |
| ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, |
| const ScheduleDAG *DAG) const { |
| if (usePreRAHazardRecognizer()) { |
| const InstrItineraryData *II = |
| static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData(); |
| return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched"); |
| } |
| return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); |
| } |
| |
| // Called during: |
| // - pre-RA scheduling |
| // - post-RA scheduling when FeatureUseMISched is set |
| ScheduleHazardRecognizer *ARMBaseInstrInfo::CreateTargetMIHazardRecognizer( |
| const InstrItineraryData *II, const ScheduleDAGMI *DAG) const { |
| MultiHazardRecognizer *MHR = new MultiHazardRecognizer(); |
| |
| // We would like to restrict this hazard recognizer to only |
| // post-RA scheduling; we can tell that we're post-RA because we don't |
| // track VRegLiveness. |
| // Cortex-M7: TRM indicates that there is a single ITCM bank and two DTCM |
| // banks banked on bit 2. Assume that TCMs are in use. |
| if (Subtarget.isCortexM7() && !DAG->hasVRegLiveness()) |
| MHR->AddHazardRecognizer( |
| std::make_unique<ARMBankConflictHazardRecognizer>(DAG, 0x4, true)); |
| |
| // Not inserting ARMHazardRecognizerFPMLx because that would change |
| // legacy behavior |
| |
| auto BHR = TargetInstrInfo::CreateTargetMIHazardRecognizer(II, DAG); |
| MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR)); |
| return MHR; |
| } |
| |
| // Called during post-RA scheduling when FeatureUseMISched is not set |
| ScheduleHazardRecognizer *ARMBaseInstrInfo:: |
| CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, |
| const ScheduleDAG *DAG) const { |
| MultiHazardRecognizer *MHR = new MultiHazardRecognizer(); |
| |
| if (Subtarget.isThumb2() || Subtarget.hasVFP2Base()) |
| MHR->AddHazardRecognizer(std::make_unique<ARMHazardRecognizerFPMLx>()); |
| |
| auto BHR = TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG); |
| if (BHR) |
| MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR)); |
| return MHR; |
| } |
| |
| MachineInstr * |
| ARMBaseInstrInfo::convertToThreeAddress(MachineInstr &MI, LiveVariables *LV, |
| LiveIntervals *LIS) const { |
| // FIXME: Thumb2 support. |
| |
| if (!EnableARM3Addr) |
| return nullptr; |
| |
| MachineFunction &MF = *MI.getParent()->getParent(); |
| uint64_t TSFlags = MI.getDesc().TSFlags; |
| bool isPre = false; |
| switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) { |
| default: return nullptr; |
| case ARMII::IndexModePre: |
| isPre = true; |
| break; |
| case ARMII::IndexModePost: |
| break; |
| } |
| |
| // Try splitting an indexed load/store to an un-indexed one plus an add/sub |
| // operation. |
| unsigned MemOpc = getUnindexedOpcode(MI.getOpcode()); |
| if (MemOpc == 0) |
| return nullptr; |
| |
| MachineInstr *UpdateMI = nullptr; |
| MachineInstr *MemMI = nullptr; |
| unsigned AddrMode = (TSFlags & ARMII::AddrModeMask); |
| const MCInstrDesc &MCID = MI.getDesc(); |
| unsigned NumOps = MCID.getNumOperands(); |
| bool isLoad = !MI.mayStore(); |
| const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0); |
| const MachineOperand &Base = MI.getOperand(2); |
| const MachineOperand &Offset = MI.getOperand(NumOps - 3); |
| Register WBReg = WB.getReg(); |
| Register BaseReg = Base.getReg(); |
| Register OffReg = Offset.getReg(); |
| unsigned OffImm = MI.getOperand(NumOps - 2).getImm(); |
| ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm(); |
| switch (AddrMode) { |
| default: llvm_unreachable("Unknown indexed op!"); |
| case ARMII::AddrMode2: { |
| bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; |
| unsigned Amt = ARM_AM::getAM2Offset(OffImm); |
| if (OffReg == 0) { |
| if (ARM_AM::getSOImmVal(Amt) == -1) |
| // Can't encode it in a so_imm operand. This transformation will |
| // add more than 1 instruction. Abandon! |
| return nullptr; |
| UpdateMI = BuildMI(MF, MI.getDebugLoc(), |
| get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) |
| .addReg(BaseReg) |
| .addImm(Amt) |
| .add(predOps(Pred)) |
| .add(condCodeOp()); |
| } else if (Amt != 0) { |
| ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm); |
| unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt); |
| UpdateMI = BuildMI(MF, MI.getDebugLoc(), |
| get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg) |
| .addReg(BaseReg) |
| .addReg(OffReg) |
| .addReg(0) |
| .addImm(SOOpc) |
| .add(predOps(Pred)) |
| .add(condCodeOp()); |
| } else |
| UpdateMI = BuildMI(MF, MI.getDebugLoc(), |
| get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) |
| .addReg(BaseReg) |
| .addReg(OffReg) |
| .add(predOps(Pred)) |
| .add(condCodeOp()); |
| break; |
| } |
| case ARMII::AddrMode3 : { |
| bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub; |
| unsigned Amt = ARM_AM::getAM3Offset(OffImm); |
| if (OffReg == 0) |
| // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand. |
| UpdateMI = BuildMI(MF, MI.getDebugLoc(), |
| get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) |
| .addReg(BaseReg) |
| .addImm(Amt) |
| .add(predOps(Pred)) |
| .add(condCodeOp()); |
| else |
| UpdateMI = BuildMI(MF, MI.getDebugLoc(), |
| get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) |
| .addReg(BaseReg) |
| .addReg(OffReg) |
| .add(predOps(Pred)) |
| .add(condCodeOp()); |
| break; |
| } |
| } |
| |
| std::vector<MachineInstr*> NewMIs; |
| if (isPre) { |
| if (isLoad) |
| MemMI = |
| BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) |
| .addReg(WBReg) |
| .addImm(0) |
| .addImm(Pred); |
| else |
| MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) |
| .addReg(MI.getOperand(1).getReg()) |
| .addReg(WBReg) |
| .addReg(0) |
| .addImm(0) |
| .addImm(Pred); |
| NewMIs.push_back(MemMI); |
| NewMIs.push_back(UpdateMI); |
| } else { |
| if (isLoad) |
| MemMI = |
| BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) |
| .addReg(BaseReg) |
| .addImm(0) |
| .addImm(Pred); |
| else |
| MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) |
| .addReg(MI.getOperand(1).getReg()) |
| .addReg(BaseReg) |
| .addReg(0) |
| .addImm(0) |
| .addImm(Pred); |
| if (WB.isDead()) |
| UpdateMI->getOperand(0).setIsDead(); |
| NewMIs.push_back(UpdateMI); |
| NewMIs.push_back(MemMI); |
| } |
| |
| // Transfer LiveVariables states, kill / dead info. |
| if (LV) { |
| for (const MachineOperand &MO : MI.operands()) { |
| if (MO.isReg() && MO.getReg().isVirtual()) { |
| Register Reg = MO.getReg(); |
| |
| LiveVariables::VarInfo &VI = LV->getVarInfo(Reg); |
| if (MO.isDef()) { |
| MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI; |
| if (MO.isDead()) |
| LV->addVirtualRegisterDead(Reg, *NewMI); |
| } |
| if (MO.isUse() && MO.isKill()) { |
| for (unsigned j = 0; j < 2; ++j) { |
| // Look at the two new MI's in reverse order. |
| MachineInstr *NewMI = NewMIs[j]; |
| if (!NewMI->readsRegister(Reg)) |
| continue; |
| LV->addVirtualRegisterKilled(Reg, *NewMI); |
| if (VI.removeKill(MI)) |
| VI.Kills.push_back(NewMI); |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| MachineBasicBlock &MBB = *MI.getParent(); |
| MBB.insert(MI, NewMIs[1]); |
| MBB.insert(MI, NewMIs[0]); |
| return NewMIs[0]; |
| } |
| |
| // Branch analysis. |
| // Cond vector output format: |
| // 0 elements indicates an unconditional branch |
| // 2 elements indicates a conditional branch; the elements are |
| // the condition to check and the CPSR. |
| // 3 elements indicates a hardware loop end; the elements |
| // are the opcode, the operand value to test, and a dummy |
| // operand used to pad out to 3 operands. |
| bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB, |
| MachineBasicBlock *&TBB, |
| MachineBasicBlock *&FBB, |
| SmallVectorImpl<MachineOperand> &Cond, |
| bool AllowModify) const { |
| TBB = nullptr; |
| FBB = nullptr; |
| |
| MachineBasicBlock::instr_iterator I = MBB.instr_end(); |
| if (I == MBB.instr_begin()) |
| return false; // Empty blocks are easy. |
| --I; |
| |
| // Walk backwards from the end of the basic block until the branch is |
| // analyzed or we give up. |
| while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) { |
| // Flag to be raised on unanalyzeable instructions. This is useful in cases |
| // where we want to clean up on the end of the basic block before we bail |
| // out. |
| bool CantAnalyze = false; |
| |
| // Skip over DEBUG values, predicated nonterminators and speculation |
| // barrier terminators. |
| while (I->isDebugInstr() || !I->isTerminator() || |
| isSpeculationBarrierEndBBOpcode(I->getOpcode()) || |
| I->getOpcode() == ARM::t2DoLoopStartTP){ |
| if (I == MBB.instr_begin()) |
| return false; |
| --I; |
| } |
| |
| if (isIndirectBranchOpcode(I->getOpcode()) || |
| isJumpTableBranchOpcode(I->getOpcode())) { |
| // Indirect branches and jump tables can't be analyzed, but we still want |
| // to clean up any instructions at the tail of the basic block. |
| CantAnalyze = true; |
| } else if (isUncondBranchOpcode(I->getOpcode())) { |
| TBB = I->getOperand(0).getMBB(); |
| } else if (isCondBranchOpcode(I->getOpcode())) { |
| // Bail out if we encounter multiple conditional branches. |
| if (!Cond.empty()) |
| return true; |
| |
| assert(!FBB && "FBB should have been null."); |
| FBB = TBB; |
| TBB = I->getOperand(0).getMBB(); |
| Cond.push_back(I->getOperand(1)); |
| Cond.push_back(I->getOperand(2)); |
| } else if (I->isReturn()) { |
| // Returns can't be analyzed, but we should run cleanup. |
| CantAnalyze = true; |
| } else if (I->getOpcode() == ARM::t2LoopEnd && |
| MBB.getParent() |
| ->getSubtarget<ARMSubtarget>() |
| .enableMachinePipeliner()) { |
| if (!Cond.empty()) |
| return true; |
| FBB = TBB; |
| TBB = I->getOperand(1).getMBB(); |
| Cond.push_back(MachineOperand::CreateImm(I->getOpcode())); |
| Cond.push_back(I->getOperand(0)); |
| Cond.push_back(MachineOperand::CreateImm(0)); |
| } else { |
| // We encountered other unrecognized terminator. Bail out immediately. |
| return true; |
| } |
| |
| // Cleanup code - to be run for unpredicated unconditional branches and |
| // returns. |
| if (!isPredicated(*I) && |
| (isUncondBranchOpcode(I->getOpcode()) || |
| isIndirectBranchOpcode(I->getOpcode()) || |
| isJumpTableBranchOpcode(I->getOpcode()) || |
| I->isReturn())) { |
| // Forget any previous condition branch information - it no longer applies. |
| Cond.clear(); |
| FBB = nullptr; |
| |
| // If we can modify the function, delete everything below this |
| // unconditional branch. |
| if (AllowModify) { |
| MachineBasicBlock::iterator DI = std::next(I); |
| while (DI != MBB.instr_end()) { |
| MachineInstr &InstToDelete = *DI; |
| ++DI; |
| // Speculation barriers must not be deleted. |
| if (isSpeculationBarrierEndBBOpcode(InstToDelete.getOpcode())) |
| continue; |
| InstToDelete.eraseFromParent(); |
| } |
| } |
| } |
| |
| if (CantAnalyze) { |
| // We may not be able to analyze the block, but we could still have |
| // an unconditional branch as the last instruction in the block, which |
| // just branches to layout successor. If this is the case, then just |
| // remove it if we're allowed to make modifications. |
| if (AllowModify && !isPredicated(MBB.back()) && |
| isUncondBranchOpcode(MBB.back().getOpcode()) && |
| TBB && MBB.isLayoutSuccessor(TBB)) |
| removeBranch(MBB); |
| return true; |
| } |
| |
| if (I == MBB.instr_begin()) |
| return false; |
| |
| --I; |
| } |
| |
| // We made it past the terminators without bailing out - we must have |
| // analyzed this branch successfully. |
| return false; |
| } |
| |
| unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB, |
| int *BytesRemoved) const { |
| assert(!BytesRemoved && "code size not handled"); |
| |
| MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); |
| if (I == MBB.end()) |
| return 0; |
| |
| if (!isUncondBranchOpcode(I->getOpcode()) && |
| !isCondBranchOpcode(I->getOpcode()) && I->getOpcode() != ARM::t2LoopEnd) |
| return 0; |
| |
| // Remove the branch. |
| I->eraseFromParent(); |
| |
| I = MBB.end(); |
| |
| if (I == MBB.begin()) return 1; |
| --I; |
| if (!isCondBranchOpcode(I->getOpcode()) && I->getOpcode() != ARM::t2LoopEnd) |
| return 1; |
| |
| // Remove the branch. |
| I->eraseFromParent(); |
| return 2; |
| } |
| |
| unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB, |
| MachineBasicBlock *TBB, |
| MachineBasicBlock *FBB, |
| ArrayRef<MachineOperand> Cond, |
| const DebugLoc &DL, |
| int *BytesAdded) const { |
| assert(!BytesAdded && "code size not handled"); |
| ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>(); |
| int BOpc = !AFI->isThumbFunction() |
| ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB); |
| int BccOpc = !AFI->isThumbFunction() |
| ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc); |
| bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function(); |
| |
| // Shouldn't be a fall through. |
| assert(TBB && "insertBranch must not be told to insert a fallthrough"); |
| assert((Cond.size() == 2 || Cond.size() == 0 || Cond.size() == 3) && |
| "ARM branch conditions have two or three components!"); |
| |
| // For conditional branches, we use addOperand to preserve CPSR flags. |
| |
| if (!FBB) { |
| if (Cond.empty()) { // Unconditional branch? |
| if (isThumb) |
| BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL)); |
| else |
| BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); |
| } else if (Cond.size() == 2) { |
| BuildMI(&MBB, DL, get(BccOpc)) |
| .addMBB(TBB) |
| .addImm(Cond[0].getImm()) |
| .add(Cond[1]); |
| } else |
| BuildMI(&MBB, DL, get(Cond[0].getImm())).add(Cond[1]).addMBB(TBB); |
| return 1; |
| } |
| |
| // Two-way conditional branch. |
| if (Cond.size() == 2) |
| BuildMI(&MBB, DL, get(BccOpc)) |
| .addMBB(TBB) |
| .addImm(Cond[0].getImm()) |
| .add(Cond[1]); |
| else if (Cond.size() == 3) |
| BuildMI(&MBB, DL, get(Cond[0].getImm())).add(Cond[1]).addMBB(TBB); |
| if (isThumb) |
| BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL)); |
| else |
| BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); |
| return 2; |
| } |
| |
| bool ARMBaseInstrInfo:: |
| reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { |
| if (Cond.size() == 2) { |
| ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm(); |
| Cond[0].setImm(ARMCC::getOppositeCondition(CC)); |
| return false; |
| } |
| return true; |
| } |
| |
| bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const { |
| if (MI.isBundle()) { |
| MachineBasicBlock::const_instr_iterator I = MI.getIterator(); |
| MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); |
| while (++I != E && I->isInsideBundle()) { |
| int PIdx = I->findFirstPredOperandIdx(); |
| if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL) |
| return true; |
| } |
| return false; |
| } |
| |
| int PIdx = MI.findFirstPredOperandIdx(); |
| return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL; |
| } |
| |
| std::string ARMBaseInstrInfo::createMIROperandComment( |
| const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx, |
| const TargetRegisterInfo *TRI) const { |
| |
| // First, let's see if there is a generic comment for this operand |
| std::string GenericComment = |
| TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI); |
| if (!GenericComment.empty()) |
| return GenericComment; |
| |
| // If not, check if we have an immediate operand. |
| if (!Op.isImm()) |
| return std::string(); |
| |
| // And print its corresponding condition code if the immediate is a |
| // predicate. |
| int FirstPredOp = MI.findFirstPredOperandIdx(); |
| if (FirstPredOp != (int) OpIdx) |
| return std::string(); |
| |
| std::string CC = "CC::"; |
| CC += ARMCondCodeToString((ARMCC::CondCodes)Op.getImm()); |
| return CC; |
| } |
| |
| bool ARMBaseInstrInfo::PredicateInstruction( |
| MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { |
| unsigned Opc = MI.getOpcode(); |
| if (isUncondBranchOpcode(Opc)) { |
| MI.setDesc(get(getMatchingCondBranchOpcode(Opc))); |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| .addImm(Pred[0].getImm()) |
| .addReg(Pred[1].getReg()); |
| return true; |
| } |
| |
| int PIdx = MI.findFirstPredOperandIdx(); |
| if (PIdx != -1) { |
| MachineOperand &PMO = MI.getOperand(PIdx); |
| PMO.setImm(Pred[0].getImm()); |
| MI.getOperand(PIdx+1).setReg(Pred[1].getReg()); |
| |
| // Thumb 1 arithmetic instructions do not set CPSR when executed inside an |
| // IT block. This affects how they are printed. |
| const MCInstrDesc &MCID = MI.getDesc(); |
| if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { |
| assert(MCID.operands()[1].isOptionalDef() && |
| "CPSR def isn't expected operand"); |
| assert((MI.getOperand(1).isDead() || |
| MI.getOperand(1).getReg() != ARM::CPSR) && |
| "if conversion tried to stop defining used CPSR"); |
| MI.getOperand(1).setReg(ARM::NoRegister); |
| } |
| |
| return true; |
| } |
| return false; |
| } |
| |
| bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, |
| ArrayRef<MachineOperand> Pred2) const { |
| if (Pred1.size() > 2 || Pred2.size() > 2) |
| return false; |
| |
| ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm(); |
| ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm(); |
| if (CC1 == CC2) |
| return true; |
| |
| switch (CC1) { |
| default: |
| return false; |
| case ARMCC::AL: |
| return true; |
| case ARMCC::HS: |
| return CC2 == ARMCC::HI; |
| case ARMCC::LS: |
| return CC2 == ARMCC::LO || CC2 == ARMCC::EQ; |
| case ARMCC::GE: |
| return CC2 == ARMCC::GT; |
| case ARMCC::LE: |
| return CC2 == ARMCC::LT; |
| } |
| } |
| |
| bool ARMBaseInstrInfo::ClobbersPredicate(MachineInstr &MI, |
| std::vector<MachineOperand> &Pred, |
| bool SkipDead) const { |
| bool Found = false; |
| for (const MachineOperand &MO : MI.operands()) { |
| bool ClobbersCPSR = MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR); |
| bool IsCPSR = MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR; |
| if (ClobbersCPSR || IsCPSR) { |
| |
| // Filter out T1 instructions that have a dead CPSR, |
| // allowing IT blocks to be generated containing T1 instructions |
| const MCInstrDesc &MCID = MI.getDesc(); |
| if (MCID.TSFlags & ARMII::ThumbArithFlagSetting && MO.isDead() && |
| SkipDead) |
| continue; |
| |
| Pred.push_back(MO); |
| Found = true; |
| } |
| } |
| |
| return Found; |
| } |
| |
| bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) { |
| for (const auto &MO : MI.operands()) |
| if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead()) |
| return true; |
| return false; |
| } |
| |
| static bool isEligibleForITBlock(const MachineInstr *MI) { |
| switch (MI->getOpcode()) { |
| default: return true; |
| case ARM::tADC: // ADC (register) T1 |
| case ARM::tADDi3: // ADD (immediate) T1 |
| case ARM::tADDi8: // ADD (immediate) T2 |
| case ARM::tADDrr: // ADD (register) T1 |
| case ARM::tAND: // AND (register) T1 |
| case ARM::tASRri: // ASR (immediate) T1 |
| case ARM::tASRrr: // ASR (register) T1 |
| case ARM::tBIC: // BIC (register) T1 |
| case ARM::tEOR: // EOR (register) T1 |
| case ARM::tLSLri: // LSL (immediate) T1 |
| case ARM::tLSLrr: // LSL (register) T1 |
| case ARM::tLSRri: // LSR (immediate) T1 |
| case ARM::tLSRrr: // LSR (register) T1 |
| case ARM::tMUL: // MUL T1 |
| case ARM::tMVN: // MVN (register) T1 |
| case ARM::tORR: // ORR (register) T1 |
| case ARM::tROR: // ROR (register) T1 |
| case ARM::tRSB: // RSB (immediate) T1 |
| case ARM::tSBC: // SBC (register) T1 |
| case ARM::tSUBi3: // SUB (immediate) T1 |
| case ARM::tSUBi8: // SUB (immediate) T2 |
| case ARM::tSUBrr: // SUB (register) T1 |
| return !ARMBaseInstrInfo::isCPSRDefined(*MI); |
| } |
| } |
| |
| /// isPredicable - Return true if the specified instruction can be predicated. |
| /// By default, this returns true for every instruction with a |
| /// PredicateOperand. |
| bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const { |
| if (!MI.isPredicable()) |
| return false; |
| |
| if (MI.isBundle()) |
| return false; |
| |
| if (!isEligibleForITBlock(&MI)) |
| return false; |
| |
| const MachineFunction *MF = MI.getParent()->getParent(); |
| const ARMFunctionInfo *AFI = |
| MF->getInfo<ARMFunctionInfo>(); |
| |
| // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM. |
| // In their ARM encoding, they can't be encoded in a conditional form. |
| if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) |
| return false; |
| |
| // Make indirect control flow changes unpredicable when SLS mitigation is |
| // enabled. |
| const ARMSubtarget &ST = MF->getSubtarget<ARMSubtarget>(); |
| if (ST.hardenSlsRetBr() && isIndirectControlFlowNotComingBack(MI)) |
| return false; |
| if (ST.hardenSlsBlr() && isIndirectCall(MI)) |
| return false; |
| |
| if (AFI->isThumb2Function()) { |
| if (getSubtarget().restrictIT()) |
| return isV8EligibleForIT(&MI); |
| } |
| |
| return true; |
| } |
| |
| namespace llvm { |
| |
| template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) { |
| for (const MachineOperand &MO : MI->operands()) { |
| if (!MO.isReg() || MO.isUndef() || MO.isUse()) |
| continue; |
| if (MO.getReg() != ARM::CPSR) |
| continue; |
| if (!MO.isDead()) |
| return false; |
| } |
| // all definitions of CPSR are dead |
| return true; |
| } |
| |
| } // end namespace llvm |
| |
| /// GetInstSize - Return the size of the specified MachineInstr. |
| /// |
| unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { |
| const MachineBasicBlock &MBB = *MI.getParent(); |
| const MachineFunction *MF = MBB.getParent(); |
| const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); |
| |
| const MCInstrDesc &MCID = MI.getDesc(); |
| |
| switch (MI.getOpcode()) { |
| default: |
| // Return the size specified in .td file. If there's none, return 0, as we |
| // can't define a default size (Thumb1 instructions are 2 bytes, Thumb2 |
| // instructions are 2-4 bytes, and ARM instructions are 4 bytes), in |
| // contrast to AArch64 instructions which have a default size of 4 bytes for |
| // example. |
| return MCID.getSize(); |
| case TargetOpcode::BUNDLE: |
| return getInstBundleLength(MI); |
| case ARM::CONSTPOOL_ENTRY: |
| case ARM::JUMPTABLE_INSTS: |
| case ARM::JUMPTABLE_ADDRS: |
| case ARM::JUMPTABLE_TBB: |
| case ARM::JUMPTABLE_TBH: |
| // If this machine instr is a constant pool entry, its size is recorded as |
| // operand #2. |
| return MI.getOperand(2).getImm(); |
| case ARM::SPACE: |
| return MI.getOperand(1).getImm(); |
| case ARM::INLINEASM: |
| case ARM::INLINEASM_BR: { |
| // If this machine instr is an inline asm, measure it. |
| unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI); |
| if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction()) |
| Size = alignTo(Size, 4); |
| return Size; |
| } |
| } |
| } |
| |
| unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const { |
| unsigned Size = 0; |
| MachineBasicBlock::const_instr_iterator I = MI.getIterator(); |
| MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); |
| while (++I != E && I->isInsideBundle()) { |
| assert(!I->isBundle() && "No nested bundle!"); |
| Size += getInstSizeInBytes(*I); |
| } |
| return Size; |
| } |
| |
| void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, |
| unsigned DestReg, bool KillSrc, |
| const ARMSubtarget &Subtarget) const { |
| unsigned Opc = Subtarget.isThumb() |
| ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR) |
| : ARM::MRS; |
| |
| MachineInstrBuilder MIB = |
| BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg); |
| |
| // There is only 1 A/R class MRS instruction, and it always refers to |
| // APSR. However, there are lots of other possibilities on M-class cores. |
| if (Subtarget.isMClass()) |
| MIB.addImm(0x800); |
| |
| MIB.add(predOps(ARMCC::AL)) |
| .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc)); |
| } |
| |
| void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, |
| unsigned SrcReg, bool KillSrc, |
| const ARMSubtarget &Subtarget) const { |
| unsigned Opc = Subtarget.isThumb() |
| ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR) |
| : ARM::MSR; |
| |
| MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc)); |
| |
| if (Subtarget.isMClass()) |
| MIB.addImm(0x800); |
| else |
| MIB.addImm(8); |
| |
| MIB.addReg(SrcReg, getKillRegState(KillSrc)) |
| .add(predOps(ARMCC::AL)) |
| .addReg(ARM::CPSR, RegState::Implicit | RegState::Define); |
| } |
| |
| void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) { |
| MIB.addImm(ARMVCC::None); |
| MIB.addReg(0); |
| MIB.addReg(0); // tp_reg |
| } |
| |
| void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB, |
| Register DestReg) { |
| addUnpredicatedMveVpredNOp(MIB); |
| MIB.addReg(DestReg, RegState::Undef); |
| } |
| |
| void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) { |
| MIB.addImm(Cond); |
| MIB.addReg(ARM::VPR, RegState::Implicit); |
| MIB.addReg(0); // tp_reg |
| } |
| |
| void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB, |
| unsigned Cond, unsigned Inactive) { |
| addPredicatedMveVpredNOp(MIB, Cond); |
| MIB.addReg(Inactive); |
| } |
| |
| void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, |
| const DebugLoc &DL, MCRegister DestReg, |
| MCRegister SrcReg, bool KillSrc) const { |
| bool GPRDest = ARM::GPRRegClass.contains(DestReg); |
| bool GPRSrc = ARM::GPRRegClass.contains(SrcReg); |
| |
| if (GPRDest && GPRSrc) { |
| BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg) |
| .addReg(SrcReg, getKillRegState(KillSrc)) |
| .add(predOps(ARMCC::AL)) |
| .add(condCodeOp()); |
| return; |
| } |
| |
| bool SPRDest = ARM::SPRRegClass.contains(DestReg); |
| bool SPRSrc = ARM::SPRRegClass.contains(SrcReg); |
| |
| unsigned Opc = 0; |
| if (SPRDest && SPRSrc) |
| Opc = ARM::VMOVS; |
| else if (GPRDest && SPRSrc) |
| Opc = ARM::VMOVRS; |
| else if (SPRDest && GPRSrc) |
| Opc = ARM::VMOVSR; |
| else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64()) |
| Opc = ARM::VMOVD; |
| else if (ARM::QPRRegClass.contains(DestReg, SrcReg)) |
| Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MQPRCopy; |
| |
| if (Opc) { |
| MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg); |
| MIB.addReg(SrcReg, getKillRegState(KillSrc)); |
| if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) |
| MIB.addReg(SrcReg, getKillRegState(KillSrc)); |
| if (Opc == ARM::MVE_VORR) |
| addUnpredicatedMveVpredROp(MIB, DestReg); |
| else if (Opc != ARM::MQPRCopy) |
| MIB.add(predOps(ARMCC::AL)); |
| return; |
| } |
| |
| // Handle register classes that require multiple instructions. |
| unsigned BeginIdx = 0; |
| unsigned SubRegs = 0; |
| int Spacing = 1; |
| |
| // Use VORRq when possible. |
| if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) { |
| Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; |
| BeginIdx = ARM::qsub_0; |
| SubRegs = 2; |
| } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) { |
| Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; |
| BeginIdx = ARM::qsub_0; |
| SubRegs = 4; |
| // Fall back to VMOVD. |
| } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) { |
| Opc = ARM::VMOVD; |
| BeginIdx = ARM::dsub_0; |
| SubRegs = 2; |
| } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) { |
| Opc = ARM::VMOVD; |
| BeginIdx = ARM::dsub_0; |
| SubRegs = 3; |
| } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) { |
| Opc = ARM::VMOVD; |
| BeginIdx = ARM::dsub_0; |
| SubRegs = 4; |
| } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) { |
| Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr; |
| BeginIdx = ARM::gsub_0; |
| SubRegs = 2; |
| } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) { |
| Opc = ARM::VMOVD; |
| BeginIdx = ARM::dsub_0; |
| SubRegs = 2; |
| Spacing = 2; |
| } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) { |
| Opc = ARM::VMOVD; |
| BeginIdx = ARM::dsub_0; |
| SubRegs = 3; |
| Spacing = 2; |
| } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) { |
| Opc = ARM::VMOVD; |
| BeginIdx = ARM::dsub_0; |
| SubRegs = 4; |
| Spacing = 2; |
| } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && |
| !Subtarget.hasFP64()) { |
| Opc = ARM::VMOVS; |
| BeginIdx = ARM::ssub_0; |
| SubRegs = 2; |
| } else if (SrcReg == ARM::CPSR) { |
| copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget); |
| return; |
| } else if (DestReg == ARM::CPSR) { |
| copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget); |
| return; |
| } else if (DestReg == ARM::VPR) { |
| assert(ARM::GPRRegClass.contains(SrcReg)); |
| BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg) |
| .addReg(SrcReg, getKillRegState(KillSrc)) |
| .add(predOps(ARMCC::AL)); |
| return; |
| } else if (SrcReg == ARM::VPR) { |
| assert(ARM::GPRRegClass.contains(DestReg)); |
| BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg) |
| .addReg(SrcReg, getKillRegState(KillSrc)) |
| .add(predOps(ARMCC::AL)); |
| return; |
| } else if (DestReg == ARM::FPSCR_NZCV) { |
| assert(ARM::GPRRegClass.contains(SrcReg)); |
| BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg) |
| .addReg(SrcReg, getKillRegState(KillSrc)) |
| .add(predOps(ARMCC::AL)); |
| return; |
| } else if (SrcReg == ARM::FPSCR_NZCV) { |
| assert(ARM::GPRRegClass.contains(DestReg)); |
| BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg) |
