| //===- subzero/src/IceCfgNode.cpp - Basic block (node) implementation -----===// |
| // |
| // The Subzero Code Generator |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the CfgNode class, including the complexities |
| // of instruction insertion and in-edge calculation. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "IceAssembler.h" |
| #include "IceCfg.h" |
| #include "IceCfgNode.h" |
| #include "IceGlobalInits.h" |
| #include "IceInst.h" |
| #include "IceLiveness.h" |
| #include "IceOperand.h" |
| #include "IceTargetLowering.h" |
| |
| namespace Ice { |
| |
| CfgNode::CfgNode(Cfg *Func, SizeT LabelNumber) |
| : Func(Func), Number(LabelNumber), NameIndex(Cfg::IdentifierIndexInvalid), |
| HasReturn(false), NeedsPlacement(false), InstCountEstimate(0) {} |
| |
| // Returns the name the node was created with. If no name was given, |
| // it synthesizes a (hopefully) unique name. |
| IceString CfgNode::getName() const { |
| if (NameIndex >= 0) |
| return Func->getIdentifierName(NameIndex); |
| return "__" + std::to_string(getIndex()); |
| } |
| |
| // Adds an instruction to either the Phi list or the regular |
| // instruction list. Validates that all Phis are added before all |
| // regular instructions. |
| void CfgNode::appendInst(Inst *Inst) { |
| ++InstCountEstimate; |
| if (InstPhi *Phi = llvm::dyn_cast<InstPhi>(Inst)) { |
| if (!Insts.empty()) { |
| Func->setError("Phi instruction added to the middle of a block"); |
| return; |
| } |
| Phis.push_back(Phi); |
| } else { |
| Insts.push_back(Inst); |
| } |
| } |
| |
| // Renumbers the non-deleted instructions in the node. This needs to |
| // be done in preparation for live range analysis. The instruction |
| // numbers in a block must be monotonically increasing. The range of |
| // instruction numbers in a block, from lowest to highest, must not |
| // overlap with the range of any other block. |
| void CfgNode::renumberInstructions() { |
| InstNumberT FirstNumber = Func->getNextInstNumber(); |
| for (Inst &I : Phis) |
| I.renumber(Func); |
| for (Inst &I : Insts) |
| I.renumber(Func); |
| InstCountEstimate = Func->getNextInstNumber() - FirstNumber; |
| } |
| |
| // When a node is created, the OutEdges are immediately known, but the |
| // InEdges have to be built up incrementally. After the CFG has been |
| // constructed, the computePredecessors() pass finalizes it by |
| // creating the InEdges list. |
| void CfgNode::computePredecessors() { |
| for (CfgNode *Succ : OutEdges) |
| Succ->InEdges.push_back(this); |
| } |
| |
| void CfgNode::computeSuccessors() { |
| OutEdges = Insts.rbegin()->getTerminatorEdges(); |
| } |
| |
| // This does part 1 of Phi lowering, by creating a new dest variable |
| // for each Phi instruction, replacing the Phi instruction's dest with |
| // that variable, and adding an explicit assignment of the old dest to |
| // the new dest. For example, |
| // a=phi(...) |
| // changes to |
| // "a_phi=phi(...); a=a_phi". |
| // |
| // This is in preparation for part 2 which deletes the Phi |
| // instructions and appends assignment instructions to predecessor |
| // blocks. Note that this transformation preserves SSA form. |
| void CfgNode::placePhiLoads() { |
| for (Inst &I : Phis) { |
| auto Phi = llvm::dyn_cast<InstPhi>(&I); |
| Insts.insert(Insts.begin(), Phi->lower(Func)); |
| } |
| } |
| |
| // This does part 2 of Phi lowering. For each Phi instruction at each |
| // out-edge, create a corresponding assignment instruction, and add |
| // all the assignments near the end of this block. They need to be |
| // added before any branch instruction, and also if the block ends |
| // with a compare instruction followed by a branch instruction that we |
| // may want to fuse, it's better to insert the new assignments before |
| // the compare instruction. The tryOptimizedCmpxchgCmpBr() method |
| // assumes this ordering of instructions. |
| // |
| // Note that this transformation takes the Phi dest variables out of |
| // SSA form, as there may be assignments to the dest variable in |
| // multiple blocks. |
| void CfgNode::placePhiStores() { |
| // Find the insertion point. |
| InstList::iterator InsertionPoint = Insts.end(); |
| // Every block must end in a terminator instruction, and therefore |
| // must have at least one instruction, so it's valid to decrement |
| // InsertionPoint (but assert just in case). |
| assert(InsertionPoint != Insts.begin()); |
| --InsertionPoint; |
| // Confirm that InsertionPoint is a terminator instruction. Calling |
| // getTerminatorEdges() on a non-terminator instruction will cause |
| // an llvm_unreachable(). |
| (void)InsertionPoint->getTerminatorEdges(); |
| // SafeInsertionPoint is always immediately before the terminator |
| // instruction. If the block ends in a compare and conditional |
| // branch, it's better to place the Phi store before the compare so |
| // as not to interfere with compare/branch fusing. However, if the |
| // compare instruction's dest operand is the same as the new |
| // assignment statement's source operand, this can't be done due to |
| // data dependences, so we need to fall back to the |
| // SafeInsertionPoint. To illustrate: |
| // ; <label>:95 |
| // %97 = load i8* %96, align 1 |
| // %98 = icmp ne i8 %97, 0 |
| // br i1 %98, label %99, label %2132 |
| // ; <label>:99 |
| // %100 = phi i8 [ %97, %95 ], [ %110, %108 ] |
| // %101 = phi i1 [ %98, %95 ], [ %111, %108 ] |
| // would be Phi-lowered as: |
| // ; <label>:95 |
| // %97 = load i8* %96, align 1 |
| // %100_phi = %97 ; can be at InsertionPoint |
| // %98 = icmp ne i8 %97, 0 |
| // %101_phi = %98 ; must be at SafeInsertionPoint |
| // br i1 %98, label %99, label %2132 |
| // ; <label>:99 |
| // %100 = %100_phi |
| // %101 = %101_phi |
| // |
