| //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Peephole optimize the CFG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "simplifycfg" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/IntrinsicInst.h" |
| #include "llvm/Type.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ConstantRange.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/IRBuilder.h" |
| #include "llvm/Support/NoFolder.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <set> |
| #include <map> |
| using namespace llvm; |
| |
| static cl::opt<unsigned> |
| PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1), |
| cl::desc("Control the amount of phi node folding to perform (default = 1)")); |
| |
| static cl::opt<bool> |
| DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false), |
| cl::desc("Duplicate return instructions into unconditional branches")); |
| |
| STATISTIC(NumSpeculations, "Number of speculative executed instructions"); |
| |
| namespace { |
| class SimplifyCFGOpt { |
| const TargetData *const TD; |
| |
| Value *isValueEqualityComparison(TerminatorInst *TI); |
| BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI, |
| std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases); |
| bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, |
| BasicBlock *Pred, |
| IRBuilder<> &Builder); |
| bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, |
| IRBuilder<> &Builder); |
| |
| bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); |
| bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); |
| bool SimplifyUnwind(UnwindInst *UI, IRBuilder<> &Builder); |
| bool SimplifyUnreachable(UnreachableInst *UI); |
| bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); |
| bool SimplifyIndirectBr(IndirectBrInst *IBI); |
| bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder); |
| bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder); |
| |
| public: |
| explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {} |
| bool run(BasicBlock *BB); |
| }; |
| } |
| |
| /// SafeToMergeTerminators - Return true if it is safe to merge these two |
| /// terminator instructions together. |
| /// |
| static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { |
| if (SI1 == SI2) return false; // Can't merge with self! |
| |
| // It is not safe to merge these two switch instructions if they have a common |
| // successor, and if that successor has a PHI node, and if *that* PHI node has |
| // conflicting incoming values from the two switch blocks. |
| BasicBlock *SI1BB = SI1->getParent(); |
| BasicBlock *SI2BB = SI2->getParent(); |
| SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); |
| |
| for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) |
| if (SI1Succs.count(*I)) |
| for (BasicBlock::iterator BBI = (*I)->begin(); |
| isa<PHINode>(BBI); ++BBI) { |
| PHINode *PN = cast<PHINode>(BBI); |
| if (PN->getIncomingValueForBlock(SI1BB) != |
| PN->getIncomingValueForBlock(SI2BB)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will |
| /// now be entries in it from the 'NewPred' block. The values that will be |
| /// flowing into the PHI nodes will be the same as those coming in from |
| /// ExistPred, an existing predecessor of Succ. |
| static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, |
| BasicBlock *ExistPred) { |
| if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do |
| |
| PHINode *PN; |
| for (BasicBlock::iterator I = Succ->begin(); |
| (PN = dyn_cast<PHINode>(I)); ++I) |
| PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); |
| } |
| |
| |
| /// GetIfCondition - Given a basic block (BB) with two predecessors (and at |
| /// least one PHI node in it), check to see if the merge at this block is due |
| /// to an "if condition". If so, return the boolean condition that determines |
| /// which entry into BB will be taken. Also, return by references the block |
| /// that will be entered from if the condition is true, and the block that will |
| /// be entered if the condition is false. |
| /// |
| /// This does no checking to see if the true/false blocks have large or unsavory |
| /// instructions in them. |
| static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, |
| BasicBlock *&IfFalse) { |
| PHINode *SomePHI = cast<PHINode>(BB->begin()); |
| assert(SomePHI->getNumIncomingValues() == 2 && |
| "Function can only handle blocks with 2 predecessors!"); |
| BasicBlock *Pred1 = SomePHI->getIncomingBlock(0); |
| BasicBlock *Pred2 = SomePHI->getIncomingBlock(1); |
| |
| // We can only handle branches. Other control flow will be lowered to |
| // branches if possible anyway. |
| BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); |
| BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); |
| if (Pred1Br == 0 || Pred2Br == 0) |
| return 0; |
| |
| // Eliminate code duplication by ensuring that Pred1Br is conditional if |
| // either are. |
| if (Pred2Br->isConditional()) { |
| // If both branches are conditional, we don't have an "if statement". In |
| // reality, we could transform this case, but since the condition will be |
| // required anyway, we stand no chance of eliminating it, so the xform is |
| // probably not profitable. |
| if (Pred1Br->isConditional()) |
| return 0; |
| |
| std::swap(Pred1, Pred2); |
| std::swap(Pred1Br, Pred2Br); |
| } |
| |
| if (Pred1Br->isConditional()) { |
| // The only thing we have to watch out for here is to make sure that Pred2 |
| // doesn't have incoming edges from other blocks. If it does, the condition |
| // doesn't dominate BB. |
| if (Pred2->getSinglePredecessor() == 0) |
| return 0; |
| |
| // If we found a conditional branch predecessor, make sure that it branches |
| // to BB and Pred2Br. If it doesn't, this isn't an "if statement". |
| if (Pred1Br->getSuccessor(0) == BB && |
| Pred1Br->getSuccessor(1) == Pred2) { |
| IfTrue = Pred1; |
| IfFalse = Pred2; |
| } else if (Pred1Br->getSuccessor(0) == Pred2 && |
| Pred1Br->getSuccessor(1) == BB) { |
| IfTrue = Pred2; |
| IfFalse = Pred1; |
| } else { |
| // We know that one arm of the conditional goes to BB, so the other must |
| // go somewhere unrelated, and this must not be an "if statement". |
| return 0; |
| } |
| |
| return Pred1Br->getCondition(); |
| } |
| |