| .addReg(SrcReg, getKillRegState(KillSrc)) |
| .add(predOps(ARMCC::AL)); |
| return; |
| } |
| |
| assert(Opc && "Impossible reg-to-reg copy"); |
| |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| MachineInstrBuilder Mov; |
| |
| // Copy register tuples backward when the first Dest reg overlaps with SrcReg. |
| if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) { |
| BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing); |
| Spacing = -Spacing; |
| } |
| #ifndef NDEBUG |
| SmallSet<unsigned, 4> DstRegs; |
| #endif |
| for (unsigned i = 0; i != SubRegs; ++i) { |
| Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing); |
| Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing); |
| assert(Dst && Src && "Bad sub-register"); |
| #ifndef NDEBUG |
| assert(!DstRegs.count(Src) && "destructive vector copy"); |
| DstRegs.insert(Dst); |
| #endif |
| Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src); |
| // VORR (NEON or MVE) takes two source operands. |
| if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) { |
| Mov.addReg(Src); |
| } |
| // MVE VORR takes predicate operands in place of an ordinary condition. |
| if (Opc == ARM::MVE_VORR) |
| addUnpredicatedMveVpredROp(Mov, Dst); |
| else |
| Mov = Mov.add(predOps(ARMCC::AL)); |
| // MOVr can set CC. |
| if (Opc == ARM::MOVr) |
| Mov = Mov.add(condCodeOp()); |
| } |
| // Add implicit super-register defs and kills to the last instruction. |
| Mov->addRegisterDefined(DestReg, TRI); |
| if (KillSrc) |
| Mov->addRegisterKilled(SrcReg, TRI); |
| } |
| |
| std::optional<DestSourcePair> |
| ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const { |
| // VMOVRRD is also a copy instruction but it requires |
| // special way of handling. It is more complex copy version |
| // and since that we are not considering it. For recognition |
| // of such instruction isExtractSubregLike MI interface fuction |
| // could be used. |
| // VORRq is considered as a move only if two inputs are |
| // the same register. |
| if (!MI.isMoveReg() || |
| (MI.getOpcode() == ARM::VORRq && |
| MI.getOperand(1).getReg() != MI.getOperand(2).getReg())) |
| return std::nullopt; |
| return DestSourcePair{MI.getOperand(0), MI.getOperand(1)}; |
| } |
| |
| std::optional<ParamLoadedValue> |
| ARMBaseInstrInfo::describeLoadedValue(const MachineInstr &MI, |
| Register Reg) const { |
| if (auto DstSrcPair = isCopyInstrImpl(MI)) { |
| Register DstReg = DstSrcPair->Destination->getReg(); |
| |
| // TODO: We don't handle cases where the forwarding reg is narrower/wider |
| // than the copy registers. Consider for example: |
| // |
| // s16 = VMOVS s0 |
| // s17 = VMOVS s1 |
| // call @callee(d0) |
| // |
| // We'd like to describe the call site value of d0 as d8, but this requires |
| // gathering and merging the descriptions for the two VMOVS instructions. |
| // |
| // We also don't handle the reverse situation, where the forwarding reg is |
| // narrower than the copy destination: |
| // |
| // d8 = VMOVD d0 |
| // call @callee(s1) |
| // |
| // We need to produce a fragment description (the call site value of s1 is |
| // /not/ just d8). |
| if (DstReg != Reg) |
| return std::nullopt; |
| } |
| return TargetInstrInfo::describeLoadedValue(MI, Reg); |
| } |
| |
| const MachineInstrBuilder & |
| ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg, |
| unsigned SubIdx, unsigned State, |
| const TargetRegisterInfo *TRI) const { |
| if (!SubIdx) |
| return MIB.addReg(Reg, State); |
| |
| if (Register::isPhysicalRegister(Reg)) |
| return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State); |
| return MIB.addReg(Reg, State, SubIdx); |
| } |
| |
| void ARMBaseInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, |
| Register SrcReg, bool isKill, int FI, |
| const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI, |
| Register VReg) const { |
| MachineFunction &MF = *MBB.getParent(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| Align Alignment = MFI.getObjectAlign(FI); |
| |
| MachineMemOperand *MMO = MF.getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, |
| MFI.getObjectSize(FI), Alignment); |
| |
| switch (TRI->getSpillSize(*RC)) { |
| case 2: |
| if (ARM::HPRRegClass.hasSubClassEq(RC)) { |
| BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH)) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 4: |
| if (ARM::GPRRegClass.hasSubClassEq(RC)) { |
| BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12)) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { |
| BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS)) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) { |
| BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off)) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 8: |
| if (ARM::DPRRegClass.hasSubClassEq(RC)) { |
| BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD)) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { |
| if (Subtarget.hasV5TEOps()) { |
| MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD)); |
| AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); |
| AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); |
| MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else { |
| // Fallback to STM instruction, which has existed since the dawn of |
| // time. |
| MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA)) |
| .addFrameIndex(FI) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); |
| AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); |
| } |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 16: |
| if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) { |
| // Use aligned spills if the stack can be realigned. |
| if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) { |
| BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64)) |
| .addFrameIndex(FI) |
| .addImm(16) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else { |
| BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA)) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addFrameIndex(FI) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } |
| } else if (ARM::QPRRegClass.hasSubClassEq(RC) && |
| Subtarget.hasMVEIntegerOps()) { |
| auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32)); |
| MIB.addReg(SrcReg, getKillRegState(isKill)) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addMemOperand(MMO); |
| addUnpredicatedMveVpredNOp(MIB); |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 24: |
| if (ARM::DTripleRegClass.hasSubClassEq(RC)) { |
| // Use aligned spills if the stack can be realigned. |
| if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && |
| Subtarget.hasNEON()) { |
| BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo)) |
| .addFrameIndex(FI) |
| .addImm(16) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else { |
| MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), |
| get(ARM::VSTMDIA)) |
| .addFrameIndex(FI) |
| .add(predOps(ARMCC::AL)) |
| .addMemOperand(MMO); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); |
| AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); |
| } |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 32: |
| if (ARM::QQPRRegClass.hasSubClassEq(RC) || |
| ARM::MQQPRRegClass.hasSubClassEq(RC) || |
| ARM::DQuadRegClass.hasSubClassEq(RC)) { |
| if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && |
| Subtarget.hasNEON()) { |
| // FIXME: It's possible to only store part of the QQ register if the |
| // spilled def has a sub-register index. |
| BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo)) |
| .addFrameIndex(FI) |
| .addImm(16) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else if (Subtarget.hasMVEIntegerOps()) { |
| BuildMI(MBB, I, DebugLoc(), get(ARM::MQQPRStore)) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addFrameIndex(FI) |
| .addMemOperand(MMO); |
| } else { |
| MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), |
| get(ARM::VSTMDIA)) |
| .addFrameIndex(FI) |
| .add(predOps(ARMCC::AL)) |
| .addMemOperand(MMO); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); |
| AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); |
| } |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 64: |
| if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) && |
| Subtarget.hasMVEIntegerOps()) { |
| BuildMI(MBB, I, DebugLoc(), get(ARM::MQQQQPRStore)) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addFrameIndex(FI) |
| .addMemOperand(MMO); |
| } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { |
| MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA)) |
| .addFrameIndex(FI) |
| .add(predOps(ARMCC::AL)) |
| .addMemOperand(MMO); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI); |
| AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI); |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| default: |
| llvm_unreachable("Unknown reg class!"); |
| } |
| } |
| |
| unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI, |
| int &FrameIndex) const { |
| switch (MI.getOpcode()) { |
| default: break; |
| case ARM::STRrs: |
| case ARM::t2STRs: // FIXME: don't use t2STRs to access frame. |
| if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && |
| MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && |
| MI.getOperand(3).getImm() == 0) { |
| FrameIndex = MI.getOperand(1).getIndex(); |
| return MI.getOperand(0).getReg(); |
| } |
| break; |
| case ARM::STRi12: |
| case ARM::t2STRi12: |
| case ARM::tSTRspi: |
| case ARM::VSTRD: |
| case ARM::VSTRS: |
| case ARM::VSTR_P0_off: |
| case ARM::MVE_VSTRWU32: |
| if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && |
| MI.getOperand(2).getImm() == 0) { |
| FrameIndex = MI.getOperand(1).getIndex(); |
| return MI.getOperand(0).getReg(); |
| } |
| break; |
| case ARM::VST1q64: |
| case ARM::VST1d64TPseudo: |
| case ARM::VST1d64QPseudo: |
| if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) { |
| FrameIndex = MI.getOperand(0).getIndex(); |
| return MI.getOperand(2).getReg(); |
| } |
| break; |
| case ARM::VSTMQIA: |
| if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { |
| FrameIndex = MI.getOperand(1).getIndex(); |
| return MI.getOperand(0).getReg(); |
| } |
| break; |
| case ARM::MQQPRStore: |
| case ARM::MQQQQPRStore: |
| if (MI.getOperand(1).isFI()) { |
| FrameIndex = MI.getOperand(1).getIndex(); |
| return MI.getOperand(0).getReg(); |
| } |
| break; |
| } |
| |
| return 0; |
| } |
| |
| unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, |
| int &FrameIndex) const { |
| SmallVector<const MachineMemOperand *, 1> Accesses; |
| if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) && |
| Accesses.size() == 1) { |
| FrameIndex = |
| cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) |
| ->getFrameIndex(); |
| return true; |
| } |
| return false; |
| } |
| |
| void ARMBaseInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, |
| Register DestReg, int FI, |
| const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI, |
| Register VReg) const { |
| DebugLoc DL; |
| if (I != MBB.end()) DL = I->getDebugLoc(); |
| MachineFunction &MF = *MBB.getParent(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| const Align Alignment = MFI.getObjectAlign(FI); |
| MachineMemOperand *MMO = MF.getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, |
| MFI.getObjectSize(FI), Alignment); |
| |
| switch (TRI->getSpillSize(*RC)) { |
| case 2: |
| if (ARM::HPRRegClass.hasSubClassEq(RC)) { |
| BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 4: |
| if (ARM::GPRRegClass.hasSubClassEq(RC)) { |
| BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { |
| BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) { |
| BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 8: |
| if (ARM::DPRRegClass.hasSubClassEq(RC)) { |
| BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { |
| MachineInstrBuilder MIB; |
| |
| if (Subtarget.hasV5TEOps()) { |
| MIB = BuildMI(MBB, I, DL, get(ARM::LDRD)); |
| AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); |
| AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); |
| MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else { |
| // Fallback to LDM instruction, which has existed since the dawn of |
| // time. |
| MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA)) |
| .addFrameIndex(FI) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); |
| } |
| |
| if (DestReg.isPhysical()) |
| MIB.addReg(DestReg, RegState::ImplicitDefine); |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 16: |
| if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) { |
| if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) { |
| BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg) |
| .addFrameIndex(FI) |
| .addImm(16) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else { |
| BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg) |
| .addFrameIndex(FI) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } |
| } else if (ARM::QPRRegClass.hasSubClassEq(RC) && |
| Subtarget.hasMVEIntegerOps()) { |
| auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg); |
| MIB.addFrameIndex(FI) |
| .addImm(0) |
| .addMemOperand(MMO); |
| addUnpredicatedMveVpredNOp(MIB); |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 24: |
| if (ARM::DTripleRegClass.hasSubClassEq(RC)) { |
| if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && |
| Subtarget.hasNEON()) { |
| BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg) |
| .addFrameIndex(FI) |
| .addImm(16) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else { |
| MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) |
| .addFrameIndex(FI) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); |
| if (DestReg.isPhysical()) |
| MIB.addReg(DestReg, RegState::ImplicitDefine); |
| } |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 32: |
| if (ARM::QQPRRegClass.hasSubClassEq(RC) || |
| ARM::MQQPRRegClass.hasSubClassEq(RC) || |
| ARM::DQuadRegClass.hasSubClassEq(RC)) { |
| if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && |
| Subtarget.hasNEON()) { |
| BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg) |
| .addFrameIndex(FI) |
| .addImm(16) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else if (Subtarget.hasMVEIntegerOps()) { |
| BuildMI(MBB, I, DL, get(ARM::MQQPRLoad), DestReg) |
| .addFrameIndex(FI) |
| .addMemOperand(MMO); |
| } else { |
| MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) |
| .addFrameIndex(FI) |
| .add(predOps(ARMCC::AL)) |
| .addMemOperand(MMO); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); |
| if (DestReg.isPhysical()) |
| MIB.addReg(DestReg, RegState::ImplicitDefine); |
| } |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 64: |
| if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) && |
| Subtarget.hasMVEIntegerOps()) { |
| BuildMI(MBB, I, DL, get(ARM::MQQQQPRLoad), DestReg) |
| .addFrameIndex(FI) |
| .addMemOperand(MMO); |
| } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { |
| MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) |
| .addFrameIndex(FI) |
| .add(predOps(ARMCC::AL)) |
| .addMemOperand(MMO); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI); |
| if (DestReg.isPhysical()) |
| MIB.addReg(DestReg, RegState::ImplicitDefine); |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| default: |
| llvm_unreachable("Unknown regclass!"); |
| } |
| } |
| |
| unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, |
| int &FrameIndex) const { |
| switch (MI.getOpcode()) { |
| default: break; |
| case ARM::LDRrs: |
| case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame. |
| if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && |
| MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && |
| MI.getOperand(3).getImm() == 0) { |
| FrameIndex = MI.getOperand(1).getIndex(); |
| return MI.getOperand(0).getReg(); |
| } |
| break; |
| case ARM::LDRi12: |
| case ARM::t2LDRi12: |
| case ARM::tLDRspi: |
| case ARM::VLDRD: |
| case ARM::VLDRS: |
| case ARM::VLDR_P0_off: |
| case ARM::MVE_VLDRWU32: |
| if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && |
| MI.getOperand(2).getImm() == 0) { |
| FrameIndex = MI.getOperand(1).getIndex(); |
| return MI.getOperand(0).getReg(); |
| } |
| break; |
| case ARM::VLD1q64: |
| case ARM::VLD1d8TPseudo: |
| case ARM::VLD1d16TPseudo: |
| case ARM::VLD1d32TPseudo: |
| case ARM::VLD1d64TPseudo: |
| case ARM::VLD1d8QPseudo: |
| case ARM::VLD1d16QPseudo: |
| case ARM::VLD1d32QPseudo: |
| case ARM::VLD1d64QPseudo: |
| if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { |
| FrameIndex = MI.getOperand(1).getIndex(); |
| return MI.getOperand(0).getReg(); |
| } |
| break; |
| case ARM::VLDMQIA: |
| if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { |
| FrameIndex = MI.getOperand(1).getIndex(); |
| return MI.getOperand(0).getReg(); |
| } |
| break; |
| case ARM::MQQPRLoad: |
| case ARM::MQQQQPRLoad: |
| if (MI.getOperand(1).isFI()) { |
| FrameIndex = MI.getOperand(1).getIndex(); |
| return MI.getOperand(0).getReg(); |
| } |
| break; |
| } |
| |
| return 0; |
| } |
| |
| unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, |
| int &FrameIndex) const { |
| SmallVector<const MachineMemOperand *, 1> Accesses; |
| if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) && |
| Accesses.size() == 1) { |
| FrameIndex = |
| cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) |
| ->getFrameIndex(); |
| return true; |
| } |
| return false; |
| } |
| |
| /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD |
| /// depending on whether the result is used. |
| void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const { |
| bool isThumb1 = Subtarget.isThumb1Only(); |
| bool isThumb2 = Subtarget.isThumb2(); |
| const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo(); |
| |
| DebugLoc dl = MI->getDebugLoc(); |
| MachineBasicBlock *BB = MI->getParent(); |
| |
| MachineInstrBuilder LDM, STM; |
| if (isThumb1 || !MI->getOperand(1).isDead()) { |
| MachineOperand LDWb(MI->getOperand(1)); |
| LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD |
| : isThumb1 ? ARM::tLDMIA_UPD |
| : ARM::LDMIA_UPD)) |
| .add(LDWb); |
| } else { |
| LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA)); |
| } |
| |
| if (isThumb1 || !MI->getOperand(0).isDead()) { |
| MachineOperand STWb(MI->getOperand(0)); |
| STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD |
| : isThumb1 ? ARM::tSTMIA_UPD |
| : ARM::STMIA_UPD)) |
| .add(STWb); |
| } else { |
| STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA)); |
| } |
| |
| MachineOperand LDBase(MI->getOperand(3)); |
| LDM.add(LDBase).add(predOps(ARMCC::AL)); |
| |
| MachineOperand STBase(MI->getOperand(2)); |
| STM.add(STBase).add(predOps(ARMCC::AL)); |
| |
| // Sort the scratch registers into ascending order. |
| const TargetRegisterInfo &TRI = getRegisterInfo(); |
| SmallVector<unsigned, 6> ScratchRegs; |
| for(unsigned I = 5; I < MI->getNumOperands(); ++I) |
| ScratchRegs.push_back(MI->getOperand(I).getReg()); |
| llvm::sort(ScratchRegs, |
| [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool { |
| return TRI.getEncodingValue(Reg1) < |
| TRI.getEncodingValue(Reg2); |
| }); |
| |
| for (const auto &Reg : ScratchRegs) { |
| LDM.addReg(Reg, RegState::Define); |
| STM.addReg(Reg, RegState::Kill); |
| } |
| |
| BB->erase(MI); |
| } |
| |
| bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { |
| if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) { |
| expandLoadStackGuard(MI); |
| MI.getParent()->erase(MI); |
| return true; |
| } |
| |
| if (MI.getOpcode() == ARM::MEMCPY) { |
| expandMEMCPY(MI); |
| return true; |
| } |
| |
| // This hook gets to expand COPY instructions before they become |
| // copyPhysReg() calls. Look for VMOVS instructions that can legally be |
| // widened to VMOVD. We prefer the VMOVD when possible because it may be |
| // changed into a VORR that can go down the NEON pipeline. |
| if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64()) |
| return false; |
| |
| // Look for a copy between even S-registers. That is where we keep floats |
| // when using NEON v2f32 instructions for f32 arithmetic. |
| Register DstRegS = MI.getOperand(0).getReg(); |
| Register SrcRegS = MI.getOperand(1).getReg(); |
| if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS)) |
| return false; |
| |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0, |
| &ARM::DPRRegClass); |
| unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0, |
| &ARM::DPRRegClass); |
| if (!DstRegD || !SrcRegD) |
| return false; |
| |
| // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only |
| // legal if the COPY already defines the full DstRegD, and it isn't a |
| // sub-register insertion. |
| if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI)) |
| return false; |
| |
| // A dead copy shouldn't show up here, but reject it just in case. |
| if (MI.getOperand(0).isDead()) |
| return false; |
| |
| // All clear, widen the COPY. |
| LLVM_DEBUG(dbgs() << "widening: " << MI); |
| MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); |
| |
| // Get rid of the old implicit-def of DstRegD. Leave it if it defines a Q-reg |
| // or some other super-register. |
| int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD); |
| if (ImpDefIdx != -1) |
| MI.removeOperand(ImpDefIdx); |
| |
| // Change the opcode and operands. |
| MI.setDesc(get(ARM::VMOVD)); |
| MI.getOperand(0).setReg(DstRegD); |
| MI.getOperand(1).setReg(SrcRegD); |
| MIB.add(predOps(ARMCC::AL)); |
| |
| // We are now reading SrcRegD instead of SrcRegS. This may upset the |
| // register scavenger and machine verifier, so we need to indicate that we |
| // are reading an undefined value from SrcRegD, but a proper value from |
| // SrcRegS. |
| MI.getOperand(1).setIsUndef(); |
| MIB.addReg(SrcRegS, RegState::Implicit); |
| |
| // SrcRegD may actually contain an unrelated value in the ssub_1 |
| // sub-register. Don't kill it. Only kill the ssub_0 sub-register. |
| if (MI.getOperand(1).isKill()) { |
| MI.getOperand(1).setIsKill(false); |
| MI.addRegisterKilled(SrcRegS, TRI, true); |
| } |
| |
| LLVM_DEBUG(dbgs() << "replaced by: " << MI); |
| return true; |
| } |
| |
| /// Create a copy of a const pool value. Update CPI to the new index and return |
| /// the label UID. |
| static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) { |
| MachineConstantPool *MCP = MF.getConstantPool(); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| |
| const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI]; |
| assert(MCPE.isMachineConstantPoolEntry() && |
| "Expecting a machine constantpool entry!"); |
| ARMConstantPoolValue *ACPV = |
| static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal); |
| |
| unsigned PCLabelId = AFI->createPICLabelUId(); |
| ARMConstantPoolValue *NewCPV = nullptr; |
| |
| // FIXME: The below assumes PIC relocation model and that the function |
| // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and |
| // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR |
| // instructions, so that's probably OK, but is PIC always correct when |
| // we get here? |
| if (ACPV->isGlobalValue()) |
| NewCPV = ARMConstantPoolConstant::Create( |
| cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue, |
| 4, ACPV->getModifier(), ACPV->mustAddCurrentAddress()); |
| else if (ACPV->isExtSymbol()) |
| NewCPV = ARMConstantPoolSymbol:: |
| Create(MF.getFunction().getContext(), |
| cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4); |
| else if (ACPV->isBlockAddress()) |
| NewCPV = ARMConstantPoolConstant:: |
| Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId, |
| ARMCP::CPBlockAddress, 4); |
| else if (ACPV->isLSDA()) |
| NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId, |
| ARMCP::CPLSDA, 4); |
| else if (ACPV->isMachineBasicBlock()) |
| NewCPV = ARMConstantPoolMBB:: |
| Create(MF.getFunction().getContext(), |
| cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4); |
| else |
| llvm_unreachable("Unexpected ARM constantpool value type!!"); |
| CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlign()); |
| return PCLabelId; |
| } |
| |
| void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, |
| Register DestReg, unsigned SubIdx, |
| const MachineInstr &Orig, |
| const TargetRegisterInfo &TRI) const { |
| unsigned Opcode = Orig.getOpcode(); |
| switch (Opcode) { |
| default: { |
| MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); |
| MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); |
| MBB.insert(I, MI); |
| break; |
| } |
| case ARM::tLDRpci_pic: |
| case ARM::t2LDRpci_pic: { |
| MachineFunction &MF = *MBB.getParent(); |
| unsigned CPI = Orig.getOperand(1).getIndex(); |
| unsigned PCLabelId = duplicateCPV(MF, CPI); |
| BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg) |
| .addConstantPoolIndex(CPI) |
| .addImm(PCLabelId) |
| .cloneMemRefs(Orig); |
| break; |
| } |
| } |
| } |
| |
| MachineInstr & |
| ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator InsertBefore, |
| const MachineInstr &Orig) const { |
| MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig); |
| MachineBasicBlock::instr_iterator I = Cloned.getIterator(); |
| for (;;) { |
| switch (I->getOpcode()) { |
| case ARM::tLDRpci_pic: |
| case ARM::t2LDRpci_pic: { |
| MachineFunction &MF = *MBB.getParent(); |
| unsigned CPI = I->getOperand(1).getIndex(); |
| unsigned PCLabelId = duplicateCPV(MF, CPI); |
| I->getOperand(1).setIndex(CPI); |
| I->getOperand(2).setImm(PCLabelId); |
| break; |
| } |
| } |
| if (!I->isBundledWithSucc()) |
| break; |
| ++I; |
| } |
| return Cloned; |
| } |
| |
| bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0, |
| const MachineInstr &MI1, |
| const MachineRegisterInfo *MRI) const { |
| unsigned Opcode = MI0.getOpcode(); |
| if (Opcode == ARM::t2LDRpci || Opcode == ARM::t2LDRpci_pic || |
| Opcode == ARM::tLDRpci || Opcode == ARM::tLDRpci_pic || |
| Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr || |
| Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel || |
| Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr || |
| Opcode == ARM::t2MOV_ga_pcrel) { |
| if (MI1.getOpcode() != Opcode) |
| return false; |
| if (MI0.getNumOperands() != MI1.getNumOperands()) |
| return false; |
| |
| const MachineOperand &MO0 = MI0.getOperand(1); |
| const MachineOperand &MO1 = MI1.getOperand(1); |
| if (MO0.getOffset() != MO1.getOffset()) |
| return false; |
| |
| if (Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr || |
| Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel || |
| Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr || |
| Opcode == ARM::t2MOV_ga_pcrel) |
| // Ignore the PC labels. |
| return MO0.getGlobal() == MO1.getGlobal(); |
| |
| const MachineFunction *MF = MI0.getParent()->getParent(); |
| const MachineConstantPool *MCP = MF->getConstantPool(); |
| int CPI0 = MO0.getIndex(); |
| int CPI1 = MO1.getIndex(); |
| const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0]; |
| const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1]; |
| bool isARMCP0 = MCPE0.isMachineConstantPoolEntry(); |
| bool isARMCP1 = MCPE1.isMachineConstantPoolEntry(); |
| if (isARMCP0 && isARMCP1) { |
| ARMConstantPoolValue *ACPV0 = |
| static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal); |
| ARMConstantPoolValue *ACPV1 = |
| static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal); |
| return ACPV0->hasSameValue(ACPV1); |
| } else if (!isARMCP0 && !isARMCP1) { |
| return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal; |
| } |
| return false; |
| } else if (Opcode == ARM::PICLDR) { |
| if (MI1.getOpcode() != Opcode) |
| return false; |
| if (MI0.getNumOperands() != MI1.getNumOperands()) |
| return false; |
| |
| Register Addr0 = MI0.getOperand(1).getReg(); |
| Register Addr1 = MI1.getOperand(1).getReg(); |
| if (Addr0 != Addr1) { |
| if (!MRI || !Addr0.isVirtual() || !Addr1.isVirtual()) |
| return false; |
| |
| // This assumes SSA form. |
| MachineInstr *Def0 = MRI->getVRegDef(Addr0); |
| MachineInstr *Def1 = MRI->getVRegDef(Addr1); |
| // Check if the loaded value, e.g. a constantpool of a global address, are |
| // the same. |
| if (!produceSameValue(*Def0, *Def1, MRI)) |
| return false; |
| } |
| |
| for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) { |
| // %12 = PICLDR %11, 0, 14, %noreg |
| const MachineOperand &MO0 = MI0.getOperand(i); |
| const MachineOperand &MO1 = MI1.getOperand(i); |
| if (!MO0.isIdenticalTo(MO1)) |
| return false; |
| } |
| return true; |
| } |
| |
| return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); |
| } |
| |
| /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to |
| /// determine if two loads are loading from the same base address. It should |
| /// only return true if the base pointers are the same and the only differences |
| /// between the two addresses is the offset. It also returns the offsets by |
| /// reference. |
| /// |
| /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched |
| /// is permanently disabled. |
| bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, |
| int64_t &Offset1, |
| int64_t &Offset2) const { |
| // Don't worry about Thumb: just ARM and Thumb2. |
