| //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the MapValue function, which is shared by various parts of |
| // the lib/Transforms/Utils library. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Utils/ValueMapper.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Function.h" |
| #include "llvm/InlineAsm.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Metadata.h" |
| using namespace llvm; |
| |
| // Out of line method to get vtable etc for class. |
| void ValueMapTypeRemapper::Anchor() {} |
| |
| Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags, |
| ValueMapTypeRemapper *TypeMapper) { |
| ValueToValueMapTy::iterator I = VM.find(V); |
| |
| // If the value already exists in the map, use it. |
| if (I != VM.end() && I->second) return I->second; |
| |
| // Global values do not need to be seeded into the VM if they |
| // are using the identity mapping. |
| if (isa<GlobalValue>(V) || isa<MDString>(V)) |
| return VM[V] = const_cast<Value*>(V); |
| |
| if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { |
| // Inline asm may need *type* remapping. |
| FunctionType *NewTy = IA->getFunctionType(); |
| if (TypeMapper) { |
| NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); |
| |
| if (NewTy != IA->getFunctionType()) |
| V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), |
| IA->hasSideEffects(), IA->isAlignStack()); |
| } |
| |
| return VM[V] = const_cast<Value*>(V); |
| } |
| |
| |
| if (const MDNode *MD = dyn_cast<MDNode>(V)) { |
| // If this is a module-level metadata and we know that nothing at the module |
| // level is changing, then use an identity mapping. |
| if (!MD->isFunctionLocal() && (Flags & RF_NoModuleLevelChanges)) |
| return VM[V] = const_cast<Value*>(V); |
| |
| // Create a dummy node in case we have a metadata cycle. |
| MDNode *Dummy = MDNode::getTemporary(V->getContext(), ArrayRef<Value*>()); |
| VM[V] = Dummy; |
| |
| // Check all operands to see if any need to be remapped. |
| for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) { |
| Value *OP = MD->getOperand(i); |
| if (OP == 0 || MapValue(OP, VM, Flags, TypeMapper) == OP) continue; |
| |
| // Ok, at least one operand needs remapping. |
| SmallVector<Value*, 4> Elts; |
| Elts.reserve(MD->getNumOperands()); |
| for (i = 0; i != e; ++i) { |
| Value *Op = MD->getOperand(i); |
| Elts.push_back(Op ? MapValue(Op, VM, Flags, TypeMapper) : 0); |
| } |
| MDNode *NewMD = MDNode::get(V->getContext(), Elts); |
| Dummy->replaceAllUsesWith(NewMD); |
| VM[V] = NewMD; |
| MDNode::deleteTemporary(Dummy); |
| return NewMD; |
| } |
| |
| VM[V] = const_cast<Value*>(V); |
| MDNode::deleteTemporary(Dummy); |
| |
| // No operands needed remapping. Use an identity mapping. |
| return const_cast<Value*>(V); |
| } |
| |
| // Okay, this either must be a constant (which may or may not be mappable) or |
| // is something that is not in the mapping table. |
| Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); |
| if (C == 0) |
| return 0; |
| |
| if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) { |
| Function *F = |
| cast<Function>(MapValue(BA->getFunction(), VM, Flags, TypeMapper)); |
| BasicBlock *BB = cast_or_null<BasicBlock>(MapValue(BA->getBasicBlock(), VM, |
| Flags, TypeMapper)); |
| return VM[V] = BlockAddress::get(F, BB ? BB : BA->getBasicBlock()); |
| } |
| |
| // Otherwise, we have some other constant to remap. Start by checking to see |
| // if all operands have an identity remapping. |
| unsigned OpNo = 0, NumOperands = C->getNumOperands(); |
| Value *Mapped = 0; |
| for (; OpNo != NumOperands; ++OpNo) { |
| Value *Op = C->getOperand(OpNo); |
| Mapped = MapValue(Op, VM, Flags, TypeMapper); |
| if (Mapped != C) break; |
| } |
| |
| // See if the type mapper wants to remap the type as well. |
| Type *NewTy = C->getType(); |
| if (TypeMapper) |
| NewTy = TypeMapper->remapType(NewTy); |
| |
| // If the result type and all operands match up, then just insert an identity |
| // mapping. |
| if (OpNo == NumOperands && NewTy == C->getType()) |
| return VM[V] = C; |
| |
| // Okay, we need to create a new constant. We've already processed some or |
| // all of the operands, set them all up now. |
| SmallVector<Constant*, 8> Ops; |
| Ops.reserve(NumOperands); |
| for (unsigned j = 0; j != OpNo; ++j) |
| Ops.push_back(cast<Constant>(C->getOperand(j))); |
| |
| // If one of the operands mismatch, push it and the other mapped operands. |
| if (OpNo != NumOperands) { |
| Ops.push_back(cast<Constant>(Mapped)); |
| |
| // Map the rest of the operands that aren't processed yet. |
| for (++OpNo; OpNo != NumOperands; ++OpNo) |
| Ops.push_back(MapValue(cast<Constant>(C->getOperand(OpNo)), VM, |
| Flags, TypeMapper)); |
| } |
| |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) |
| return VM[V] = CE->getWithOperands(Ops, NewTy); |
| if (isa<ConstantArray>(C)) |
| return VM[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); |
| if (isa<ConstantStruct>(C)) |
| return VM[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); |
| if (isa<ConstantVector>(C)) |
| return VM[V] = ConstantVector::get(Ops); |
| // If this is a no-operand constant, it must be because the type was remapped. |
| if (isa<UndefValue>(C)) |
| return VM[V] = UndefValue::get(NewTy); |
| if (isa<ConstantAggregateZero>(C)) |
| return VM[V] = ConstantAggregateZero::get(NewTy); |
| assert(isa<ConstantPointerNull>(C)); |
| return VM[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); |
| } |
| |
| /// RemapInstruction - Convert the instruction operands from referencing the |
| /// current values into those specified by VMap. |
| /// |
| void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VMap, |
| RemapFlags Flags, ValueMapTypeRemapper *TypeMapper){ |
| // Remap operands. |
| for (User::op_iterator op = I->op_begin(), E = I->op_end(); op != E; ++op) { |
| Value *V = MapValue(*op, VMap, Flags, TypeMapper); |
| // If we aren't ignoring missing entries, assert that something happened. |
| if (V != 0) |
| *op = V; |
| else |
| assert((Flags & RF_IgnoreMissingEntries) && |
| "Referenced value not in value map!"); |
| } |
| |
| // Remap phi nodes' incoming blocks. |
| if (PHINode *PN = dyn_cast<PHINode>(I)) { |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| Value *V = MapValue(PN->getIncomingBlock(i), VMap, Flags); |
| // If we aren't ignoring missing entries, assert that something happened. |
| if (V != 0) |
| PN->setIncomingBlock(i, cast<BasicBlock>(V)); |
| else |
| assert((Flags & RF_IgnoreMissingEntries) && |
| "Referenced block not in value map!"); |
| } |
| } |
| |
| // Remap attached metadata. |
| SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; |
| I->getAllMetadata(MDs); |
| for (SmallVectorImpl<std::pair<unsigned, MDNode *> >::iterator |
| MI = MDs.begin(), ME = MDs.end(); MI != ME; ++MI) { |
| MDNode *Old = MI->second; |
| MDNode *New = MapValue(Old, VMap, Flags, TypeMapper); |
| if (New != Old) |
| I->setMetadata(MI->first, New); |
| } |
| |
| // If the instruction's type is being remapped, do so now. |
| if (TypeMapper) |
| I->mutateType(TypeMapper->remapType(I->getType())); |
| } |