| // Ok, if we got here, both predecessors end with an unconditional branch to |
| // BB. Don't panic! If both blocks only have a single (identical) |
| // predecessor, and THAT is a conditional branch, then we're all ok! |
| BasicBlock *CommonPred = Pred1->getSinglePredecessor(); |
| if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor()) |
| return 0; |
| |
| // Otherwise, if this is a conditional branch, then we can use it! |
| BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); |
| if (BI == 0) return 0; |
| |
| assert(BI->isConditional() && "Two successors but not conditional?"); |
| if (BI->getSuccessor(0) == Pred1) { |
| IfTrue = Pred1; |
| IfFalse = Pred2; |
| } else { |
| IfTrue = Pred2; |
| IfFalse = Pred1; |
| } |
| return BI->getCondition(); |
| } |
| |
| /// DominatesMergePoint - If we have a merge point of an "if condition" as |
| /// accepted above, return true if the specified value dominates the block. We |
| /// don't handle the true generality of domination here, just a special case |
| /// which works well enough for us. |
| /// |
| /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to |
| /// see if V (which must be an instruction) and its recursive operands |
| /// that do not dominate BB have a combined cost lower than CostRemaining and |
| /// are non-trapping. If both are true, the instruction is inserted into the |
| /// set and true is returned. |
| /// |
| /// The cost for most non-trapping instructions is defined as 1 except for |
| /// Select whose cost is 2. |
| /// |
| /// After this function returns, CostRemaining is decreased by the cost of |
| /// V plus its non-dominating operands. If that cost is greater than |
| /// CostRemaining, false is returned and CostRemaining is undefined. |
| static bool DominatesMergePoint(Value *V, BasicBlock *BB, |
| SmallPtrSet<Instruction*, 4> *AggressiveInsts, |
| unsigned &CostRemaining) { |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (!I) { |
| // Non-instructions all dominate instructions, but not all constantexprs |
| // can be executed unconditionally. |
| if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) |
| if (C->canTrap()) |
| return false; |
| return true; |
| } |
| BasicBlock *PBB = I->getParent(); |
| |
| // We don't want to allow weird loops that might have the "if condition" in |
| // the bottom of this block. |
| if (PBB == BB) return false; |
| |
| // If this instruction is defined in a block that contains an unconditional |
| // branch to BB, then it must be in the 'conditional' part of the "if |
| // statement". If not, it definitely dominates the region. |
| BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); |
| if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB) |
| return true; |
| |
| // If we aren't allowing aggressive promotion anymore, then don't consider |
| // instructions in the 'if region'. |
| if (AggressiveInsts == 0) return false; |
| |
| // If we have seen this instruction before, don't count it again. |
| if (AggressiveInsts->count(I)) return true; |
| |
| // Okay, it looks like the instruction IS in the "condition". Check to |
| // see if it's a cheap instruction to unconditionally compute, and if it |
| // only uses stuff defined outside of the condition. If so, hoist it out. |
| if (!I->isSafeToSpeculativelyExecute()) |
| return false; |
| |
| unsigned Cost = 0; |
| |
| switch (I->getOpcode()) { |
| default: return false; // Cannot hoist this out safely. |
| case Instruction::Load: |
| // We have to check to make sure there are no instructions before the |
| // load in its basic block, as we are going to hoist the load out to its |
| // predecessor. |
| if (PBB->getFirstNonPHIOrDbg() != I) |
| return false; |
| Cost = 1; |
| break; |
| case Instruction::GetElementPtr: |
| // GEPs are cheap if all indices are constant. |
| if (!cast<GetElementPtrInst>(I)->hasAllConstantIndices()) |
| return false; |
| Cost = 1; |
| break; |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| case Instruction::Shl: |
| case Instruction::LShr: |
| case Instruction::AShr: |
| case Instruction::ICmp: |
| case Instruction::Trunc: |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| Cost = 1; |
| break; // These are all cheap and non-trapping instructions. |
| |
| case Instruction::Select: |
| Cost = 2; |
| break; |
| } |
| |
| if (Cost > CostRemaining) |
| return false; |
| |
| CostRemaining -= Cost; |
| |
| // Okay, we can only really hoist these out if their operands do |
| // not take us over the cost threshold. |
| for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) |
| if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining)) |
| return false; |
| // Okay, it's safe to do this! Remember this instruction. |
| AggressiveInsts->insert(I); |
| return true; |
| } |
| |
| /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr |
| /// and PointerNullValue. Return NULL if value is not a constant int. |
| static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) { |
| // Normal constant int. |
| ConstantInt *CI = dyn_cast<ConstantInt>(V); |
| if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy()) |
| return CI; |
| |
| // This is some kind of pointer constant. Turn it into a pointer-sized |
| // ConstantInt if possible. |
| IntegerType *PtrTy = TD->getIntPtrType(V->getContext()); |
| |
| // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). |
| if (isa<ConstantPointerNull>(V)) |
| return ConstantInt::get(PtrTy, 0); |
| |
| // IntToPtr const int. |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) |
| if (CE->getOpcode() == Instruction::IntToPtr) |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { |
| // The constant is very likely to have the right type already. |
| if (CI->getType() == PtrTy) |
| return CI; |
| else |
| return cast<ConstantInt> |
| (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); |
| } |
| return 0; |
| } |
| |
| /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together |
| /// collection of icmp eq/ne instructions that compare a value against a |
| /// constant, return the value being compared, and stick the constant into the |
| /// Values vector. |
| static Value * |
| GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra, |