| if (Subtarget.isThumb1Only()) return false; |
| |
| if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) |
| return false; |
| |
| switch (Load1->getMachineOpcode()) { |
| default: |
| return false; |
| case ARM::LDRi12: |
| case ARM::LDRBi12: |
| case ARM::LDRD: |
| case ARM::LDRH: |
| case ARM::LDRSB: |
| case ARM::LDRSH: |
| case ARM::VLDRD: |
| case ARM::VLDRS: |
| case ARM::t2LDRi8: |
| case ARM::t2LDRBi8: |
| case ARM::t2LDRDi8: |
| case ARM::t2LDRSHi8: |
| case ARM::t2LDRi12: |
| case ARM::t2LDRBi12: |
| case ARM::t2LDRSHi12: |
| break; |
| } |
| |
| switch (Load2->getMachineOpcode()) { |
| default: |
| return false; |
| case ARM::LDRi12: |
| case ARM::LDRBi12: |
| case ARM::LDRD: |
| case ARM::LDRH: |
| case ARM::LDRSB: |
| case ARM::LDRSH: |
| case ARM::VLDRD: |
| case ARM::VLDRS: |
| case ARM::t2LDRi8: |
| case ARM::t2LDRBi8: |
| case ARM::t2LDRSHi8: |
| case ARM::t2LDRi12: |
| case ARM::t2LDRBi12: |
| case ARM::t2LDRSHi12: |
| break; |
| } |
| |
| // Check if base addresses and chain operands match. |
| if (Load1->getOperand(0) != Load2->getOperand(0) || |
| Load1->getOperand(4) != Load2->getOperand(4)) |
| return false; |
| |
| // Index should be Reg0. |
| if (Load1->getOperand(3) != Load2->getOperand(3)) |
| return false; |
| |
| // Determine the offsets. |
| if (isa<ConstantSDNode>(Load1->getOperand(1)) && |
| isa<ConstantSDNode>(Load2->getOperand(1))) { |
| Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue(); |
| Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to |
| /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should |
| /// be scheduled togther. On some targets if two loads are loading from |
| /// addresses in the same cache line, it's better if they are scheduled |
| /// together. This function takes two integers that represent the load offsets |
| /// from the common base address. It returns true if it decides it's desirable |
| /// to schedule the two loads together. "NumLoads" is the number of loads that |
| /// have already been scheduled after Load1. |
| /// |
| /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched |
| /// is permanently disabled. |
| bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, |
| int64_t Offset1, int64_t Offset2, |
| unsigned NumLoads) const { |
| // Don't worry about Thumb: just ARM and Thumb2. |
| if (Subtarget.isThumb1Only()) return false; |
| |
| assert(Offset2 > Offset1); |
| |
| if ((Offset2 - Offset1) / 8 > 64) |
| return false; |
| |
| // Check if the machine opcodes are different. If they are different |
| // then we consider them to not be of the same base address, |
| // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12. |
| // In this case, they are considered to be the same because they are different |
| // encoding forms of the same basic instruction. |
| if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) && |
| !((Load1->getMachineOpcode() == ARM::t2LDRBi8 && |
| Load2->getMachineOpcode() == ARM::t2LDRBi12) || |
| (Load1->getMachineOpcode() == ARM::t2LDRBi12 && |
| Load2->getMachineOpcode() == ARM::t2LDRBi8))) |
| return false; // FIXME: overly conservative? |
| |
| // Four loads in a row should be sufficient. |
| if (NumLoads >= 3) |
| return false; |
| |
| return true; |
| } |
| |
| bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI, |
| const MachineBasicBlock *MBB, |
| const MachineFunction &MF) const { |
| // Debug info is never a scheduling boundary. It's necessary to be explicit |
| // due to the special treatment of IT instructions below, otherwise a |
| // dbg_value followed by an IT will result in the IT instruction being |
| // considered a scheduling hazard, which is wrong. It should be the actual |
| // instruction preceding the dbg_value instruction(s), just like it is |
| // when debug info is not present. |
| if (MI.isDebugInstr()) |
| return false; |
| |
| // Terminators and labels can't be scheduled around. |
| if (MI.isTerminator() || MI.isPosition()) |
| return true; |
| |
| // INLINEASM_BR can jump to another block |
| if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) |
| return true; |
| |
| if (isSEHInstruction(MI)) |
| return true; |
| |
| // Treat the start of the IT block as a scheduling boundary, but schedule |
| // t2IT along with all instructions following it. |
| // FIXME: This is a big hammer. But the alternative is to add all potential |
| // true and anti dependencies to IT block instructions as implicit operands |
| // to the t2IT instruction. The added compile time and complexity does not |
| // seem worth it. |
| MachineBasicBlock::const_iterator I = MI; |
| // Make sure to skip any debug instructions |
| while (++I != MBB->end() && I->isDebugInstr()) |
| ; |
| if (I != MBB->end() && I->getOpcode() == ARM::t2IT) |
| return true; |
| |
| // Don't attempt to schedule around any instruction that defines |
| // a stack-oriented pointer, as it's unlikely to be profitable. This |
| // saves compile time, because it doesn't require every single |
| // stack slot reference to depend on the instruction that does the |
| // modification. |
| // Calls don't actually change the stack pointer, even if they have imp-defs. |
| // No ARM calling conventions change the stack pointer. (X86 calling |
| // conventions sometimes do). |
| if (!MI.isCall() && MI.definesRegister(ARM::SP)) |
| return true; |
| |
| return false; |
| } |
| |
| bool ARMBaseInstrInfo:: |
| isProfitableToIfCvt(MachineBasicBlock &MBB, |
| unsigned NumCycles, unsigned ExtraPredCycles, |
| BranchProbability Probability) const { |
| if (!NumCycles) |
| return false; |
| |
| // If we are optimizing for size, see if the branch in the predecessor can be |
| // lowered to cbn?z by the constant island lowering pass, and return false if |
| // so. This results in a shorter instruction sequence. |
| if (MBB.getParent()->getFunction().hasOptSize()) { |
| MachineBasicBlock *Pred = *MBB.pred_begin(); |
| if (!Pred->empty()) { |
| MachineInstr *LastMI = &*Pred->rbegin(); |
| if (LastMI->getOpcode() == ARM::t2Bcc) { |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI); |
| if (CmpMI) |
| return false; |
| } |
| } |
| } |
| return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles, |
| MBB, 0, 0, Probability); |
| } |
| |
| bool ARMBaseInstrInfo:: |
| isProfitableToIfCvt(MachineBasicBlock &TBB, |
| unsigned TCycles, unsigned TExtra, |
| MachineBasicBlock &FBB, |
| unsigned FCycles, unsigned FExtra, |
| BranchProbability Probability) const { |
| if (!TCycles) |
| return false; |
| |
| // In thumb code we often end up trading one branch for a IT block, and |
| // if we are cloning the instruction can increase code size. Prevent |
| // blocks with multiple predecesors from being ifcvted to prevent this |
| // cloning. |
| if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) { |
| if (TBB.pred_size() != 1 || FBB.pred_size() != 1) |
| return false; |
| } |
| |
| // Attempt to estimate the relative costs of predication versus branching. |
| // Here we scale up each component of UnpredCost to avoid precision issue when |
| // scaling TCycles/FCycles by Probability. |
| const unsigned ScalingUpFactor = 1024; |
| |
| unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor; |
| unsigned UnpredCost; |
| if (!Subtarget.hasBranchPredictor()) { |
| // When we don't have a branch predictor it's always cheaper to not take a |
| // branch than take it, so we have to take that into account. |
| unsigned NotTakenBranchCost = 1; |
| unsigned TakenBranchCost = Subtarget.getMispredictionPenalty(); |
| unsigned TUnpredCycles, FUnpredCycles; |
| if (!FCycles) { |
| // Triangle: TBB is the fallthrough |
| TUnpredCycles = TCycles + NotTakenBranchCost; |
| FUnpredCycles = TakenBranchCost; |
| } else { |
| // Diamond: TBB is the block that is branched to, FBB is the fallthrough |
| TUnpredCycles = TCycles + TakenBranchCost; |
| FUnpredCycles = FCycles + NotTakenBranchCost; |
| // The branch at the end of FBB will disappear when it's predicated, so |
| // discount it from PredCost. |
| PredCost -= 1 * ScalingUpFactor; |
| } |
| // The total cost is the cost of each path scaled by their probabilites |
| unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor); |
| unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor); |
| UnpredCost = TUnpredCost + FUnpredCost; |
| // When predicating assume that the first IT can be folded away but later |
| // ones cost one cycle each |
| if (Subtarget.isThumb2() && TCycles + FCycles > 4) { |
| PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor; |
| } |
| } else { |
| unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor); |
| unsigned FUnpredCost = |
| Probability.getCompl().scale(FCycles * ScalingUpFactor); |
| UnpredCost = TUnpredCost + FUnpredCost; |
| UnpredCost += 1 * ScalingUpFactor; // The branch itself |
| UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10; |
| } |
| |
| return PredCost <= UnpredCost; |
| } |
| |
| unsigned |
| ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF, |
| unsigned NumInsts) const { |
| // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions. |
| // ARM has a condition code field in every predicable instruction, using it |
| // doesn't change code size. |
| if (!Subtarget.isThumb2()) |
| return 0; |
| |
| // It's possible that the size of the IT is restricted to a single block. |
| unsigned MaxInsts = Subtarget.restrictIT() ? 1 : 4; |
| return divideCeil(NumInsts, MaxInsts) * 2; |
| } |
| |
| unsigned |
| ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const { |
| // If this branch is likely to be folded into the comparison to form a |
| // CB(N)Z, then removing it won't reduce code size at all, because that will |
| // just replace the CB(N)Z with a CMP. |
| if (MI.getOpcode() == ARM::t2Bcc && |
| findCMPToFoldIntoCBZ(&MI, &getRegisterInfo())) |
| return 0; |
| |
| unsigned Size = getInstSizeInBytes(MI); |
| |
| // For Thumb2, all branches are 32-bit instructions during the if conversion |
| // pass, but may be replaced with 16-bit instructions during size reduction. |
| // Since the branches considered by if conversion tend to be forward branches |
| // over small basic blocks, they are very likely to be in range for the |
| // narrow instructions, so we assume the final code size will be half what it |
| // currently is. |
| if (Subtarget.isThumb2()) |
| Size /= 2; |
| |
| return Size; |
| } |
| |
| bool |
| ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB, |
| MachineBasicBlock &FMBB) const { |
| // Reduce false anti-dependencies to let the target's out-of-order execution |
| // engine do its thing. |
| return Subtarget.isProfitableToUnpredicate(); |
| } |
| |
| /// getInstrPredicate - If instruction is predicated, returns its predicate |
| /// condition, otherwise returns AL. It also returns the condition code |
| /// register by reference. |
| ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI, |
| Register &PredReg) { |
| int PIdx = MI.findFirstPredOperandIdx(); |
| if (PIdx == -1) { |
| PredReg = 0; |
| return ARMCC::AL; |
| } |
| |
| PredReg = MI.getOperand(PIdx+1).getReg(); |
| return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm(); |
| } |
| |
| unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) { |
| if (Opc == ARM::B) |
| return ARM::Bcc; |
| if (Opc == ARM::tB) |
| return ARM::tBcc; |
| if (Opc == ARM::t2B) |
| return ARM::t2Bcc; |
| |
| llvm_unreachable("Unknown unconditional branch opcode!"); |
| } |
| |
| MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI, |
| bool NewMI, |
| unsigned OpIdx1, |
| unsigned OpIdx2) const { |
| switch (MI.getOpcode()) { |
| case ARM::MOVCCr: |
| case ARM::t2MOVCCr: { |
| // MOVCC can be commuted by inverting the condition. |
| Register PredReg; |
| ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg); |
| // MOVCC AL can't be inverted. Shouldn't happen. |
| if (CC == ARMCC::AL || PredReg != ARM::CPSR) |
| return nullptr; |
| MachineInstr *CommutedMI = |
| TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); |
| if (!CommutedMI) |
| return nullptr; |
| // After swapping the MOVCC operands, also invert the condition. |
| CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx()) |
| .setImm(ARMCC::getOppositeCondition(CC)); |
| return CommutedMI; |
| } |
| } |
| return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); |
| } |
| |
| /// Identify instructions that can be folded into a MOVCC instruction, and |
| /// return the defining instruction. |
| MachineInstr * |
| ARMBaseInstrInfo::canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI, |
| const TargetInstrInfo *TII) const { |
| if (!Reg.isVirtual()) |
| return nullptr; |
| if (!MRI.hasOneNonDBGUse(Reg)) |
| return nullptr; |
| MachineInstr *MI = MRI.getVRegDef(Reg); |
| if (!MI) |
| return nullptr; |
| // Check if MI can be predicated and folded into the MOVCC. |
| if (!isPredicable(*MI)) |
| return nullptr; |
| // Check if MI has any non-dead defs or physreg uses. This also detects |
| // predicated instructions which will be reading CPSR. |
| for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 1)) { |
| // Reject frame index operands, PEI can't handle the predicated pseudos. |
| if (MO.isFI() || MO.isCPI() || MO.isJTI()) |
| return nullptr; |
| if (!MO.isReg()) |
| continue; |
| // MI can't have any tied operands, that would conflict with predication. |
| if (MO.isTied()) |
| return nullptr; |
| if (MO.getReg().isPhysical()) |
| return nullptr; |
| if (MO.isDef() && !MO.isDead()) |
| return nullptr; |
| } |
| bool DontMoveAcrossStores = true; |
| if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores)) |
| return nullptr; |
| return MI; |
| } |
| |
| bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI, |
| SmallVectorImpl<MachineOperand> &Cond, |
| unsigned &TrueOp, unsigned &FalseOp, |
| bool &Optimizable) const { |
| assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && |
| "Unknown select instruction"); |
| // MOVCC operands: |
| // 0: Def. |
| // 1: True use. |
| // 2: False use. |
| // 3: Condition code. |
| // 4: CPSR use. |
| TrueOp = 1; |
| FalseOp = 2; |
| Cond.push_back(MI.getOperand(3)); |
| Cond.push_back(MI.getOperand(4)); |
| // We can always fold a def. |
| Optimizable = true; |
| return false; |
| } |
| |
| MachineInstr * |
| ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI, |
| SmallPtrSetImpl<MachineInstr *> &SeenMIs, |
| bool PreferFalse) const { |
| assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && |
| "Unknown select instruction"); |
| MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); |
| MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this); |
| bool Invert = !DefMI; |
| if (!DefMI) |
| DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this); |
| if (!DefMI) |
| return nullptr; |
| |
| // Find new register class to use. |
| MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1); |
| MachineOperand TrueReg = MI.getOperand(Invert ? 1 : 2); |
| Register DestReg = MI.getOperand(0).getReg(); |
| const TargetRegisterClass *FalseClass = MRI.getRegClass(FalseReg.getReg()); |
| const TargetRegisterClass *TrueClass = MRI.getRegClass(TrueReg.getReg()); |
| if (!MRI.constrainRegClass(DestReg, FalseClass)) |
| return nullptr; |
| if (!MRI.constrainRegClass(DestReg, TrueClass)) |
| return nullptr; |
| |
| // Create a new predicated version of DefMI. |
| // Rfalse is the first use. |
| MachineInstrBuilder NewMI = |
| BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg); |
| |
| // Copy all the DefMI operands, excluding its (null) predicate. |
| const MCInstrDesc &DefDesc = DefMI->getDesc(); |
| for (unsigned i = 1, e = DefDesc.getNumOperands(); |
| i != e && !DefDesc.operands()[i].isPredicate(); ++i) |
| NewMI.add(DefMI->getOperand(i)); |
| |
| unsigned CondCode = MI.getOperand(3).getImm(); |
| if (Invert) |
| NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode))); |
| else |
| NewMI.addImm(CondCode); |
| NewMI.add(MI.getOperand(4)); |
| |
| // DefMI is not the -S version that sets CPSR, so add an optional %noreg. |
| if (NewMI->hasOptionalDef()) |
| NewMI.add(condCodeOp()); |
| |
| // The output register value when the predicate is false is an implicit |
| // register operand tied to the first def. |
| // The tie makes the register allocator ensure the FalseReg is allocated the |
| // same register as operand 0. |
| FalseReg.setImplicit(); |
| NewMI.add(FalseReg); |
| NewMI->tieOperands(0, NewMI->getNumOperands() - 1); |
| |
| // Update SeenMIs set: register newly created MI and erase removed DefMI. |
| SeenMIs.insert(NewMI); |
| SeenMIs.erase(DefMI); |
| |
| // If MI is inside a loop, and DefMI is outside the loop, then kill flags on |
| // DefMI would be invalid when tranferred inside the loop. Checking for a |
| // loop is expensive, but at least remove kill flags if they are in different |
| // BBs. |
| if (DefMI->getParent() != MI.getParent()) |
| NewMI->clearKillInfo(); |
| |
| // The caller will erase MI, but not DefMI. |
| DefMI->eraseFromParent(); |
| return NewMI; |
| } |
| |
| /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the |
| /// instruction is encoded with an 'S' bit is determined by the optional CPSR |
| /// def operand. |
| /// |
| /// This will go away once we can teach tblgen how to set the optional CPSR def |
| /// operand itself. |
| struct AddSubFlagsOpcodePair { |
| uint16_t PseudoOpc; |
| uint16_t MachineOpc; |
| }; |
| |
| static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = { |
| {ARM::ADDSri, ARM::ADDri}, |
| {ARM::ADDSrr, ARM::ADDrr}, |
| {ARM::ADDSrsi, ARM::ADDrsi}, |
| {ARM::ADDSrsr, ARM::ADDrsr}, |
| |
| {ARM::SUBSri, ARM::SUBri}, |
| {ARM::SUBSrr, ARM::SUBrr}, |
| {ARM::SUBSrsi, ARM::SUBrsi}, |
| {ARM::SUBSrsr, ARM::SUBrsr}, |
| |
| {ARM::RSBSri, ARM::RSBri}, |
| {ARM::RSBSrsi, ARM::RSBrsi}, |
| {ARM::RSBSrsr, ARM::RSBrsr}, |
| |
| {ARM::tADDSi3, ARM::tADDi3}, |
| {ARM::tADDSi8, ARM::tADDi8}, |
| {ARM::tADDSrr, ARM::tADDrr}, |
| {ARM::tADCS, ARM::tADC}, |
| |
| {ARM::tSUBSi3, ARM::tSUBi3}, |
| {ARM::tSUBSi8, ARM::tSUBi8}, |
| {ARM::tSUBSrr, ARM::tSUBrr}, |
| {ARM::tSBCS, ARM::tSBC}, |
| {ARM::tRSBS, ARM::tRSB}, |
| {ARM::tLSLSri, ARM::tLSLri}, |
| |
| {ARM::t2ADDSri, ARM::t2ADDri}, |
| {ARM::t2ADDSrr, ARM::t2ADDrr}, |
| {ARM::t2ADDSrs, ARM::t2ADDrs}, |
| |
| {ARM::t2SUBSri, ARM::t2SUBri}, |
| {ARM::t2SUBSrr, ARM::t2SUBrr}, |
| {ARM::t2SUBSrs, ARM::t2SUBrs}, |
| |
| {ARM::t2RSBSri, ARM::t2RSBri}, |
| {ARM::t2RSBSrs, ARM::t2RSBrs}, |
| }; |
| |
| unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) { |
| for (const auto &Entry : AddSubFlagsOpcodeMap) |
| if (OldOpc == Entry.PseudoOpc) |
| return Entry.MachineOpc; |
| return 0; |
| } |
| |
| void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator &MBBI, |
| const DebugLoc &dl, Register DestReg, |
| Register BaseReg, int NumBytes, |
| ARMCC::CondCodes Pred, Register PredReg, |
| const ARMBaseInstrInfo &TII, |
| unsigned MIFlags) { |
| if (NumBytes == 0 && DestReg != BaseReg) { |
| BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg) |
| .addReg(BaseReg, RegState::Kill) |
| .add(predOps(Pred, PredReg)) |
| .add(condCodeOp()) |
| .setMIFlags(MIFlags); |
| return; |
| } |
| |
| bool isSub = NumBytes < 0; |
| if (isSub) NumBytes = -NumBytes; |
| |
| while (NumBytes) { |
| unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes); |
| unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt); |
| assert(ThisVal && "Didn't extract field correctly"); |
| |
| // We will handle these bits from offset, clear them. |
| NumBytes &= ~ThisVal; |
| |
| assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?"); |
| |
| // Build the new ADD / SUB. |
| unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri; |
| BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) |
| .addReg(BaseReg, RegState::Kill) |
| .addImm(ThisVal) |
| .add(predOps(Pred, PredReg)) |
| .add(condCodeOp()) |
| .setMIFlags(MIFlags); |
| BaseReg = DestReg; |
| } |
| } |
| |
| bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget, |
| MachineFunction &MF, MachineInstr *MI, |
| unsigned NumBytes) { |
| // This optimisation potentially adds lots of load and store |
| // micro-operations, it's only really a great benefit to code-size. |
| if (!Subtarget.hasMinSize()) |
| return false; |
| |
| // If only one register is pushed/popped, LLVM can use an LDR/STR |
| // instead. We can't modify those so make sure we're dealing with an |
| // instruction we understand. |
| bool IsPop = isPopOpcode(MI->getOpcode()); |
| bool IsPush = isPushOpcode(MI->getOpcode()); |
| if (!IsPush && !IsPop) |
| return false; |
| |
| bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD || |
| MI->getOpcode() == ARM::VLDMDIA_UPD; |
| bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH || |
| MI->getOpcode() == ARM::tPOP || |
| MI->getOpcode() == ARM::tPOP_RET; |
| |
| assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP && |
| MI->getOperand(1).getReg() == ARM::SP)) && |
| "trying to fold sp update into non-sp-updating push/pop"); |
| |
| // The VFP push & pop act on D-registers, so we can only fold an adjustment |
| // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try |
| // if this is violated. |
| if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0) |
| return false; |
| |
| // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ |
| // pred) so the list starts at 4. Thumb1 starts after the predicate. |
| int RegListIdx = IsT1PushPop ? 2 : 4; |
| |
| // Calculate the space we'll need in terms of registers. |
| unsigned RegsNeeded; |
| const TargetRegisterClass *RegClass; |
| if (IsVFPPushPop) { |
| RegsNeeded = NumBytes / 8; |
| RegClass = &ARM::DPRRegClass; |
| } else { |
| RegsNeeded = NumBytes / 4; |
| RegClass = &ARM::GPRRegClass; |
| } |
| |
| // We're going to have to strip all list operands off before |
| // re-adding them since the order matters, so save the existing ones |
| // for later. |
| SmallVector<MachineOperand, 4> RegList; |
| |
| // We're also going to need the first register transferred by this |
| // instruction, which won't necessarily be the first register in the list. |
| unsigned FirstRegEnc = -1; |
| |
| const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo(); |
| for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) { |
| MachineOperand &MO = MI->getOperand(i); |
| RegList.push_back(MO); |
| |
| if (MO.isReg() && !MO.isImplicit() && |
| TRI->getEncodingValue(MO.getReg()) < FirstRegEnc) |
| FirstRegEnc = TRI->getEncodingValue(MO.getReg()); |
| } |
| |
| const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF); |
| |
| // Now try to find enough space in the reglist to allocate NumBytes. |
| for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded; |
| --CurRegEnc) { |
| unsigned CurReg = RegClass->getRegister(CurRegEnc); |
| if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7)) |
| continue; |
| if (!IsPop) { |
| // Pushing any register is completely harmless, mark the register involved |
| // as undef since we don't care about its value and must not restore it |
| // during stack unwinding. |
| RegList.push_back(MachineOperand::CreateReg(CurReg, false, false, |
| false, false, true)); |
| --RegsNeeded; |
| continue; |
| } |
| |
| // However, we can only pop an extra register if it's not live. For |
| // registers live within the function we might clobber a return value |
| // register; the other way a register can be live here is if it's |
| // callee-saved. |
| if (isCalleeSavedRegister(CurReg, CSRegs) || |
| MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) != |
| MachineBasicBlock::LQR_Dead) { |
| // VFP pops don't allow holes in the register list, so any skip is fatal |
| // for our transformation. GPR pops do, so we should just keep looking. |
| if (IsVFPPushPop) |
| return false; |
| else |
| continue; |
| } |
| |
| // Mark the unimportant registers as <def,dead> in the POP. |
| RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false, |
| true)); |
| --RegsNeeded; |
| } |
| |
| if (RegsNeeded > 0) |
| return false; |
| |
| // Finally we know we can profitably perform the optimisation so go |
| // ahead: strip all existing registers off and add them back again |
| // in the right order. |
| for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) |
| MI->removeOperand(i); |
| |
| // Add the complete list back in. |
| MachineInstrBuilder MIB(MF, &*MI); |
| for (const MachineOperand &MO : llvm::reverse(RegList)) |
| MIB.add(MO); |
| |
| return true; |
| } |
| |
| bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx, |
| Register FrameReg, int &Offset, |
| const ARMBaseInstrInfo &TII) { |
| unsigned Opcode = MI.getOpcode(); |
| const MCInstrDesc &Desc = MI.getDesc(); |
| unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); |
| bool isSub = false; |
| |
| // Memory operands in inline assembly always use AddrMode2. |
| if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR) |
| AddrMode = ARMII::AddrMode2; |
| |
| if (Opcode == ARM::ADDri) { |
| Offset += MI.getOperand(FrameRegIdx+1).getImm(); |
| if (Offset == 0) { |
| // Turn it into a move. |
| MI.setDesc(TII.get(ARM::MOVr)); |
| MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); |
| MI.removeOperand(FrameRegIdx+1); |
| Offset = 0; |
| return true; |
| } else if (Offset < 0) { |
| Offset = -Offset; |
| isSub = true; |
| MI.setDesc(TII.get(ARM::SUBri)); |
| } |
| |
| // Common case: small offset, fits into instruction. |
| if (ARM_AM::getSOImmVal(Offset) != -1) { |
| // Replace the FrameIndex with sp / fp |
| MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); |
| MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); |
| Offset = 0; |
| return true; |
| } |
| |
| // Otherwise, pull as much of the immedidate into this ADDri/SUBri |
| // as possible. |
| unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset); |
| unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt); |
| |
| // We will handle these bits from offset, clear them. |
| Offset &= ~ThisImmVal; |
| |
| // Get the properly encoded SOImmVal field. |
| assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 && |
| "Bit extraction didn't work?"); |
| MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal); |
| } else { |
| unsigned ImmIdx = 0; |
| int InstrOffs = 0; |
| unsigned NumBits = 0; |
| unsigned Scale = 1; |
| switch (AddrMode) { |
| case ARMII::AddrMode_i12: |
| ImmIdx = FrameRegIdx + 1; |
| InstrOffs = MI.getOperand(ImmIdx).getImm(); |
| NumBits = 12; |
| break; |
| case ARMII::AddrMode2: |
| ImmIdx = FrameRegIdx+2; |
| InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm()); |
| if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) |
| InstrOffs *= -1; |
| NumBits = 12; |
| break; |
| case ARMII::AddrMode3: |
| ImmIdx = FrameRegIdx+2; |
| InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm()); |
| if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) |
| InstrOffs *= -1; |
| NumBits = 8; |
| break; |
| case ARMII::AddrMode4: |
| case ARMII::AddrMode6: |
| // Can't fold any offset even if it's zero. |
| return false; |
| case ARMII::AddrMode5: |
| ImmIdx = FrameRegIdx+1; |
| InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); |
| if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) |
| InstrOffs *= -1; |
| NumBits = 8; |
| Scale = 4; |
| break; |
| case ARMII::AddrMode5FP16: |
| ImmIdx = FrameRegIdx+1; |
| InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); |
| if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) |
| InstrOffs *= -1; |
| NumBits = 8; |
| Scale = 2; |
| break; |
| case ARMII::AddrModeT2_i7: |
| case ARMII::AddrModeT2_i7s2: |
| case ARMII::AddrModeT2_i7s4: |
| ImmIdx = FrameRegIdx+1; |
| InstrOffs = MI.getOperand(ImmIdx).getImm(); |
| NumBits = 7; |
| Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 : |
| AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1); |
| break; |
| default: |
| llvm_unreachable("Unsupported addressing mode!"); |
| } |
| |
| Offset += InstrOffs * Scale; |
| assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!"); |
| if (Offset < 0) { |
| Offset = -Offset; |
| isSub = true; |
| } |
| |
| // Attempt to fold address comp. if opcode has offset bits |
| if (NumBits > 0) { |
| // Common case: small offset, fits into instruction. |
| MachineOperand &ImmOp = MI.getOperand(ImmIdx); |
| int ImmedOffset = Offset / Scale; |
| unsigned Mask = (1 << NumBits) - 1; |
| if ((unsigned)Offset <= Mask * Scale) { |
| // Replace the FrameIndex with sp |
| MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); |
| // FIXME: When addrmode2 goes away, this will simplify (like the |
| // T2 version), as the LDR.i12 versions don't need the encoding |
| // tricks for the offset value. |
| if (isSub) { |
| if (AddrMode == ARMII::AddrMode_i12) |
| ImmedOffset = -ImmedOffset; |
| else |
| ImmedOffset |= 1 << NumBits; |
| } |
| ImmOp.ChangeToImmediate(ImmedOffset); |
| Offset = 0; |
| return true; |
| } |
| |
| // Otherwise, it didn't fit. Pull in what we can to simplify the immed. |
| ImmedOffset = ImmedOffset & Mask; |
| if (isSub) { |
| if (AddrMode == ARMII::AddrMode_i12) |
| ImmedOffset = -ImmedOffset; |
| else |
