| //===- UnifyFunctionExitNodes.cpp - Make all functions have a single exit -===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass is used to ensure that functions have at most one return |
| // instruction in them. Additionally, it keeps track of which node is the new |
| // exit node of the CFG. If there are no exit nodes in the CFG, the getExitNode |
| // method will return a null pointer. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/BasicBlock.h" |
| #include "llvm/Function.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Type.h" |
| #include "llvm/ADT/StringExtras.h" |
| using namespace llvm; |
| |
| char UnifyFunctionExitNodes::ID = 0; |
| INITIALIZE_PASS(UnifyFunctionExitNodes, "mergereturn", |
| "Unify function exit nodes", false, false) |
| |
| Pass *llvm::createUnifyFunctionExitNodesPass() { |
| return new UnifyFunctionExitNodes(); |
| } |
| |
| void UnifyFunctionExitNodes::getAnalysisUsage(AnalysisUsage &AU) const{ |
| // We preserve the non-critical-edgeness property |
| AU.addPreservedID(BreakCriticalEdgesID); |
| // This is a cluster of orthogonal Transforms |
| AU.addPreserved("mem2reg"); |
| AU.addPreservedID(LowerSwitchID); |
| } |
| |
| // UnifyAllExitNodes - Unify all exit nodes of the CFG by creating a new |
| // BasicBlock, and converting all returns to unconditional branches to this |
| // new basic block. The singular exit node is returned. |
| // |
| // If there are no return stmts in the Function, a null pointer is returned. |
| // |
| bool UnifyFunctionExitNodes::runOnFunction(Function &F) { |
| // Loop over all of the blocks in a function, tracking all of the blocks that |
| // return. |
| // |
| std::vector<BasicBlock*> ReturningBlocks; |
| std::vector<BasicBlock*> UnwindingBlocks; |
| std::vector<BasicBlock*> UnreachableBlocks; |
| for(Function::iterator I = F.begin(), E = F.end(); I != E; ++I) |
| if (isa<ReturnInst>(I->getTerminator())) |
| ReturningBlocks.push_back(I); |
| else if (isa<UnwindInst>(I->getTerminator())) |
| UnwindingBlocks.push_back(I); |
| else if (isa<UnreachableInst>(I->getTerminator())) |
| UnreachableBlocks.push_back(I); |
| |
| // Handle unwinding blocks first. |
| if (UnwindingBlocks.empty()) { |
| UnwindBlock = 0; |
| } else if (UnwindingBlocks.size() == 1) { |
| UnwindBlock = UnwindingBlocks.front(); |
| } else { |
| UnwindBlock = BasicBlock::Create(F.getContext(), "UnifiedUnwindBlock", &F); |
| new UnwindInst(F.getContext(), UnwindBlock); |
| |
| for (std::vector<BasicBlock*>::iterator I = UnwindingBlocks.begin(), |
| E = UnwindingBlocks.end(); I != E; ++I) { |
| BasicBlock *BB = *I; |
| BB->getInstList().pop_back(); // Remove the unwind insn |
| BranchInst::Create(UnwindBlock, BB); |
| } |
| } |
| |
| // Then unreachable blocks. |
| if (UnreachableBlocks.empty()) { |
| UnreachableBlock = 0; |
| } else if (UnreachableBlocks.size() == 1) { |
| UnreachableBlock = UnreachableBlocks.front(); |
| } else { |
| UnreachableBlock = BasicBlock::Create(F.getContext(), |
| "UnifiedUnreachableBlock", &F); |
| new UnreachableInst(F.getContext(), UnreachableBlock); |
| |
| for (std::vector<BasicBlock*>::iterator I = UnreachableBlocks.begin(), |
| E = UnreachableBlocks.end(); I != E; ++I) { |
| BasicBlock *BB = *I; |
| BB->getInstList().pop_back(); // Remove the unreachable inst. |
| BranchInst::Create(UnreachableBlock, BB); |
| } |
| } |
| |
| // Now handle return blocks. |
| if (ReturningBlocks.empty()) { |
| ReturnBlock = 0; |
| return false; // No blocks return |
| } else if (ReturningBlocks.size() == 1) { |
| ReturnBlock = ReturningBlocks.front(); // Already has a single return block |
| return false; |
| } |
| |
| // Otherwise, we need to insert a new basic block into the function, add a PHI |
| // nodes (if the function returns values), and convert all of the return |
| // instructions into unconditional branches. |
| // |
| BasicBlock *NewRetBlock = BasicBlock::Create(F.getContext(), |
| "UnifiedReturnBlock", &F); |
| |
| PHINode *PN = 0; |
| if (F.getReturnType()->isVoidTy()) { |
| ReturnInst::Create(F.getContext(), NULL, NewRetBlock); |
| } else { |
| // If the function doesn't return void... add a PHI node to the block... |
| PN = PHINode::Create(F.getReturnType(), ReturningBlocks.size(), |
| "UnifiedRetVal"); |
| NewRetBlock->getInstList().push_back(PN); |
| ReturnInst::Create(F.getContext(), PN, NewRetBlock); |
| } |
| |
| // Loop over all of the blocks, replacing the return instruction with an |
| // unconditional branch. |
| // |
| for (std::vector<BasicBlock*>::iterator I = ReturningBlocks.begin(), |
| E = ReturningBlocks.end(); I != E; ++I) { |
| BasicBlock *BB = *I; |
| |
| // Add an incoming element to the PHI node for every return instruction that |
| // is merging into this new block... |
| if (PN) |
| PN->addIncoming(BB->getTerminator()->getOperand(0), BB); |
| |
| BB->getInstList().pop_back(); // Remove the return insn |
| BranchInst::Create(NewRetBlock, BB); |
| } |
| ReturnBlock = NewRetBlock; |
| return true; |
| } |