| const TargetData *TD, bool isEQ, unsigned &UsedICmps) { |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (I == 0) return 0; |
| |
| // If this is an icmp against a constant, handle this as one of the cases. |
| if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { |
| if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) { |
| if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) { |
| UsedICmps++; |
| Vals.push_back(C); |
| return I->getOperand(0); |
| } |
| |
| // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to |
| // the set. |
| ConstantRange Span = |
| ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue()); |
| |
| // If this is an and/!= check then we want to optimize "x ugt 2" into |
| // x != 0 && x != 1. |
| if (!isEQ) |
| Span = Span.inverse(); |
| |
| // If there are a ton of values, we don't want to make a ginormous switch. |
| if (Span.getSetSize().ugt(8) || Span.isEmptySet() || |
| // We don't handle wrapped sets yet. |
| Span.isWrappedSet()) |
| return 0; |
| |
| for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) |
| Vals.push_back(ConstantInt::get(V->getContext(), Tmp)); |
| UsedICmps++; |
| return I->getOperand(0); |
| } |
| return 0; |
| } |
| |
| // Otherwise, we can only handle an | or &, depending on isEQ. |
| if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And)) |
| return 0; |
| |
| unsigned NumValsBeforeLHS = Vals.size(); |
| unsigned UsedICmpsBeforeLHS = UsedICmps; |
| if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD, |
| isEQ, UsedICmps)) { |
| unsigned NumVals = Vals.size(); |
| unsigned UsedICmpsBeforeRHS = UsedICmps; |
| if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD, |
| isEQ, UsedICmps)) { |
| if (LHS == RHS) |
| return LHS; |
| Vals.resize(NumVals); |
| UsedICmps = UsedICmpsBeforeRHS; |
| } |
| |
| // The RHS of the or/and can't be folded in and we haven't used "Extra" yet, |
| // set it and return success. |
| if (Extra == 0 || Extra == I->getOperand(1)) { |
| Extra = I->getOperand(1); |
| return LHS; |
| } |
| |
| Vals.resize(NumValsBeforeLHS); |
| UsedICmps = UsedICmpsBeforeLHS; |
| return 0; |
| } |
| |
| // If the LHS can't be folded in, but Extra is available and RHS can, try to |
| // use LHS as Extra. |
| if (Extra == 0 || Extra == I->getOperand(0)) { |
| Value *OldExtra = Extra; |
| Extra = I->getOperand(0); |
| if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD, |
| isEQ, UsedICmps)) |
| return RHS; |
| assert(Vals.size() == NumValsBeforeLHS); |
| Extra = OldExtra; |
| } |
| |
| return 0; |
| } |
| |
| static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { |
| Instruction* Cond = 0; |
| if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { |
| Cond = dyn_cast<Instruction>(SI->getCondition()); |
| } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { |
| if (BI->isConditional()) |
| Cond = dyn_cast<Instruction>(BI->getCondition()); |
| } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { |
| Cond = dyn_cast<Instruction>(IBI->getAddress()); |
| } |
| |
| TI->eraseFromParent(); |
| if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond); |
| } |
| |
| /// isValueEqualityComparison - Return true if the specified terminator checks |
| /// to see if a value is equal to constant integer value. |
| Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { |
| Value *CV = 0; |
| if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { |
| // Do not permit merging of large switch instructions into their |
| // predecessors unless there is only one predecessor. |
| if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()), |
| pred_end(SI->getParent())) <= 128) |
| CV = SI->getCondition(); |
| } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) |
| if (BI->isConditional() && BI->getCondition()->hasOneUse()) |
| if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) |
| if ((ICI->getPredicate() == ICmpInst::ICMP_EQ || |
| ICI->getPredicate() == ICmpInst::ICMP_NE) && |
| GetConstantInt(ICI->getOperand(1), TD)) |
| CV = ICI->getOperand(0); |
| |
| // Unwrap any lossless ptrtoint cast. |
| if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext())) |
| if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) |
| CV = PTII->getOperand(0); |
| return CV; |
| } |
| |
| /// GetValueEqualityComparisonCases - Given a value comparison instruction, |
| /// decode all of the 'cases' that it represents and return the 'default' block. |
| BasicBlock *SimplifyCFGOpt:: |
| GetValueEqualityComparisonCases(TerminatorInst *TI, |
| std::vector<std::pair<ConstantInt*, |
| BasicBlock*> > &Cases) { |
| if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { |
| Cases.reserve(SI->getNumCases()); |
| for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) |
| Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i))); |
| return SI->getDefaultDest(); |
| } |
| |
| BranchInst *BI = cast<BranchInst>(TI); |
| ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); |
| Cases.push_back(std::make_pair(GetConstantInt(ICI->getOperand(1), TD), |
| BI->getSuccessor(ICI->getPredicate() == |
| ICmpInst::ICMP_NE))); |
| return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); |
| } |
| |
| |
| /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries |
| /// in the list that match the specified block. |
| static void EliminateBlockCases(BasicBlock *BB, |
| std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) { |
| for (unsigned i = 0, e = Cases.size(); i != e; ++i) |
| if (Cases[i].second == BB) { |
| Cases.erase(Cases.begin()+i); |
| --i; --e; |
| } |
| } |
| |
| /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as |
| /// well. |
| static bool |
| ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1, |
| std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) { |
| std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2; |
| |
| // Make V1 be smaller than V2. |
| if (V1->size() > V2->size()) |
| std::swap(V1, V2); |
| |
| if (V1->size() == 0) return false; |
| if (V1->size() == 1) { |
| // Just scan V2. |
| ConstantInt *TheVal = (*V1)[0].first; |
| for (unsigned i = 0, e = V2->size(); i != e; ++i) |
| if (TheVal == (*V2)[i].first) |
| return true; |
| } |
| |
| // Otherwise, just sort both lists and compare element by element. |
| array_pod_sort(V1->begin(), V1->end()); |
| array_pod_sort(V2->begin(), V2->end()); |
| unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); |
| while (i1 != e1 && i2 != e2) { |
| if ((*V1)[i1].first == (*V2)[i2].first) |
| return true; |
| if ((*V1)[i1].first < (*V2)[i2].first) |
| ++i1; |
| else |
| ++i2; |
| } |
| return false; |
| } |
| |
| /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a |
| /// terminator instruction and its block is known to only have a single |
| /// predecessor block, check to see if that predecessor is also a value |
| /// comparison with the same value, and if that comparison determines the |
| /// outcome of this comparison. If so, simplify TI. This does a very limited |
| /// form of jump threading. |
| bool SimplifyCFGOpt:: |
| SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, |
| BasicBlock *Pred, |
| IRBuilder<> &Builder) { |
| Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); |
| if (!PredVal) return false; // Not a value comparison in predecessor. |
| |
| Value *ThisVal = isValueEqualityComparison(TI); |
| assert(ThisVal && "This isn't a value comparison!!"); |
| if (ThisVal != PredVal) return false; // Different predicates. |
| |
| // Find out information about when control will move from Pred to TI's block. |
| std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases; |
| BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(), |
| PredCases); |
| EliminateBlockCases(PredDef, PredCases); // Remove default from cases. |
| |
| // Find information about how control leaves this block. |
| std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases; |
| BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); |
| EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. |
| |
| // If TI's block is the default block from Pred's comparison, potentially |
| // simplify TI based on this knowledge. |
| if (PredDef == TI->getParent()) { |
| // If we are here, we know that the value is none of those cases listed in |
| // PredCases. If there are any cases in ThisCases that are in PredCases, we |
| // can simplify TI. |
| if (!ValuesOverlap(PredCases, ThisCases)) |
| return false; |
| |
| if (isa<BranchInst>(TI)) { |
| // Okay, one of the successors of this condbr is dead. Convert it to a |
| // uncond br. |
| assert(ThisCases.size() == 1 && "Branch can only have one case!"); |
| // Insert the new branch. |
| Instruction *NI = Builder.CreateBr(ThisDef); |
| (void) NI; |
| |
| // Remove PHI node entries for the dead edge. |
| ThisCases[0].second->removePredecessor(TI->getParent()); |
| |
| DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() |
| << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); |
| |
| EraseTerminatorInstAndDCECond(TI); |
| return true; |
| } |
| |
| SwitchInst *SI = cast<SwitchInst>(TI); |
| // Okay, TI has cases that are statically dead, prune them away. |
| SmallPtrSet<Constant*, 16> DeadCases; |
| for (unsigned i = 0, e = PredCases.size(); i != e; ++i) |
| DeadCases.insert(PredCases[i].first); |
| |
| DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() |
| << "Through successor TI: " << *TI); |
| |
| for (unsigned i = SI->getNumCases()-1; i != 0; --i) |
| if (DeadCases.count(SI->getCaseValue(i))) { |
| SI->getSuccessor(i)->removePredecessor(TI->getParent()); |
| SI->removeCase(i); |
| } |
| |
| DEBUG(dbgs() << "Leaving: " << *TI << "\n"); |
| return true; |
| } |
| |
| // Otherwise, TI's block must correspond to some matched value. Find out |
| // which value (or set of values) this is. |
| ConstantInt *TIV = 0; |
| BasicBlock *TIBB = TI->getParent(); |
| for (unsigned i = 0, e = PredCases.size(); i != e; ++i) |
| if (PredCases[i].second == TIBB) { |
| if (TIV != 0) |
| return false; // Cannot handle multiple values coming to this block. |
| TIV = PredCases[i].first; |
| } |
| assert(TIV && "No edge from pred to succ?"); |
| |
| // Okay, we found the one constant that our value can be if we get into TI's |
| // BB. Find out which successor will unconditionally be branched to. |
| BasicBlock *TheRealDest = 0; |
| for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) |
| if (ThisCases[i].first == TIV) { |
| TheRealDest = ThisCases[i].second; |
| break; |
| } |
| |
| // If not handled by any explicit cases, it is handled by the default case. |
| if (TheRealDest == 0) TheRealDest = ThisDef; |
| |
| // Remove PHI node entries for dead edges. |
| BasicBlock *CheckEdge = TheRealDest; |
| for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI) |
| if (*SI != CheckEdge) |
| (*SI)->removePredecessor(TIBB); |
| else |
| CheckEdge = 0; |
| |
| // Insert the new branch. |
| Instruction *NI = Builder.CreateBr(TheRealDest); |
| (void) NI; |
| |
| DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() |
| << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); |
| |
| EraseTerminatorInstAndDCECond(TI); |
| return true; |
| } |
| |
| namespace { |
| /// ConstantIntOrdering - This class implements a stable ordering of constant |
| /// integers that does not depend on their address. This is important for |
| /// applications that sort ConstantInt's to ensure uniqueness. |
| struct ConstantIntOrdering { |
| bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { |
| return LHS->getValue().ult(RHS->getValue()); |
| } |
| }; |
| } |
| |
| static int ConstantIntSortPredicate(const void *P1, const void *P2) { |
| const ConstantInt *LHS = *(const ConstantInt**)P1; |
| const ConstantInt *RHS = *(const ConstantInt**)P2; |
| if (LHS->getValue().ult(RHS->getValue())) |
| return 1; |
| if (LHS->getValue() == RHS->getValue()) |
| return 0; |
| return -1; |
| } |
| |
| /// FoldValueComparisonIntoPredecessors - The specified terminator is a value |
| /// equality comparison instruction (either a switch or a branch on "X == c"). |
| /// See if any of the predecessors of the terminator block are value comparisons |
| /// on the same value. If so, and if safe to do so, fold them together. |
| bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, |
| IRBuilder<> &Builder) { |
| BasicBlock *BB = TI->getParent(); |
| Value *CV = isValueEqualityComparison(TI); // CondVal |
| assert(CV && "Not a comparison?"); |
| bool Changed = false; |
| |
| SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); |
| while (!Preds.empty()) { |
| BasicBlock *Pred = Preds.pop_back_val(); |