| // TODO(stichnot): It may be possible to bypass this whole |
| // SafeInsertionPoint mechanism. If a source basic block ends in a |
| // conditional branch: |
| // labelSource: |
| // ... |
| // br i1 %foo, label %labelTrue, label %labelFalse |
| // and a branch target has a Phi involving the branch operand: |
| // labelTrue: |
| // %bar = phi i1 [ %foo, %labelSource ], ... |
| // then we actually know the constant i1 value of the Phi operand: |
| // labelTrue: |
| // %bar = phi i1 [ true, %labelSource ], ... |
| // It seems that this optimization should be done by clang or opt, |
| // but we could also do it here. |
| InstList::iterator SafeInsertionPoint = InsertionPoint; |
| // Keep track of the dest variable of a compare instruction, so that |
| // we insert the new instruction at the SafeInsertionPoint if the |
| // compare's dest matches the Phi-lowered assignment's source. |
| Variable *CmpInstDest = nullptr; |
| // If the current insertion point is at a conditional branch |
| // instruction, and the previous instruction is a compare |
| // instruction, then we move the insertion point before the compare |
| // instruction so as not to interfere with compare/branch fusing. |
| if (InstBr *Branch = llvm::dyn_cast<InstBr>(InsertionPoint)) { |
| if (!Branch->isUnconditional()) { |
| if (InsertionPoint != Insts.begin()) { |
| --InsertionPoint; |
| if (llvm::isa<InstIcmp>(InsertionPoint) || |
| llvm::isa<InstFcmp>(InsertionPoint)) { |
| CmpInstDest = InsertionPoint->getDest(); |
| } else { |
| ++InsertionPoint; |
| } |
| } |
| } |
| } |
| |
| // Consider every out-edge. |
| for (CfgNode *Succ : OutEdges) { |
| // Consider every Phi instruction at the out-edge. |
| for (Inst &I : Succ->Phis) { |
| auto Phi = llvm::dyn_cast<InstPhi>(&I); |
| Operand *Operand = Phi->getOperandForTarget(this); |
| assert(Operand); |
| Variable *Dest = I.getDest(); |
| assert(Dest); |
| InstAssign *NewInst = InstAssign::create(Func, Dest, Operand); |
| if (CmpInstDest == Operand) |
| Insts.insert(SafeInsertionPoint, NewInst); |
| else |
| Insts.insert(InsertionPoint, NewInst); |
| } |
| } |
| } |
| |
| // Deletes the phi instructions after the loads and stores are placed. |
| void CfgNode::deletePhis() { |
| for (Inst &I : Phis) |
| I.setDeleted(); |
| } |
| |
| // Splits the edge from Pred to this node by creating a new node and |
| // hooking up the in and out edges appropriately. (The EdgeIndex |
| // parameter is only used to make the new node's name unique when |
| // there are multiple edges between the same pair of nodes.) The new |
| // node's instruction list is initialized to the empty list, with no |
| // terminator instruction. If there are multiple edges from Pred to |
| // this node, only one edge is split, and the particular choice of |
| // edge is undefined. This could happen with a switch instruction, or |
| // a conditional branch that weirdly has both branches to the same |
| // place. TODO(stichnot,kschimpf): Figure out whether this is legal |
| // in the LLVM IR or the PNaCl bitcode, and if so, we need to |
| // establish a strong relationship among the ordering of Pred's |
| // out-edge list, this node's in-edge list, and the Phi instruction's |
| // operand list. |
| CfgNode *CfgNode::splitIncomingEdge(CfgNode *Pred, SizeT EdgeIndex) { |
| CfgNode *NewNode = Func->makeNode(); |
| if (ALLOW_DUMP) |
| NewNode->setName("split_" + Pred->getName() + "_" + getName() + "_" + |
| std::to_string(EdgeIndex)); |
| // The new node is added to the end of the node list, and will later |
| // need to be sorted into a reasonable topological order. |
| NewNode->setNeedsPlacement(true); |
| // Repoint Pred's out-edge. |
| bool Found = false; |
| for (auto I = Pred->OutEdges.begin(), E = Pred->OutEdges.end(); |
| !Found && I != E; ++I) { |
| if (*I == this) { |
| *I = NewNode; |
| NewNode->InEdges.push_back(Pred); |
| Found = true; |
| } |
| } |
| assert(Found); |
| // Repoint this node's in-edge. |
| Found = false; |
| for (auto I = InEdges.begin(), E = InEdges.end(); !Found && I != E; ++I) { |
| if (*I == Pred) { |
| *I = NewNode; |
| NewNode->OutEdges.push_back(this); |
| Found = true; |
| } |
| } |
| assert(Found); |
| // Repoint a suitable branch instruction's target and return. |
| Found = false; |
| for (Inst &I : reverse_range(Pred->getInsts())) { |
| if (!I.isDeleted() && I.repointEdge(this, NewNode)) |
| return NewNode; |
| } |
| // This should be unreachable, so the assert will fail. |
| assert(Found); |
| return NewNode; |
| } |
| |
| namespace { |
| |
| // Helper function used by advancedPhiLowering(). |
| bool sameVarOrReg(const Variable *Var, const Operand *Opnd) { |
| if (Var == Opnd) |
| return true; |
| if (const auto Var2 = llvm::dyn_cast<Variable>(Opnd)) { |
| if (Var->hasReg() && Var->getRegNum() == Var2->getRegNum()) |
| return true; |
| } |
| return false; |
| } |
| |
| } // end of anonymous namespace |
| |
| // This the "advanced" version of Phi lowering for a basic block, in |
| // contrast to the simple version that lowers through assignments |
| // involving temporaries. |
| // |
| // All Phi instructions in a basic block are conceptually executed in |
| // parallel. However, if we lower Phis early and commit to a |
| // sequential ordering, we may end up creating unnecessary |
| // interferences which lead to worse register allocation. Delaying |
| // Phi scheduling until after register allocation can help unless |
| // there are no free registers for shuffling registers or stack slots |
| // and spilling becomes necessary. |
| // |
| // The advanced Phi lowering starts by finding a topological sort of |
| // the Phi instructions, where "A=B" comes before "B=C" due to the |
| // anti-dependence on B. If a topological sort is not possible due to |
