blob: e7072d94e49cee7ef0e0cbd48115f03ad292115a [file] [log] [blame]
//===----- DivisionByConstantInfo.cpp - division by constant -*- C++ -*----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// This file implements support for optimizing divisions by a constant
///
//===----------------------------------------------------------------------===//
#include "llvm/Support/DivisionByConstantInfo.h"
using namespace llvm;
/// Calculate the magic numbers required to implement a signed integer division
/// by a constant as a sequence of multiplies, adds and shifts. Requires that
/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
/// Warren, Jr., Chapter 10.
SignedDivisionByConstantInfo SignedDivisionByConstantInfo::get(const APInt &D) {
assert(!D.isZero() && "Precondition violation.");
// We'd be endlessly stuck in the loop.
assert(D.getBitWidth() >= 3 && "Does not work at smaller bitwidths.");
APInt Delta;
APInt SignedMin = APInt::getSignedMinValue(D.getBitWidth());
struct SignedDivisionByConstantInfo Retval;
APInt AD = D.abs();
APInt T = SignedMin + (D.lshr(D.getBitWidth() - 1));
APInt ANC = T - 1 - T.urem(AD); // absolute value of NC
unsigned P = D.getBitWidth() - 1; // initialize P
APInt Q1, R1, Q2, R2;
// initialize Q1 = 2P/abs(NC); R1 = rem(2P,abs(NC))
APInt::udivrem(SignedMin, ANC, Q1, R1);
// initialize Q2 = 2P/abs(D); R2 = rem(2P,abs(D))
APInt::udivrem(SignedMin, AD, Q2, R2);
do {
P = P + 1;
Q1 <<= 1; // update Q1 = 2P/abs(NC)
R1 <<= 1; // update R1 = rem(2P/abs(NC))
if (R1.uge(ANC)) { // must be unsigned comparison
++Q1;
R1 -= ANC;
}
Q2 <<= 1; // update Q2 = 2P/abs(D)
R2 <<= 1; // update R2 = rem(2P/abs(D))
if (R2.uge(AD)) { // must be unsigned comparison
++Q2;
R2 -= AD;
}
// Delta = AD - R2
Delta = AD;
Delta -= R2;
} while (Q1.ult(Delta) || (Q1 == Delta && R1.isZero()));
Retval.Magic = std::move(Q2);
++Retval.Magic;
if (D.isNegative())
Retval.Magic.negate(); // resulting magic number
Retval.ShiftAmount = P - D.getBitWidth(); // resulting shift
return Retval;
}
/// Calculate the magic numbers required to implement an unsigned integer
/// division by a constant as a sequence of multiplies, adds and shifts.
/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
/// S. Warren, Jr., chapter 10.
/// LeadingZeros can be used to simplify the calculation if the upper bits
/// of the divided value are known zero.
UnsignedDivisionByConstantInfo
UnsignedDivisionByConstantInfo::get(const APInt &D, unsigned LeadingZeros,
bool AllowEvenDivisorOptimization) {
assert(!D.isZero() && !D.isOne() && "Precondition violation.");
assert(D.getBitWidth() > 1 && "Does not work at smaller bitwidths.");
APInt Delta;
struct UnsignedDivisionByConstantInfo Retval;
Retval.IsAdd = false; // initialize "add" indicator
APInt AllOnes = APInt::getAllOnes(D.getBitWidth()).lshr(LeadingZeros);
APInt SignedMin = APInt::getSignedMinValue(D.getBitWidth());
APInt SignedMax = APInt::getSignedMaxValue(D.getBitWidth());
// Calculate NC, the largest dividend such that NC.urem(D) == D-1.
APInt NC = AllOnes - (AllOnes + 1 - D).urem(D);
assert(NC.urem(D) == D - 1 && "Unexpected NC value");
unsigned P = D.getBitWidth() - 1; // initialize P
APInt Q1, R1, Q2, R2;
// initialize Q1 = 2P/NC; R1 = rem(2P,NC)
APInt::udivrem(SignedMin, NC, Q1, R1);
// initialize Q2 = (2P-1)/D; R2 = rem((2P-1),D)
APInt::udivrem(SignedMax, D, Q2, R2);
do {
P = P + 1;
if (R1.uge(NC - R1)) {
// update Q1
Q1 <<= 1;
++Q1;
// update R1
R1 <<= 1;
R1 -= NC;
} else {
Q1 <<= 1; // update Q1
R1 <<= 1; // update R1
}
if ((R2 + 1).uge(D - R2)) {
if (Q2.uge(SignedMax))
Retval.IsAdd = true;
// update Q2
Q2 <<= 1;
++Q2;
// update R2
R2 <<= 1;
++R2;
R2 -= D;
} else {
if (Q2.uge(SignedMin))
Retval.IsAdd = true;
// update Q2
Q2 <<= 1;
// update R2
R2 <<= 1;
++R2;
}
// Delta = D - 1 - R2
Delta = D;
--Delta;
Delta -= R2;
} while (P < D.getBitWidth() * 2 &&
(Q1.ult(Delta) || (Q1 == Delta && R1.isZero())));
if (Retval.IsAdd && !D[0] && AllowEvenDivisorOptimization) {
unsigned PreShift = D.countTrailingZeros();
APInt ShiftedD = D.lshr(PreShift);
Retval =
UnsignedDivisionByConstantInfo::get(ShiftedD, LeadingZeros + PreShift);
assert(Retval.IsAdd == 0 && Retval.PreShift == 0);
Retval.PreShift = PreShift;
return Retval;
}
Retval.Magic = std::move(Q2); // resulting magic number
++Retval.Magic;
Retval.PostShift = P - D.getBitWidth(); // resulting shift
// Reduce shift amount for IsAdd.
if (Retval.IsAdd) {
assert(Retval.PostShift > 0 && "Unexpected shift");
Retval.PostShift -= 1;
}
Retval.PreShift = 0;
return Retval;
}