| |
| // See if the predecessor is a comparison with the same value. |
| TerminatorInst *PTI = Pred->getTerminator(); |
| Value *PCV = isValueEqualityComparison(PTI); // PredCondVal |
| |
| if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { |
| // Figure out which 'cases' to copy from SI to PSI. |
| std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases; |
| BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); |
| |
| std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases; |
| BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); |
| |
| // Based on whether the default edge from PTI goes to BB or not, fill in |
| // PredCases and PredDefault with the new switch cases we would like to |
| // build. |
| SmallVector<BasicBlock*, 8> NewSuccessors; |
| |
| if (PredDefault == BB) { |
| // If this is the default destination from PTI, only the edges in TI |
| // that don't occur in PTI, or that branch to BB will be activated. |
| std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; |
| for (unsigned i = 0, e = PredCases.size(); i != e; ++i) |
| if (PredCases[i].second != BB) |
| PTIHandled.insert(PredCases[i].first); |
| else { |
| // The default destination is BB, we don't need explicit targets. |
| std::swap(PredCases[i], PredCases.back()); |
| PredCases.pop_back(); |
| --i; --e; |
| } |
| |
| // Reconstruct the new switch statement we will be building. |
| if (PredDefault != BBDefault) { |
| PredDefault->removePredecessor(Pred); |
| PredDefault = BBDefault; |
| NewSuccessors.push_back(BBDefault); |
| } |
| for (unsigned i = 0, e = BBCases.size(); i != e; ++i) |
| if (!PTIHandled.count(BBCases[i].first) && |
| BBCases[i].second != BBDefault) { |
| PredCases.push_back(BBCases[i]); |
| NewSuccessors.push_back(BBCases[i].second); |
| } |
| |
| } else { |
| // If this is not the default destination from PSI, only the edges |
| // in SI that occur in PSI with a destination of BB will be |
| // activated. |
| std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; |
| for (unsigned i = 0, e = PredCases.size(); i != e; ++i) |
| if (PredCases[i].second == BB) { |
| PTIHandled.insert(PredCases[i].first); |
| std::swap(PredCases[i], PredCases.back()); |
| PredCases.pop_back(); |
| --i; --e; |
| } |
| |
| // Okay, now we know which constants were sent to BB from the |
| // predecessor. Figure out where they will all go now. |
| for (unsigned i = 0, e = BBCases.size(); i != e; ++i) |
| if (PTIHandled.count(BBCases[i].first)) { |
| // If this is one we are capable of getting... |
| PredCases.push_back(BBCases[i]); |
| NewSuccessors.push_back(BBCases[i].second); |
| PTIHandled.erase(BBCases[i].first);// This constant is taken care of |
| } |
| |
| // If there are any constants vectored to BB that TI doesn't handle, |
| // they must go to the default destination of TI. |
| for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = |
| PTIHandled.begin(), |
| E = PTIHandled.end(); I != E; ++I) { |
| PredCases.push_back(std::make_pair(*I, BBDefault)); |
| NewSuccessors.push_back(BBDefault); |
| } |
| } |
| |
| // Okay, at this point, we know which new successor Pred will get. Make |
| // sure we update the number of entries in the PHI nodes for these |
| // successors. |
| for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i) |
| AddPredecessorToBlock(NewSuccessors[i], Pred, BB); |
| |
| Builder.SetInsertPoint(PTI); |
| // Convert pointer to int before we switch. |
| if (CV->getType()->isPointerTy()) { |
| assert(TD && "Cannot switch on pointer without TargetData"); |
| CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()), |
| "magicptr"); |
| } |
| |
| // Now that the successors are updated, create the new Switch instruction. |
| SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, |
| PredCases.size()); |
| NewSI->setDebugLoc(PTI->getDebugLoc()); |
| for (unsigned i = 0, e = PredCases.size(); i != e; ++i) |
| NewSI->addCase(PredCases[i].first, PredCases[i].second); |
| |
| EraseTerminatorInstAndDCECond(PTI); |
| |
| // Okay, last check. If BB is still a successor of PSI, then we must |
| // have an infinite loop case. If so, add an infinitely looping block |
| // to handle the case to preserve the behavior of the code. |
| BasicBlock *InfLoopBlock = 0; |
| for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) |
| if (NewSI->getSuccessor(i) == BB) { |
| if (InfLoopBlock == 0) { |
| // Insert it at the end of the function, because it's either code, |
| // or it won't matter if it's hot. :) |
| InfLoopBlock = BasicBlock::Create(BB->getContext(), |
| "infloop", BB->getParent()); |
| BranchInst::Create(InfLoopBlock, InfLoopBlock); |
| } |
| NewSI->setSuccessor(i, InfLoopBlock); |
| } |
| |
| Changed = true; |
| } |
| } |
| return Changed; |
| } |
| |
| // isSafeToHoistInvoke - If we would need to insert a select that uses the |
| // value of this invoke (comments in HoistThenElseCodeToIf explain why we |
| // would need to do this), we can't hoist the invoke, as there is nowhere |
| // to put the select in this case. |
| static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, |
| Instruction *I1, Instruction *I2) { |
| for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { |
| PHINode *PN; |
| for (BasicBlock::iterator BBI = SI->begin(); |
| (PN = dyn_cast<PHINode>(BBI)); ++BBI) { |
| Value *BB1V = PN->getIncomingValueForBlock(BB1); |
| Value *BB2V = PN->getIncomingValueForBlock(BB2); |
| if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) { |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and |
| /// BB2, hoist any common code in the two blocks up into the branch block. The |
| /// caller of this function guarantees that BI's block dominates BB1 and BB2. |
| static bool HoistThenElseCodeToIf(BranchInst *BI) { |
| // This does very trivial matching, with limited scanning, to find identical |
| // instructions in the two blocks. In particular, we don't want to get into |
| // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As |
| // such, we currently just scan for obviously identical instructions in an |
| // identical order. |
| BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. |
| BasicBlock *BB2 = BI->getSuccessor(1); // The false destination |
| |
| BasicBlock::iterator BB1_Itr = BB1->begin(); |