| // a cycle, the cycle is broken by introducing a non-parallel |
| // temporary. For example, a cycle arising from a permutation like |
| // "A=B;B=C;C=A" can become "T=A;A=B;B=C;C=T". All else being equal, |
| // prefer to schedule assignments with register-allocated Src operands |
| // earlier, in case that register becomes free afterwards, and prefer |
| // to schedule assignments with register-allocated Dest variables |
| // later, to keep that register free for longer. |
| // |
| // Once the ordering is determined, the Cfg edge is split and the |
| // assignment list is lowered by the target lowering layer. The |
| // specific placement of the new node within the Cfg node list is |
| // deferred until later, including after empty node contraction. |
| void CfgNode::advancedPhiLowering() { |
| if (getPhis().empty()) |
| return; |
| |
| // Count the number of non-deleted Phi instructions. |
| struct PhiDesc { |
| InstPhi *Phi; |
| Variable *Dest; |
| Operand *Src; |
| bool Processed; |
| size_t NumPred; // number of entries whose Src is this Dest |
| int32_t Weight; // preference for topological order |
| }; |
| llvm::SmallVector<PhiDesc, 32> Desc(getPhis().size()); |
| |
| size_t NumPhis = 0; |
| for (Inst &I : Phis) { |
| auto Inst = llvm::dyn_cast<InstPhi>(&I); |
| if (!Inst->isDeleted()) { |
| Desc[NumPhis].Phi = Inst; |
| Desc[NumPhis].Dest = Inst->getDest(); |
| ++NumPhis; |
| } |
| } |
| if (NumPhis == 0) |
| return; |
| |
| SizeT InEdgeIndex = 0; |
| for (CfgNode *Pred : InEdges) { |
| CfgNode *Split = splitIncomingEdge(Pred, InEdgeIndex++); |
| AssignList Assignments; |
| SizeT Remaining = NumPhis; |
| |
| // First pass computes Src and initializes NumPred. |
| for (size_t I = 0; I < NumPhis; ++I) { |
| Variable *Dest = Desc[I].Dest; |
| Operand *Src = Desc[I].Phi->getOperandForTarget(Pred); |
| Desc[I].Src = Src; |
| Desc[I].Processed = false; |
| Desc[I].NumPred = 0; |
| // Cherry-pick any trivial assignments, so that they don't |
| // contribute to the running complexity of the topological sort. |
| if (sameVarOrReg(Dest, Src)) { |
| Desc[I].Processed = true; |
| --Remaining; |
| if (Dest != Src) |
| // If Dest and Src are syntactically the same, don't bother |
| // adding the assignment, because in all respects it would |
| // be redundant, and if Dest/Src are on the stack, the |
| // target lowering may naively decide to lower it using a |
| // temporary register. |
| Assignments.push_back(InstAssign::create(Func, Dest, Src)); |
| } |
| } |
| // Second pass computes NumPred by comparing every pair of Phi |
| // instructions. |
| for (size_t I = 0; I < NumPhis; ++I) { |
| if (Desc[I].Processed) |
| continue; |
| const Variable *Dest = Desc[I].Dest; |
| for (size_t J = 0; J < NumPhis; ++J) { |
| if (Desc[J].Processed) |
| continue; |
| if (I != J) { |
| // There shouldn't be two Phis with the same Dest variable |
| // or register. |
| assert(!sameVarOrReg(Dest, Desc[J].Dest)); |
| } |
| const Operand *Src = Desc[J].Src; |
| if (sameVarOrReg(Dest, Src)) |
| ++Desc[I].NumPred; |
| } |
| } |
| |
| // Another pass to compute initial Weight values. |
| |
| // Always pick NumPred=0 over NumPred>0. |
| const int32_t WeightNoPreds = 4; |
| // Prefer Src as a register because the register might free up. |
| const int32_t WeightSrcIsReg = 2; |
| // Prefer Dest not as a register because the register stays free |
| // longer. |
| const int32_t WeightDestNotReg = 1; |
| |
| for (size_t I = 0; I < NumPhis; ++I) { |
| if (Desc[I].Processed) |
| continue; |
| int32_t Weight = 0; |
| if (Desc[I].NumPred == 0) |
| Weight += WeightNoPreds; |
| if (auto Var = llvm::dyn_cast<Variable>(Desc[I].Src)) |
| if (Var->hasReg()) |
| Weight += WeightSrcIsReg; |
| if (!Desc[I].Dest->hasReg()) |
| Weight += WeightDestNotReg; |
| Desc[I].Weight = Weight; |
| } |
| |
| // Repeatedly choose and process the best candidate in the |
| // topological sort, until no candidates remain. This |
| // implementation is O(N^2) where N is the number of Phi |
| // instructions, but with a small constant factor compared to a |
| // likely implementation of O(N) topological sort. |
| for (; Remaining; --Remaining) { |
| size_t BestIndex = 0; |
| int32_t BestWeight = -1; |
| // Find the best candidate. |
| for (size_t I = 0; I < NumPhis; ++I) { |
| if (Desc[I].Processed) |
| continue; |
| int32_t Weight = 0; |
| Weight = Desc[I].Weight; |
| if (Weight > BestWeight) { |
| BestIndex = I; |
| BestWeight = Weight; |
| } |
| } |
| assert(BestWeight >= 0); |
| assert(Desc[BestIndex].NumPred <= 1); |
| Variable *Dest = Desc[BestIndex].Dest; |
| Operand *Src = Desc[BestIndex].Src; |
| assert(!sameVarOrReg(Dest, Src)); |
| // Break a cycle by introducing a temporary. |
| if (Desc[BestIndex].NumPred) { |
| bool Found = false; |
| // If the target instruction "A=B" is part of a cycle, find |
| // the "X=A" assignment in the cycle because it will have to |
| // be rewritten as "X=tmp". |
| for (size_t J = 0; !Found && J < NumPhis; ++J) { |
| if (Desc[J].Processed) |
| continue; |
| Operand *OtherSrc = Desc[J].Src; |
| if (Desc[J].NumPred && sameVarOrReg(Dest, OtherSrc)) { |
| SizeT VarNum = Func->getNumVariables(); |
| Variable *Tmp = Func->makeVariable(OtherSrc->getType()); |
| if (ALLOW_DUMP) |
| Tmp->setName(Func, "__split_" + std::to_string(VarNum)); |
| Assignments.push_back(InstAssign::create(Func, Tmp, OtherSrc)); |
| Desc[J].Src = Tmp; |
| Found = true; |
| } |
| } |
| assert(Found); |
| } |
| // Now that a cycle (if any) has been broken, create the actual |
| // assignment. |
| Assignments.push_back(InstAssign::create(Func, Dest, Src)); |
| // Update NumPred for all Phi assignments using this Phi's Src |
| // as their Dest variable. Also update Weight if NumPred |
| // dropped from 1 to 0. |
| if (auto Var = llvm::dyn_cast<Variable>(Src)) { |