| ImmedOffset |= 1 << NumBits; |
| } |
| ImmOp.ChangeToImmediate(ImmedOffset); |
| Offset &= ~(Mask*Scale); |
| } |
| } |
| |
| Offset = (isSub) ? -Offset : Offset; |
| return Offset == 0; |
| } |
| |
| /// analyzeCompare - For a comparison instruction, return the source registers |
| /// in SrcReg and SrcReg2 if having two register operands, and the value it |
| /// compares against in CmpValue. Return true if the comparison instruction |
| /// can be analyzed. |
| bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, |
| Register &SrcReg2, int64_t &CmpMask, |
| int64_t &CmpValue) const { |
| switch (MI.getOpcode()) { |
| default: break; |
| case ARM::CMPri: |
| case ARM::t2CMPri: |
| case ARM::tCMPi8: |
| SrcReg = MI.getOperand(0).getReg(); |
| SrcReg2 = 0; |
| CmpMask = ~0; |
| CmpValue = MI.getOperand(1).getImm(); |
| return true; |
| case ARM::CMPrr: |
| case ARM::t2CMPrr: |
| case ARM::tCMPr: |
| SrcReg = MI.getOperand(0).getReg(); |
| SrcReg2 = MI.getOperand(1).getReg(); |
| CmpMask = ~0; |
| CmpValue = 0; |
| return true; |
| case ARM::TSTri: |
| case ARM::t2TSTri: |
| SrcReg = MI.getOperand(0).getReg(); |
| SrcReg2 = 0; |
| CmpMask = MI.getOperand(1).getImm(); |
| CmpValue = 0; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// isSuitableForMask - Identify a suitable 'and' instruction that |
| /// operates on the given source register and applies the same mask |
| /// as a 'tst' instruction. Provide a limited look-through for copies. |
| /// When successful, MI will hold the found instruction. |
| static bool isSuitableForMask(MachineInstr *&MI, Register SrcReg, |
| int CmpMask, bool CommonUse) { |
| switch (MI->getOpcode()) { |
| case ARM::ANDri: |
| case ARM::t2ANDri: |
| if (CmpMask != MI->getOperand(2).getImm()) |
| return false; |
| if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg()) |
| return true; |
| break; |
| } |
| |
| return false; |
| } |
| |
| /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return |
| /// the condition code if we modify the instructions such that flags are |
| /// set by ADD(a,b,X). |
| inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) { |
| switch (CC) { |
| default: return ARMCC::AL; |
| case ARMCC::HS: return ARMCC::LO; |
| case ARMCC::LO: return ARMCC::HS; |
| case ARMCC::VS: return ARMCC::VS; |
| case ARMCC::VC: return ARMCC::VC; |
| } |
| } |
| |
| /// isRedundantFlagInstr - check whether the first instruction, whose only |
| /// purpose is to update flags, can be made redundant. |
| /// CMPrr can be made redundant by SUBrr if the operands are the same. |
| /// CMPri can be made redundant by SUBri if the operands are the same. |
| /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X). |
| /// This function can be extended later on. |
| inline static bool isRedundantFlagInstr(const MachineInstr *CmpI, |
| Register SrcReg, Register SrcReg2, |
| int64_t ImmValue, |
| const MachineInstr *OI, |
| bool &IsThumb1) { |
| if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && |
| (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) && |
| ((OI->getOperand(1).getReg() == SrcReg && |
| OI->getOperand(2).getReg() == SrcReg2) || |
| (OI->getOperand(1).getReg() == SrcReg2 && |
| OI->getOperand(2).getReg() == SrcReg))) { |
| IsThumb1 = false; |
| return true; |
| } |
| |
| if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr && |
| ((OI->getOperand(2).getReg() == SrcReg && |
| OI->getOperand(3).getReg() == SrcReg2) || |
| (OI->getOperand(2).getReg() == SrcReg2 && |
| OI->getOperand(3).getReg() == SrcReg))) { |
| IsThumb1 = true; |
| return true; |
| } |
| |
| if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) && |
| (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) && |
| OI->getOperand(1).getReg() == SrcReg && |
| OI->getOperand(2).getImm() == ImmValue) { |
| IsThumb1 = false; |
| return true; |
| } |
| |
| if (CmpI->getOpcode() == ARM::tCMPi8 && |
| (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) && |
| OI->getOperand(2).getReg() == SrcReg && |
| OI->getOperand(3).getImm() == ImmValue) { |
| IsThumb1 = true; |
| return true; |
| } |
| |
| if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && |
| (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr || |
| OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) && |
| OI->getOperand(0).isReg() && OI->getOperand(1).isReg() && |
| OI->getOperand(0).getReg() == SrcReg && |
| OI->getOperand(1).getReg() == SrcReg2) { |
| IsThumb1 = false; |
| return true; |
| } |
| |
| if (CmpI->getOpcode() == ARM::tCMPr && |
| (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 || |
| OI->getOpcode() == ARM::tADDrr) && |
| OI->getOperand(0).getReg() == SrcReg && |
| OI->getOperand(2).getReg() == SrcReg2) { |
| IsThumb1 = true; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) { |
| switch (MI->getOpcode()) { |
| default: return false; |
| case ARM::tLSLri: |
| case ARM::tLSRri: |
| case ARM::tLSLrr: |
| case ARM::tLSRrr: |
| case ARM::tSUBrr: |
| case ARM::tADDrr: |
| case ARM::tADDi3: |
| case ARM::tADDi8: |
| case ARM::tSUBi3: |
| case ARM::tSUBi8: |
| case ARM::tMUL: |
| case ARM::tADC: |
| case ARM::tSBC: |
| case ARM::tRSB: |
| case ARM::tAND: |
| case ARM::tORR: |
| case ARM::tEOR: |
| case ARM::tBIC: |
| case ARM::tMVN: |
| case ARM::tASRri: |
| case ARM::tASRrr: |
| case ARM::tROR: |
| IsThumb1 = true; |
| [[fallthrough]]; |
| case ARM::RSBrr: |
| case ARM::RSBri: |
| case ARM::RSCrr: |
| case ARM::RSCri: |
| case ARM::ADDrr: |
| case ARM::ADDri: |
| case ARM::ADCrr: |
| case ARM::ADCri: |
| case ARM::SUBrr: |
| case ARM::SUBri: |
| case ARM::SBCrr: |
| case ARM::SBCri: |
| case ARM::t2RSBri: |
| case ARM::t2ADDrr: |
| case ARM::t2ADDri: |
| case ARM::t2ADCrr: |
| case ARM::t2ADCri: |
| case ARM::t2SUBrr: |
| case ARM::t2SUBri: |
| case ARM::t2SBCrr: |
| case ARM::t2SBCri: |
| case ARM::ANDrr: |
| case ARM::ANDri: |
| case ARM::ANDrsr: |
| case ARM::ANDrsi: |
| case ARM::t2ANDrr: |
| case ARM::t2ANDri: |
| case ARM::t2ANDrs: |
| case ARM::ORRrr: |
| case ARM::ORRri: |
| case ARM::ORRrsr: |
| case ARM::ORRrsi: |
| case ARM::t2ORRrr: |
| case ARM::t2ORRri: |
| case ARM::t2ORRrs: |
| case ARM::EORrr: |
| case ARM::EORri: |
| case ARM::EORrsr: |
| case ARM::EORrsi: |
| case ARM::t2EORrr: |
| case ARM::t2EORri: |
| case ARM::t2EORrs: |
| case ARM::BICri: |
| case ARM::BICrr: |
| case ARM::BICrsi: |
| case ARM::BICrsr: |
| case ARM::t2BICri: |
| case ARM::t2BICrr: |
| case ARM::t2BICrs: |
| case ARM::t2LSRri: |
| case ARM::t2LSRrr: |
| case ARM::t2LSLri: |
| case ARM::t2LSLrr: |
| case ARM::MOVsr: |
| case ARM::MOVsi: |
| return true; |
| } |
| } |
| |
| /// optimizeCompareInstr - Convert the instruction supplying the argument to the |
| /// comparison into one that sets the zero bit in the flags register; |
| /// Remove a redundant Compare instruction if an earlier instruction can set the |
| /// flags in the same way as Compare. |
| /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two |
| /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the |
| /// condition code of instructions which use the flags. |
| bool ARMBaseInstrInfo::optimizeCompareInstr( |
| MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t CmpMask, |
| int64_t CmpValue, const MachineRegisterInfo *MRI) const { |
| // Get the unique definition of SrcReg. |
| MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); |
| if (!MI) return false; |
| |
| // Masked compares sometimes use the same register as the corresponding 'and'. |
| if (CmpMask != ~0) { |
| if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) { |
| MI = nullptr; |
| for (MachineRegisterInfo::use_instr_iterator |
| UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end(); |
| UI != UE; ++UI) { |
| if (UI->getParent() != CmpInstr.getParent()) |
| continue; |
| MachineInstr *PotentialAND = &*UI; |
| if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) || |
| isPredicated(*PotentialAND)) |
| continue; |
| MI = PotentialAND; |
| break; |
| } |
| if (!MI) return false; |
| } |
| } |
| |
| // Get ready to iterate backward from CmpInstr. |
| MachineBasicBlock::iterator I = CmpInstr, E = MI, |
| B = CmpInstr.getParent()->begin(); |
| |
| // Early exit if CmpInstr is at the beginning of the BB. |
| if (I == B) return false; |
| |
| // There are two possible candidates which can be changed to set CPSR: |
| // One is MI, the other is a SUB or ADD instruction. |
| // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or |
| // ADDr[ri](r1, r2, X). |
| // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue). |
| MachineInstr *SubAdd = nullptr; |
| if (SrcReg2 != 0) |
| // MI is not a candidate for CMPrr. |
| MI = nullptr; |
| else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) { |
| // Conservatively refuse to convert an instruction which isn't in the same |
| // BB as the comparison. |
| // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate. |
| // Thus we cannot return here. |
| if (CmpInstr.getOpcode() == ARM::CMPri || |
| CmpInstr.getOpcode() == ARM::t2CMPri || |
| CmpInstr.getOpcode() == ARM::tCMPi8) |
| MI = nullptr; |
| else |
| return false; |
| } |
| |
| bool IsThumb1 = false; |
| if (MI && !isOptimizeCompareCandidate(MI, IsThumb1)) |
| return false; |
| |
| // We also want to do this peephole for cases like this: if (a*b == 0), |
| // and optimise away the CMP instruction from the generated code sequence: |
| // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values |
| // resulting from the select instruction, but these MOVS instructions for |
| // Thumb1 (V6M) are flag setting and are thus preventing this optimisation. |
| // However, if we only have MOVS instructions in between the CMP and the |
| // other instruction (the MULS in this example), then the CPSR is dead so we |
| // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this |
| // reordering and then continue the analysis hoping we can eliminate the |
| // CMP. This peephole works on the vregs, so is still in SSA form. As a |
| // consequence, the movs won't redefine/kill the MUL operands which would |
| // make this reordering illegal. |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| if (MI && IsThumb1) { |
| --I; |
| if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) { |
| bool CanReorder = true; |
| for (; I != E; --I) { |
| if (I->getOpcode() != ARM::tMOVi8) { |
| CanReorder = false; |
| break; |
| } |
| } |
| if (CanReorder) { |
| MI = MI->removeFromParent(); |
| E = CmpInstr; |
| CmpInstr.getParent()->insert(E, MI); |
| } |
| } |
| I = CmpInstr; |
| E = MI; |
| } |
| |
| // Check that CPSR isn't set between the comparison instruction and the one we |
| // want to change. At the same time, search for SubAdd. |
| bool SubAddIsThumb1 = false; |
| do { |
| const MachineInstr &Instr = *--I; |
| |
| // Check whether CmpInstr can be made redundant by the current instruction. |
| if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr, |
| SubAddIsThumb1)) { |
| SubAdd = &*I; |
| break; |
| } |
| |
| // Allow E (which was initially MI) to be SubAdd but do not search before E. |
| if (I == E) |
| break; |
| |
| if (Instr.modifiesRegister(ARM::CPSR, TRI) || |
| Instr.readsRegister(ARM::CPSR, TRI)) |
| // This instruction modifies or uses CPSR after the one we want to |
| // change. We can't do this transformation. |
| return false; |
| |
| if (I == B) { |
| // In some cases, we scan the use-list of an instruction for an AND; |
| // that AND is in the same BB, but may not be scheduled before the |
| // corresponding TST. In that case, bail out. |
| // |
| // FIXME: We could try to reschedule the AND. |
| return false; |
| } |
| } while (true); |
| |
| // Return false if no candidates exist. |
| if (!MI && !SubAdd) |
| return false; |
| |
| // If we found a SubAdd, use it as it will be closer to the CMP |
| if (SubAdd) { |
| MI = SubAdd; |
| IsThumb1 = SubAddIsThumb1; |
| } |
| |
| // We can't use a predicated instruction - it doesn't always write the flags. |
| if (isPredicated(*MI)) |
| return false; |
| |
| // Scan forward for the use of CPSR |
| // When checking against MI: if it's a conditional code that requires |
| // checking of the V bit or C bit, then this is not safe to do. |
| // It is safe to remove CmpInstr if CPSR is redefined or killed. |
| // If we are done with the basic block, we need to check whether CPSR is |
| // live-out. |
| SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4> |
| OperandsToUpdate; |
| bool isSafe = false; |
| I = CmpInstr; |
| E = CmpInstr.getParent()->end(); |
| while (!isSafe && ++I != E) { |
| const MachineInstr &Instr = *I; |
| for (unsigned IO = 0, EO = Instr.getNumOperands(); |
| !isSafe && IO != EO; ++IO) { |
| const MachineOperand &MO = Instr.getOperand(IO); |
| if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) { |
| isSafe = true; |
| break; |
| } |
| if (!MO.isReg() || MO.getReg() != ARM::CPSR) |
| continue; |
| if (MO.isDef()) { |
| isSafe = true; |
| break; |
| } |
| // Condition code is after the operand before CPSR except for VSELs. |
| ARMCC::CondCodes CC; |
| bool IsInstrVSel = true; |
| switch (Instr.getOpcode()) { |
| default: |
| IsInstrVSel = false; |
| CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm(); |
| break; |
| case ARM::VSELEQD: |
| case ARM::VSELEQS: |
| case ARM::VSELEQH: |
| CC = ARMCC::EQ; |
| break; |
| case ARM::VSELGTD: |
| case ARM::VSELGTS: |
| case ARM::VSELGTH: |
| CC = ARMCC::GT; |
| break; |
| case ARM::VSELGED: |
| case ARM::VSELGES: |
| case ARM::VSELGEH: |
| CC = ARMCC::GE; |
| break; |
| case ARM::VSELVSD: |
| case ARM::VSELVSS: |
| case ARM::VSELVSH: |
| CC = ARMCC::VS; |
| break; |
| } |
| |
| if (SubAdd) { |
| // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based |
| // on CMP needs to be updated to be based on SUB. |
| // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also |
| // needs to be modified. |
| // Push the condition code operands to OperandsToUpdate. |
| // If it is safe to remove CmpInstr, the condition code of these |
| // operands will be modified. |
| unsigned Opc = SubAdd->getOpcode(); |
| bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr || |
| Opc == ARM::SUBri || Opc == ARM::t2SUBri || |
| Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 || |
| Opc == ARM::tSUBi8; |
| unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2; |
| if (!IsSub || |
| (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 && |
| SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) { |
| // VSel doesn't support condition code update. |
| if (IsInstrVSel) |
| return false; |
| // Ensure we can swap the condition. |
| ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC)); |
| if (NewCC == ARMCC::AL) |
| return false; |
| OperandsToUpdate.push_back( |
| std::make_pair(&((*I).getOperand(IO - 1)), NewCC)); |
| } |
| } else { |
| // No SubAdd, so this is x = <op> y, z; cmp x, 0. |
| switch (CC) { |
| case ARMCC::EQ: // Z |
| case ARMCC::NE: // Z |
| case ARMCC::MI: // N |
| case ARMCC::PL: // N |
| case ARMCC::AL: // none |
| // CPSR can be used multiple times, we should continue. |
| break; |
| case ARMCC::HS: // C |
| case ARMCC::LO: // C |
| case ARMCC::VS: // V |
| case ARMCC::VC: // V |
| case ARMCC::HI: // C Z |
| case ARMCC::LS: // C Z |
| case ARMCC::GE: // N V |
| case ARMCC::LT: // N V |
| case ARMCC::GT: // Z N V |
| case ARMCC::LE: // Z N V |
| // The instruction uses the V bit or C bit which is not safe. |
| return false; |
| } |
| } |
| } |
| } |
| |
| // If CPSR is not killed nor re-defined, we should check whether it is |
| // live-out. If it is live-out, do not optimize. |
| if (!isSafe) { |
| MachineBasicBlock *MBB = CmpInstr.getParent(); |
| for (MachineBasicBlock *Succ : MBB->successors()) |
| if (Succ->isLiveIn(ARM::CPSR)) |
| return false; |
| } |
| |
| // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always |
| // set CPSR so this is represented as an explicit output) |
| if (!IsThumb1) { |
| unsigned CPSRRegNum = MI->getNumExplicitOperands() - 1; |
| MI->getOperand(CPSRRegNum).setReg(ARM::CPSR); |
| MI->getOperand(CPSRRegNum).setIsDef(true); |
| } |
| assert(!isPredicated(*MI) && "Can't use flags from predicated instruction"); |
| CmpInstr.eraseFromParent(); |
| |
| // Modify the condition code of operands in OperandsToUpdate. |
| // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to |
| // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. |
| for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++) |
| OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second); |
| |
| MI->clearRegisterDeads(ARM::CPSR); |
| |
| return true; |
| } |
| |
| bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const { |
| // Do not sink MI if it might be used to optimize a redundant compare. |
| // We heuristically only look at the instruction immediately following MI to |
| // avoid potentially searching the entire basic block. |
| if (isPredicated(MI)) |
| return true; |
| MachineBasicBlock::const_iterator Next = &MI; |
| ++Next; |
| Register SrcReg, SrcReg2; |
| int64_t CmpMask, CmpValue; |
| bool IsThumb1; |
| if (Next != MI.getParent()->end() && |
| analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) && |
| isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1)) |
| return false; |
| return true; |
| } |
| |
| bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, |
| Register Reg, |
| MachineRegisterInfo *MRI) const { |
| // Fold large immediates into add, sub, or, xor. |
| unsigned DefOpc = DefMI.getOpcode(); |
| if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm) |
| return false; |
| if (!DefMI.getOperand(1).isImm()) |
| // Could be t2MOVi32imm @xx |
| return false; |
| |
| if (!MRI->hasOneNonDBGUse(Reg)) |
| return false; |
| |
| const MCInstrDesc &DefMCID = DefMI.getDesc(); |
| if (DefMCID.hasOptionalDef()) { |
| unsigned NumOps = DefMCID.getNumOperands(); |
| const MachineOperand &MO = DefMI.getOperand(NumOps - 1); |
| if (MO.getReg() == ARM::CPSR && !MO.isDead()) |
| // If DefMI defines CPSR and it is not dead, it's obviously not safe |
| // to delete DefMI. |
| return false; |
| } |
| |
| const MCInstrDesc &UseMCID = UseMI.getDesc(); |
| if (UseMCID.hasOptionalDef()) { |
| unsigned NumOps = UseMCID.getNumOperands(); |
| if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR) |
| // If the instruction sets the flag, do not attempt this optimization |
| // since it may change the semantics of the code. |
| return false; |
| } |
| |
| unsigned UseOpc = UseMI.getOpcode(); |
| unsigned NewUseOpc = 0; |
| uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm(); |
| uint32_t SOImmValV1 = 0, SOImmValV2 = 0; |
| bool Commute = false; |
| switch (UseOpc) { |
| default: return false; |
| case ARM::SUBrr: |
| case ARM::ADDrr: |
| case ARM::ORRrr: |
| case ARM::EORrr: |
| case ARM::t2SUBrr: |
| case ARM::t2ADDrr: |
| case ARM::t2ORRrr: |
| case ARM::t2EORrr: { |
| Commute = UseMI.getOperand(2).getReg() != Reg; |
| switch (UseOpc) { |
| default: break; |
| case ARM::ADDrr: |
| case ARM::SUBrr: |
| if (UseOpc == ARM::SUBrr && Commute) |
| return false; |
| |
| // ADD/SUB are special because they're essentially the same operation, so |
| // we can handle a larger range of immediates. |
| if (ARM_AM::isSOImmTwoPartVal(ImmVal)) |
| NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri; |
| else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) { |
| ImmVal = -ImmVal; |
| NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri; |
| } else |
| return false; |
| SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); |
| SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); |
| break; |
| case ARM::ORRrr: |
| case ARM::EORrr: |
| if (!ARM_AM::isSOImmTwoPartVal(ImmVal)) |
| return false; |
| SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); |
| SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); |
| switch (UseOpc) { |
| default: break; |
| case ARM::ORRrr: NewUseOpc = ARM::ORRri; break; |
| case ARM::EORrr: NewUseOpc = ARM::EORri; break; |
| } |
| break; |
| case ARM::t2ADDrr: |
| case ARM::t2SUBrr: { |
| if (UseOpc == ARM::t2SUBrr && Commute) |
| return false; |
| |
| // ADD/SUB are special because they're essentially the same operation, so |
| // we can handle a larger range of immediates. |
| const bool ToSP = DefMI.getOperand(0).getReg() == ARM::SP; |
| const unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri; |
| const unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri; |
| if (ARM_AM::isT2SOImmTwoPartVal(ImmVal)) |
| NewUseOpc = UseOpc == ARM::t2ADDrr ? t2ADD : t2SUB; |
| else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) { |
| ImmVal = -ImmVal; |
| NewUseOpc = UseOpc == ARM::t2ADDrr ? t2SUB : t2ADD; |
| } else |
| return false; |
| SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); |
| SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); |
| break; |
| } |
| case ARM::t2ORRrr: |
| case ARM::t2EORrr: |
| if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal)) |
| return false; |
| SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); |
| SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); |
| switch (UseOpc) { |
| default: break; |
| case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break; |
| case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break; |
| } |
| break; |
| } |
| } |
| } |
| |
| unsigned OpIdx = Commute ? 2 : 1; |
| Register Reg1 = UseMI.getOperand(OpIdx).getReg(); |
| bool isKill = UseMI.getOperand(OpIdx).isKill(); |
| const TargetRegisterClass *TRC = MRI->getRegClass(Reg); |
| Register NewReg = MRI->createVirtualRegister(TRC); |
| BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc), |
| NewReg) |
| .addReg(Reg1, getKillRegState(isKill)) |
| .addImm(SOImmValV1) |
| .add(predOps(ARMCC::AL)) |
| .add(condCodeOp()); |
| UseMI.setDesc(get(NewUseOpc)); |
| UseMI.getOperand(1).setReg(NewReg); |
| UseMI.getOperand(1).setIsKill(); |
| UseMI.getOperand(2).ChangeToImmediate(SOImmValV2); |
| DefMI.eraseFromParent(); |
| // FIXME: t2ADDrr should be split, as different rulles apply when writing to SP. |
| // Just as t2ADDri, that was split to [t2ADDri, t2ADDspImm]. |
| // Then the below code will not be needed, as the input/output register |
| // classes will be rgpr or gprSP. |
| // For now, we fix the UseMI operand explicitly here: |
| switch(NewUseOpc){ |
| case ARM::t2ADDspImm: |
| case ARM::t2SUBspImm: |
| case ARM::t2ADDri: |
| case ARM::t2SUBri: |
| MRI->constrainRegClass(UseMI.getOperand(0).getReg(), TRC); |
| } |
| return true; |
| } |
| |
| static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData, |
| const MachineInstr &MI) { |
| switch (MI.getOpcode()) { |
| default: { |
| const MCInstrDesc &Desc = MI.getDesc(); |
| int UOps = ItinData->getNumMicroOps(Desc.getSchedClass()); |
| assert(UOps >= 0 && "bad # UOps"); |
| return UOps; |
| } |
| |
| case ARM::LDRrs: |
| case ARM::LDRBrs: |
| case ARM::STRrs: |
| case ARM::STRBrs: { |
| unsigned ShOpVal = MI.getOperand(3).getImm(); |
| bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; |
| unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); |
| if (!isSub && |
| (ShImm == 0 || |
| ((ShImm == 1 || ShImm == 2 || ShImm == 3) && |
| ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) |
| return 1; |
| return 2; |
| } |
| |
| case ARM::LDRH: |
| case ARM::STRH: { |
| if (!MI.getOperand(2).getReg()) |
| return 1; |
| |
| unsigned ShOpVal = MI.getOperand(3).getImm(); |
| bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; |
| unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); |
| if (!isSub && |
| (ShImm == 0 || |
| ((ShImm == 1 || ShImm == 2 || ShImm == 3) && |
| ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) |
| return 1; |
| return 2; |
| } |
| |
| case ARM::LDRSB: |
| case ARM::LDRSH: |
| return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2; |
| |
| case ARM::LDRSB_POST: |
| case ARM::LDRSH_POST: { |
| Register Rt = MI.getOperand(0).getReg(); |
| Register Rm = MI.getOperand(3).getReg(); |
| return (Rt == Rm) ? 4 : 3; |
| } |
| |
| case ARM::LDR_PRE_REG: |
| case ARM::LDRB_PRE_REG: { |
| Register Rt = MI.getOperand(0).getReg(); |
| Register Rm = MI.getOperand(3).getReg(); |
| if (Rt == Rm) |
| return 3; |
| unsigned ShOpVal = MI.getOperand(4).getImm(); |
| bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; |
| unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); |
| if (!isSub && |
| (ShImm == 0 || |
| ((ShImm == 1 || ShImm == 2 || ShImm == 3) && |
| ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) |
| return 2; |
| return 3; |
| } |
| |
| case ARM::STR_PRE_REG: |
| case ARM::STRB_PRE_REG: { |
| unsigned ShOpVal = MI.getOperand(4).getImm(); |
| bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; |
| unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); |
| if (!isSub && |
| (ShImm == 0 || |
| ((ShImm == 1 || ShImm == 2 || ShImm == 3) && |
| ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) |
| return 2; |
| return 3; |
| } |
| |
| case ARM::LDRH_PRE: |
| case ARM::STRH_PRE: { |
| Register Rt = MI.getOperand(0).getReg(); |
| Register Rm = MI.getOperand(3).getReg(); |
| if (!Rm) |
| return 2; |
| if (Rt == Rm) |
| return 3; |
| return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2; |
| } |
| |
| case ARM::LDR_POST_REG: |
| case ARM::LDRB_POST_REG: |
| case ARM::LDRH_POST: { |
| Register Rt = MI.getOperand(0).getReg(); |
| Register Rm = MI.getOperand(3).getReg(); |
| return (Rt == Rm) ? 3 : 2; |
| } |
| |
| case ARM::LDR_PRE_IMM: |
| case ARM::LDRB_PRE_IMM: |
| case ARM::LDR_POST_IMM: |
| case ARM::LDRB_POST_IMM: |
| case ARM::STRB_POST_IMM: |
| case ARM::STRB_POST_REG: |
| case ARM::STRB_PRE_IMM: |
| case ARM::STRH_POST: |
| case ARM::STR_POST_IMM: |
| case ARM::STR_POST_REG: |
| case ARM::STR_PRE_IMM: |
| return 2; |
| |
| case ARM::LDRSB_PRE: |
| case ARM::LDRSH_PRE: { |
| Register Rm = MI.getOperand(3).getReg(); |
| if (Rm == 0) |
| return 3; |
| Register Rt = MI.getOperand(0).getReg(); |
| if (Rt == Rm) |
| return 4; |
| unsigned ShOpVal = MI.getOperand(4).getImm(); |
| bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; |
| unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); |
| if (!isSub && |
| (ShImm == 0 || |
| ((ShImm == 1 || ShImm == 2 || ShImm == 3) && |
| ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) |
| return 3; |
| return 4; |
| } |
| |
| case ARM::LDRD: { |
| Register Rt = MI.getOperand(0).getReg(); |
| Register Rn = MI.getOperand(2).getReg(); |
| Register Rm = MI.getOperand(3).getReg(); |
| if (Rm) |
| return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 |
| : 3; |
| return (Rt == Rn) ? 3 : 2; |
| } |
| |
| case ARM::STRD: { |
| Register Rm = MI.getOperand(3).getReg(); |
| if (Rm) |
| return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 |
| : 3; |
| return 2; |
| } |
| |
| case ARM::LDRD_POST: |
| case ARM::t2LDRD_POST: |
| return 3; |
| |
| case ARM::STRD_POST: |
| case ARM::t2STRD_POST: |
| return 4; |
| |
| case ARM::LDRD_PRE: { |
| Register Rt = MI.getOperand(0).getReg(); |
| Register Rn = MI.getOperand(3).getReg(); |
| Register Rm = MI.getOperand(4).getReg(); |
| if (Rm) |
| return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 |
| : 4; |
| return (Rt == Rn) ? 4 : 3; |
| } |
| |
| case ARM::t2LDRD_PRE: { |
| Register Rt = MI.getOperand(0).getReg(); |
| Register Rn = MI.getOperand(3).getReg(); |
| return (Rt == Rn) ? 4 : 3; |
| } |
| |
| case ARM::STRD_PRE: { |
| Register Rm = MI.getOperand(4).getReg(); |
| if (Rm) |
| return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 |
| : 4; |
| return 3; |
| } |
| |
| case ARM::t2STRD_PRE: |
| return 3; |
| |
| case ARM::t2LDR_POST: |
| case ARM::t2LDRB_POST: |
| case ARM::t2LDRB_PRE: |
| case ARM::t2LDRSBi12: |
| case ARM::t2LDRSBi8: |
| case ARM::t2LDRSBpci: |
| case ARM::t2LDRSBs: |
| case ARM::t2LDRH_POST: |
| case ARM::t2LDRH_PRE: |
| case ARM::t2LDRSBT: |
| case ARM::t2LDRSB_POST: |
| case ARM::t2LDRSB_PRE: |
| case ARM::t2LDRSH_POST: |
| case ARM::t2LDRSH_PRE: |
| case ARM::t2LDRSHi12: |
| case ARM::t2LDRSHi8: |
| case ARM::t2LDRSHpci: |
| case ARM::t2LDRSHs: |
| return 2; |
| |
| case ARM::t2LDRDi8: { |
| Register Rt = MI.getOperand(0).getReg(); |
| Register Rn = MI.getOperand(2).getReg(); |
| return (Rt == Rn) ? 3 : 2; |
| } |
| |
| case ARM::t2STRB_POST: |
| case ARM::t2STRB_PRE: |
| case ARM::t2STRBs: |
| case ARM::t2STRDi8: |
| case ARM::t2STRH_POST: |
| case ARM::t2STRH_PRE: |
| case ARM::t2STRHs: |
| case ARM::t2STR_POST: |
| case ARM::t2STR_PRE: |
| case ARM::t2STRs: |
| return 2; |
| } |
| } |
| |
| // Return the number of 32-bit words loaded by LDM or stored by STM. If this |
| // can't be easily determined return 0 (missing MachineMemOperand). |
| // |
| // FIXME: The current MachineInstr design does not support relying on machine |
| // mem operands to determine the width of a memory access. Instead, we expect |
| // the target to provide this information based on the instruction opcode and |
| // operands. However, using MachineMemOperand is the best solution now for |
| // two reasons: |
| // |
| // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI |
| // operands. This is much more dangerous than using the MachineMemOperand |
| // sizes because CodeGen passes can insert/remove optional machine operands. In |
| // fact, it's totally incorrect for preRA passes and appears to be wrong for |
| // postRA passes as well. |
| // |
| // 2) getNumLDMAddresses is only used by the scheduling machine model and any |
| // machine model that calls this should handle the unknown (zero size) case. |
| // |
| // Long term, we should require a target hook that verifies MachineMemOperand |
| // sizes during MC lowering. That target hook should be local to MC lowering |
| // because we can't ensure that it is aware of other MI forms. Doing this will |
| // ensure that MachineMemOperands are correctly propagated through all passes. |
| unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const { |
| unsigned Size = 0; |
| for (MachineInstr::mmo_iterator I = MI.memoperands_begin(), |
| E = MI.memoperands_end(); |
| I != E; ++I) { |
| Size += (*I)->getSize(); |
| } |
| // FIXME: The scheduler currently can't handle values larger than 16. But |
| // the values can actually go up to 32 for floating-point load/store |
| // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory |
| // operations isn't right; we could end up with "extra" memory operands for |
| // various reasons, like tail merge merging two memory operations. |
| return std::min(Size / 4, 16U); |
| } |
| |
| static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc, |
| unsigned NumRegs) { |
| unsigned UOps = 1 + NumRegs; // 1 for address computation. |
| switch (Opc) { |
| default: |
| break; |
| case ARM::VLDMDIA_UPD: |
| case ARM::VLDMDDB_UPD: |
| case ARM::VLDMSIA_UPD: |
| case ARM::VLDMSDB_UPD: |
| case ARM::VSTMDIA_UPD: |
| case ARM::VSTMDDB_UPD: |
| case ARM::VSTMSIA_UPD: |
| case ARM::VSTMSDB_UPD: |
| case ARM::LDMIA_UPD: |
| case ARM::LDMDA_UPD: |
| case ARM::LDMDB_UPD: |
| case ARM::LDMIB_UPD: |
| case ARM::STMIA_UPD: |
| case ARM::STMDA_UPD: |
| case ARM::STMDB_UPD: |
| case ARM::STMIB_UPD: |
| case ARM::tLDMIA_UPD: |
| case ARM::tSTMIA_UPD: |
| case ARM::t2LDMIA_UPD: |
| case ARM::t2LDMDB_UPD: |
| case ARM::t2STMIA_UPD: |
| case ARM::t2STMDB_UPD: |
| ++UOps; // One for base register writeback. |
| break; |
| case ARM::LDMIA_RET: |
| case ARM::tPOP_RET: |
| case ARM::t2LDMIA_RET: |
| UOps += 2; // One for base reg wb, one for write to pc. |
| break; |
| } |
| return UOps; |
| } |
| |
| unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, |
| const MachineInstr &MI) const { |
| if (!ItinData || ItinData->isEmpty()) |
| return 1; |
| |
| const MCInstrDesc &Desc = MI.getDesc(); |
| unsigned Class = Desc.getSchedClass(); |
| int ItinUOps = ItinData->getNumMicroOps(Class); |
| if (ItinUOps >= 0) { |
| if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore())) |
| return getNumMicroOpsSwiftLdSt(ItinData, MI); |
| |
| return ItinUOps; |
| } |
| |
| unsigned Opc = MI.getOpcode(); |
| switch (Opc) { |
| default: |
| llvm_unreachable("Unexpected multi-uops instruction!"); |
| case ARM::VLDMQIA: |
| case ARM::VSTMQIA: |
| return 2; |
| |
| // The number of uOps for load / store multiple are determined by the number |
| // registers. |
| // |
| // On Cortex-A8, each pair of register loads / stores can be scheduled on the |
| // same cycle. The scheduling for the first load / store must be done |
| // separately by assuming the address is not 64-bit aligned. |
| // |
| // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address |
| // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON |
| // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1. |
| case ARM::VLDMDIA: |
| case ARM::VLDMDIA_UPD: |
| case ARM::VLDMDDB_UPD: |
| case ARM::VLDMSIA: |
| case ARM::VLDMSIA_UPD: |
| case ARM::VLDMSDB_UPD: |
| case ARM::VSTMDIA: |
| case ARM::VSTMDIA_UPD: |
| case ARM::VSTMDDB_UPD: |
| case ARM::VSTMSIA: |
| case ARM::VSTMSIA_UPD: |
| case ARM::VSTMSDB_UPD: { |
| unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands(); |
| return (NumRegs / 2) + (NumRegs % 2) + 1; |
| } |
| |
| case ARM::LDMIA_RET: |
| case ARM::LDMIA: |
| case ARM::LDMDA: |
| case ARM::LDMDB: |
| case ARM::LDMIB: |
| case ARM::LDMIA_UPD: |
| case ARM::LDMDA_UPD: |
| case ARM::LDMDB_UPD: |
| case ARM::LDMIB_UPD: |
| case ARM::STMIA: |
| case ARM::STMDA: |
| case ARM::STMDB: |
| case ARM::STMIB: |
| case ARM::STMIA_UPD: |
| case ARM::STMDA_UPD: |
| case ARM::STMDB_UPD: |
| case ARM::STMIB_UPD: |
| case ARM::tLDMIA: |
| case ARM::tLDMIA_UPD: |
| case ARM::tSTMIA_UPD: |
| case ARM::tPOP_RET: |
| case ARM::tPOP: |
| case ARM::tPUSH: |
| case ARM::t2LDMIA_RET: |
| case ARM::t2LDMIA: |
| case ARM::t2LDMDB: |
| case ARM::t2LDMIA_UPD: |
| case ARM::t2LDMDB_UPD: |
| case ARM::t2STMIA: |
| case ARM::t2STMDB: |
| case ARM::t2STMIA_UPD: |
| case ARM::t2STMDB_UPD: { |
| unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1; |
| switch (Subtarget.getLdStMultipleTiming()) { |
| case ARMSubtarget::SingleIssuePlusExtras: |
| return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs); |
| case ARMSubtarget::SingleIssue: |
| // Assume the worst. |
| return NumRegs; |
| case ARMSubtarget::DoubleIssue: { |
| if (NumRegs < 4) |
| return 2; |
| // 4 registers would be issued: 2, 2. |
| // 5 registers would be issued: 2, 2, 1. |
| unsigned UOps = (NumRegs / 2); |
| if (NumRegs % 2) |
| ++UOps; |
| return UOps; |
| } |
| case ARMSubtarget::DoubleIssueCheckUnalignedAccess: { |
| unsigned UOps = (NumRegs / 2); |
| // If there are odd number of registers or if it's not 64-bit aligned, |
| // then it takes an extra AGU (Address Generation Unit) cycle. |
| if ((NumRegs % 2) || !MI.hasOneMemOperand() || |
| (*MI.memoperands_begin())->getAlign() < Align(8)) |
| ++UOps; |
| return UOps; |
| } |
| } |
| } |
| } |
| llvm_unreachable("Didn't find the number of microops"); |
| } |
| |
| int |
| ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData, |
| const MCInstrDesc &DefMCID, |
| unsigned DefClass, |
| unsigned DefIdx, unsigned DefAlign) const { |
| int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; |
| if (RegNo <= 0) |
| // Def is the address writeback. |
| return ItinData->getOperandCycle(DefClass, DefIdx); |
| |
| int DefCycle; |
| if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { |
| // (regno / 2) + (regno % 2) + 1 |
| DefCycle = RegNo / 2 + 1; |
| if (RegNo % 2) |
| ++DefCycle; |
| } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { |
| DefCycle = RegNo; |
| bool isSLoad = false; |
| |
| switch (DefMCID.getOpcode()) { |
| default: break; |
| case ARM::VLDMSIA: |
| case ARM::VLDMSIA_UPD: |
| case ARM::VLDMSDB_UPD: |
| isSLoad = true; |
| break; |
| } |
| |
| // If there are odd number of 'S' registers or if it's not 64-bit aligned, |
| // then it takes an extra cycle. |
| if ((isSLoad && (RegNo % 2)) || DefAlign < 8) |
| ++DefCycle; |
| } else { |
| // Assume the worst. |
| DefCycle = RegNo + 2; |
| } |
| |
| return DefCycle; |
| } |
| |
| int |
| ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData, |
| const MCInstrDesc &DefMCID, |
| unsigned DefClass, |
| unsigned DefIdx, unsigned DefAlign) const { |
| int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; |
| if (RegNo <= 0) |
| // Def is the address writeback. |
| return ItinData->getOperandCycle(DefClass, DefIdx); |
| |
| int DefCycle; |
| if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { |
| // 4 registers would be issued: 1, 2, 1. |
| // 5 registers would be issued: 1, 2, 2. |
| DefCycle = RegNo / 2; |
| if (DefCycle < 1) |
| DefCycle = 1; |
| // Result latency is issue cycle + 2: E2. |
| DefCycle += 2; |
| } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { |
| DefCycle = (RegNo / 2); |
| // If there are odd number of registers or if it's not 64-bit aligned, |
| // then it takes an extra AGU (Address Generation Unit) cycle. |
| if ((RegNo % 2) || DefAlign < 8) |
| ++DefCycle; |
| // Result latency is AGU cycles + 2. |
| DefCycle += 2; |
| } else { |
| // Assume the worst. |
| DefCycle = RegNo + 2; |
| } |
| |
| return DefCycle; |
| } |
| |
| int |
| ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData, |
| const MCInstrDesc &UseMCID, |
| unsigned UseClass, |
| unsigned UseIdx, unsigned UseAlign) const { |
| int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; |
| if (RegNo <= 0) |
| return ItinData->getOperandCycle(UseClass, UseIdx); |
| |
| int UseCycle; |
| if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { |
| // (regno / 2) + (regno % 2) + 1 |
| UseCycle = RegNo / 2 + 1; |
| if (RegNo % 2) |
| ++UseCycle; |
| } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { |
| UseCycle = RegNo; |
| bool isSStore = false; |
| |
| switch (UseMCID.getOpcode()) { |
| default: break; |
| case ARM::VSTMSIA: |
| case ARM::VSTMSIA_UPD: |
| case ARM::VSTMSDB_UPD: |
| isSStore = true; |
| break; |
| } |
| |
| // If there are odd number of 'S' registers or if it's not 64-bit aligned, |
| // then it takes an extra cycle. |
| if ((isSStore && (RegNo % 2)) || UseAlign < 8) |
| ++UseCycle; |
| } else { |
| // Assume the worst. |
| UseCycle = RegNo + 2; |
| } |
| |
| return UseCycle; |
| } |
| |
| int |
| ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData, |
| const MCInstrDesc &UseMCID, |
| unsigned UseClass, |
| unsigned UseIdx, unsigned UseAlign) const { |
| int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; |
| if (RegNo <= 0) |
| return ItinData->getOperandCycle(UseClass, UseIdx); |
| |
| int UseCycle; |
| if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { |
| UseCycle = RegNo / 2; |
| if (UseCycle < 2) |
| UseCycle = 2; |
| // Read in E3. |
| UseCycle += 2; |
| } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { |
| UseCycle = (RegNo / 2); |
| // If there are odd number of registers or if it's not 64-bit aligned, |
| // then it takes an extra AGU (Address Generation Unit) cycle. |
| if ((RegNo % 2) || UseAlign < 8) |
| ++UseCycle; |
| } else { |
| // Assume the worst. |
| UseCycle = 1; |
| } |
| return UseCycle; |
| } |
| |
| int |
| ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, |
| const MCInstrDesc &DefMCID, |
| unsigned DefIdx, unsigned DefAlign, |
| const MCInstrDesc &UseMCID, |
| unsigned UseIdx, unsigned UseAlign) const { |
| unsigned DefClass = DefMCID.getSchedClass(); |
| unsigned UseClass = UseMCID.getSchedClass(); |
| |
| if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands()) |
| return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); |
| |
| // This may be a def / use of a variable_ops instruction, the operand |
| // latency might be determinable dynamically. Let the target try to |
| // figure it out. |
| int DefCycle = -1; |
| bool LdmBypass = false; |
| switch (DefMCID.getOpcode()) { |
| default: |
| DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); |
| break; |
| |
| case ARM::VLDMDIA: |
| case ARM::VLDMDIA_UPD: |
| case ARM::VLDMDDB_UPD: |
| case ARM::VLDMSIA: |
| case ARM::VLDMSIA_UPD: |
| case ARM::VLDMSDB_UPD: |
| DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); |
| break; |
| |
| case ARM::LDMIA_RET: |
| case ARM::LDMIA: |
| case ARM::LDMDA: |
| case ARM::LDMDB: |
| case ARM::LDMIB: |
| case ARM::LDMIA_UPD: |
| case ARM::LDMDA_UPD: |
| case ARM::LDMDB_UPD: |
| case ARM::LDMIB_UPD: |
| case ARM::tLDMIA: |
| case ARM::tLDMIA_UPD: |
| case ARM::tPUSH: |
| case ARM::t2LDMIA_RET: |
| case ARM::t2LDMIA: |
| case ARM::t2LDMDB: |
| case ARM::t2LDMIA_UPD: |
| case ARM::t2LDMDB_UPD: |
| LdmBypass = true; |
| DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); |
| break; |
| } |
| |
| if (DefCycle == -1) |
| // We can't seem to determine the result latency of the def, assume it's 2. |
| DefCycle = 2; |
| |
| int UseCycle = -1; |
| switch (UseMCID.getOpcode()) { |
| default: |
| UseCycle = ItinData->getOperandCycle(UseClass, UseIdx); |
| break; |
| |
| case ARM::VSTMDIA: |
| case ARM::VSTMDIA_UPD: |
| case ARM::VSTMDDB_UPD: |
| case ARM::VSTMSIA: |
| case ARM::VSTMSIA_UPD: |
| case ARM::VSTMSDB_UPD: |
| UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); |
| break; |
| |
| case ARM::STMIA: |
| case ARM::STMDA: |
| case ARM::STMDB: |
| case ARM::STMIB: |
| case ARM::STMIA_UPD: |
| case ARM::STMDA_UPD: |
| case ARM::STMDB_UPD: |
| case ARM::STMIB_UPD: |
| case ARM::tSTMIA_UPD: |
| case ARM::tPOP_RET: |
| case ARM::tPOP: |
| case ARM::t2STMIA: |
| case ARM::t2STMDB: |
| case ARM::t2STMIA_UPD: |
| case ARM::t2STMDB_UPD: |
| UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); |
| break; |
| } |
| |
| if (UseCycle == -1) |
| // Assume it's read in the first stage. |
| UseCycle = 1; |
| |
| UseCycle = DefCycle - UseCycle + 1; |
| if (UseCycle > 0) { |
| if (LdmBypass) { |
| // It's a variable_ops instruction so we can't use DefIdx here. Just use |
| // first def operand. |
| if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1, |
| UseClass, UseIdx)) |
| --UseCycle; |
| } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx, |
| UseClass, UseIdx)) { |
| --UseCycle; |
| } |
| } |
| |
| return UseCycle; |
| } |
| |
| static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI, |
| const MachineInstr *MI, unsigned Reg, |
| unsigned &DefIdx, unsigned &Dist) { |
| Dist = 0; |
| |
| MachineBasicBlock::const_iterator I = MI; ++I; |
| MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator()); |
| assert(II->isInsideBundle() && "Empty bundle?"); |
| |
| int Idx = -1; |
| while (II->isInsideBundle()) { |
| Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI); |
| if (Idx != -1) |
| break; |
| --II; |
| ++Dist; |
| } |
| |
| assert(Idx != -1 && "Cannot find bundled definition!"); |
| DefIdx = Idx; |
| return &*II; |
| } |
| |
| static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI, |
| const MachineInstr &MI, unsigned Reg, |
| unsigned &UseIdx, unsigned &Dist) { |
| Dist = 0; |
| |
| MachineBasicBlock::const_instr_iterator II = ++MI.getIterator(); |
| assert(II->isInsideBundle() && "Empty bundle?"); |
| MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); |
| |
| // FIXME: This doesn't properly handle multiple uses. |
| int Idx = -1; |
| while (II != E && II->isInsideBundle()) { |
| Idx = II->findRegisterUseOperandIdx(Reg, false, TRI); |
| if (Idx != -1) |
| break; |
| if (II->getOpcode() != ARM::t2IT) |
| ++Dist; |
| ++II; |
| } |
| |
| if (Idx == -1) { |
| Dist = 0; |
| return nullptr; |
| } |
| |
| UseIdx = Idx; |
| return &*II; |
| } |
| |
| /// Return the number of cycles to add to (or subtract from) the static |
| /// itinerary based on the def opcode and alignment. The caller will ensure that |
| /// adjusted latency is at least one cycle. |
| static int adjustDefLatency(const ARMSubtarget &Subtarget, |
| const MachineInstr &DefMI, |
| const MCInstrDesc &DefMCID, unsigned DefAlign) { |
| int Adjust = 0; |
| if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) { |
| // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] |
| // variants are one cycle cheaper. |
| switch (DefMCID.getOpcode()) { |
| default: break; |
| case ARM::LDRrs: |
| case ARM::LDRBrs: { |
| unsigned ShOpVal = DefMI.getOperand(3).getImm(); |
| unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); |
| if (ShImm == 0 || |
| (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) |
| --Adjust; |
| break; |
| } |
| case ARM::t2LDRs: |
| case ARM::t2LDRBs: |
| case ARM::t2LDRHs: |
| case ARM::t2LDRSHs: { |
| // Thumb2 mode: lsl only. |
| unsigned ShAmt = DefMI.getOperand(3).getImm(); |
| if (ShAmt == 0 || ShAmt == 2) |
| --Adjust; |
| break; |
| } |
| } |
| } else if (Subtarget.isSwift()) { |
| // FIXME: Properly handle all of the latency adjustments for address |
| // writeback. |
| switch (DefMCID.getOpcode()) { |
| default: break; |
| case ARM::LDRrs: |
| case ARM::LDRBrs: { |
| unsigned ShOpVal = DefMI.getOperand(3).getImm(); |
| bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; |
| unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); |
| if (!isSub && |
| (ShImm == 0 || |
| ((ShImm == 1 || ShImm == 2 || ShImm == 3) && |
| ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) |
| Adjust -= 2; |
| else if (!isSub && |
| ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) |
| --Adjust; |
| break; |
| } |
| case ARM::t2LDRs: |
| case ARM::t2LDRBs: |
| case ARM::t2LDRHs: |
| case ARM::t2LDRSHs: { |
| // Thumb2 mode: lsl only. |
| unsigned ShAmt = DefMI.getOperand(3).getImm(); |
| if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3) |
| Adjust -= 2; |
| break; |
| } |
| } |
| } |
| |
| if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) { |
| switch (DefMCID.getOpcode()) { |
| default: break; |
| case ARM::VLD1q8: |
| case ARM::VLD1q16: |
| case ARM::VLD1q32: |
| case ARM::VLD1q64: |
| case ARM::VLD1q8wb_fixed: |
| case ARM::VLD1q16wb_fixed: |
| case ARM::VLD1q32wb_fixed: |
| case ARM::VLD1q64wb_fixed: |
| case ARM::VLD1q8wb_register: |
| case ARM::VLD1q16wb_register: |
| case ARM::VLD1q32wb_register: |
| case ARM::VLD1q64wb_register: |
| case ARM::VLD2d8: |
| case ARM::VLD2d16: |
| case ARM::VLD2d32: |
| case ARM::VLD2q8: |
| case ARM::VLD2q16: |
| case ARM::VLD2q32: |
| case ARM::VLD2d8wb_fixed: |
| case ARM::VLD2d16wb_fixed: |
| case ARM::VLD2d32wb_fixed: |
| case ARM::VLD2q8wb_fixed: |
| case ARM::VLD2q16wb_fixed: |
| case ARM::VLD2q32wb_fixed: |
| case ARM::VLD2d8wb_register: |
| case ARM::VLD2d16wb_register: |
| case ARM::VLD2d32wb_register: |
| case ARM::VLD2q8wb_register: |
| case ARM::VLD2q16wb_register: |
| case ARM::VLD2q32wb_register: |
| case ARM::VLD3d8: |
| case ARM::VLD3d16: |
| case ARM::VLD3d32: |
| case ARM::VLD1d64T: |
| case ARM::VLD3d8_UPD: |
| case ARM::VLD3d16_UPD: |
| case ARM::VLD3d32_UPD: |
| case ARM::VLD1d64Twb_fixed: |
| case ARM::VLD1d64Twb_register: |
| case ARM::VLD3q8_UPD: |
| case ARM::VLD3q16_UPD: |
| case ARM::VLD3q32_UPD: |
| case ARM::VLD4d8: |
| case ARM::VLD4d16: |
| case ARM::VLD4d32: |
| case ARM::VLD1d64Q: |
| case ARM::VLD4d8_UPD: |
| case ARM::VLD4d16_UPD: |
| case ARM::VLD4d32_UPD: |
| case ARM::VLD1d64Qwb_fixed: |
| case ARM::VLD1d64Qwb_register: |
| case ARM::VLD4q8_UPD: |
| case ARM::VLD4q16_UPD: |
| case ARM::VLD4q32_UPD: |
| case ARM::VLD1DUPq8: |
| case ARM::VLD1DUPq16: |
| case ARM::VLD1DUPq32: |
| case ARM::VLD1DUPq8wb_fixed: |
| case ARM::VLD1DUPq16wb_fixed: |
| case ARM::VLD1DUPq32wb_fixed: |
| case ARM::VLD1DUPq8wb_register: |
| case ARM::VLD1DUPq16wb_register: |
| case ARM::VLD1DUPq32wb_register: |
| case ARM::VLD2DUPd8: |
| case ARM::VLD2DUPd16: |
| case ARM::VLD2DUPd32: |
| case ARM::VLD2DUPd8wb_fixed: |
| case ARM::VLD2DUPd16wb_fixed: |
| case ARM::VLD2DUPd32wb_fixed: |
| case ARM::VLD2DUPd8wb_register: |
| case ARM::VLD2DUPd16wb_register: |
| case ARM::VLD2DUPd32wb_register: |
| case ARM::VLD4DUPd8: |
| case ARM::VLD4DUPd16: |
| case ARM::VLD4DUPd32: |
| case ARM::VLD4DUPd8_UPD: |
| case ARM::VLD4DUPd16_UPD: |
| case ARM::VLD4DUPd32_UPD: |
| case ARM::VLD1LNd8: |
| case ARM::VLD1LNd16: |
| case ARM::VLD1LNd32: |
| case ARM::VLD1LNd8_UPD: |
| case ARM::VLD1LNd16_UPD: |
| case ARM::VLD1LNd32_UPD: |
| case ARM::VLD2LNd8: |
| case ARM::VLD2LNd16: |
| case ARM::VLD2LNd32: |
| case ARM::VLD2LNq16: |
| case ARM::VLD2LNq32: |
| case ARM::VLD2LNd8_UPD: |
| case ARM::VLD2LNd16_UPD: |
| case ARM::VLD2LNd32_UPD: |
| case ARM::VLD2LNq16_UPD: |
| case ARM::VLD2LNq32_UPD: |
| case ARM::VLD4LNd8: |
| case ARM::VLD4LNd16: |
| case ARM::VLD4LNd32: |
| case ARM::VLD4LNq16: |
| case ARM::VLD4LNq32: |
| case ARM::VLD4LNd8_UPD: |
| case ARM::VLD4LNd16_UPD: |
| case ARM::VLD4LNd32_UPD: |
| case ARM::VLD4LNq16_UPD: |
| case ARM::VLD4LNq32_UPD: |
| // If the address is not 64-bit aligned, the latencies of these |
| // instructions increases by one. |
| ++Adjust; |
| break; |
| } |
| } |
| return Adjust; |
| } |
| |
| int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, |
| const MachineInstr &DefMI, |
| unsigned DefIdx, |
| const MachineInstr &UseMI, |
| unsigned UseIdx) const { |
| // No operand latency. The caller may fall back to getInstrLatency. |
| if (!ItinData || ItinData->isEmpty()) |
| return -1; |
| |
| const MachineOperand &DefMO = DefMI.getOperand(DefIdx); |
| Register Reg = DefMO.getReg(); |
| |
| const MachineInstr *ResolvedDefMI = &DefMI; |
| unsigned DefAdj = 0; |
| if (DefMI.isBundle()) |
| ResolvedDefMI = |
| getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj); |
| if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() || |
| ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) { |
| return 1; |
| } |
| |
| const MachineInstr *ResolvedUseMI = &UseMI; |
| unsigned UseAdj = 0; |
| if (UseMI.isBundle()) { |
| ResolvedUseMI = |
| getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj); |
| if (!ResolvedUseMI) |
| return -1; |
| } |
| |
| return getOperandLatencyImpl( |
| ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO, |
| Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj); |
| } |
| |
| int ARMBaseInstrInfo::getOperandLatencyImpl( |
| const InstrItineraryData *ItinData, const MachineInstr &DefMI, |
| unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj, |
| const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI, |
| unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const { |
| if (Reg == ARM::CPSR) { |
| if (DefMI.getOpcode() == ARM::FMSTAT) { |
| // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?) |
| return Subtarget.isLikeA9() ? 1 : 20; |
| } |
| |
| // CPSR set and branch can be paired in the same cycle. |
| if (UseMI.isBranch()) |
| return 0; |
| |
| // Otherwise it takes the instruction latency (generally one). |
| unsigned Latency = getInstrLatency(ItinData, DefMI); |
| |
| // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to |
| // its uses. Instructions which are otherwise scheduled between them may |
| // incur a code size penalty (not able to use the CPSR setting 16-bit |
| // instructions). |
| if (Latency > 0 && Subtarget.isThumb2()) { |
| const MachineFunction *MF = DefMI.getParent()->getParent(); |
| // FIXME: Use Function::hasOptSize(). |
| if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize)) |
| --Latency; |
| } |
| return Latency; |
| } |
| |
| if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit()) |
| return -1; |
| |
| unsigned DefAlign = DefMI.hasOneMemOperand() |
| ? (*DefMI.memoperands_begin())->getAlign().value() |
| : 0; |
| unsigned UseAlign = UseMI.hasOneMemOperand() |
| ? (*UseMI.memoperands_begin())->getAlign().value() |
| : 0; |
| |
| // Get the itinerary's latency if possible, and handle variable_ops. |
| int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID, |
| UseIdx, UseAlign); |
| // Unable to find operand latency. The caller may resort to getInstrLatency. |
| if (Latency < 0) |
| return Latency; |
| |
| // Adjust for IT block position. |
| int Adj = DefAdj + UseAdj; |
| |
| // Adjust for dynamic def-side opcode variants not captured by the itinerary. |
| Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign); |
| if (Adj >= 0 || (int)Latency > -Adj) { |
| return Latency + Adj; |
| } |
| // Return the itinerary latency, which may be zero but not less than zero. |
| return Latency; |
| } |
| |
| int |
| ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, |
| SDNode *DefNode, unsigned DefIdx, |
| SDNode *UseNode, unsigned UseIdx) const { |
| if (!DefNode->isMachineOpcode()) |
| return 1; |
| |
| const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode()); |
| |
| if (isZeroCost(DefMCID.Opcode)) |
| return 0; |
| |
| if (!ItinData || ItinData->isEmpty()) |
| return DefMCID.mayLoad() ? 3 : 1; |
| |
| if (!UseNode->isMachineOpcode()) { |
| int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx); |
| int Adj = Subtarget.getPreISelOperandLatencyAdjustment(); |
| int Threshold = 1 + Adj; |
| return Latency <= Threshold ? 1 : Latency - Adj; |
| } |
| |
| const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode()); |
| auto *DefMN = cast<MachineSDNode>(DefNode); |
| unsigned DefAlign = !DefMN->memoperands_empty() |
| ? (*DefMN->memoperands_begin())->getAlign().value() |
| : 0; |
| auto *UseMN = cast<MachineSDNode>(UseNode); |
| unsigned UseAlign = !UseMN->memoperands_empty() |
| ? (*UseMN->memoperands_begin())->getAlign().value() |
| : 0; |
| int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, |
| UseMCID, UseIdx, UseAlign); |
| |
| if (Latency > 1 && |
| (Subtarget.isCortexA8() || Subtarget.isLikeA9() || |
| Subtarget.isCortexA7())) { |
| // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] |
| // variants are one cycle cheaper. |
| switch (DefMCID.getOpcode()) { |
| default: break; |
| case ARM::LDRrs: |
| case ARM::LDRBrs: { |
| unsigned ShOpVal = |
| cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); |
| unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); |
| if (ShImm == 0 || |
| (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) |
| --Latency; |
| break; |
| } |
| case ARM::t2LDRs: |
| case ARM::t2LDRBs: |
| case ARM::t2LDRHs: |
| case ARM::t2LDRSHs: { |
| // Thumb2 mode: lsl only. |
| unsigned ShAmt = |
| cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); |
| if (ShAmt == 0 || ShAmt == 2) |
| --Latency; |
| break; |
| } |
| } |
| } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) { |
| // FIXME: Properly handle all of the latency adjustments for address |
| // writeback. |
| switch (DefMCID.getOpcode()) { |
| default: break; |
| case ARM::LDRrs: |
| case ARM::LDRBrs: { |
| unsigned ShOpVal = |
| cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); |
| unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); |
| if (ShImm == 0 || |
| ((ShImm == 1 || ShImm == 2 || ShImm == 3) && |
| ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) |
| Latency -= 2; |
| else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) |
| --Latency; |
| break; |
| } |
| case ARM::t2LDRs: |
| case ARM::t2LDRBs: |
| case ARM::t2LDRHs: |
| case ARM::t2LDRSHs: |
| // Thumb2 mode: lsl 0-3 only. |
| Latency -= 2; |
| break; |
| } |
| } |
| |
| if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) |
| switch (DefMCID.getOpcode()) { |
| default: break; |
| case ARM::VLD1q8: |
| case ARM::VLD1q16: |
| case ARM::VLD1q32: |
| case ARM::VLD1q64: |
| case ARM::VLD1q8wb_register: |
| case ARM::VLD1q16wb_register: |
| case ARM::VLD1q32wb_register: |
| case ARM::VLD1q64wb_register: |
| case ARM::VLD1q8wb_fixed: |
| case ARM::VLD1q16wb_fixed: |
| case ARM::VLD1q32wb_fixed: |
| case ARM::VLD1q64wb_fixed: |
| case ARM::VLD2d8: |
| case ARM::VLD2d16: |
| case ARM::VLD2d32: |
| case ARM::VLD2q8Pseudo: |
| case ARM::VLD2q16Pseudo: |
| case ARM::VLD2q32Pseudo: |
| case ARM::VLD2d8wb_fixed: |
| case ARM::VLD2d16wb_fixed: |
| case ARM::VLD2d32wb_fixed: |
| case ARM::VLD2q8PseudoWB_fixed: |
| case ARM::VLD2q16PseudoWB_fixed: |
| case ARM::VLD2q32PseudoWB_fixed: |
| case ARM::VLD2d8wb_register: |
| case ARM::VLD2d16wb_register: |
| case ARM::VLD2d32wb_register: |
| case ARM::VLD2q8PseudoWB_register: |
| case ARM::VLD2q16PseudoWB_register: |
| case ARM::VLD2q32PseudoWB_register: |
| case ARM::VLD3d8Pseudo: |
| case ARM::VLD3d16Pseudo: |
| case ARM::VLD3d32Pseudo: |
| case ARM::VLD1d8TPseudo: |
| case ARM::VLD1d16TPseudo: |
| case ARM::VLD1d32TPseudo: |
| case ARM::VLD1d64TPseudo: |
| case ARM::VLD1d64TPseudoWB_fixed: |
| case ARM::VLD1d64TPseudoWB_register: |
| case ARM::VLD3d8Pseudo_UPD: |
| case ARM::VLD3d16Pseudo_UPD: |
| case ARM::VLD3d32Pseudo_UPD: |
| case ARM::VLD3q8Pseudo_UPD: |
| case ARM::VLD3q16Pseudo_UPD: |
| case ARM::VLD3q32Pseudo_UPD: |
| case ARM::VLD3q8oddPseudo: |
| case ARM::VLD3q16oddPseudo: |
| case ARM::VLD3q32oddPseudo: |
| case ARM::VLD3q8oddPseudo_UPD: |
| case ARM::VLD3q16oddPseudo_UPD: |
| case ARM::VLD3q32oddPseudo_UPD: |
| case ARM::VLD4d8Pseudo: |
| case ARM::VLD4d16Pseudo: |
| case ARM::VLD4d32Pseudo: |
| case ARM::VLD1d8QPseudo: |
| case ARM::VLD1d16QPseudo: |
| case ARM::VLD1d32QPseudo: |
| case ARM::VLD1d64QPseudo: |
| case ARM::VLD1d64QPseudoWB_fixed: |
| case ARM::VLD1d64QPseudoWB_register: |
| case ARM::VLD1q8HighQPseudo: |
| case ARM::VLD1q8LowQPseudo_UPD: |
| case ARM::VLD1q8HighTPseudo: |
| case ARM::VLD1q8LowTPseudo_UPD: |
| case ARM::VLD1q16HighQPseudo: |
| case ARM::VLD1q16LowQPseudo_UPD: |
| case ARM::VLD1q16HighTPseudo: |
| case ARM::VLD1q16LowTPseudo_UPD: |
| case ARM::VLD1q32HighQPseudo: |
| case ARM::VLD1q32LowQPseudo_UPD: |
| case ARM::VLD1q32HighTPseudo: |
| case ARM::VLD1q32LowTPseudo_UPD: |
| case ARM::VLD1q64HighQPseudo: |
| case ARM::VLD1q64LowQPseudo_UPD: |
| case ARM::VLD1q64HighTPseudo: |
| case ARM::VLD1q64LowTPseudo_UPD: |
| case ARM::VLD4d8Pseudo_UPD: |
| case ARM::VLD4d16Pseudo_UPD: |
| case ARM::VLD4d32Pseudo_UPD: |
| case ARM::VLD4q8Pseudo_UPD: |
| case ARM::VLD4q16Pseudo_UPD: |
| case ARM::VLD4q32Pseudo_UPD: |
| case ARM::VLD4q8oddPseudo: |
| case ARM::VLD4q16oddPseudo: |
| case ARM::VLD4q32oddPseudo: |
| case ARM::VLD4q8oddPseudo_UPD: |
| case ARM::VLD4q16oddPseudo_UPD: |
| case ARM::VLD4q32oddPseudo_UPD: |
| case ARM::VLD1DUPq8: |
| case ARM::VLD1DUPq16: |
| case ARM::VLD1DUPq32: |
| case ARM::VLD1DUPq8wb_fixed: |
| case ARM::VLD1DUPq16wb_fixed: |
| case ARM::VLD1DUPq32wb_fixed: |
| case ARM::VLD1DUPq8wb_register: |
| case ARM::VLD1DUPq16wb_register: |
| case ARM::VLD1DUPq32wb_register: |