| BasicBlock::iterator BB2_Itr = BB2->begin(); |
| |
| Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++; |
| // Skip debug info if it is not identical. |
| DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); |
| DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); |
| if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { |
| while (isa<DbgInfoIntrinsic>(I1)) |
| I1 = BB1_Itr++; |
| while (isa<DbgInfoIntrinsic>(I2)) |
| I2 = BB2_Itr++; |
| } |
| if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || |
| (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) |
| return false; |
| |
| // If we get here, we can hoist at least one instruction. |
| BasicBlock *BIParent = BI->getParent(); |
| |
| do { |
| // If we are hoisting the terminator instruction, don't move one (making a |
| // broken BB), instead clone it, and remove BI. |
| if (isa<TerminatorInst>(I1)) |
| goto HoistTerminator; |
| |
| // For a normal instruction, we just move one to right before the branch, |
| // then replace all uses of the other with the first. Finally, we remove |
| // the now redundant second instruction. |
| BIParent->getInstList().splice(BI, BB1->getInstList(), I1); |
| if (!I2->use_empty()) |
| I2->replaceAllUsesWith(I1); |
| I1->intersectOptionalDataWith(I2); |
| I2->eraseFromParent(); |
| |
| I1 = BB1_Itr++; |
| I2 = BB2_Itr++; |
| // Skip debug info if it is not identical. |
| DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); |
| DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); |
| if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { |
| while (isa<DbgInfoIntrinsic>(I1)) |
| I1 = BB1_Itr++; |
| while (isa<DbgInfoIntrinsic>(I2)) |
| I2 = BB2_Itr++; |
| } |
| } while (I1->isIdenticalToWhenDefined(I2)); |
| |
| return true; |
| |
| HoistTerminator: |
| // It may not be possible to hoist an invoke. |
| if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) |
| return true; |
| |
| // Okay, it is safe to hoist the terminator. |
| Instruction *NT = I1->clone(); |
| BIParent->getInstList().insert(BI, NT); |
| if (!NT->getType()->isVoidTy()) { |
| I1->replaceAllUsesWith(NT); |
| I2->replaceAllUsesWith(NT); |
| NT->takeName(I1); |
| } |
| |
| IRBuilder<true, NoFolder> Builder(NT); |
| // Hoisting one of the terminators from our successor is a great thing. |
| // Unfortunately, the successors of the if/else blocks may have PHI nodes in |
| // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI |
| // nodes, so we insert select instruction to compute the final result. |
| std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects; |
| for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { |
| PHINode *PN; |
| for (BasicBlock::iterator BBI = SI->begin(); |
| (PN = dyn_cast<PHINode>(BBI)); ++BBI) { |
| Value *BB1V = PN->getIncomingValueForBlock(BB1); |
| Value *BB2V = PN->getIncomingValueForBlock(BB2); |
| if (BB1V == BB2V) continue; |
| |
| // These values do not agree. Insert a select instruction before NT |
| // that determines the right value. |
| SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; |
| if (SI == 0) |
| SI = cast<SelectInst> |
| (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, |
| BB1V->getName()+"."+BB2V->getName())); |
| |
| // Make the PHI node use the select for all incoming values for BB1/BB2 |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) |
| PN->setIncomingValue(i, SI); |
| } |
| } |
| |
| // Update any PHI nodes in our new successors. |
| for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) |
| AddPredecessorToBlock(*SI, BIParent, BB1); |
| |
| EraseTerminatorInstAndDCECond(BI); |
| return true; |
| } |
| |
| /// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1 |
| /// and an BB2 and the only successor of BB1 is BB2, hoist simple code |
| /// (for now, restricted to a single instruction that's side effect free) from |
| /// the BB1 into the branch block to speculatively execute it. |
| static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) { |
| // Only speculatively execution a single instruction (not counting the |
| // terminator) for now. |
| Instruction *HInst = NULL; |
| Instruction *Term = BB1->getTerminator(); |
| for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end(); |
| BBI != BBE; ++BBI) { |
| Instruction *I = BBI; |
| // Skip debug info. |
| if (isa<DbgInfoIntrinsic>(I)) continue; |
| if (I == Term) break; |
| |
| if (HInst) |
| return false; |
| HInst = I; |
| } |
| if (!HInst) |
| return false; |
| |
| // Be conservative for now. FP select instruction can often be expensive. |
| Value *BrCond = BI->getCondition(); |
| if (isa<FCmpInst>(BrCond)) |
| return false; |
| |
| // If BB1 is actually on the false edge of the conditional branch, remember |
| // to swap the select operands later. |
| bool Invert = false; |
| if (BB1 != BI->getSuccessor(0)) { |
| assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?"); |
| Invert = true; |
| } |
| |
| // Turn |
| // BB: |
| // %t1 = icmp |
| // br i1 %t1, label %BB1, label %BB2 |
| // BB1: |
| // %t3 = add %t2, c |
| // br label BB2 |
| // BB2: |
| // => |
| // BB: |
| // %t1 = icmp |
| // %t4 = add %t2, c |
| // %t3 = select i1 %t1, %t2, %t3 |
| switch (HInst->getOpcode()) { |
| default: return false; // Not safe / profitable to hoist. |
| case Instruction::Add: |
| case Instruction::Sub: |
| // Not worth doing for vector ops. |
| if (HInst->getType()->isVectorTy()) |
| return false; |
| break; |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| case Instruction::Shl: |
| case Instruction::LShr: |
| case Instruction::AShr: |
| // Don't mess with vector operations. |
| if (HInst->getType()->isVectorTy()) |
| return false; |
| break; // These are all cheap and non-trapping instructions. |
| } |
| |
| // If the instruction is obviously dead, don't try to predicate it. |
| if (HInst->use_empty()) { |
| HInst->eraseFromParent(); |
| return true; |
| } |
| |
| // Can we speculatively execute the instruction? And what is the value |
| // if the condition is false? Consider the phi uses, if the incoming value |
| // from the "if" block are all the same V, then V is the value of the |
| // select if the condition is false. |
| BasicBlock *BIParent = BI->getParent(); |