| for (size_t I = 0; I < NumPhis; ++I) { |
| if (Desc[I].Processed) |
| continue; |
| if (sameVarOrReg(Var, Desc[I].Dest)) { |
| if (--Desc[I].NumPred == 0) |
| Desc[I].Weight += WeightNoPreds; |
| } |
| } |
| } |
| Desc[BestIndex].Processed = true; |
| } |
| |
| Func->getTarget()->lowerPhiAssignments(Split, Assignments); |
| |
| // Renumber the instructions to be monotonically increasing so |
| // that addNode() doesn't assert when multi-definitions are added |
| // out of order. |
| Split->renumberInstructions(); |
| Func->getVMetadata()->addNode(Split); |
| } |
| |
| for (Inst &I : Phis) |
| I.setDeleted(); |
| } |
| |
| // Does address mode optimization. Pass each instruction to the |
| // TargetLowering object. If it returns a new instruction |
| // (representing the optimized address mode), then insert the new |
| // instruction and delete the old. |
| void CfgNode::doAddressOpt() { |
| TargetLowering *Target = Func->getTarget(); |
| LoweringContext &Context = Target->getContext(); |
| Context.init(this); |
| while (!Context.atEnd()) { |
| Target->doAddressOpt(); |
| } |
| } |
| |
| void CfgNode::doNopInsertion() { |
| TargetLowering *Target = Func->getTarget(); |
| LoweringContext &Context = Target->getContext(); |
| Context.init(this); |
| while (!Context.atEnd()) { |
| Target->doNopInsertion(); |
| // Ensure Cur=Next, so that the nops are inserted before the current |
| // instruction rather than after. |
| Context.advanceNext(); |
| Context.advanceCur(); |
| } |
| // Insert before all instructions. |
| Context.setInsertPoint(getInsts().begin()); |
| Context.advanceNext(); |
| Context.advanceCur(); |
| Target->doNopInsertion(); |
| } |
| |
| // Drives the target lowering. Passes the current instruction and the |
| // next non-deleted instruction for target lowering. |
| void CfgNode::genCode() { |
| TargetLowering *Target = Func->getTarget(); |
| LoweringContext &Context = Target->getContext(); |
| // Lower the regular instructions. |
| Context.init(this); |
| Target->initNodeForLowering(this); |
| while (!Context.atEnd()) { |
| InstList::iterator Orig = Context.getCur(); |
| if (llvm::isa<InstRet>(*Orig)) |
| setHasReturn(); |
| Target->lower(); |
| // Ensure target lowering actually moved the cursor. |
| assert(Context.getCur() != Orig); |
| } |
| // Do preliminary lowering of the Phi instructions. |
| Target->prelowerPhis(); |
| } |
| |
| void CfgNode::livenessLightweight() { |
| SizeT NumVars = Func->getNumVariables(); |
| LivenessBV Live(NumVars); |
| // Process regular instructions in reverse order. |
| for (Inst &I : reverse_range(Insts)) { |
| if (I.isDeleted()) |
| continue; |
| I.livenessLightweight(Func, Live); |
| } |
| for (Inst &I : Phis) { |
| if (I.isDeleted()) |
| continue; |
| I.livenessLightweight(Func, Live); |
| } |
| } |
| |
| // Performs liveness analysis on the block. Returns true if the |
| // incoming liveness changed from before, false if it stayed the same. |
| // (If it changes, the node's predecessors need to be processed |
| // again.) |
| bool CfgNode::liveness(Liveness *Liveness) { |
| SizeT NumVars = Liveness->getNumVarsInNode(this); |
| LivenessBV Live(NumVars); |
| LiveBeginEndMap *LiveBegin = nullptr; |
| LiveBeginEndMap *LiveEnd = nullptr; |
| // Mark the beginning and ending of each variable's live range |
| // with the sentinel instruction number 0. |
| if (Liveness->getMode() == Liveness_Intervals) { |
| LiveBegin = Liveness->getLiveBegin(this); |
| LiveEnd = Liveness->getLiveEnd(this); |
| LiveBegin->clear(); |
| LiveEnd->clear(); |
| // Guess that the number of live ranges beginning is roughly the |
| // number of instructions, and same for live ranges ending. |
| LiveBegin->reserve(getInstCountEstimate()); |
| LiveEnd->reserve(getInstCountEstimate()); |
| } |
| // Initialize Live to be the union of all successors' LiveIn. |
| for (CfgNode *Succ : OutEdges) { |
| Live |= Liveness->getLiveIn(Succ); |
| // Mark corresponding argument of phis in successor as live. |
| for (Inst &I : Succ->Phis) { |
| auto Phi = llvm::dyn_cast<InstPhi>(&I); |
| Phi->livenessPhiOperand(Live, this, Liveness); |
| } |
| } |
| Liveness->getLiveOut(this) = Live; |
| |
| // Process regular instructions in reverse order. |
| for (Inst &I : reverse_range(Insts)) { |
| if (I.isDeleted()) |
| continue; |
| I.liveness(I.getNumber(), Live, Liveness, LiveBegin, LiveEnd); |
| } |
| // Process phis in forward order so that we can override the |
| // instruction number to be that of the earliest phi instruction in |
| // the block. |
| SizeT NumNonDeadPhis = 0; |
| InstNumberT FirstPhiNumber = Inst::NumberSentinel; |
| for (Inst &I : Phis) { |
| if (I.isDeleted()) |
| continue; |
| if (FirstPhiNumber == Inst::NumberSentinel) |
| FirstPhiNumber = I.getNumber(); |
| if (I.liveness(FirstPhiNumber, Live, Liveness, LiveBegin, LiveEnd)) |
| ++NumNonDeadPhis; |
| } |
| |
| // When using the sparse representation, after traversing the |
| // instructions in the block, the Live bitvector should only contain |
| // set bits for global variables upon block entry. We validate this |
| // by shrinking the Live vector and then testing it against the |
| // pre-shrunk version. (The shrinking is required, but the |
| // validation is not.) |
| LivenessBV LiveOrig = Live; |
| Live.resize(Liveness->getNumGlobalVars()); |
| // Non-global arguments in the entry node are allowed to be live on |
| // entry. |
| bool IsEntry = (Func->getEntryNode() == this); |
| if (!(IsEntry || Live == LiveOrig)) { |
| if (ALLOW_DUMP) { |
| // This is a fatal liveness consistency error. Print some |
| // diagnostics and abort. |
| Ostream &Str = Func->getContext()->getStrDump(); |
| Func->resetCurrentNode(); |
| Str << "LiveOrig-Live ="; |