| case ARM::VLD2DUPd8: |
| case ARM::VLD2DUPd16: |
| case ARM::VLD2DUPd32: |
| case ARM::VLD2DUPd8wb_fixed: |
| case ARM::VLD2DUPd16wb_fixed: |
| case ARM::VLD2DUPd32wb_fixed: |
| case ARM::VLD2DUPd8wb_register: |
| case ARM::VLD2DUPd16wb_register: |
| case ARM::VLD2DUPd32wb_register: |
| case ARM::VLD2DUPq8EvenPseudo: |
| case ARM::VLD2DUPq8OddPseudo: |
| case ARM::VLD2DUPq16EvenPseudo: |
| case ARM::VLD2DUPq16OddPseudo: |
| case ARM::VLD2DUPq32EvenPseudo: |
| case ARM::VLD2DUPq32OddPseudo: |
| case ARM::VLD3DUPq8EvenPseudo: |
| case ARM::VLD3DUPq8OddPseudo: |
| case ARM::VLD3DUPq16EvenPseudo: |
| case ARM::VLD3DUPq16OddPseudo: |
| case ARM::VLD3DUPq32EvenPseudo: |
| case ARM::VLD3DUPq32OddPseudo: |
| case ARM::VLD4DUPd8Pseudo: |
| case ARM::VLD4DUPd16Pseudo: |
| case ARM::VLD4DUPd32Pseudo: |
| case ARM::VLD4DUPd8Pseudo_UPD: |
| case ARM::VLD4DUPd16Pseudo_UPD: |
| case ARM::VLD4DUPd32Pseudo_UPD: |
| case ARM::VLD4DUPq8EvenPseudo: |
| case ARM::VLD4DUPq8OddPseudo: |
| case ARM::VLD4DUPq16EvenPseudo: |
| case ARM::VLD4DUPq16OddPseudo: |
| case ARM::VLD4DUPq32EvenPseudo: |
| case ARM::VLD4DUPq32OddPseudo: |
| case ARM::VLD1LNq8Pseudo: |
| case ARM::VLD1LNq16Pseudo: |
| case ARM::VLD1LNq32Pseudo: |
| case ARM::VLD1LNq8Pseudo_UPD: |
| case ARM::VLD1LNq16Pseudo_UPD: |
| case ARM::VLD1LNq32Pseudo_UPD: |
| case ARM::VLD2LNd8Pseudo: |
| case ARM::VLD2LNd16Pseudo: |
| case ARM::VLD2LNd32Pseudo: |
| case ARM::VLD2LNq16Pseudo: |
| case ARM::VLD2LNq32Pseudo: |
| case ARM::VLD2LNd8Pseudo_UPD: |
| case ARM::VLD2LNd16Pseudo_UPD: |
| case ARM::VLD2LNd32Pseudo_UPD: |
| case ARM::VLD2LNq16Pseudo_UPD: |
| case ARM::VLD2LNq32Pseudo_UPD: |
| case ARM::VLD4LNd8Pseudo: |
| case ARM::VLD4LNd16Pseudo: |
| case ARM::VLD4LNd32Pseudo: |
| case ARM::VLD4LNq16Pseudo: |
| case ARM::VLD4LNq32Pseudo: |
| case ARM::VLD4LNd8Pseudo_UPD: |
| case ARM::VLD4LNd16Pseudo_UPD: |
| case ARM::VLD4LNd32Pseudo_UPD: |
| case ARM::VLD4LNq16Pseudo_UPD: |
| case ARM::VLD4LNq32Pseudo_UPD: |
| // If the address is not 64-bit aligned, the latencies of these |
| // instructions increases by one. |
| ++Latency; |
| break; |
| } |
| |
| return Latency; |
| } |
| |
| unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const { |
| if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || |
| MI.isImplicitDef()) |
| return 0; |
| |
| if (MI.isBundle()) |
| return 0; |
| |
| const MCInstrDesc &MCID = MI.getDesc(); |
| |
| if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && |
| !Subtarget.cheapPredicableCPSRDef())) { |
| // When predicated, CPSR is an additional source operand for CPSR updating |
| // instructions, this apparently increases their latencies. |
| return 1; |
| } |
| return 0; |
| } |
| |
| unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, |
| const MachineInstr &MI, |
| unsigned *PredCost) const { |
| if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || |
| MI.isImplicitDef()) |
| return 1; |
| |
| // An instruction scheduler typically runs on unbundled instructions, however |
| // other passes may query the latency of a bundled instruction. |
| if (MI.isBundle()) { |
| unsigned Latency = 0; |
| MachineBasicBlock::const_instr_iterator I = MI.getIterator(); |
| MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); |
| while (++I != E && I->isInsideBundle()) { |
| if (I->getOpcode() != ARM::t2IT) |
| Latency += getInstrLatency(ItinData, *I, PredCost); |
| } |
| return Latency; |
| } |
| |
| const MCInstrDesc &MCID = MI.getDesc(); |
| if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && |
| !Subtarget.cheapPredicableCPSRDef()))) { |
| // When predicated, CPSR is an additional source operand for CPSR updating |
| // instructions, this apparently increases their latencies. |
| *PredCost = 1; |
| } |
| // Be sure to call getStageLatency for an empty itinerary in case it has a |
| // valid MinLatency property. |
| if (!ItinData) |
| return MI.mayLoad() ? 3 : 1; |
| |
| unsigned Class = MCID.getSchedClass(); |
| |
| // For instructions with variable uops, use uops as latency. |
| if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0) |
| return getNumMicroOps(ItinData, MI); |
| |
| // For the common case, fall back on the itinerary's latency. |
| unsigned Latency = ItinData->getStageLatency(Class); |
| |
| // Adjust for dynamic def-side opcode variants not captured by the itinerary. |
| unsigned DefAlign = |
| MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlign().value() : 0; |
| int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign); |
| if (Adj >= 0 || (int)Latency > -Adj) { |
| return Latency + Adj; |
| } |
| return Latency; |
| } |
| |
| int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, |
| SDNode *Node) const { |
| if (!Node->isMachineOpcode()) |
| return 1; |
| |
| if (!ItinData || ItinData->isEmpty()) |
| return 1; |
| |
| unsigned Opcode = Node->getMachineOpcode(); |
| switch (Opcode) { |
| default: |
| return ItinData->getStageLatency(get(Opcode).getSchedClass()); |
| case ARM::VLDMQIA: |
| case ARM::VSTMQIA: |
| return 2; |
| } |
| } |
| |
| bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, |
| const MachineRegisterInfo *MRI, |
| const MachineInstr &DefMI, |
| unsigned DefIdx, |
| const MachineInstr &UseMI, |
| unsigned UseIdx) const { |
| unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; |
| unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask; |
| if (Subtarget.nonpipelinedVFP() && |
| (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP)) |
| return true; |
| |
| // Hoist VFP / NEON instructions with 4 or higher latency. |
| unsigned Latency = |
| SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx); |
| if (Latency <= 3) |
| return false; |
| return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON || |
| UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON; |
| } |
| |
| bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, |
| const MachineInstr &DefMI, |
| unsigned DefIdx) const { |
| const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); |
| if (!ItinData || ItinData->isEmpty()) |
| return false; |
| |
| unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; |
| if (DDomain == ARMII::DomainGeneral) { |
| unsigned DefClass = DefMI.getDesc().getSchedClass(); |
| int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); |
| return (DefCycle != -1 && DefCycle <= 2); |
| } |
| return false; |
| } |
| |
| bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI, |
| StringRef &ErrInfo) const { |
| if (convertAddSubFlagsOpcode(MI.getOpcode())) { |
| ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG"; |
| return false; |
| } |
| if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) { |
| // Make sure we don't generate a lo-lo mov that isn't supported. |
| if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) && |
| !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) { |
| ErrInfo = "Non-flag-setting Thumb1 mov is v6-only"; |
| return false; |
| } |
| } |
| if (MI.getOpcode() == ARM::tPUSH || |
| MI.getOpcode() == ARM::tPOP || |
| MI.getOpcode() == ARM::tPOP_RET) { |
| for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), 2)) { |
| if (MO.isImplicit() || !MO.isReg()) |
| continue; |
| Register Reg = MO.getReg(); |
| if (Reg < ARM::R0 || Reg > ARM::R7) { |
| if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) && |
| !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) { |
| ErrInfo = "Unsupported register in Thumb1 push/pop"; |
| return false; |
| } |
| } |
| } |
| } |
| if (MI.getOpcode() == ARM::MVE_VMOV_q_rr) { |
| assert(MI.getOperand(4).isImm() && MI.getOperand(5).isImm()); |
| if ((MI.getOperand(4).getImm() != 2 && MI.getOperand(4).getImm() != 3) || |
| MI.getOperand(4).getImm() != MI.getOperand(5).getImm() + 2) { |
| ErrInfo = "Incorrect array index for MVE_VMOV_q_rr"; |
| return false; |
| } |
| } |
| |
| // Check the address model by taking the first Imm operand and checking it is |
| // legal for that addressing mode. |
| ARMII::AddrMode AddrMode = |
| (ARMII::AddrMode)(MI.getDesc().TSFlags & ARMII::AddrModeMask); |
| switch (AddrMode) { |
| default: |
| break; |
| case ARMII::AddrModeT2_i7: |
| case ARMII::AddrModeT2_i7s2: |
| case ARMII::AddrModeT2_i7s4: |
| case ARMII::AddrModeT2_i8: |
| case ARMII::AddrModeT2_i8pos: |
| case ARMII::AddrModeT2_i8neg: |
| case ARMII::AddrModeT2_i8s4: |
| case ARMII::AddrModeT2_i12: { |
| uint32_t Imm = 0; |
| for (auto Op : MI.operands()) { |
| if (Op.isImm()) { |
| Imm = Op.getImm(); |
| break; |
| } |
| } |
| if (!isLegalAddressImm(MI.getOpcode(), Imm, this)) { |
| ErrInfo = "Incorrect AddrMode Imm for instruction"; |
| return false; |
| } |
| break; |
| } |
| } |
| return true; |
| } |
| |
| void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI, |
| unsigned LoadImmOpc, |
| unsigned LoadOpc) const { |
| assert(!Subtarget.isROPI() && !Subtarget.isRWPI() && |
| "ROPI/RWPI not currently supported with stack guard"); |
| |
| MachineBasicBlock &MBB = *MI->getParent(); |
| DebugLoc DL = MI->getDebugLoc(); |
| Register Reg = MI->getOperand(0).getReg(); |
| MachineInstrBuilder MIB; |
| unsigned int Offset = 0; |
| |
| if (LoadImmOpc == ARM::MRC || LoadImmOpc == ARM::t2MRC) { |
| assert(Subtarget.isReadTPHard() && |
| "TLS stack protector requires hardware TLS register"); |
| |
| BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) |
| .addImm(15) |
| .addImm(0) |
| .addImm(13) |
| .addImm(0) |
| .addImm(3) |
| .add(predOps(ARMCC::AL)); |
| |
| Module &M = *MBB.getParent()->getFunction().getParent(); |
| Offset = M.getStackProtectorGuardOffset(); |
| if (Offset & ~0xfffU) { |
| // The offset won't fit in the LDR's 12-bit immediate field, so emit an |
| // extra ADD to cover the delta. This gives us a guaranteed 8 additional |
| // bits, resulting in a range of 0 to +1 MiB for the guard offset. |
| unsigned AddOpc = (LoadImmOpc == ARM::MRC) ? ARM::ADDri : ARM::t2ADDri; |
| BuildMI(MBB, MI, DL, get(AddOpc), Reg) |
| .addReg(Reg, RegState::Kill) |
| .addImm(Offset & ~0xfffU) |
| .add(predOps(ARMCC::AL)) |
| .addReg(0); |
| Offset &= 0xfffU; |
| } |
| } else { |
| const GlobalValue *GV = |
| cast<GlobalValue>((*MI->memoperands_begin())->getValue()); |
| bool IsIndirect = Subtarget.isGVIndirectSymbol(GV); |
| |
| unsigned TargetFlags = ARMII::MO_NO_FLAG; |
| if (Subtarget.isTargetMachO()) { |
| TargetFlags |= ARMII::MO_NONLAZY; |
| } else if (Subtarget.isTargetCOFF()) { |
| if (GV->hasDLLImportStorageClass()) |
| TargetFlags |= ARMII::MO_DLLIMPORT; |
| else if (IsIndirect) |
| TargetFlags |= ARMII::MO_COFFSTUB; |
| } else if (Subtarget.isGVInGOT(GV)) { |
| TargetFlags |= ARMII::MO_GOT; |
| } |
| |
| BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) |
| .addGlobalAddress(GV, 0, TargetFlags); |
| |
| if (IsIndirect) { |
| MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); |
| MIB.addReg(Reg, RegState::Kill).addImm(0); |
| auto Flags = MachineMemOperand::MOLoad | |
| MachineMemOperand::MODereferenceable | |
| MachineMemOperand::MOInvariant; |
| MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( |
| MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, Align(4)); |
| MIB.addMemOperand(MMO).add(predOps(ARMCC::AL)); |
| } |
| } |
| |
| MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); |
| MIB.addReg(Reg, RegState::Kill) |
| .addImm(Offset) |
| .cloneMemRefs(*MI) |
| .add(predOps(ARMCC::AL)); |
| } |
| |
| bool |
| ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc, |
| unsigned &AddSubOpc, |
| bool &NegAcc, bool &HasLane) const { |
| DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode); |
| if (I == MLxEntryMap.end()) |
| return false; |
| |
| const ARM_MLxEntry &Entry = ARM_MLxTable[I->second]; |
| MulOpc = Entry.MulOpc; |
| AddSubOpc = Entry.AddSubOpc; |
| NegAcc = Entry.NegAcc; |
| HasLane = Entry.HasLane; |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Execution domains. |
| //===----------------------------------------------------------------------===// |
| // |
| // Some instructions go down the NEON pipeline, some go down the VFP pipeline, |
| // and some can go down both. The vmov instructions go down the VFP pipeline, |
| // but they can be changed to vorr equivalents that are executed by the NEON |
| // pipeline. |
| // |
| // We use the following execution domain numbering: |
| // |
| enum ARMExeDomain { |
| ExeGeneric = 0, |
| ExeVFP = 1, |
| ExeNEON = 2 |
| }; |
| |
| // |
| // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h |
| // |
| std::pair<uint16_t, uint16_t> |
| ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const { |
| // If we don't have access to NEON instructions then we won't be able |
| // to swizzle anything to the NEON domain. Check to make sure. |
| if (Subtarget.hasNEON()) { |
| // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON |
| // if they are not predicated. |
| if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI)) |
| return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); |
| |
| // CortexA9 is particularly picky about mixing the two and wants these |
| // converted. |
| if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) && |
| (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR || |
| MI.getOpcode() == ARM::VMOVS)) |
| return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); |
| } |
| // No other instructions can be swizzled, so just determine their domain. |
| unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask; |
| |
| if (Domain & ARMII::DomainNEON) |
| return std::make_pair(ExeNEON, 0); |
| |
| // Certain instructions can go either way on Cortex-A8. |
| // Treat them as NEON instructions. |
| if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8()) |
| return std::make_pair(ExeNEON, 0); |
| |
| if (Domain & ARMII::DomainVFP) |
| return std::make_pair(ExeVFP, 0); |
| |
| return std::make_pair(ExeGeneric, 0); |
| } |
| |
| static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI, |
| unsigned SReg, unsigned &Lane) { |
| unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass); |
| Lane = 0; |
| |
| if (DReg != ARM::NoRegister) |
| return DReg; |
| |
| Lane = 1; |
| DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass); |
| |
| assert(DReg && "S-register with no D super-register?"); |
| return DReg; |
| } |
| |
| /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane, |
| /// set ImplicitSReg to a register number that must be marked as implicit-use or |
| /// zero if no register needs to be defined as implicit-use. |
| /// |
| /// If the function cannot determine if an SPR should be marked implicit use or |
| /// not, it returns false. |
| /// |
| /// This function handles cases where an instruction is being modified from taking |
| /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict |
| /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other |
| /// lane of the DPR). |
| /// |
| /// If the other SPR is defined, an implicit-use of it should be added. Else, |
| /// (including the case where the DPR itself is defined), it should not. |
| /// |
| static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI, |
| MachineInstr &MI, unsigned DReg, |
| unsigned Lane, unsigned &ImplicitSReg) { |
| // If the DPR is defined or used already, the other SPR lane will be chained |
| // correctly, so there is nothing to be done. |
| if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) { |
| ImplicitSReg = 0; |
| return true; |
| } |
| |
| // Otherwise we need to go searching to see if the SPR is set explicitly. |
| ImplicitSReg = TRI->getSubReg(DReg, |
| (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1); |
| MachineBasicBlock::LivenessQueryResult LQR = |
| MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI); |
| |
| if (LQR == MachineBasicBlock::LQR_Live) |
| return true; |
| else if (LQR == MachineBasicBlock::LQR_Unknown) |
| return false; |
| |
| // If the register is known not to be live, there is no need to add an |
| // implicit-use. |
| ImplicitSReg = 0; |
| return true; |
| } |
| |
| void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI, |
| unsigned Domain) const { |
| unsigned DstReg, SrcReg, DReg; |
| unsigned Lane; |
| MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| switch (MI.getOpcode()) { |
| default: |
| llvm_unreachable("cannot handle opcode!"); |
| break; |
| case ARM::VMOVD: |
| if (Domain != ExeNEON) |
| break; |
| |
| // Zap the predicate operands. |
| assert(!isPredicated(MI) && "Cannot predicate a VORRd"); |
| |
| // Make sure we've got NEON instructions. |
| assert(Subtarget.hasNEON() && "VORRd requires NEON"); |
| |
| // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits) |
| DstReg = MI.getOperand(0).getReg(); |
| SrcReg = MI.getOperand(1).getReg(); |
| |
| for (unsigned i = MI.getDesc().getNumOperands(); i; --i) |
| MI.removeOperand(i - 1); |
| |
| // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits) |
| MI.setDesc(get(ARM::VORRd)); |
| MIB.addReg(DstReg, RegState::Define) |
| .addReg(SrcReg) |
| .addReg(SrcReg) |
| .add(predOps(ARMCC::AL)); |
| break; |
| case ARM::VMOVRS: |
| if (Domain != ExeNEON) |
| break; |
| assert(!isPredicated(MI) && "Cannot predicate a VGETLN"); |
| |
| // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits) |
| DstReg = MI.getOperand(0).getReg(); |
| SrcReg = MI.getOperand(1).getReg(); |
| |
| for (unsigned i = MI.getDesc().getNumOperands(); i; --i) |
| MI.removeOperand(i - 1); |
| |
| DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane); |
| |
| // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps) |
| // Note that DSrc has been widened and the other lane may be undef, which |
| // contaminates the entire register. |
| MI.setDesc(get(ARM::VGETLNi32)); |
| MIB.addReg(DstReg, RegState::Define) |
| .addReg(DReg, RegState::Undef) |
| .addImm(Lane) |
| .add(predOps(ARMCC::AL)); |
| |
| // The old source should be an implicit use, otherwise we might think it |
| // was dead before here. |
| MIB.addReg(SrcReg, RegState::Implicit); |
| break; |
| case ARM::VMOVSR: { |
| if (Domain != ExeNEON) |
| break; |
| assert(!isPredicated(MI) && "Cannot predicate a VSETLN"); |
| |
| // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits) |
| DstReg = MI.getOperand(0).getReg(); |
| SrcReg = MI.getOperand(1).getReg(); |
| |
| DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane); |
| |
| unsigned ImplicitSReg; |
| if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg)) |
| break; |
| |
| for (unsigned i = MI.getDesc().getNumOperands(); i; --i) |
| MI.removeOperand(i - 1); |
| |
| // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps) |
| // Again DDst may be undefined at the beginning of this instruction. |
| MI.setDesc(get(ARM::VSETLNi32)); |
| MIB.addReg(DReg, RegState::Define) |
| .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI))) |
| .addReg(SrcReg) |
| .addImm(Lane) |
| .add(predOps(ARMCC::AL)); |
| |
| // The narrower destination must be marked as set to keep previous chains |
| // in place. |
| MIB.addReg(DstReg, RegState::Define | RegState::Implicit); |
| if (ImplicitSReg != 0) |
| MIB.addReg(ImplicitSReg, RegState::Implicit); |
| break; |
| } |
| case ARM::VMOVS: { |
| if (Domain != ExeNEON) |
| break; |
| |
| // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits) |
| DstReg = MI.getOperand(0).getReg(); |
| SrcReg = MI.getOperand(1).getReg(); |
| |
| unsigned DstLane = 0, SrcLane = 0, DDst, DSrc; |
| DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane); |
| DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane); |
| |
| unsigned ImplicitSReg; |
| if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg)) |
| break; |
| |
| for (unsigned i = MI.getDesc().getNumOperands(); i; --i) |
| MI.removeOperand(i - 1); |
| |
| if (DSrc == DDst) { |
| // Destination can be: |
| // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits) |
| MI.setDesc(get(ARM::VDUPLN32d)); |
| MIB.addReg(DDst, RegState::Define) |
| .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI))) |
| .addImm(SrcLane) |
| .add(predOps(ARMCC::AL)); |
| |
| // Neither the source or the destination are naturally represented any |
| // more, so add them in manually. |
| MIB.addReg(DstReg, RegState::Implicit | RegState::Define); |
| MIB.addReg(SrcReg, RegState::Implicit); |
| if (ImplicitSReg != 0) |
| MIB.addReg(ImplicitSReg, RegState::Implicit); |
| break; |
| } |
| |
| // In general there's no single instruction that can perform an S <-> S |
| // move in NEON space, but a pair of VEXT instructions *can* do the |
| // job. It turns out that the VEXTs needed will only use DSrc once, with |
| // the position based purely on the combination of lane-0 and lane-1 |
| // involved. For example |
| // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1 |
| // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1 |
| // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1 |
| // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1 |
| // |
| // Pattern of the MachineInstrs is: |
| // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits) |
| MachineInstrBuilder NewMIB; |
| NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32), |
| DDst); |
| |
| // On the first instruction, both DSrc and DDst may be undef if present. |
| // Specifically when the original instruction didn't have them as an |
| // <imp-use>. |
| unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst; |
| bool CurUndef = !MI.readsRegister(CurReg, TRI); |
| NewMIB.addReg(CurReg, getUndefRegState(CurUndef)); |
| |
| CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst; |
| CurUndef = !MI.readsRegister(CurReg, TRI); |
| NewMIB.addReg(CurReg, getUndefRegState(CurUndef)) |
| .addImm(1) |
| .add(predOps(ARMCC::AL)); |
| |
| if (SrcLane == DstLane) |
| NewMIB.addReg(SrcReg, RegState::Implicit); |
| |
| MI.setDesc(get(ARM::VEXTd32)); |
| MIB.addReg(DDst, RegState::Define); |
| |
| // On the second instruction, DDst has definitely been defined above, so |
| // it is not undef. DSrc, if present, can be undef as above. |
| CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst; |
| CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); |
| MIB.addReg(CurReg, getUndefRegState(CurUndef)); |
| |
| CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst; |
| CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); |
| MIB.addReg(CurReg, getUndefRegState(CurUndef)) |
| .addImm(1) |
| .add(predOps(ARMCC::AL)); |
| |
| if (SrcLane != DstLane) |
| MIB.addReg(SrcReg, RegState::Implicit); |
| |
| // As before, the original destination is no longer represented, add it |
| // implicitly. |
| MIB.addReg(DstReg, RegState::Define | RegState::Implicit); |
| if (ImplicitSReg != 0) |
| MIB.addReg(ImplicitSReg, RegState::Implicit); |
| break; |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Partial register updates |
| //===----------------------------------------------------------------------===// |
| // |
| // Swift renames NEON registers with 64-bit granularity. That means any |
| // instruction writing an S-reg implicitly reads the containing D-reg. The |
| // problem is mostly avoided by translating f32 operations to v2f32 operations |
| // on D-registers, but f32 loads are still a problem. |
| // |
| // These instructions can load an f32 into a NEON register: |
| // |
| // VLDRS - Only writes S, partial D update. |
| // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops. |
| // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops. |
| // |
| // FCONSTD can be used as a dependency-breaking instruction. |
| unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance( |
| const MachineInstr &MI, unsigned OpNum, |
| const TargetRegisterInfo *TRI) const { |
| auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance(); |
| if (!PartialUpdateClearance) |
| return 0; |
| |
| assert(TRI && "Need TRI instance"); |
| |
| const MachineOperand &MO = MI.getOperand(OpNum); |
| if (MO.readsReg()) |
| return 0; |
| Register Reg = MO.getReg(); |
| int UseOp = -1; |
| |
| switch (MI.getOpcode()) { |
| // Normal instructions writing only an S-register. |
| case ARM::VLDRS: |
| case ARM::FCONSTS: |
| case ARM::VMOVSR: |
| case ARM::VMOVv8i8: |
| case ARM::VMOVv4i16: |
| case ARM::VMOVv2i32: |
| case ARM::VMOVv2f32: |
| case ARM::VMOVv1i64: |
| UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI); |
| break; |
| |
| // Explicitly reads the dependency. |
| case ARM::VLD1LNd32: |
| UseOp = 3; |
| break; |
| default: |
| return 0; |
| } |
| |
| // If this instruction actually reads a value from Reg, there is no unwanted |
| // dependency. |
| if (UseOp != -1 && MI.getOperand(UseOp).readsReg()) |
| return 0; |
| |
| // We must be able to clobber the whole D-reg. |
| if (Reg.isVirtual()) { |
| // Virtual register must be a def undef foo:ssub_0 operand. |
| if (!MO.getSubReg() || MI.readsVirtualRegister(Reg)) |
| return 0; |
| } else if (ARM::SPRRegClass.contains(Reg)) { |
| // Physical register: MI must define the full D-reg. |
| unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0, |
| &ARM::DPRRegClass); |
| if (!DReg || !MI.definesRegister(DReg, TRI)) |
| return 0; |
| } |
| |
| // MI has an unwanted D-register dependency. |
| // Avoid defs in the previous N instructrions. |
| return PartialUpdateClearance; |
| } |
| |
| // Break a partial register dependency after getPartialRegUpdateClearance |
| // returned non-zero. |
| void ARMBaseInstrInfo::breakPartialRegDependency( |
| MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { |
| assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def"); |
| assert(TRI && "Need TRI instance"); |
| |
| const MachineOperand &MO = MI.getOperand(OpNum); |
| Register Reg = MO.getReg(); |
| assert(Reg.isPhysical() && "Can't break virtual register dependencies."); |
| unsigned DReg = Reg; |
| |
| // If MI defines an S-reg, find the corresponding D super-register. |
| if (ARM::SPRRegClass.contains(Reg)) { |
| DReg = ARM::D0 + (Reg - ARM::S0) / 2; |
| assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken"); |
| } |
| |
| assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps"); |
| assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg"); |
| |
| // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines |
| // the full D-register by loading the same value to both lanes. The |
| // instruction is micro-coded with 2 uops, so don't do this until we can |
| // properly schedule micro-coded instructions. The dispatcher stalls cause |
| // too big regressions. |
| |
| // Insert the dependency-breaking FCONSTD before MI. |
| // 96 is the encoding of 0.5, but the actual value doesn't matter here. |
| BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg) |
| .addImm(96) |
| .add(predOps(ARMCC::AL)); |
| MI.addRegisterKilled(DReg, TRI, true); |
| } |
| |
| bool ARMBaseInstrInfo::hasNOP() const { |
| return Subtarget.getFeatureBits()[ARM::HasV6KOps]; |
| } |
| |
| bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const { |
| if (MI->getNumOperands() < 4) |
| return true; |
| unsigned ShOpVal = MI->getOperand(3).getImm(); |
| unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal); |
| // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1. |
| if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) || |
| ((ShImm == 1 || ShImm == 2) && |
| ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl)) |
| return true; |
| |
| return false; |
| } |
| |
| bool ARMBaseInstrInfo::getRegSequenceLikeInputs( |
| const MachineInstr &MI, unsigned DefIdx, |
| SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { |
| assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); |
| assert(MI.isRegSequenceLike() && "Invalid kind of instruction"); |
| |
| switch (MI.getOpcode()) { |
| case ARM::VMOVDRR: |
| // dX = VMOVDRR rY, rZ |
| // is the same as: |
| // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1 |
| // Populate the InputRegs accordingly. |
| // rY |
| const MachineOperand *MOReg = &MI.getOperand(1); |
| if (!MOReg->isUndef()) |
| InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), |
| MOReg->getSubReg(), ARM::ssub_0)); |
| // rZ |
| MOReg = &MI.getOperand(2); |
| if (!MOReg->isUndef()) |
| InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), |
| MOReg->getSubReg(), ARM::ssub_1)); |
| return true; |
| } |
| llvm_unreachable("Target dependent opcode missing"); |
| } |
| |
| bool ARMBaseInstrInfo::getExtractSubregLikeInputs( |
| const MachineInstr &MI, unsigned DefIdx, |
| RegSubRegPairAndIdx &InputReg) const { |
| assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); |
| assert(MI.isExtractSubregLike() && "Invalid kind of instruction"); |
| |
| switch (MI.getOpcode()) { |
| case ARM::VMOVRRD: |
| // rX, rY = VMOVRRD dZ |
| // is the same as: |
| // rX = EXTRACT_SUBREG dZ, ssub_0 |
| // rY = EXTRACT_SUBREG dZ, ssub_1 |
| const MachineOperand &MOReg = MI.getOperand(2); |
| if (MOReg.isUndef()) |
| return false; |
| InputReg.Reg = MOReg.getReg(); |
| InputReg.SubReg = MOReg.getSubReg(); |
| InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1; |
| return true; |
| } |
| llvm_unreachable("Target dependent opcode missing"); |
| } |
| |
| bool ARMBaseInstrInfo::getInsertSubregLikeInputs( |