| SmallVector<PHINode*, 4> PHIUses; |
| Value *FalseV = NULL; |
| |
| BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0); |
| for (Value::use_iterator UI = HInst->use_begin(), E = HInst->use_end(); |
| UI != E; ++UI) { |
| // Ignore any user that is not a PHI node in BB2. These can only occur in |
| // unreachable blocks, because they would not be dominated by the instr. |
| PHINode *PN = dyn_cast<PHINode>(*UI); |
| if (!PN || PN->getParent() != BB2) |
| return false; |
| PHIUses.push_back(PN); |
| |
| Value *PHIV = PN->getIncomingValueForBlock(BIParent); |
| if (!FalseV) |
| FalseV = PHIV; |
| else if (FalseV != PHIV) |
| return false; // Inconsistent value when condition is false. |
| } |
| |
| assert(FalseV && "Must have at least one user, and it must be a PHI"); |
| |
| // Do not hoist the instruction if any of its operands are defined but not |
| // used in this BB. The transformation will prevent the operand from |
| // being sunk into the use block. |
| for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end(); |
| i != e; ++i) { |
| Instruction *OpI = dyn_cast<Instruction>(*i); |
| if (OpI && OpI->getParent() == BIParent && |
| !OpI->isUsedInBasicBlock(BIParent)) |
| return false; |
| } |
| |
| // If we get here, we can hoist the instruction. Try to place it |
| // before the icmp instruction preceding the conditional branch. |
| BasicBlock::iterator InsertPos = BI; |
| if (InsertPos != BIParent->begin()) |
| --InsertPos; |
| // Skip debug info between condition and branch. |
| while (InsertPos != BIParent->begin() && isa<DbgInfoIntrinsic>(InsertPos)) |
| --InsertPos; |
| if (InsertPos == BrCond && !isa<PHINode>(BrCond)) { |
| SmallPtrSet<Instruction *, 4> BB1Insns; |
| for(BasicBlock::iterator BB1I = BB1->begin(), BB1E = BB1->end(); |
| BB1I != BB1E; ++BB1I) |
| BB1Insns.insert(BB1I); |
| for(Value::use_iterator UI = BrCond->use_begin(), UE = BrCond->use_end(); |
| UI != UE; ++UI) { |
| Instruction *Use = cast<Instruction>(*UI); |
| if (!BB1Insns.count(Use)) continue; |
| |
| // If BrCond uses the instruction that place it just before |
| // branch instruction. |
| InsertPos = BI; |
| break; |
| } |
| } else |
| InsertPos = BI; |
| BIParent->getInstList().splice(InsertPos, BB1->getInstList(), HInst); |
| |
| // Create a select whose true value is the speculatively executed value and |
| // false value is the previously determined FalseV. |
| IRBuilder<true, NoFolder> Builder(BI); |
| SelectInst *SI; |
| if (Invert) |
| SI = cast<SelectInst> |
| (Builder.CreateSelect(BrCond, FalseV, HInst, |
| FalseV->getName() + "." + HInst->getName())); |
| else |
| SI = cast<SelectInst> |
| (Builder.CreateSelect(BrCond, HInst, FalseV, |
| HInst->getName() + "." + FalseV->getName())); |
| |
| // Make the PHI node use the select for all incoming values for "then" and |
| // "if" blocks. |
| for (unsigned i = 0, e = PHIUses.size(); i != e; ++i) { |
| PHINode *PN = PHIUses[i]; |
| for (unsigned j = 0, ee = PN->getNumIncomingValues(); j != ee; ++j) |
| if (PN->getIncomingBlock(j) == BB1 || PN->getIncomingBlock(j) == BIParent) |
| PN->setIncomingValue(j, SI); |
| } |
| |
| ++NumSpeculations; |
| return true; |
| } |
| |
| /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch |
| /// across this block. |
| static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { |
| BranchInst *BI = cast<BranchInst>(BB->getTerminator()); |
| unsigned Size = 0; |
| |
| for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { |
| if (isa<DbgInfoIntrinsic>(BBI)) |
| continue; |
| if (Size > 10) return false; // Don't clone large BB's. |
| ++Size; |
| |
| // We can only support instructions that do not define values that are |
| // live outside of the current basic block. |
| for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end(); |
| UI != E; ++UI) { |
| Instruction *U = cast<Instruction>(*UI); |
| if (U->getParent() != BB || isa<PHINode>(U)) return false; |
| } |
| |
| // Looks ok, continue checking. |
| } |
| |
| return true; |
| } |
| |
| /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value |
| /// that is defined in the same block as the branch and if any PHI entries are |
| /// constants, thread edges corresponding to that entry to be branches to their |
| /// ultimate destination. |
| static bool FoldCondBranchOnPHI(BranchInst *BI, const TargetData *TD) { |
| BasicBlock *BB = BI->getParent(); |
| PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); |
| // NOTE: we currently cannot transform this case if the PHI node is used |
| // outside of the block. |
| if (!PN || PN->getParent() != BB || !PN->hasOneUse()) |
| return false; |
| |
| // Degenerate case of a single entry PHI. |
| if (PN->getNumIncomingValues() == 1) { |
| FoldSingleEntryPHINodes(PN->getParent()); |
| return true; |
| } |
| |
| // Now we know that this block has multiple preds and two succs. |
| if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false; |
| |
| // Okay, this is a simple enough basic block. See if any phi values are |
| // constants. |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); |
| if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue; |
| |
| // Okay, we now know that all edges from PredBB should be revectored to |
| // branch to RealDest. |
| BasicBlock *PredBB = PN->getIncomingBlock(i); |
| BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); |
| |
| if (RealDest == BB) continue; // Skip self loops. |
| // Skip if the predecessor's terminator is an indirect branch. |
| if (isa<IndirectBrInst>(PredBB->getTerminator())) continue; |
| |
| // The dest block might have PHI nodes, other predecessors and other |
| // difficult cases. Instead of being smart about this, just insert a new |
| // block that jumps to the destination block, effectively splitting |
| // the edge we are about to create. |
| BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(), |
| RealDest->getName()+".critedge", |
| RealDest->getParent(), RealDest); |
| BranchInst::Create(RealDest, EdgeBB); |
| |
| // Update PHI nodes. |
| AddPredecessorToBlock(RealDest, EdgeBB, BB); |
| |
| // BB may have instructions that are being threaded over. Clone these |
| // instructions into EdgeBB. We know that there will be no uses of the |
| // cloned instructions outside of EdgeBB. |