| for (SizeT i = Live.size(); i < LiveOrig.size(); ++i) { |
| if (LiveOrig.test(i)) { |
| Str << " "; |
| Liveness->getVariable(i, this)->dump(Func); |
| } |
| } |
| Str << "\n"; |
| } |
| llvm::report_fatal_error("Fatal inconsistency in liveness analysis"); |
| } |
| |
| bool Changed = false; |
| LivenessBV &LiveIn = Liveness->getLiveIn(this); |
| // Add in current LiveIn |
| Live |= LiveIn; |
| // Check result, set LiveIn=Live |
| SizeT &PrevNumNonDeadPhis = Liveness->getNumNonDeadPhis(this); |
| bool LiveInChanged = (Live != LiveIn); |
| Changed = (NumNonDeadPhis != PrevNumNonDeadPhis || LiveInChanged); |
| if (LiveInChanged) |
| LiveIn = Live; |
| PrevNumNonDeadPhis = NumNonDeadPhis; |
| return Changed; |
| } |
| |
| // Once basic liveness is complete, compute actual live ranges. It is |
| // assumed that within a single basic block, a live range begins at |
| // most once and ends at most once. This is certainly true for pure |
| // SSA form. It is also true once phis are lowered, since each |
| // assignment to the phi-based temporary is in a different basic |
| // block, and there is a single read that ends the live in the basic |
| // block that contained the actual phi instruction. |
| void CfgNode::livenessAddIntervals(Liveness *Liveness, InstNumberT FirstInstNum, |
| InstNumberT LastInstNum) { |
| TimerMarker T1(TimerStack::TT_liveRange, Func); |
| |
| SizeT NumVars = Liveness->getNumVarsInNode(this); |
| LivenessBV &LiveIn = Liveness->getLiveIn(this); |
| LivenessBV &LiveOut = Liveness->getLiveOut(this); |
| LiveBeginEndMap &MapBegin = *Liveness->getLiveBegin(this); |
| LiveBeginEndMap &MapEnd = *Liveness->getLiveEnd(this); |
| std::sort(MapBegin.begin(), MapBegin.end()); |
| std::sort(MapEnd.begin(), MapEnd.end()); |
| // Verify there are no duplicates. |
| struct ComparePair { |
| bool operator()(const LiveBeginEndMapEntry &A, |
| const LiveBeginEndMapEntry &B) { |
| return A.first == B.first; |
| } |
| }; |
| assert(std::adjacent_find(MapBegin.begin(), MapBegin.end(), ComparePair()) == |
| MapBegin.end()); |
| assert(std::adjacent_find(MapEnd.begin(), MapEnd.end(), ComparePair()) == |
| MapEnd.end()); |
| |
| LivenessBV LiveInAndOut = LiveIn; |
| LiveInAndOut &= LiveOut; |
| |
| // Iterate in parallel across the sorted MapBegin[] and MapEnd[]. |
| auto IBB = MapBegin.begin(), IEB = MapEnd.begin(); |
| auto IBE = MapBegin.end(), IEE = MapEnd.end(); |
| while (IBB != IBE || IEB != IEE) { |
| SizeT i1 = IBB == IBE ? NumVars : IBB->first; |
| SizeT i2 = IEB == IEE ? NumVars : IEB->first; |
| SizeT i = std::min(i1, i2); |
| // i1 is the Variable number of the next MapBegin entry, and i2 is |
| // the Variable number of the next MapEnd entry. If i1==i2, then |
| // the Variable's live range begins and ends in this block. If |
| // i1<i2, then i1's live range begins at instruction IBB->second |
| // and extends through the end of the block. If i1>i2, then i2's |
| // live range begins at the first instruction of the block and |
| // ends at IEB->second. In any case, we choose the lesser of i1 |
| // and i2 and proceed accordingly. |
| InstNumberT LB = i == i1 ? IBB->second : FirstInstNum; |
| InstNumberT LE = i == i2 ? IEB->second : LastInstNum + 1; |
| |
| Variable *Var = Liveness->getVariable(i, this); |
| if (!Var->getIgnoreLiveness()) { |
| if (LB > LE) { |
| Var->addLiveRange(FirstInstNum, LE, 1); |
| Var->addLiveRange(LB, LastInstNum + 1, 1); |
| // Assert that Var is a global variable by checking that its |
| // liveness index is less than the number of globals. This |
| // ensures that the LiveInAndOut[] access is valid. |
| assert(i < Liveness->getNumGlobalVars()); |
| LiveInAndOut[i] = false; |
| } else { |
| Var->addLiveRange(LB, LE, 1); |
| } |
| } |
| if (i == i1) |
| ++IBB; |
| if (i == i2) |
| ++IEB; |
| } |
| // Process the variables that are live across the entire block. |
| for (int i = LiveInAndOut.find_first(); i != -1; |
| i = LiveInAndOut.find_next(i)) { |
| Variable *Var = Liveness->getVariable(i, this); |
| Var->addLiveRange(FirstInstNum, LastInstNum + 1, 1); |
| } |
| } |
| |
| // If this node contains only deleted instructions, and ends in an |
| // unconditional branch, contract the node by repointing all its |
| // in-edges to its successor. |
| void CfgNode::contractIfEmpty() { |
| if (InEdges.empty()) |
| return; |
| Inst *Branch = nullptr; |
| for (Inst &I : Insts) { |
| if (I.isDeleted()) |
| continue; |
| if (I.isUnconditionalBranch()) |
| Branch = &I; |
| else if (!I.isRedundantAssign()) |
| return; |
| } |
| Branch->setDeleted(); |
| assert(OutEdges.size() == 1); |
| // Repoint all this node's in-edges to this node's successor, unless |
| // this node's successor is actually itself (in which case the |
| // statement "OutEdges.front()->InEdges.push_back(Pred)" could |
| // invalidate the iterator over this->InEdges). |
| if (OutEdges.front() != this) { |
| for (CfgNode *Pred : InEdges) { |
| for (auto I = Pred->OutEdges.begin(), E = Pred->OutEdges.end(); I != E; |
| ++I) { |
| if (*I == this) { |
| *I = OutEdges.front(); |
| OutEdges.front()->InEdges.push_back(Pred); |
| } |
| } |
| for (Inst &I : Pred->getInsts()) { |
| if (!I.isDeleted()) |
| I.repointEdge(this, OutEdges.front()); |
| } |
| } |
| } |
| InEdges.clear(); |
| // Don't bother removing the single out-edge, which would also |
| // require finding the corresponding in-edge in the successor and |
| // removing it. |
| } |
| |
| void CfgNode::doBranchOpt(const CfgNode *NextNode) { |
| TargetLowering *Target = Func->getTarget(); |
| // Check every instruction for a branch optimization opportunity. |
| // It may be more efficient to iterate in reverse and stop after the |
| // first opportunity, unless there is some target lowering where we |
| // have the possibility of multiple such optimizations per block |
