| //===----- DivisionByConstantInfo.cpp - division by constant -*- C++ -*----===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// This file implements support for optimizing divisions by a constant |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Support/DivisionByConstantInfo.h" |
| |
| using namespace llvm; |
| |
| /// Calculate the magic numbers required to implement a signed integer division |
| /// by a constant as a sequence of multiplies, adds and shifts. Requires that |
| /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S. |
| /// Warren, Jr., Chapter 10. |
| SignedDivisionByConstantInfo SignedDivisionByConstantInfo::get(const APInt &D) { |
| assert(!D.isZero() && "Precondition violation."); |
| |
| // We'd be endlessly stuck in the loop. |
| assert(D.getBitWidth() >= 3 && "Does not work at smaller bitwidths."); |
| |
| APInt Delta; |
| APInt SignedMin = APInt::getSignedMinValue(D.getBitWidth()); |
| struct SignedDivisionByConstantInfo Retval; |
| |
| APInt AD = D.abs(); |
| APInt T = SignedMin + (D.lshr(D.getBitWidth() - 1)); |
| APInt ANC = T - 1 - T.urem(AD); // absolute value of NC |
| unsigned P = D.getBitWidth() - 1; // initialize P |
| APInt Q1, R1, Q2, R2; |
| // initialize Q1 = 2P/abs(NC); R1 = rem(2P,abs(NC)) |
| APInt::udivrem(SignedMin, ANC, Q1, R1); |
| // initialize Q2 = 2P/abs(D); R2 = rem(2P,abs(D)) |
| APInt::udivrem(SignedMin, AD, Q2, R2); |
| do { |
| P = P + 1; |
| Q1 <<= 1; // update Q1 = 2P/abs(NC) |
| R1 <<= 1; // update R1 = rem(2P/abs(NC)) |
| if (R1.uge(ANC)) { // must be unsigned comparison |
| ++Q1; |
| R1 -= ANC; |
| } |
| Q2 <<= 1; // update Q2 = 2P/abs(D) |
| R2 <<= 1; // update R2 = rem(2P/abs(D)) |
| if (R2.uge(AD)) { // must be unsigned comparison |
| ++Q2; |
| R2 -= AD; |
| } |
| // Delta = AD - R2 |
| Delta = AD; |
| Delta -= R2; |
| } while (Q1.ult(Delta) || (Q1 == Delta && R1.isZero())); |
| |
| Retval.Magic = std::move(Q2); |
| ++Retval.Magic; |
| if (D.isNegative()) |
| Retval.Magic.negate(); // resulting magic number |
| Retval.ShiftAmount = P - D.getBitWidth(); // resulting shift |
| return Retval; |
| } |
| |
| /// Calculate the magic numbers required to implement an unsigned integer |
| /// division by a constant as a sequence of multiplies, adds and shifts. |
| /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry |
| /// S. Warren, Jr., chapter 10. |
| /// LeadingZeros can be used to simplify the calculation if the upper bits |
| /// of the divided value are known zero. |
| UnsignedDivisionByConstantInfo |
| UnsignedDivisionByConstantInfo::get(const APInt &D, unsigned LeadingZeros, |
| bool AllowEvenDivisorOptimization) { |
| assert(!D.isZero() && !D.isOne() && "Precondition violation."); |
| assert(D.getBitWidth() > 1 && "Does not work at smaller bitwidths."); |
| |
| APInt Delta; |
| struct UnsignedDivisionByConstantInfo Retval; |
| Retval.IsAdd = false; // initialize "add" indicator |
| APInt AllOnes = APInt::getAllOnes(D.getBitWidth()).lshr(LeadingZeros); |
| APInt SignedMin = APInt::getSignedMinValue(D.getBitWidth()); |
| APInt SignedMax = APInt::getSignedMaxValue(D.getBitWidth()); |
| |
| // Calculate NC, the largest dividend such that NC.urem(D) == D-1. |
| APInt NC = AllOnes - (AllOnes + 1 - D).urem(D); |
| assert(NC.urem(D) == D - 1 && "Unexpected NC value"); |
| unsigned P = D.getBitWidth() - 1; // initialize P |
| APInt Q1, R1, Q2, R2; |
| // initialize Q1 = 2P/NC; R1 = rem(2P,NC) |
| APInt::udivrem(SignedMin, NC, Q1, R1); |
| // initialize Q2 = (2P-1)/D; R2 = rem((2P-1),D) |
| APInt::udivrem(SignedMax, D, Q2, R2); |
| do { |
| P = P + 1; |
| if (R1.uge(NC - R1)) { |
| // update Q1 |
| Q1 <<= 1; |
| ++Q1; |
| // update R1 |
| R1 <<= 1; |
| R1 -= NC; |
| } else { |
| Q1 <<= 1; // update Q1 |
| R1 <<= 1; // update R1 |
| } |
| if ((R2 + 1).uge(D - R2)) { |
| if (Q2.uge(SignedMax)) |
| Retval.IsAdd = true; |
| // update Q2 |
| Q2 <<= 1; |
| ++Q2; |
| // update R2 |
| R2 <<= 1; |
| ++R2; |
| R2 -= D; |
| } else { |
| if (Q2.uge(SignedMin)) |
| Retval.IsAdd = true; |
| // update Q2 |
| Q2 <<= 1; |
| // update R2 |
| R2 <<= 1; |
| ++R2; |
| } |
| // Delta = D - 1 - R2 |
| Delta = D; |
| --Delta; |
| Delta -= R2; |
| } while (P < D.getBitWidth() * 2 && |
| (Q1.ult(Delta) || (Q1 == Delta && R1.isZero()))); |
| |
| if (Retval.IsAdd && !D[0] && AllowEvenDivisorOptimization) { |
| unsigned PreShift = D.countTrailingZeros(); |
| APInt ShiftedD = D.lshr(PreShift); |
| Retval = |
| UnsignedDivisionByConstantInfo::get(ShiftedD, LeadingZeros + PreShift); |
| assert(Retval.IsAdd == 0 && Retval.PreShift == 0); |
| Retval.PreShift = PreShift; |
| return Retval; |
| } |
| |
| Retval.Magic = std::move(Q2); // resulting magic number |
| ++Retval.Magic; |
| Retval.PostShift = P - D.getBitWidth(); // resulting shift |
| // Reduce shift amount for IsAdd. |
| if (Retval.IsAdd) { |
| assert(Retval.PostShift > 0 && "Unexpected shift"); |
| Retval.PostShift -= 1; |
| } |
| Retval.PreShift = 0; |
| return Retval; |
| } |