| const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, |
| RegSubRegPairAndIdx &InsertedReg) const { |
| assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); |
| assert(MI.isInsertSubregLike() && "Invalid kind of instruction"); |
| |
| switch (MI.getOpcode()) { |
| case ARM::VSETLNi32: |
| case ARM::MVE_VMOV_to_lane_32: |
| // dX = VSETLNi32 dY, rZ, imm |
| // qX = MVE_VMOV_to_lane_32 qY, rZ, imm |
| const MachineOperand &MOBaseReg = MI.getOperand(1); |
| const MachineOperand &MOInsertedReg = MI.getOperand(2); |
| if (MOInsertedReg.isUndef()) |
| return false; |
| const MachineOperand &MOIndex = MI.getOperand(3); |
| BaseReg.Reg = MOBaseReg.getReg(); |
| BaseReg.SubReg = MOBaseReg.getSubReg(); |
| |
| InsertedReg.Reg = MOInsertedReg.getReg(); |
| InsertedReg.SubReg = MOInsertedReg.getSubReg(); |
| InsertedReg.SubIdx = ARM::ssub_0 + MOIndex.getImm(); |
| return true; |
| } |
| llvm_unreachable("Target dependent opcode missing"); |
| } |
| |
| std::pair<unsigned, unsigned> |
| ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { |
| const unsigned Mask = ARMII::MO_OPTION_MASK; |
| return std::make_pair(TF & Mask, TF & ~Mask); |
| } |
| |
| ArrayRef<std::pair<unsigned, const char *>> |
| ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { |
| using namespace ARMII; |
| |
| static const std::pair<unsigned, const char *> TargetFlags[] = { |
| {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}}; |
| return ArrayRef(TargetFlags); |
| } |
| |
| ArrayRef<std::pair<unsigned, const char *>> |
| ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { |
| using namespace ARMII; |
| |
| static const std::pair<unsigned, const char *> TargetFlags[] = { |
| {MO_COFFSTUB, "arm-coffstub"}, |
| {MO_GOT, "arm-got"}, |
| {MO_SBREL, "arm-sbrel"}, |
| {MO_DLLIMPORT, "arm-dllimport"}, |
| {MO_SECREL, "arm-secrel"}, |
| {MO_NONLAZY, "arm-nonlazy"}}; |
| return ArrayRef(TargetFlags); |
| } |
| |
| std::optional<RegImmPair> |
| ARMBaseInstrInfo::isAddImmediate(const MachineInstr &MI, Register Reg) const { |
| int Sign = 1; |
| unsigned Opcode = MI.getOpcode(); |
| int64_t Offset = 0; |
| |
| // TODO: Handle cases where Reg is a super- or sub-register of the |
| // destination register. |
| const MachineOperand &Op0 = MI.getOperand(0); |
| if (!Op0.isReg() || Reg != Op0.getReg()) |
| return std::nullopt; |
| |
| // We describe SUBri or ADDri instructions. |
| if (Opcode == ARM::SUBri) |
| Sign = -1; |
| else if (Opcode != ARM::ADDri) |
| return std::nullopt; |
| |
| // TODO: Third operand can be global address (usually some string). Since |
| // strings can be relocated we cannot calculate their offsets for |
| // now. |
| if (!MI.getOperand(1).isReg() || !MI.getOperand(2).isImm()) |
| return std::nullopt; |
| |
| Offset = MI.getOperand(2).getImm() * Sign; |
| return RegImmPair{MI.getOperand(1).getReg(), Offset}; |
| } |
| |
| bool llvm::registerDefinedBetween(unsigned Reg, |
| MachineBasicBlock::iterator From, |
| MachineBasicBlock::iterator To, |
| const TargetRegisterInfo *TRI) { |
| for (auto I = From; I != To; ++I) |
| if (I->modifiesRegister(Reg, TRI)) |
| return true; |
| return false; |
| } |
| |
| MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br, |
| const TargetRegisterInfo *TRI) { |
| // Search backwards to the instruction that defines CSPR. This may or not |
| // be a CMP, we check that after this loop. If we find another instruction |
| // that reads cpsr, we return nullptr. |
| MachineBasicBlock::iterator CmpMI = Br; |
| while (CmpMI != Br->getParent()->begin()) { |
| --CmpMI; |
| if (CmpMI->modifiesRegister(ARM::CPSR, TRI)) |
| break; |
| if (CmpMI->readsRegister(ARM::CPSR, TRI)) |
| break; |
| } |
| |
| // Check that this inst is a CMP r[0-7], #0 and that the register |
| // is not redefined between the cmp and the br. |
| if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri) |
| return nullptr; |
| Register Reg = CmpMI->getOperand(0).getReg(); |
| Register PredReg; |
| ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg); |
| if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0) |
| return nullptr; |
| if (!isARMLowRegister(Reg)) |
| return nullptr; |
| if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI)) |
| return nullptr; |
| |
| return &*CmpMI; |
| } |
| |
| unsigned llvm::ConstantMaterializationCost(unsigned Val, |
| const ARMSubtarget *Subtarget, |
| bool ForCodesize) { |
| if (Subtarget->isThumb()) { |
| if (Val <= 255) // MOV |
| return ForCodesize ? 2 : 1; |
| if (Subtarget->hasV6T2Ops() && (Val <= 0xffff || // MOV |
| ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW |
| ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN |
| return ForCodesize ? 4 : 1; |
| if (Val <= 510) // MOV + ADDi8 |
| return ForCodesize ? 4 : 2; |
| if (~Val <= 255) // MOV + MVN |
| return ForCodesize ? 4 : 2; |
| if (ARM_AM::isThumbImmShiftedVal(Val)) // MOV + LSL |
| return ForCodesize ? 4 : 2; |
| } else { |
| if (ARM_AM::getSOImmVal(Val) != -1) // MOV |
| return ForCodesize ? 4 : 1; |
| if (ARM_AM::getSOImmVal(~Val) != -1) // MVN |
| return ForCodesize ? 4 : 1; |
| if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW |
| return ForCodesize ? 4 : 1; |
| if (ARM_AM::isSOImmTwoPartVal(Val)) // two instrs |
| return ForCodesize ? 8 : 2; |
| if (ARM_AM::isSOImmTwoPartValNeg(Val)) // two instrs |
| return ForCodesize ? 8 : 2; |
| } |
| if (Subtarget->useMovt()) // MOVW + MOVT |
| return ForCodesize ? 8 : 2; |
| return ForCodesize ? 8 : 3; // Literal pool load |
| } |
| |
| bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2, |
| const ARMSubtarget *Subtarget, |
| bool ForCodesize) { |
| // Check with ForCodesize |
| unsigned Cost1 = ConstantMaterializationCost(Val1, Subtarget, ForCodesize); |
| unsigned Cost2 = ConstantMaterializationCost(Val2, Subtarget, ForCodesize); |
| if (Cost1 < Cost2) |
| return true; |
| if (Cost1 > Cost2) |
| return false; |
| |
| // If they are equal, try with !ForCodesize |
| return ConstantMaterializationCost(Val1, Subtarget, !ForCodesize) < |
| ConstantMaterializationCost(Val2, Subtarget, !ForCodesize); |
| } |
| |
| /// Constants defining how certain sequences should be outlined. |
| /// This encompasses how an outlined function should be called, and what kind of |
| /// frame should be emitted for that outlined function. |
| /// |
| /// \p MachineOutlinerTailCall implies that the function is being created from |
| /// a sequence of instructions ending in a return. |
| /// |
| /// That is, |
| /// |
| /// I1 OUTLINED_FUNCTION: |
| /// I2 --> B OUTLINED_FUNCTION I1 |
| /// BX LR I2 |
| /// BX LR |
| /// |
| /// +-------------------------+--------+-----+ |
| /// | | Thumb2 | ARM | |
| /// +-------------------------+--------+-----+ |
| /// | Call overhead in Bytes | 4 | 4 | |
| /// | Frame overhead in Bytes | 0 | 0 | |
| /// | Stack fixup required | No | No | |
| /// +-------------------------+--------+-----+ |
| /// |
| /// \p MachineOutlinerThunk implies that the function is being created from |
| /// a sequence of instructions ending in a call. The outlined function is |
| /// called with a BL instruction, and the outlined function tail-calls the |
| /// original call destination. |
| /// |
| /// That is, |
| /// |
| /// I1 OUTLINED_FUNCTION: |
| /// I2 --> BL OUTLINED_FUNCTION I1 |
| /// BL f I2 |
| /// B f |
| /// |
| /// +-------------------------+--------+-----+ |
| /// | | Thumb2 | ARM | |
| /// +-------------------------+--------+-----+ |
| /// | Call overhead in Bytes | 4 | 4 | |
| /// | Frame overhead in Bytes | 0 | 0 | |
| /// | Stack fixup required | No | No | |
| /// +-------------------------+--------+-----+ |
| /// |
| /// \p MachineOutlinerNoLRSave implies that the function should be called using |
| /// a BL instruction, but doesn't require LR to be saved and restored. This |
| /// happens when LR is known to be dead. |
| /// |
| /// That is, |
| /// |
| /// I1 OUTLINED_FUNCTION: |
| /// I2 --> BL OUTLINED_FUNCTION I1 |
| /// I3 I2 |
| /// I3 |
| /// BX LR |
| /// |
| /// +-------------------------+--------+-----+ |
| /// | | Thumb2 | ARM | |
| /// +-------------------------+--------+-----+ |
| /// | Call overhead in Bytes | 4 | 4 | |
| /// | Frame overhead in Bytes | 2 | 4 | |
| /// | Stack fixup required | No | No | |
| /// +-------------------------+--------+-----+ |
| /// |
| /// \p MachineOutlinerRegSave implies that the function should be called with a |
| /// save and restore of LR to an available register. This allows us to avoid |
| /// stack fixups. Note that this outlining variant is compatible with the |
| /// NoLRSave case. |
| /// |
| /// That is, |
| /// |
| /// I1 Save LR OUTLINED_FUNCTION: |
| /// I2 --> BL OUTLINED_FUNCTION I1 |
| /// I3 Restore LR I2 |
| /// I3 |
| /// BX LR |
| /// |
| /// +-------------------------+--------+-----+ |
| /// | | Thumb2 | ARM | |
| /// +-------------------------+--------+-----+ |
| /// | Call overhead in Bytes | 8 | 12 | |
| /// | Frame overhead in Bytes | 2 | 4 | |
| /// | Stack fixup required | No | No | |
| /// +-------------------------+--------+-----+ |
| /// |
| /// \p MachineOutlinerDefault implies that the function should be called with |
| /// a save and restore of LR to the stack. |
| /// |
| /// That is, |
| /// |
| /// I1 Save LR OUTLINED_FUNCTION: |
| /// I2 --> BL OUTLINED_FUNCTION I1 |
| /// I3 Restore LR I2 |
| /// I3 |
| /// BX LR |
| /// |
| /// +-------------------------+--------+-----+ |
| /// | | Thumb2 | ARM | |
| /// +-------------------------+--------+-----+ |
| /// | Call overhead in Bytes | 8 | 12 | |
| /// | Frame overhead in Bytes | 2 | 4 | |
| /// | Stack fixup required | Yes | Yes | |
| /// +-------------------------+--------+-----+ |
| |
| enum MachineOutlinerClass { |
| MachineOutlinerTailCall, |
| MachineOutlinerThunk, |
| MachineOutlinerNoLRSave, |
| MachineOutlinerRegSave, |
| MachineOutlinerDefault |
| }; |
| |
| enum MachineOutlinerMBBFlags { |
| LRUnavailableSomewhere = 0x2, |
| HasCalls = 0x4, |
| UnsafeRegsDead = 0x8 |
| }; |
| |
| struct OutlinerCosts { |
| int CallTailCall; |
| int FrameTailCall; |
| int CallThunk; |
| int FrameThunk; |
| int CallNoLRSave; |
| int FrameNoLRSave; |
| int CallRegSave; |
| int FrameRegSave; |
| int CallDefault; |
| int FrameDefault; |
| int SaveRestoreLROnStack; |
| |
| OutlinerCosts(const ARMSubtarget &target) |
| : CallTailCall(target.isThumb() ? 4 : 4), |
| FrameTailCall(target.isThumb() ? 0 : 0), |
| CallThunk(target.isThumb() ? 4 : 4), |
| FrameThunk(target.isThumb() ? 0 : 0), |
| CallNoLRSave(target.isThumb() ? 4 : 4), |
| FrameNoLRSave(target.isThumb() ? 2 : 4), |
| CallRegSave(target.isThumb() ? 8 : 12), |
| FrameRegSave(target.isThumb() ? 2 : 4), |
| CallDefault(target.isThumb() ? 8 : 12), |
| FrameDefault(target.isThumb() ? 2 : 4), |
| SaveRestoreLROnStack(target.isThumb() ? 8 : 8) {} |
| }; |
| |
| Register |
| ARMBaseInstrInfo::findRegisterToSaveLRTo(outliner::Candidate &C) const { |
| MachineFunction *MF = C.getMF(); |
| const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); |
| const ARMBaseRegisterInfo *ARI = |
| static_cast<const ARMBaseRegisterInfo *>(&TRI); |
| |
| BitVector regsReserved = ARI->getReservedRegs(*MF); |
| // Check if there is an available register across the sequence that we can |
| // use. |
| for (Register Reg : ARM::rGPRRegClass) { |
| if (!(Reg < regsReserved.size() && regsReserved.test(Reg)) && |
| Reg != ARM::LR && // LR is not reserved, but don't use it. |
| Reg != ARM::R12 && // R12 is not guaranteed to be preserved. |
| C.isAvailableAcrossAndOutOfSeq(Reg, TRI) && |
| C.isAvailableInsideSeq(Reg, TRI)) |
| return Reg; |
| } |
| return Register(); |
| } |
| |
| // Compute liveness of LR at the point after the interval [I, E), which |
| // denotes a *backward* iteration through instructions. Used only for return |
| // basic blocks, which do not end with a tail call. |
| static bool isLRAvailable(const TargetRegisterInfo &TRI, |
| MachineBasicBlock::reverse_iterator I, |
| MachineBasicBlock::reverse_iterator E) { |
| // At the end of the function LR dead. |
| bool Live = false; |
| for (; I != E; ++I) { |
| const MachineInstr &MI = *I; |
| |
| // Check defs of LR. |
| if (MI.modifiesRegister(ARM::LR, &TRI)) |
| Live = false; |
| |
| // Check uses of LR. |
| unsigned Opcode = MI.getOpcode(); |
| if (Opcode == ARM::BX_RET || Opcode == ARM::MOVPCLR || |
| Opcode == ARM::SUBS_PC_LR || Opcode == ARM::tBX_RET || |
| Opcode == ARM::tBXNS_RET) { |
| // These instructions use LR, but it's not an (explicit or implicit) |
| // operand. |
| Live = true; |
| continue; |
| } |
| if (MI.readsRegister(ARM::LR, &TRI)) |
| Live = true; |
| } |
| return !Live; |
| } |
| |
| outliner::OutlinedFunction ARMBaseInstrInfo::getOutliningCandidateInfo( |
| std::vector<outliner::Candidate> &RepeatedSequenceLocs) const { |
| outliner::Candidate &FirstCand = RepeatedSequenceLocs[0]; |
| unsigned SequenceSize = |
| std::accumulate(FirstCand.front(), std::next(FirstCand.back()), 0, |
| [this](unsigned Sum, const MachineInstr &MI) { |
| return Sum + getInstSizeInBytes(MI); |
| }); |
| |
| // Properties about candidate MBBs that hold for all of them. |
| unsigned FlagsSetInAll = 0xF; |
| |
| // Compute liveness information for each candidate, and set FlagsSetInAll. |
| const TargetRegisterInfo &TRI = getRegisterInfo(); |
| for (outliner::Candidate &C : RepeatedSequenceLocs) |
| FlagsSetInAll &= C.Flags; |
| |
| // According to the ARM Procedure Call Standard, the following are |
| // undefined on entry/exit from a function call: |
| // |
| // * Register R12(IP), |
| // * Condition codes (and thus the CPSR register) |
| // |
| // Since we control the instructions which are part of the outlined regions |
| // we don't need to be fully compliant with the AAPCS, but we have to |
| // guarantee that if a veneer is inserted at link time the code is still |
| // correct. Because of this, we can't outline any sequence of instructions |
| // where one of these registers is live into/across it. Thus, we need to |
| // delete those candidates. |
| auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) { |
| // If the unsafe registers in this block are all dead, then we don't need |
| // to compute liveness here. |
| if (C.Flags & UnsafeRegsDead) |
| return false; |
| return C.isAnyUnavailableAcrossOrOutOfSeq({ARM::R12, ARM::CPSR}, TRI); |
| }; |
| |
| // Are there any candidates where those registers are live? |
| if (!(FlagsSetInAll & UnsafeRegsDead)) { |
| // Erase every candidate that violates the restrictions above. (It could be |
| // true that we have viable candidates, so it's not worth bailing out in |
| // the case that, say, 1 out of 20 candidates violate the restructions.) |
| llvm::erase_if(RepeatedSequenceLocs, CantGuaranteeValueAcrossCall); |
| |
| // If the sequence doesn't have enough candidates left, then we're done. |
| if (RepeatedSequenceLocs.size() < 2) |
| return outliner::OutlinedFunction(); |
| } |
| |
| // We expect the majority of the outlining candidates to be in consensus with |
| // regard to return address sign and authentication, and branch target |
| // enforcement, in other words, partitioning according to all the four |
| // possible combinations of PAC-RET and BTI is going to yield one big subset |
| // and three small (likely empty) subsets. That allows us to cull incompatible |
| // candidates separately for PAC-RET and BTI. |
| |
| // Partition the candidates in two sets: one with BTI enabled and one with BTI |
| // disabled. Remove the candidates from the smaller set. If they are the same |
| // number prefer the non-BTI ones for outlining, since they have less |
| // overhead. |
| auto NoBTI = |
| llvm::partition(RepeatedSequenceLocs, [](const outliner::Candidate &C) { |
| const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>(); |
| return AFI.branchTargetEnforcement(); |
| }); |
| if (std::distance(RepeatedSequenceLocs.begin(), NoBTI) > |
| std::distance(NoBTI, RepeatedSequenceLocs.end())) |
| RepeatedSequenceLocs.erase(NoBTI, RepeatedSequenceLocs.end()); |
| else |
| RepeatedSequenceLocs.erase(RepeatedSequenceLocs.begin(), NoBTI); |
| |
| if (RepeatedSequenceLocs.size() < 2) |
| return outliner::OutlinedFunction(); |
| |
| // Likewise, partition the candidates according to PAC-RET enablement. |
| auto NoPAC = |
| llvm::partition(RepeatedSequenceLocs, [](const outliner::Candidate &C) { |
| const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>(); |
| // If the function happens to not spill the LR, do not disqualify it |
| // from the outlining. |
| return AFI.shouldSignReturnAddress(true); |
| }); |
| if (std::distance(RepeatedSequenceLocs.begin(), NoPAC) > |
| std::distance(NoPAC, RepeatedSequenceLocs.end())) |
| RepeatedSequenceLocs.erase(NoPAC, RepeatedSequenceLocs.end()); |
| else |
| RepeatedSequenceLocs.erase(RepeatedSequenceLocs.begin(), NoPAC); |
| |
| if (RepeatedSequenceLocs.size() < 2) |
| return outliner::OutlinedFunction(); |
| |
| // At this point, we have only "safe" candidates to outline. Figure out |
| // frame + call instruction information. |
| |
| unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back()->getOpcode(); |
| |
| // Helper lambda which sets call information for every candidate. |
| auto SetCandidateCallInfo = |
| [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) { |
| for (outliner::Candidate &C : RepeatedSequenceLocs) |
| C.setCallInfo(CallID, NumBytesForCall); |
| }; |
| |
| OutlinerCosts Costs(Subtarget); |
| |
| const auto &SomeMFI = |
| *RepeatedSequenceLocs.front().getMF()->getInfo<ARMFunctionInfo>(); |
| // Adjust costs to account for the BTI instructions. |
| if (SomeMFI.branchTargetEnforcement()) { |
| Costs.FrameDefault += 4; |
| Costs.FrameNoLRSave += 4; |
| Costs.FrameRegSave += 4; |
| Costs.FrameTailCall += 4; |
| Costs.FrameThunk += 4; |
| } |
| |
| // Adjust costs to account for sign and authentication instructions. |
| if (SomeMFI.shouldSignReturnAddress(true)) { |
| Costs.CallDefault += 8; // +PAC instr, +AUT instr |
| Costs.SaveRestoreLROnStack += 8; // +PAC instr, +AUT instr |
| } |
| |
| unsigned FrameID = MachineOutlinerDefault; |
| unsigned NumBytesToCreateFrame = Costs.FrameDefault; |
| |
| // If the last instruction in any candidate is a terminator, then we should |
| // tail call all of the candidates. |
| if (RepeatedSequenceLocs[0].back()->isTerminator()) { |
| FrameID = MachineOutlinerTailCall; |
| NumBytesToCreateFrame = Costs.FrameTailCall; |
| SetCandidateCallInfo(MachineOutlinerTailCall, Costs.CallTailCall); |
| } else if (LastInstrOpcode == ARM::BL || LastInstrOpcode == ARM::BLX || |
| LastInstrOpcode == ARM::BLX_noip || LastInstrOpcode == ARM::tBL || |
| LastInstrOpcode == ARM::tBLXr || |
| LastInstrOpcode == ARM::tBLXr_noip || |
| LastInstrOpcode == ARM::tBLXi) { |
| FrameID = MachineOutlinerThunk; |
| NumBytesToCreateFrame = Costs.FrameThunk; |
| SetCandidateCallInfo(MachineOutlinerThunk, Costs.CallThunk); |
| } else { |
| // We need to decide how to emit calls + frames. We can always emit the same |
| // frame if we don't need to save to the stack. If we have to save to the |
| // stack, then we need a different frame. |
| unsigned NumBytesNoStackCalls = 0; |
| std::vector<outliner::Candidate> CandidatesWithoutStackFixups; |
| |
| for (outliner::Candidate &C : RepeatedSequenceLocs) { |
| // LR liveness is overestimated in return blocks, unless they end with a |
| // tail call. |
| const auto Last = C.getMBB()->rbegin(); |
| const bool LRIsAvailable = |
| C.getMBB()->isReturnBlock() && !Last->isCall() |
| ? isLRAvailable(TRI, Last, |
| (MachineBasicBlock::reverse_iterator)C.front()) |
| : C.isAvailableAcrossAndOutOfSeq(ARM::LR, TRI); |
| if (LRIsAvailable) { |
| FrameID = MachineOutlinerNoLRSave; |
| NumBytesNoStackCalls += Costs.CallNoLRSave; |
| C.setCallInfo(MachineOutlinerNoLRSave, Costs.CallNoLRSave); |
| CandidatesWithoutStackFixups.push_back(C); |
| } |
| |
| // Is an unused register available? If so, we won't modify the stack, so |
| // we can outline with the same frame type as those that don't save LR. |
| else if (findRegisterToSaveLRTo(C)) { |
| FrameID = MachineOutlinerRegSave; |
| NumBytesNoStackCalls += Costs.CallRegSave; |
| C.setCallInfo(MachineOutlinerRegSave, Costs.CallRegSave); |
| CandidatesWithoutStackFixups.push_back(C); |
| } |
| |
| // Is SP used in the sequence at all? If not, we don't have to modify |
| // the stack, so we are guaranteed to get the same frame. |
| else if (C.isAvailableInsideSeq(ARM::SP, TRI)) { |
| NumBytesNoStackCalls += Costs.CallDefault; |
| C.setCallInfo(MachineOutlinerDefault, Costs.CallDefault); |
| CandidatesWithoutStackFixups.push_back(C); |
| } |
| |
| // If we outline this, we need to modify the stack. Pretend we don't |
| // outline this by saving all of its bytes. |
| else |
| NumBytesNoStackCalls += SequenceSize; |
| } |
| |
| // If there are no places where we have to save LR, then note that we don't |
| // have to update the stack. Otherwise, give every candidate the default |
| // call type |
| if (NumBytesNoStackCalls <= |
| RepeatedSequenceLocs.size() * Costs.CallDefault) { |
| RepeatedSequenceLocs = CandidatesWithoutStackFixups; |
| FrameID = MachineOutlinerNoLRSave; |
| } else |
| SetCandidateCallInfo(MachineOutlinerDefault, Costs.CallDefault); |
| } |
| |
| // Does every candidate's MBB contain a call? If so, then we might have a |
| // call in the range. |
| if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) { |
| // check if the range contains a call. These require a save + restore of |
| // the link register. |
| if (std::any_of(FirstCand.front(), FirstCand.back(), |
| [](const MachineInstr &MI) { return MI.isCall(); })) |
| NumBytesToCreateFrame += Costs.SaveRestoreLROnStack; |
| |
| // Handle the last instruction separately. If it is tail call, then the |
| // last instruction is a call, we don't want to save + restore in this |
| // case. However, it could be possible that the last instruction is a |
| // call without it being valid to tail call this sequence. We should |
| // consider this as well. |
| else if (FrameID != MachineOutlinerThunk && |
| FrameID != MachineOutlinerTailCall && FirstCand.back()->isCall()) |
| NumBytesToCreateFrame += Costs.SaveRestoreLROnStack; |
| } |
| |
| return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, |
| NumBytesToCreateFrame, FrameID); |
| } |
| |
| bool ARMBaseInstrInfo::checkAndUpdateStackOffset(MachineInstr *MI, |
| int64_t Fixup, |
| bool Updt) const { |
| int SPIdx = MI->findRegisterUseOperandIdx(ARM::SP); |
| unsigned AddrMode = (MI->getDesc().TSFlags & ARMII::AddrModeMask); |
| if (SPIdx < 0) |
| // No SP operand |
| return true; |
| else if (SPIdx != 1 && (AddrMode != ARMII::AddrModeT2_i8s4 || SPIdx != 2)) |
| // If SP is not the base register we can't do much |
| return false; |
| |
| // Stack might be involved but addressing mode doesn't handle any offset. |
| // Rq: AddrModeT1_[1|2|4] don't operate on SP |
| if (AddrMode == ARMII::AddrMode1 || // Arithmetic instructions |
| AddrMode == ARMII::AddrMode4 || // Load/Store Multiple |
| AddrMode == ARMII::AddrMode6 || // Neon Load/Store Multiple |
| AddrMode == ARMII::AddrModeT2_so || // SP can't be used as based register |
| AddrMode == ARMII::AddrModeT2_pc || // PCrel access |
| AddrMode == ARMII::AddrMode2 || // Used by PRE and POST indexed LD/ST |
| AddrMode == ARMII::AddrModeT2_i7 || // v8.1-M MVE |
| AddrMode == ARMII::AddrModeT2_i7s2 || // v8.1-M MVE |
| AddrMode == ARMII::AddrModeT2_i7s4 || // v8.1-M sys regs VLDR/VSTR |
| AddrMode == ARMII::AddrModeNone || |
| AddrMode == ARMII::AddrModeT2_i8 || // Pre/Post inc instructions |
| AddrMode == ARMII::AddrModeT2_i8neg) // Always negative imm |
| return false; |
| |
| unsigned NumOps = MI->getDesc().getNumOperands(); |
| unsigned ImmIdx = NumOps - 3; |
| |
| const MachineOperand &Offset = MI->getOperand(ImmIdx); |
| assert(Offset.isImm() && "Is not an immediate"); |
| int64_t OffVal = Offset.getImm(); |
| |
| if (OffVal < 0) |
| // Don't override data if the are below SP. |
| return false; |
| |
| unsigned NumBits = 0; |
| unsigned Scale = 1; |
| |
| switch (AddrMode) { |
| case ARMII::AddrMode3: |
| if (ARM_AM::getAM3Op(OffVal) == ARM_AM::sub) |
| return false; |
| OffVal = ARM_AM::getAM3Offset(OffVal); |
| NumBits = 8; |
| break; |
| case ARMII::AddrMode5: |
| if (ARM_AM::getAM5Op(OffVal) == ARM_AM::sub) |
| return false; |
| OffVal = ARM_AM::getAM5Offset(OffVal); |
| NumBits = 8; |
| Scale = 4; |
| break; |
| case ARMII::AddrMode5FP16: |
| if (ARM_AM::getAM5FP16Op(OffVal) == ARM_AM::sub) |
| return false; |
| OffVal = ARM_AM::getAM5FP16Offset(OffVal); |
| NumBits = 8; |
| Scale = 2; |
| break; |
| case ARMII::AddrModeT2_i8pos: |
| NumBits = 8; |
| break; |
| case ARMII::AddrModeT2_i8s4: |
| // FIXME: Values are already scaled in this addressing mode. |
| assert((Fixup & 3) == 0 && "Can't encode this offset!"); |
| NumBits = 10; |
| break; |
| case ARMII::AddrModeT2_ldrex: |
| NumBits = 8; |
| Scale = 4; |
| break; |
| case ARMII::AddrModeT2_i12: |
| case ARMII::AddrMode_i12: |
| NumBits = 12; |
| break; |
| case ARMII::AddrModeT1_s: // SP-relative LD/ST |
| NumBits = 8; |
| Scale = 4; |
| break; |
| default: |
| llvm_unreachable("Unsupported addressing mode!"); |
| } |
| // Make sure the offset is encodable for instructions that scale the |
| // immediate. |
| assert(((OffVal * Scale + Fixup) & (Scale - 1)) == 0 && |
| "Can't encode this offset!"); |
| OffVal += Fixup / Scale; |
| |
| unsigned Mask = (1 << NumBits) - 1; |
| |
| if (OffVal <= Mask) { |
| if (Updt) |
| MI->getOperand(ImmIdx).setImm(OffVal); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void ARMBaseInstrInfo::mergeOutliningCandidateAttributes( |
| Function &F, std::vector<outliner::Candidate> &Candidates) const { |
| outliner::Candidate &C = Candidates.front(); |
| // branch-target-enforcement is guaranteed to be consistent between all |
| // candidates, so we only need to look at one. |
| const Function &CFn = C.getMF()->getFunction(); |
| if (CFn.hasFnAttribute("branch-target-enforcement")) |
| F.addFnAttr(CFn.getFnAttribute("branch-target-enforcement")); |
| |
| ARMGenInstrInfo::mergeOutliningCandidateAttributes(F, Candidates); |
| } |
| |
| bool ARMBaseInstrInfo::isFunctionSafeToOutlineFrom( |
| MachineFunction &MF, bool OutlineFromLinkOnceODRs) const { |
| const Function &F = MF.getFunction(); |
| |
| // Can F be deduplicated by the linker? If it can, don't outline from it. |
| if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage()) |
| return false; |
| |
| // Don't outline from functions with section markings; the program could |
| // expect that all the code is in the named section. |
| // FIXME: Allow outlining from multiple functions with the same section |
| // marking. |
| if (F.hasSection()) |
| return false; |
| |
| // FIXME: Thumb1 outlining is not handled |
| if (MF.getInfo<ARMFunctionInfo>()->isThumb1OnlyFunction()) |
| return false; |
| |
| // It's safe to outline from MF. |
| return true; |
| } |
| |
| bool ARMBaseInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, |
| unsigned &Flags) const { |
| // Check if LR is available through all of the MBB. If it's not, then set |
| // a flag. |
| assert(MBB.getParent()->getRegInfo().tracksLiveness() && |
| "Suitable Machine Function for outlining must track liveness"); |
| |
| LiveRegUnits LRU(getRegisterInfo()); |
| |
| for (MachineInstr &MI : llvm::reverse(MBB)) |
| LRU.accumulate(MI); |
| |
| // Check if each of the unsafe registers are available... |
| bool R12AvailableInBlock = LRU.available(ARM::R12); |
| bool CPSRAvailableInBlock = LRU.available(ARM::CPSR); |
| |
| // If all of these are dead (and not live out), we know we don't have to check |
| // them later. |
| if (R12AvailableInBlock && CPSRAvailableInBlock) |
| Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead; |
| |
| // Now, add the live outs to the set. |
| LRU.addLiveOuts(MBB); |
| |
| // If any of these registers is available in the MBB, but also a live out of |
| // the block, then we know outlining is unsafe. |
| if (R12AvailableInBlock && !LRU.available(ARM::R12)) |
| return false; |
| if (CPSRAvailableInBlock && !LRU.available(ARM::CPSR)) |
| return false; |
| |
| // Check if there's a call inside this MachineBasicBlock. If there is, then |
| // set a flag. |
| if (any_of(MBB, [](MachineInstr &MI) { return MI.isCall(); })) |
| Flags |= MachineOutlinerMBBFlags::HasCalls; |
| |
| // LR liveness is overestimated in return blocks. |
| |
| bool LRIsAvailable = |
| MBB.isReturnBlock() && !MBB.back().isCall() |
| ? isLRAvailable(getRegisterInfo(), MBB.rbegin(), MBB.rend()) |
| : LRU.available(ARM::LR); |
| if (!LRIsAvailable) |
| Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere; |
| |
| return true; |
| } |
| |
| outliner::InstrType |
| ARMBaseInstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT, |
| unsigned Flags) const { |
| MachineInstr &MI = *MIT; |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| |
| // Be conservative with inline ASM |
| if (MI.isInlineAsm()) |
| return outliner::InstrType::Illegal; |
| |
| // Don't allow debug values to impact outlining type. |