| // (currently not the case for x86 lowering). |
| for (Inst &I : Insts) { |
| if (!I.isDeleted()) { |
| Target->doBranchOpt(&I, NextNode); |
| } |
| } |
| } |
| |
| // ======================== Dump routines ======================== // |
| |
| namespace { |
| |
| // Helper functions for emit(). |
| |
| void emitRegisterUsage(Ostream &Str, const Cfg *Func, const CfgNode *Node, |
| bool IsLiveIn, std::vector<SizeT> &LiveRegCount) { |
| if (!ALLOW_DUMP) |
| return; |
| Liveness *Liveness = Func->getLiveness(); |
| const LivenessBV *Live; |
| if (IsLiveIn) { |
| Live = &Liveness->getLiveIn(Node); |
| Str << "\t\t\t\t# LiveIn="; |
| } else { |
| Live = &Liveness->getLiveOut(Node); |
| Str << "\t\t\t\t# LiveOut="; |
| } |
| if (!Live->empty()) { |
| std::vector<Variable *> LiveRegs; |
| for (SizeT i = 0; i < Live->size(); ++i) { |
| if ((*Live)[i]) { |
| Variable *Var = Liveness->getVariable(i, Node); |
| if (Var->hasReg()) { |
| if (IsLiveIn) |
| ++LiveRegCount[Var->getRegNum()]; |
| LiveRegs.push_back(Var); |
| } |
| } |
| } |
| // Sort the variables by regnum so they are always printed in a |
| // familiar order. |
| std::sort(LiveRegs.begin(), LiveRegs.end(), |
| [](const Variable *V1, const Variable *V2) { |
| return V1->getRegNum() < V2->getRegNum(); |
| }); |
| bool First = true; |
| for (Variable *Var : LiveRegs) { |
| if (!First) |
| Str << ","; |
| First = false; |
| Var->emit(Func); |
| } |
| } |
| Str << "\n"; |
| } |
| |
| void emitLiveRangesEnded(Ostream &Str, const Cfg *Func, const Inst *Instr, |
| std::vector<SizeT> &LiveRegCount) { |
| if (!ALLOW_DUMP) |
| return; |
| bool First = true; |
| Variable *Dest = Instr->getDest(); |
| // Normally we increment the live count for the dest register. But |
| // we shouldn't if the instruction's IsDestNonKillable flag is set, |
| // because this means that the target lowering created this |
| // instruction as a non-SSA assignment; i.e., a different, previous |
| // instruction started the dest variable's live range. |
| if (!Instr->isDestNonKillable() && Dest && Dest->hasReg()) |
| ++LiveRegCount[Dest->getRegNum()]; |
| for (SizeT I = 0; I < Instr->getSrcSize(); ++I) { |
| Operand *Src = Instr->getSrc(I); |
| SizeT NumVars = Src->getNumVars(); |
| for (SizeT J = 0; J < NumVars; ++J) { |
| const Variable *Var = Src->getVar(J); |
| bool ShouldReport = Instr->isLastUse(Var); |
| if (ShouldReport && Var->hasReg()) { |
| // Don't report end of live range until the live count reaches 0. |
| SizeT NewCount = --LiveRegCount[Var->getRegNum()]; |
| if (NewCount) |
| ShouldReport = false; |
| } |
| if (ShouldReport) { |
| if (First) |
| Str << " \t# END="; |
| else |
| Str << ","; |
| Var->emit(Func); |
| First = false; |
| } |
| } |
| } |
| } |
| |
| void updateStats(Cfg *Func, const Inst *I) { |
| if (!ALLOW_DUMP) |
| return; |
| // Update emitted instruction count, plus fill/spill count for |
| // Variable operands without a physical register. |
| if (uint32_t Count = I->getEmitInstCount()) { |
| Func->getContext()->statsUpdateEmitted(Count); |
| if (Variable *Dest = I->getDest()) { |
| if (!Dest->hasReg()) |
| Func->getContext()->statsUpdateFills(); |
| } |
| for (SizeT S = 0; S < I->getSrcSize(); ++S) { |
| if (Variable *Src = llvm::dyn_cast<Variable>(I->getSrc(S))) { |
| if (!Src->hasReg()) |
| Func->getContext()->statsUpdateSpills(); |
| } |
| } |
| } |
| } |
| |
| } // end of anonymous namespace |
| |
| void CfgNode::emit(Cfg *Func) const { |
| if (!ALLOW_DUMP) |
| return; |
| Func->setCurrentNode(this); |
| Ostream &Str = Func->getContext()->getStrEmit(); |
| Liveness *Liveness = Func->getLiveness(); |
| bool DecorateAsm = |
| Liveness && Func->getContext()->getFlags().getDecorateAsm(); |
| Str << getAsmName() << ":\n"; |
| // LiveRegCount keeps track of the number of currently live |
| // variables that each register is assigned to. Normally that would |
| // be only 0 or 1, but the register allocator's AllowOverlap |
| // inference allows it to be greater than 1 for short periods. |
| std::vector<SizeT> LiveRegCount(Func->getTarget()->getNumRegisters()); |
| if (DecorateAsm) { |
| const bool IsLiveIn = true; |
| emitRegisterUsage(Str, Func, this, IsLiveIn, LiveRegCount); |
| } |
| |
| for (const Inst &I : Phis) { |
| if (I.isDeleted()) |
| continue; |
| // Emitting a Phi instruction should cause an error. |
| I.emit(Func); |
| } |
| for (const Inst &I : Insts) { |
| if (I.isDeleted()) |
| continue; |
| if (I.isRedundantAssign()) { |
| // Usually, redundant assignments end the live range of the src |
| // variable and begin the live range of the dest variable, with |
| // no net effect on the liveness of their register. However, if |
| // the register allocator infers the AllowOverlap condition, |
| // then this may be a redundant assignment that does not end the |
| // src variable's live range, in which case the active variable |
| // count for that register needs to be bumped. That normally |
| // would have happened as part of emitLiveRangesEnded(), but |
| // that isn't called for redundant assignments. |
| Variable *Dest = I.getDest(); |
| if (DecorateAsm && Dest->hasReg() && !I.isLastUse(I.getSrc(0))) |
| ++LiveRegCount[Dest->getRegNum()]; |
| continue; |
| } |
| I.emit(Func); |
| if (DecorateAsm) |
| emitLiveRangesEnded(Str, Func, &I, LiveRegCount); |
| Str << "\n"; |
| updateStats(Func, &I); |
| } |
| if (DecorateAsm) { |
| const bool IsLiveIn = false; |
| emitRegisterUsage(Str, Func, this, IsLiveIn, LiveRegCount); |
| } |
| } |
| |
| // Helper class for emitIAS(). |
| namespace { |
| class BundleEmitHelper { |
| BundleEmitHelper() = delete; |
| BundleEmitHelper(const BundleEmitHelper &) = delete; |
| BundleEmitHelper &operator=(const BundleEmitHelper &) = delete; |
| |
| public: |
| BundleEmitHelper(Assembler *Asm, TargetLowering *Target, |
| const InstList &Insts) |
| : Asm(Asm), Target(Target), End(Insts.end()), BundleLockStart(End), |
| BundleSize(1 << Asm->getBundleAlignLog2Bytes()), |
| BundleMaskLo(BundleSize - 1), BundleMaskHi(~BundleMaskLo), |
| SizeSnapshotPre(0), SizeSnapshotPost(0) {} |
| // Check whether we're currently within a bundle_lock region. |
| bool isInBundleLockRegion() const { return BundleLockStart != End; } |
| // Check whether the current bundle_lock region has the align_to_end |
| // option. |
| bool isAlignToEnd() const { |
| assert(isInBundleLockRegion()); |
| return llvm::cast<InstBundleLock>(getBundleLockStart())->getOption() == |
| InstBundleLock::Opt_AlignToEnd; |
| } |
| // Check whether the entire bundle_lock region falls within the same |
| // bundle. |
| bool isSameBundle() const { |
| assert(isInBundleLockRegion()); |
| return SizeSnapshotPre == SizeSnapshotPost || |
| (SizeSnapshotPre & BundleMaskHi) == |
| ((SizeSnapshotPost - 1) & BundleMaskHi); |
| } |
| // Get the bundle alignment of the first instruction of the |
| // bundle_lock region. |
| intptr_t getPreAlignment() const { |
| assert(isInBundleLockRegion()); |
| return SizeSnapshotPre & BundleMaskLo; |
| } |
| // Get the bundle alignment of the first instruction past the |
| // bundle_lock region. |
| intptr_t getPostAlignment() const { |
| assert(isInBundleLockRegion()); |
| return SizeSnapshotPost & BundleMaskLo; |
| } |
| // Get the iterator pointing to the bundle_lock instruction, e.g. to |
| // roll back the instruction iteration to that point. |
| InstList::const_iterator getBundleLockStart() const { |
| assert(isInBundleLockRegion()); |
| return BundleLockStart; |
| } |
| // Set up bookkeeping when the bundle_lock instruction is first |
| // processed. |
| void enterBundleLock(InstList::const_iterator I) { |
| assert(!isInBundleLockRegion()); |
| BundleLockStart = I; |
| SizeSnapshotPre = Asm->getBufferSize(); |
| Asm->setPreliminary(true); |
| Target->snapshotEmitState(); |
| assert(isInBundleLockRegion()); |
| } |
| // Update bookkeeping when the bundle_unlock instruction is |
| // processed. |
| void enterBundleUnlock() { |
| assert(isInBundleLockRegion()); |
| SizeSnapshotPost = Asm->getBufferSize(); |
| } |
| // Update bookkeeping when we are completely finished with the |
| // bundle_lock region. |
| void leaveBundleLockRegion() { BundleLockStart = End; } |
| // Check whether the instruction sequence fits within the current |
| // bundle, and if not, add nop padding to the end of the current |
| // bundle. |
| void padToNextBundle() { |
| assert(isInBundleLockRegion()); |
| if (!isSameBundle()) { |
| intptr_t PadToNextBundle = BundleSize - getPreAlignment(); |
| Asm->padWithNop(PadToNextBundle); |
| SizeSnapshotPre += PadToNextBundle; |
| SizeSnapshotPost += PadToNextBundle; |
| assert((Asm->getBufferSize() & BundleMaskLo) == 0); |
| assert(Asm->getBufferSize() == SizeSnapshotPre); |
| } |
| } |
| // If align_to_end is specified, add padding such that the |
| // instruction sequences ends precisely at a bundle boundary. |
| void padForAlignToEnd() { |
| assert(isInBundleLockRegion()); |
| if (isAlignToEnd()) { |
| if (intptr_t Offset = getPostAlignment()) { |
| Asm->padWithNop(BundleSize - Offset); |
| SizeSnapshotPre = Asm->getBufferSize(); |
| } |
| } |
| } |
| // Update bookkeeping when rolling back for the second pass. |
| void rollback() { |
| assert(isInBundleLockRegion()); |
| Asm->setBufferSize(SizeSnapshotPre); |
| Asm->setPreliminary(false); |
| Target->rollbackEmitState(); |
| } |
| |
| private: |
| Assembler *const Asm; |
| TargetLowering *const Target; |
| // End is a sentinel value such that BundleLockStart==End implies |
| // that we are not in a bundle_lock region. |
| const InstList::const_iterator End; |
| InstList::const_iterator BundleLockStart; |
| const intptr_t BundleSize; |
| // Masking with BundleMaskLo identifies an address's bundle offset. |
| const intptr_t BundleMaskLo; |
| // Masking with BundleMaskHi identifies an address's bundle. |
| const intptr_t BundleMaskHi; |
| intptr_t SizeSnapshotPre; |
| intptr_t SizeSnapshotPost; |
| }; |
| |
| } // end of anonymous namespace |
| |
| void CfgNode::emitIAS(Cfg *Func) const { |
| Func->setCurrentNode(this); |
| Assembler *Asm = Func->getAssembler<>(); |
| // TODO(stichnot): When sandboxing, defer binding the node label |
| // until just before the first instruction is emitted, to reduce the |
| // chance that a padding nop is a branch target. |
| Asm->bindCfgNodeLabel(getIndex()); |
| for (const Inst &I : Phis) { |
| if (I.isDeleted()) |
| continue; |
| // Emitting a Phi instruction should cause an error. |
| I.emitIAS(Func); |
| } |
| |
| // Do the simple emission if not sandboxed. |
| if (!Func->getContext()->getFlags().getUseSandboxing()) { |
| for (const Inst &I : Insts) { |
| if (!I.isDeleted() && !I.isRedundantAssign()) { |
| I.emitIAS(Func); |
| updateStats(Func, &I); |
| } |
| } |
| return; |
| } |
| |
| // The remainder of the function handles emission with sandboxing. |
| // There are explicit bundle_lock regions delimited by bundle_lock |
| // and bundle_unlock instructions. All other instructions are |
| // treated as an implicit one-instruction bundle_lock region. |
| // Emission is done twice for each bundle_lock region. The first |
| // pass is a preliminary pass, after which we can figure out what |
| // nop padding is needed, then roll back, and make the final pass. |
| // |
| // Ideally, the first pass would be speculative and the second pass |
| // would only be done if nop padding were needed, but the structure |
| // of the integrated assembler makes it hard to roll back the state |
| // of label bindings, label links, and relocation fixups. Instead, |