| if (MI.isDebugInstr() || MI.isIndirectDebugValue()) |
| return outliner::InstrType::Invisible; |
| |
| // At this point, KILL or IMPLICIT_DEF instructions don't really tell us much |
| // so we can go ahead and skip over them. |
| if (MI.isKill() || MI.isImplicitDef()) |
| return outliner::InstrType::Invisible; |
| |
| // PIC instructions contain labels, outlining them would break offset |
| // computing. unsigned Opc = MI.getOpcode(); |
| unsigned Opc = MI.getOpcode(); |
| if (Opc == ARM::tPICADD || Opc == ARM::PICADD || Opc == ARM::PICSTR || |
| Opc == ARM::PICSTRB || Opc == ARM::PICSTRH || Opc == ARM::PICLDR || |
| Opc == ARM::PICLDRB || Opc == ARM::PICLDRH || Opc == ARM::PICLDRSB || |
| Opc == ARM::PICLDRSH || Opc == ARM::t2LDRpci_pic || |
| Opc == ARM::t2MOVi16_ga_pcrel || Opc == ARM::t2MOVTi16_ga_pcrel || |
| Opc == ARM::t2MOV_ga_pcrel) |
| return outliner::InstrType::Illegal; |
| |
| // Be conservative with ARMv8.1 MVE instructions. |
| if (Opc == ARM::t2BF_LabelPseudo || Opc == ARM::t2DoLoopStart || |
| Opc == ARM::t2DoLoopStartTP || Opc == ARM::t2WhileLoopStart || |
| Opc == ARM::t2WhileLoopStartLR || Opc == ARM::t2WhileLoopStartTP || |
| Opc == ARM::t2LoopDec || Opc == ARM::t2LoopEnd || |
| Opc == ARM::t2LoopEndDec) |
| return outliner::InstrType::Illegal; |
| |
| const MCInstrDesc &MCID = MI.getDesc(); |
| uint64_t MIFlags = MCID.TSFlags; |
| if ((MIFlags & ARMII::DomainMask) == ARMII::DomainMVE) |
| return outliner::InstrType::Illegal; |
| |
| // Is this a terminator for a basic block? |
| if (MI.isTerminator()) { |
| // Don't outline if the branch is not unconditional. |
| if (isPredicated(MI)) |
| return outliner::InstrType::Illegal; |
| |
| // Is this the end of a function? |
| if (MI.getParent()->succ_empty()) |
| return outliner::InstrType::Legal; |
| |
| // It's not, so don't outline it. |
| return outliner::InstrType::Illegal; |
| } |
| |
| // Make sure none of the operands are un-outlinable. |
| for (const MachineOperand &MOP : MI.operands()) { |
| if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() || |
| MOP.isTargetIndex()) |
| return outliner::InstrType::Illegal; |
| } |
| |
| // Don't outline if link register or program counter value are used. |
| if (MI.readsRegister(ARM::LR, TRI) || MI.readsRegister(ARM::PC, TRI)) |
| return outliner::InstrType::Illegal; |
| |
| if (MI.isCall()) { |
| // Get the function associated with the call. Look at each operand and find |
| // the one that represents the calle and get its name. |
| const Function *Callee = nullptr; |
| for (const MachineOperand &MOP : MI.operands()) { |
| if (MOP.isGlobal()) { |
| Callee = dyn_cast<Function>(MOP.getGlobal()); |
| break; |
| } |
| } |
| |
| // Dont't outline calls to "mcount" like functions, in particular Linux |
| // kernel function tracing relies on it. |
| if (Callee && |
| (Callee->getName() == "\01__gnu_mcount_nc" || |
| Callee->getName() == "\01mcount" || Callee->getName() == "__mcount")) |
| return outliner::InstrType::Illegal; |
| |
| // If we don't know anything about the callee, assume it depends on the |
| // stack layout of the caller. In that case, it's only legal to outline |
| // as a tail-call. Explicitly list the call instructions we know about so |
| // we don't get unexpected results with call pseudo-instructions. |
| auto UnknownCallOutlineType = outliner::InstrType::Illegal; |
| if (Opc == ARM::BL || Opc == ARM::tBL || Opc == ARM::BLX || |
| Opc == ARM::BLX_noip || Opc == ARM::tBLXr || Opc == ARM::tBLXr_noip || |
| Opc == ARM::tBLXi) |
| UnknownCallOutlineType = outliner::InstrType::LegalTerminator; |
| |
| if (!Callee) |
| return UnknownCallOutlineType; |
| |
| // We have a function we have information about. Check if it's something we |
| // can safely outline. |
| MachineFunction *MF = MI.getParent()->getParent(); |
| MachineFunction *CalleeMF = MF->getMMI().getMachineFunction(*Callee); |
| |
| // We don't know what's going on with the callee at all. Don't touch it. |
| if (!CalleeMF) |
| return UnknownCallOutlineType; |
| |
| // Check if we know anything about the callee saves on the function. If we |
| // don't, then don't touch it, since that implies that we haven't computed |
| // anything about its stack frame yet. |
| MachineFrameInfo &MFI = CalleeMF->getFrameInfo(); |
| if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 || |
| MFI.getNumObjects() > 0) |
| return UnknownCallOutlineType; |
| |
| // At this point, we can say that CalleeMF ought to not pass anything on the |
| // stack. Therefore, we can outline it. |
| return outliner::InstrType::Legal; |
| } |
| |
| // Since calls are handled, don't touch LR or PC |
| if (MI.modifiesRegister(ARM::LR, TRI) || MI.modifiesRegister(ARM::PC, TRI)) |
| return outliner::InstrType::Illegal; |
| |
| // Does this use the stack? |
| if (MI.modifiesRegister(ARM::SP, TRI) || MI.readsRegister(ARM::SP, TRI)) { |
| // True if there is no chance that any outlined candidate from this range |
| // could require stack fixups. That is, both |
| // * LR is available in the range (No save/restore around call) |
| // * The range doesn't include calls (No save/restore in outlined frame) |
| // are true. |
| // These conditions also ensure correctness of the return address |
| // authentication - we insert sign and authentication instructions only if |
| // we save/restore LR on stack, but then this condition ensures that the |
| // outlined range does not modify the SP, therefore the SP value used for |
| // signing is the same as the one used for authentication. |
| // FIXME: This is very restrictive; the flags check the whole block, |
| // not just the bit we will try to outline. |
| bool MightNeedStackFixUp = |
| (Flags & (MachineOutlinerMBBFlags::LRUnavailableSomewhere | |
| MachineOutlinerMBBFlags::HasCalls)); |
| |
| if (!MightNeedStackFixUp) |
| return outliner::InstrType::Legal; |
| |
| // Any modification of SP will break our code to save/restore LR. |
| // FIXME: We could handle some instructions which add a constant offset to |
| // SP, with a bit more work. |
| if (MI.modifiesRegister(ARM::SP, TRI)) |
| return outliner::InstrType::Illegal; |
| |
| // At this point, we have a stack instruction that we might need to fix up. |
| // up. We'll handle it if it's a load or store. |
| if (checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(), |
| false)) |
| return outliner::InstrType::Legal; |
| |
| // We can't fix it up, so don't outline it. |
| return outliner::InstrType::Illegal; |
| } |
| |
| // Be conservative with IT blocks. |
| if (MI.readsRegister(ARM::ITSTATE, TRI) || |
| MI.modifiesRegister(ARM::ITSTATE, TRI)) |
| return outliner::InstrType::Illegal; |
| |
| // Don't outline positions. |
| if (MI.isPosition()) |
| return outliner::InstrType::Illegal; |
| |
| return outliner::InstrType::Legal; |
| } |
| |
| void ARMBaseInstrInfo::fixupPostOutline(MachineBasicBlock &MBB) const { |
| for (MachineInstr &MI : MBB) { |
| checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(), true); |
| } |
| } |
| |
| void ARMBaseInstrInfo::saveLROnStack(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator It, bool CFI, |
| bool Auth) const { |
| int Align = std::max(Subtarget.getStackAlignment().value(), uint64_t(8)); |
| assert(Align >= 8 && Align <= 256); |
| if (Auth) { |
| assert(Subtarget.isThumb2()); |
| // Compute PAC in R12. Outlining ensures R12 is dead across the outlined |
| // sequence. |
| BuildMI(MBB, It, DebugLoc(), get(ARM::t2PAC)) |
| .setMIFlags(MachineInstr::FrameSetup); |
| BuildMI(MBB, It, DebugLoc(), get(ARM::t2STRD_PRE), ARM::SP) |
| .addReg(ARM::R12, RegState::Kill) |
| .addReg(ARM::LR, RegState::Kill) |
| .addReg(ARM::SP) |
| .addImm(-Align) |
| .add(predOps(ARMCC::AL)) |
| .setMIFlags(MachineInstr::FrameSetup); |
| } else { |
| unsigned Opc = Subtarget.isThumb() ? ARM::t2STR_PRE : ARM::STR_PRE_IMM; |
| BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::SP) |
| .addReg(ARM::LR, RegState::Kill) |
| .addReg(ARM::SP) |
| .addImm(-Align) |
| .add(predOps(ARMCC::AL)) |
| .setMIFlags(MachineInstr::FrameSetup); |
| } |
| |
| if (!CFI) |
| return; |
| |
| MachineFunction &MF = *MBB.getParent(); |
| |
| // Add a CFI, saying CFA is offset by Align bytes from SP. |
| int64_t StackPosEntry = |
| MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Align)); |
| BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) |
| .addCFIIndex(StackPosEntry) |
| .setMIFlags(MachineInstr::FrameSetup); |
| |
| // Add a CFI saying that the LR that we want to find is now higher than |
| // before. |
| int LROffset = Auth ? Align - 4 : Align; |
| const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); |
| unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); |
| int64_t LRPosEntry = MF.addFrameInst( |
| MCCFIInstruction::createOffset(nullptr, DwarfLR, -LROffset)); |
| BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) |
| .addCFIIndex(LRPosEntry) |
| .setMIFlags(MachineInstr::FrameSetup); |
| if (Auth) { |
| // Add a CFI for the location of the return adddress PAC. |
| unsigned DwarfRAC = MRI->getDwarfRegNum(ARM::RA_AUTH_CODE, true); |
| int64_t RACPosEntry = MF.addFrameInst( |
| MCCFIInstruction::createOffset(nullptr, DwarfRAC, -Align)); |
| BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) |
| .addCFIIndex(RACPosEntry) |
| .setMIFlags(MachineInstr::FrameSetup); |
| } |
| } |
| |
| void ARMBaseInstrInfo::emitCFIForLRSaveToReg(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator It, |
| Register Reg) const { |
| MachineFunction &MF = *MBB.getParent(); |
| const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); |
| unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); |
| unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); |
| |
| int64_t LRPosEntry = MF.addFrameInst( |
| MCCFIInstruction::createRegister(nullptr, DwarfLR, DwarfReg)); |
| BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) |
| .addCFIIndex(LRPosEntry) |
| .setMIFlags(MachineInstr::FrameSetup); |
| } |
| |
| void ARMBaseInstrInfo::restoreLRFromStack(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator It, |
| bool CFI, bool Auth) const { |
| int Align = Subtarget.getStackAlignment().value(); |
| if (Auth) { |
| assert(Subtarget.isThumb2()); |
| // Restore return address PAC and LR. |
| BuildMI(MBB, It, DebugLoc(), get(ARM::t2LDRD_POST)) |
| .addReg(ARM::R12, RegState::Define) |
| .addReg(ARM::LR, RegState::Define) |
| .addReg(ARM::SP, RegState::Define) |
| .addReg(ARM::SP) |
| .addImm(Align) |
| .add(predOps(ARMCC::AL)) |
| .setMIFlags(MachineInstr::FrameDestroy); |
| // LR authentication is after the CFI instructions, below. |
| } else { |
| unsigned Opc = Subtarget.isThumb() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM; |
| MachineInstrBuilder MIB = BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::LR) |
| .addReg(ARM::SP, RegState::Define) |
| .addReg(ARM::SP); |
| if (!Subtarget.isThumb()) |
| MIB.addReg(0); |
| MIB.addImm(Subtarget.getStackAlignment().value()) |
| .add(predOps(ARMCC::AL)) |
| .setMIFlags(MachineInstr::FrameDestroy); |
| } |
| |
| if (CFI) { |
| // Now stack has moved back up... |
| MachineFunction &MF = *MBB.getParent(); |
| const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); |
| unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); |
| int64_t StackPosEntry = |
| MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); |
| BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) |
| .addCFIIndex(StackPosEntry) |
| .setMIFlags(MachineInstr::FrameDestroy); |
| |
| // ... and we have restored LR. |
| int64_t LRPosEntry = |
| MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR)); |
| BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) |
| .addCFIIndex(LRPosEntry) |
| .setMIFlags(MachineInstr::FrameDestroy); |
| |
| if (Auth) { |
| unsigned DwarfRAC = MRI->getDwarfRegNum(ARM::RA_AUTH_CODE, true); |
| int64_t Entry = |
| MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, DwarfRAC)); |
| BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) |
| .addCFIIndex(Entry) |
| .setMIFlags(MachineInstr::FrameDestroy); |
| } |
| } |
| |
| if (Auth) |
| BuildMI(MBB, It, DebugLoc(), get(ARM::t2AUT)); |
| } |
| |
| void ARMBaseInstrInfo::emitCFIForLRRestoreFromReg( |
| MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const { |
| MachineFunction &MF = *MBB.getParent(); |
| const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); |
| unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); |
| |
| int64_t LRPosEntry = |
| MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR)); |
| BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) |
| .addCFIIndex(LRPosEntry) |
| .setMIFlags(MachineInstr::FrameDestroy); |
| } |
| |
| void ARMBaseInstrInfo::buildOutlinedFrame( |
| MachineBasicBlock &MBB, MachineFunction &MF, |
| const outliner::OutlinedFunction &OF) const { |
| // For thunk outlining, rewrite the last instruction from a call to a |
| // tail-call. |
| if (OF.FrameConstructionID == MachineOutlinerThunk) { |
| MachineInstr *Call = &*--MBB.instr_end(); |
| bool isThumb = Subtarget.isThumb(); |
| unsigned FuncOp = isThumb ? 2 : 0; |
| unsigned Opc = Call->getOperand(FuncOp).isReg() |
| ? isThumb ? ARM::tTAILJMPr : ARM::TAILJMPr |
| : isThumb ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd |
| : ARM::tTAILJMPdND |
| : ARM::TAILJMPd; |
| MachineInstrBuilder MIB = BuildMI(MBB, MBB.end(), DebugLoc(), get(Opc)) |
| .add(Call->getOperand(FuncOp)); |
| if (isThumb && !Call->getOperand(FuncOp).isReg()) |
| MIB.add(predOps(ARMCC::AL)); |
| Call->eraseFromParent(); |
| } |
| |
| // Is there a call in the outlined range? |
| auto IsNonTailCall = [](MachineInstr &MI) { |
| return MI.isCall() && !MI.isReturn(); |
| }; |
| if (llvm::any_of(MBB.instrs(), IsNonTailCall)) { |
| MachineBasicBlock::iterator It = MBB.begin(); |
| MachineBasicBlock::iterator Et = MBB.end(); |
| |
| if (OF.FrameConstructionID == MachineOutlinerTailCall || |
| OF.FrameConstructionID == MachineOutlinerThunk) |
| Et = std::prev(MBB.end()); |
| |
| // We have to save and restore LR, we need to add it to the liveins if it |
| // is not already part of the set. This is suffient since outlined |
| // functions only have one block. |
| if (!MBB.isLiveIn(ARM::LR)) |
| MBB.addLiveIn(ARM::LR); |
| |
| // Insert a save before the outlined region |
| bool Auth = OF.Candidates.front() |
| .getMF() |
| ->getInfo<ARMFunctionInfo>() |
| ->shouldSignReturnAddress(true); |
| saveLROnStack(MBB, It, true, Auth); |
| |
| // Fix up the instructions in the range, since we're going to modify the |
| // stack. |
| assert(OF.FrameConstructionID != MachineOutlinerDefault && |
| "Can only fix up stack references once"); |
| fixupPostOutline(MBB); |
| |
| // Insert a restore before the terminator for the function. Restore LR. |
| restoreLRFromStack(MBB, Et, true, Auth); |
| } |
| |
| // If this is a tail call outlined function, then there's already a return. |
| if (OF.FrameConstructionID == MachineOutlinerTailCall || |
| OF.FrameConstructionID == MachineOutlinerThunk) |
| return; |
| |
| // Here we have to insert the return ourselves. Get the correct opcode from |
| // current feature set. |
| BuildMI(MBB, MBB.end(), DebugLoc(), get(Subtarget.getReturnOpcode())) |
| .add(predOps(ARMCC::AL)); |
| |
| // Did we have to modify the stack by saving the link register? |
| if (OF.FrameConstructionID != MachineOutlinerDefault && |
| OF.Candidates[0].CallConstructionID != MachineOutlinerDefault) |
| return; |
| |
| // We modified the stack. |
| // Walk over the basic block and fix up all the stack accesses. |
| fixupPostOutline(MBB); |
| } |
| |
| MachineBasicBlock::iterator ARMBaseInstrInfo::insertOutlinedCall( |
| Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, |
| MachineFunction &MF, outliner::Candidate &C) const { |
| MachineInstrBuilder MIB; |
| MachineBasicBlock::iterator CallPt; |
| unsigned Opc; |
| bool isThumb = Subtarget.isThumb(); |
| |
| // Are we tail calling? |
| if (C.CallConstructionID == MachineOutlinerTailCall) { |
| // If yes, then we can just branch to the label. |
| Opc = isThumb |
| ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd : ARM::tTAILJMPdND |
| : ARM::TAILJMPd; |
| MIB = BuildMI(MF, DebugLoc(), get(Opc)) |
| .addGlobalAddress(M.getNamedValue(MF.getName())); |
| if (isThumb) |
| MIB.add(predOps(ARMCC::AL)); |
| It = MBB.insert(It, MIB); |
| return It; |
| } |
| |
| // Create the call instruction. |
| Opc = isThumb ? ARM::tBL : ARM::BL; |
| MachineInstrBuilder CallMIB = BuildMI(MF, DebugLoc(), get(Opc)); |
| if (isThumb) |
| CallMIB.add(predOps(ARMCC::AL)); |
| CallMIB.addGlobalAddress(M.getNamedValue(MF.getName())); |
| |
| if (C.CallConstructionID == MachineOutlinerNoLRSave || |
| C.CallConstructionID == MachineOutlinerThunk) { |
| // No, so just insert the call. |
| It = MBB.insert(It, CallMIB); |
| return It; |
| } |
| |
| const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>(); |
| // Can we save to a register? |
| if (C.CallConstructionID == MachineOutlinerRegSave) { |
| Register Reg = findRegisterToSaveLRTo(C); |
| assert(Reg != 0 && "No callee-saved register available?"); |
| |
| // Save and restore LR from that register. |
| copyPhysReg(MBB, It, DebugLoc(), Reg, ARM::LR, true); |
| if (!AFI.isLRSpilled()) |
| emitCFIForLRSaveToReg(MBB, It, Reg); |
| CallPt = MBB.insert(It, CallMIB); |
| copyPhysReg(MBB, It, DebugLoc(), ARM::LR, Reg, true); |
| if (!AFI.isLRSpilled()) |
| emitCFIForLRRestoreFromReg(MBB, It); |
| It--; |
| return CallPt; |
| } |
| // We have the default case. Save and restore from SP. |
| if (!MBB.isLiveIn(ARM::LR)) |
| MBB.addLiveIn(ARM::LR); |
| bool Auth = !AFI.isLRSpilled() && AFI.shouldSignReturnAddress(true); |
| saveLROnStack(MBB, It, !AFI.isLRSpilled(), Auth); |
| CallPt = MBB.insert(It, CallMIB); |
| restoreLRFromStack(MBB, It, !AFI.isLRSpilled(), Auth); |
| It--; |
| return CallPt; |
| } |
| |
| bool ARMBaseInstrInfo::shouldOutlineFromFunctionByDefault( |
| MachineFunction &MF) const { |
| return Subtarget.isMClass() && MF.getFunction().hasMinSize(); |
| } |
| |
| bool ARMBaseInstrInfo::isReallyTriviallyReMaterializable( |
| const MachineInstr &MI) const { |
| // Try hard to rematerialize any VCTPs because if we spill P0, it will block |
| // the tail predication conversion. This means that the element count |
| // register has to be live for longer, but that has to be better than |
| // spill/restore and VPT predication. |
| return isVCTP(&MI) && !isPredicated(MI); |
| } |
| |
| unsigned llvm::getBLXOpcode(const MachineFunction &MF) { |
| return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_noip |
| : ARM::BLX; |
| } |
| |
| unsigned llvm::gettBLXrOpcode(const MachineFunction &MF) { |
| return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::tBLXr_noip |
| : ARM::tBLXr; |
| } |
| |
| unsigned llvm::getBLXpredOpcode(const MachineFunction &MF) { |
| return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_pred_noip |
| : ARM::BLX_pred; |
| } |
| |
| namespace { |
| class ARMPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { |
| MachineInstr *EndLoop, *LoopCount; |
| MachineFunction *MF; |
| const TargetInstrInfo *TII; |
| |
| // Bitset[0 .. MAX_STAGES-1] ... iterations needed |
| // [LAST_IS_USE] : last reference to register in schedule is a use |
| // [SEEN_AS_LIVE] : Normal pressure algorithm believes register is live |
| static int constexpr MAX_STAGES = 30; |
| static int constexpr LAST_IS_USE = MAX_STAGES; |
| static int constexpr SEEN_AS_LIVE = MAX_STAGES + 1; |
| typedef std::bitset<MAX_STAGES + 2> IterNeed; |
| typedef std::map<unsigned, IterNeed> IterNeeds; |
| |
| void bumpCrossIterationPressure(RegPressureTracker &RPT, |
| const IterNeeds &CIN); |
| bool tooMuchRegisterPressure(SwingSchedulerDAG &SSD, SMSchedule &SMS); |
| |
| // Meanings of the various stuff with loop types: |
| // t2Bcc: |
| // EndLoop = branch at end of original BB that will become a kernel |
| // LoopCount = CC setter live into branch |
| // t2LoopEnd: |
| // EndLoop = branch at end of original BB |
| // LoopCount = t2LoopDec |
| public: |
| ARMPipelinerLoopInfo(MachineInstr *EndLoop, MachineInstr *LoopCount) |
| : EndLoop(EndLoop), LoopCount(LoopCount), |
| MF(EndLoop->getParent()->getParent()), |
| TII(MF->getSubtarget().getInstrInfo()) {} |
| |
| bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { |
| // Only ignore the terminator. |
| return MI == EndLoop || MI == LoopCount; |
| } |
| |
| bool shouldUseSchedule(SwingSchedulerDAG &SSD, SMSchedule &SMS) override { |
| if (tooMuchRegisterPressure(SSD, SMS)) |
| return false; |
| |
| return true; |
| } |
| |
| std::optional<bool> createTripCountGreaterCondition( |
| int TC, MachineBasicBlock &MBB, |
| SmallVectorImpl<MachineOperand> &Cond) override { |
| |
| if (isCondBranchOpcode(EndLoop->getOpcode())) { |
| Cond.push_back(EndLoop->getOperand(1)); |
| Cond.push_back(EndLoop->getOperand(2)); |
| if (EndLoop->getOperand(0).getMBB() == EndLoop->getParent()) { |
| TII->reverseBranchCondition(Cond); |
| } |
| return {}; |
| } else if (EndLoop->getOpcode() == ARM::t2LoopEnd) { |
| // General case just lets the unrolled t2LoopDec do the subtraction and |
| // therefore just needs to check if zero has been reached. |
| MachineInstr *LoopDec = nullptr; |
| for (auto &I : MBB.instrs()) |
| if (I.getOpcode() == ARM::t2LoopDec) |
| LoopDec = &I; |
| assert(LoopDec && "Unable to find copied LoopDec"); |
| // Check if we're done with the loop. |
| BuildMI(&MBB, LoopDec->getDebugLoc(), TII->get(ARM::t2CMPri)) |
| .addReg(LoopDec->getOperand(0).getReg()) |
| .addImm(0) |
| .addImm(ARMCC::AL) |
| .addReg(ARM::NoRegister); |
| Cond.push_back(MachineOperand::CreateImm(ARMCC::EQ)); |
| Cond.push_back(MachineOperand::CreateReg(ARM::CPSR, false)); |
| return {}; |
| } else |
| llvm_unreachable("Unknown EndLoop"); |
| } |
| |
| void setPreheader(MachineBasicBlock *NewPreheader) override {} |
| |
| void adjustTripCount(int TripCountAdjust) override {} |
| |
| void disposed() override {} |
| }; |
| |
| void ARMPipelinerLoopInfo::bumpCrossIterationPressure(RegPressureTracker &RPT, |
| const IterNeeds &CIN) { |
| // Increase pressure by the amounts in CrossIterationNeeds |
| for (const auto &N : CIN) { |
| int Cnt = N.second.count() - N.second[SEEN_AS_LIVE] * 2; |
| for (int I = 0; I < Cnt; ++I) |
| RPT.increaseRegPressure(Register(N.first), LaneBitmask::getNone(), |
| LaneBitmask::getAll()); |
| } |
| // Decrease pressure by the amounts in CrossIterationNeeds |
| for (const auto &N : CIN) { |
| int Cnt = N.second.count() - N.second[SEEN_AS_LIVE] * 2; |
| for (int I = 0; I < Cnt; ++I) |
| RPT.decreaseRegPressure(Register(N.first), LaneBitmask::getAll(), |
| LaneBitmask::getNone()); |
| } |
| } |
| |
| bool ARMPipelinerLoopInfo::tooMuchRegisterPressure(SwingSchedulerDAG &SSD, |
| SMSchedule &SMS) { |
| IterNeeds CrossIterationNeeds; |
| |
| // Determine which values will be loop-carried after the schedule is |
| // applied |
| |
| for (auto &SU : SSD.SUnits) { |
| const MachineInstr *MI = SU.getInstr(); |
| int Stg = SMS.stageScheduled(const_cast<SUnit *>(&SU)); |
| for (auto &S : SU.Succs) |
| if (MI->isPHI() && S.getKind() == SDep::Anti) { |
| Register Reg = S.getReg(); |
| if (Reg.isVirtual()) |
| CrossIterationNeeds.insert(std::make_pair(Reg.id(), IterNeed())) |
| .first->second.set(0); |
| } else if (S.isAssignedRegDep()) { |
| int OStg = SMS.stageScheduled(S.getSUnit()); |
| if (OStg >= 0 && OStg != Stg) { |
| Register Reg = S.getReg(); |
| if (Reg.isVirtual()) |
| CrossIterationNeeds.insert(std::make_pair(Reg.id(), IterNeed())) |
| .first->second |= ((1 << (OStg - Stg)) - 1); |
| } |
| } |
| } |
| |
| // Determine more-or-less what the proposed schedule (reversed) is going to |
| // be; it might not be quite the same because the within-cycle ordering |
| // created by SMSchedule depends upon changes to help with address offsets and |
| // the like. |
| std::vector<SUnit *> ProposedSchedule; |
| for (int Cycle = SMS.getFinalCycle(); Cycle >= SMS.getFirstCycle(); --Cycle) |
| for (int Stage = 0, StageEnd = SMS.getMaxStageCount(); Stage <= StageEnd; |
| ++Stage) { |
| std::deque<SUnit *> Instrs = |
| SMS.getInstructions(Cycle + Stage * SMS.getInitiationInterval()); |
| std::sort(Instrs.begin(), Instrs.end(), |
| [](SUnit *A, SUnit *B) { return A->NodeNum > B->NodeNum; }); |
| for (SUnit *SU : Instrs) |
| ProposedSchedule.push_back(SU); |
| } |
| |
| // Learn whether the last use/def of each cross-iteration register is a use or |
| // def. If it is a def, RegisterPressure will implicitly increase max pressure |
| // and we do not have to add the pressure. |
| for (auto *SU : ProposedSchedule) |
| for (ConstMIBundleOperands OperI(*SU->getInstr()); OperI.isValid(); |
| ++OperI) { |
| auto MO = *OperI; |
| if (!MO.isReg() || !MO.getReg()) |
| continue; |
| Register Reg = MO.getReg(); |
| auto CIter = CrossIterationNeeds.find(Reg.id()); |
| if (CIter == CrossIterationNeeds.end() || CIter->second[LAST_IS_USE] || |
| CIter->second[SEEN_AS_LIVE]) |
| continue; |
| if (MO.isDef() && !MO.isDead()) |
| CIter->second.set(SEEN_AS_LIVE); |
| else if (MO.isUse()) |
| CIter->second.set(LAST_IS_USE); |
| } |
| for (auto &CI : CrossIterationNeeds) |
| CI.second.reset(LAST_IS_USE); |
| |
| RegionPressure RecRegPressure; |
| RegPressureTracker RPTracker(RecRegPressure); |
| RegisterClassInfo RegClassInfo; |
| RegClassInfo.runOnMachineFunction(*MF); |
| RPTracker.init(MF, &RegClassInfo, nullptr, EndLoop->getParent(), |
| EndLoop->getParent()->end(), false, false); |
| const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); |
| |
| bumpCrossIterationPressure(RPTracker, CrossIterationNeeds); |
| |
| for (auto *SU : ProposedSchedule) { |
| MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); |
| RPTracker.setPos(std::next(CurInstI)); |
| RPTracker.recede(); |
| |
| // Track what cross-iteration registers would be seen as live |
| for (ConstMIBundleOperands OperI(*CurInstI); OperI.isValid(); ++OperI) { |
| auto MO = *OperI; |
| if (!MO.isReg() || !MO.getReg()) |
| continue; |
| Register Reg = MO.getReg(); |
| if (MO.isDef() && !MO.isDead()) { |
| auto CIter = CrossIterationNeeds.find(Reg.id()); |
| if (CIter != CrossIterationNeeds.end()) { |
| CIter->second.reset(0); |
| CIter->second.reset(SEEN_AS_LIVE); |
| } |
| } |
| } |
| for (auto &S : SU->Preds) { |
| auto Stg = SMS.stageScheduled(SU); |
| if (S.isAssignedRegDep()) { |
| Register Reg = S.getReg(); |
| auto CIter = CrossIterationNeeds.find(Reg.id()); |
| if (CIter != CrossIterationNeeds.end()) { |
| auto Stg2 = SMS.stageScheduled(const_cast<SUnit *>(S.getSUnit())); |
| assert(Stg2 <= Stg && "Data dependence upon earlier stage"); |
| if (Stg - Stg2 < MAX_STAGES) |
| CIter->second.set(Stg - Stg2); |
| CIter->second.set(SEEN_AS_LIVE); |
| } |
| } |
| } |
| |
| bumpCrossIterationPressure(RPTracker, CrossIterationNeeds); |
| } |
| |
| auto &P = RPTracker.getPressure().MaxSetPressure; |
| for (unsigned I = 0, E = P.size(); I < E; ++I) |
| if (P[I] > TRI->getRegPressureSetLimit(*MF, I)) { |
| return true; |
| } |
| return false; |
| } |
| |
| } // namespace |
| |
| std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> |
| ARMBaseInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { |
| MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); |
| MachineBasicBlock *Preheader = *LoopBB->pred_begin(); |
| if (Preheader == LoopBB) |
| Preheader = *std::next(LoopBB->pred_begin()); |
| |
| if (I != LoopBB->end() && I->getOpcode() == ARM::t2Bcc) { |
| // If the branch is a Bcc, then the CPSR should be set somewhere within the |
| // block. We need to determine the reaching definition of CPSR so that |
| // it can be marked as non-pipelineable, allowing the pipeliner to force |
| // it into stage 0 or give up if it cannot or will not do so. |
| MachineInstr *CCSetter = nullptr; |
| for (auto &L : LoopBB->instrs()) { |
| if (L.isCall()) |
| return nullptr; |
| if (isCPSRDefined(L)) |
| CCSetter = &L; |
| } |
| if (CCSetter) |
| return std::make_unique<ARMPipelinerLoopInfo>(&*I, CCSetter); |
| else |
| return nullptr; // Unable to find the CC setter, so unable to guarantee |
| // that pipeline will work |
| } |
| |
| // Recognize: |
| // preheader: |
| // %1 = t2DoopLoopStart %0 |
| // loop: |
| // %2 = phi %1, <not loop>, %..., %loop |
| // %3 = t2LoopDec %2, <imm> |
| // t2LoopEnd %3, %loop |
| |
| if (I != LoopBB->end() && I->getOpcode() == ARM::t2LoopEnd) { |
| for (auto &L : LoopBB->instrs()) |
| if (L.isCall()) |
| return nullptr; |
| else if (isVCTP(&L)) |
| return nullptr; |
| Register LoopDecResult = I->getOperand(0).getReg(); |
| MachineRegisterInfo &MRI = LoopBB->getParent()->getRegInfo(); |
| MachineInstr *LoopDec = MRI.getUniqueVRegDef(LoopDecResult); |
| if (!LoopDec || LoopDec->getOpcode() != ARM::t2LoopDec) |
| return nullptr; |
| MachineInstr *LoopStart = nullptr; |
| for (auto &J : Preheader->instrs()) |
| if (J.getOpcode() == ARM::t2DoLoopStart) |
| LoopStart = &J; |
| if (!LoopStart) |
| return nullptr; |
| return std::make_unique<ARMPipelinerLoopInfo>(&*I, LoopDec); |
| } |
| return nullptr; |
| } |