| // the first pass just disables all mutation of that state. |
| |
| BundleEmitHelper Helper(Asm, Func->getTarget(), Insts); |
| InstList::const_iterator End = Insts.end(); |
| // Retrying indicates that we had to roll back to the bundle_lock |
| // instruction to apply padding before the bundle_lock sequence. |
| bool Retrying = false; |
| for (InstList::const_iterator I = Insts.begin(); I != End; ++I) { |
| if (I->isDeleted() || I->isRedundantAssign()) |
| continue; |
| |
| if (llvm::isa<InstBundleLock>(I)) { |
| // Set up the initial bundle_lock state. This should not happen |
| // while retrying, because the retry rolls back to the |
| // instruction following the bundle_lock instruction. |
| assert(!Retrying); |
| Helper.enterBundleLock(I); |
| continue; |
| } |
| |
| if (llvm::isa<InstBundleUnlock>(I)) { |
| Helper.enterBundleUnlock(); |
| if (Retrying) { |
| // Make sure all instructions are in the same bundle. |
| assert(Helper.isSameBundle()); |
| // If align_to_end is specified, make sure the next |
| // instruction begins the bundle. |
| assert(!Helper.isAlignToEnd() || Helper.getPostAlignment() == 0); |
| Helper.leaveBundleLockRegion(); |
| Retrying = false; |
| } else { |
| // This is the first pass, so roll back for the retry pass. |
| Helper.rollback(); |
| // Pad to the next bundle if the instruction sequence crossed |
| // a bundle boundary. |
| Helper.padToNextBundle(); |
| // Insert additional padding to make AlignToEnd work. |
| Helper.padForAlignToEnd(); |
| // Prepare for the retry pass after padding is done. |
| Retrying = true; |
| I = Helper.getBundleLockStart(); |
| } |
| continue; |
| } |
| |
| // I points to a non bundle_lock/bundle_unlock instruction. |
| if (Helper.isInBundleLockRegion()) { |
| I->emitIAS(Func); |
| // Only update stats during the final pass. |
| if (Retrying) |
| updateStats(Func, I); |
| } else { |
| // Treat it as though there were an implicit bundle_lock and |
| // bundle_unlock wrapping the instruction. |
| Helper.enterBundleLock(I); |
| I->emitIAS(Func); |
| Helper.enterBundleUnlock(); |
| Helper.rollback(); |
| Helper.padToNextBundle(); |
| I->emitIAS(Func); |
| updateStats(Func, I); |
| Helper.leaveBundleLockRegion(); |
| } |
| } |
| |
| // Don't allow bundle locking across basic blocks, to keep the |
| // backtracking mechanism simple. |
| assert(!Helper.isInBundleLockRegion()); |
| assert(!Retrying); |
| } |
| |
| void CfgNode::dump(Cfg *Func) const { |
| if (!ALLOW_DUMP) |
| return; |
| Func->setCurrentNode(this); |
| Ostream &Str = Func->getContext()->getStrDump(); |
| Liveness *Liveness = Func->getLiveness(); |
| if (Func->isVerbose(IceV_Instructions)) { |
| Str << getName() << ":\n"; |
| } |
| // Dump list of predecessor nodes. |
| if (Func->isVerbose(IceV_Preds) && !InEdges.empty()) { |
| Str << " // preds = "; |
| bool First = true; |
| for (CfgNode *I : InEdges) { |
| if (!First) |
| Str << ", "; |
| First = false; |
| Str << "%" << I->getName(); |
| } |
| Str << "\n"; |
| } |
| // Dump the live-in variables. |
| LivenessBV LiveIn; |
| if (Liveness) |
| LiveIn = Liveness->getLiveIn(this); |
| if (Func->isVerbose(IceV_Liveness) && !LiveIn.empty()) { |
| Str << " // LiveIn:"; |
| for (SizeT i = 0; i < LiveIn.size(); ++i) { |
| if (LiveIn[i]) { |
| Variable *Var = Liveness->getVariable(i, this); |
| Str << " %" << Var->getName(Func); |
| if (Func->isVerbose(IceV_RegOrigins) && Var->hasReg()) { |
| Str << ":" |
| << Func->getTarget()->getRegName(Var->getRegNum(), |
| Var->getType()); |
| } |
| } |
| } |
| Str << "\n"; |
| } |
| // Dump each instruction. |
| if (Func->isVerbose(IceV_Instructions)) { |
| for (const Inst &I : Phis) |
| I.dumpDecorated(Func); |
| for (const Inst &I : Insts) |
| I.dumpDecorated(Func); |
| } |
| // Dump the live-out variables. |
| LivenessBV LiveOut; |
| if (Liveness) |
| LiveOut = Liveness->getLiveOut(this); |
| if (Func->isVerbose(IceV_Liveness) && !LiveOut.empty()) { |
| Str << " // LiveOut:"; |
| for (SizeT i = 0; i < LiveOut.size(); ++i) { |
| if (LiveOut[i]) { |
| Variable *Var = Liveness->getVariable(i, this); |
| Str << " %" << Var->getName(Func); |
| if (Func->isVerbose(IceV_RegOrigins) && Var->hasReg()) { |
| Str << ":" |
| << Func->getTarget()->getRegName(Var->getRegNum(), |
| Var->getType()); |
| } |
| } |
| } |
| Str << "\n"; |
| } |
| // Dump list of successor nodes. |
| if (Func->isVerbose(IceV_Succs)) { |
| Str << " // succs = "; |
| bool First = true; |
| for (CfgNode *I : OutEdges) { |
| if (!First) |
| Str << ", "; |
| First = false; |
| Str << "%" << I->getName(); |
| } |
| Str << "\n"; |
| } |
| } |
| |
| void CfgNode::profileExecutionCount(VariableDeclaration *Var) { |
| constexpr char RMW_I64[] = "llvm.nacl.atomic.rmw.i64"; |
| |
| GlobalContext *Context = Func->getContext(); |
| |
| bool BadIntrinsic = false; |
| const Intrinsics::FullIntrinsicInfo *Info = |
| Context->getIntrinsicsInfo().find(RMW_I64, BadIntrinsic); |
| assert(!BadIntrinsic); |
| assert(Info != nullptr); |
| |
| Operand *RMWI64Name = Context->getConstantExternSym(RMW_I64); |
| constexpr RelocOffsetT Offset = 0; |
| constexpr bool SuppressMangling = true; |
| Constant *Counter = |
| Context->getConstantSym(Offset, Var->getName(), SuppressMangling); |
| Constant *AtomicRMWOp = Context->getConstantInt32(Intrinsics::AtomicAdd); |
| Constant *One = Context->getConstantInt64(1); |
| Constant *OrderAcquireRelease = |
| Context->getConstantInt32(Intrinsics::MemoryOrderAcquireRelease); |
| |
| InstIntrinsicCall *Inst = InstIntrinsicCall::create( |
| Func, 5, Func->makeVariable(IceType_i64), RMWI64Name, Info->Info); |
| Inst->addArg(AtomicRMWOp); |
| Inst->addArg(Counter); |
| Inst->addArg(One); |
| Inst->addArg(OrderAcquireRelease); |
| Insts.push_front(Inst); |
| } |
| |
| } // end of namespace Ice |