| BasicBlock::iterator InsertPt = EdgeBB->begin(); |
| DenseMap<Value*, Value*> TranslateMap; // Track translated values. |
| for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { |
| if (PHINode *PN = dyn_cast<PHINode>(BBI)) { |
| TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); |
| continue; |
| } |
| // Clone the instruction. |
| Instruction *N = BBI->clone(); |
| if (BBI->hasName()) N->setName(BBI->getName()+".c"); |
| |
| // Update operands due to translation. |
| for (User::op_iterator i = N->op_begin(), e = N->op_end(); |
| i != e; ++i) { |
| DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i); |
| if (PI != TranslateMap.end()) |
| *i = PI->second; |
| } |
| |
| // Check for trivial simplification. |
| if (Value *V = SimplifyInstruction(N, TD)) { |
| TranslateMap[BBI] = V; |
| delete N; // Instruction folded away, don't need actual inst |
| } else { |
| // Insert the new instruction into its new home. |
| EdgeBB->getInstList().insert(InsertPt, N); |
| if (!BBI->use_empty()) |
| TranslateMap[BBI] = N; |
| } |
| } |
| |
| // Loop over all of the edges from PredBB to BB, changing them to branch |
| // to EdgeBB instead. |
| TerminatorInst *PredBBTI = PredBB->getTerminator(); |
| for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) |
| if (PredBBTI->getSuccessor(i) == BB) { |
| BB->removePredecessor(PredBB); |
| PredBBTI->setSuccessor(i, EdgeBB); |
| } |
| |
| // Recurse, simplifying any other constants. |
| return FoldCondBranchOnPHI(BI, TD) | true; |
| } |
| |
| return false; |
| } |
| |
| /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry |
| /// PHI node, see if we can eliminate it. |
| static bool FoldTwoEntryPHINode(PHINode *PN, const TargetData *TD) { |
| // Ok, this is a two entry PHI node. Check to see if this is a simple "if |
| // statement", which has a very simple dominance structure. Basically, we |
| // are trying to find the condition that is being branched on, which |
| // subsequently causes this merge to happen. We really want control |
| // dependence information for this check, but simplifycfg can't keep it up |
| // to date, and this catches most of the cases we care about anyway. |
| BasicBlock *BB = PN->getParent(); |
| BasicBlock *IfTrue, *IfFalse; |
| Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); |
| if (!IfCond || |
| // Don't bother if the branch will be constant folded trivially. |
| isa<ConstantInt>(IfCond)) |
| return false; |
| |
| // Okay, we found that we can merge this two-entry phi node into a select. |
| // Doing so would require us to fold *all* two entry phi nodes in this block. |
| // At some point this becomes non-profitable (particularly if the target |
| // doesn't support cmov's). Only do this transformation if there are two or |
| // fewer PHI nodes in this block. |
| unsigned NumPhis = 0; |
| for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) |
| if (NumPhis > 2) |
| return false; |
| |
| // Loop over the PHI's seeing if we can promote them all to select |
| // instructions. While we are at it, keep track of the instructions |
| // that need to be moved to the dominating block. |
| SmallPtrSet<Instruction*, 4> AggressiveInsts; |
| unsigned MaxCostVal0 = PHINodeFoldingThreshold, |
| MaxCostVal1 = PHINodeFoldingThreshold; |
| |
| for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { |
| PHINode *PN = cast<PHINode>(II++); |
| if (Value *V = SimplifyInstruction(PN, TD)) { |
| PN->replaceAllUsesWith(V); |
| PN->eraseFromParent(); |
| continue; |
| } |
| |
| if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, |
| MaxCostVal0) || |
| !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, |
| MaxCostVal1)) |
| return false; |
| } |
| |
| // If we folded the the first phi, PN dangles at this point. Refresh it. If |
| // we ran out of PHIs then we simplified them all. |
| PN = dyn_cast<PHINode>(BB->begin()); |
| if (PN == 0) return true; |
| |
| // Don't fold i1 branches on PHIs which contain binary operators. These can |
| // often be turned into switches and other things. |
| if (PN->getType()->isIntegerTy(1) && |
| (isa<BinaryOperator>(PN->getIncomingValue(0)) || |
| isa<BinaryOperator>(PN->getIncomingValue(1)) || |
| isa<BinaryOperator>(IfCond))) |
| return false; |
| |
| // If we all PHI nodes are promotable, check to make sure that all |
| // instructions in the predecessor blocks can be promoted as well. If |
| // not, we won't be able to get rid of the control flow, so it's not |
| // worth promoting to select instructions. |
| BasicBlock *DomBlock = 0; |
| BasicBlock *IfBlock1 = PN->getIncomingBlock(0); |
| BasicBlock *IfBlock2 = PN->getIncomingBlock(1); |
| if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { |
| IfBlock1 = 0; |
| } else { |
| DomBlock = *pred_begin(IfBlock1); |
| for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I) |
| if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { |
| // This is not an aggressive instruction that we can promote. |
| // Because of this, we won't be able to get rid of the control |
| // flow, so the xform is not worth it. |
| return false; |
| } |
| } |
| |
| if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { |
| IfBlock2 = 0; |
| } else { |
| DomBlock = *pred_begin(IfBlock2); |
| for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I) |
| if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { |
| // This is not an aggressive instruction that we can promote. |
| // Because of this, we won't be able to get rid of the control |
| // flow, so the xform is not worth it. |
| return false; |
| } |
| } |
| |
| DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " |
| << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); |
| |
| // If we can still promote the PHI nodes after this gauntlet of tests, |
| // do all of the PHI's now. |
| Instruction *InsertPt = DomBlock->getTerminator(); |
| IRBuilder<true, NoFolder> Builder(InsertPt); |
| |
| // Move all 'aggressive' instructions, which are defined in the |
| // conditional parts of the if's up to the dominating block. |
| if (IfBlock1) |
| DomBlock->getInstList().splice(InsertPt, |
| IfBlock1->getInstList(), IfBlock1->begin(), |
| IfBlock1->getTerminator()); |
| if (IfBlock2) |
| DomBlock->getInstList().splice(InsertPt, |
| IfBlock2->getInstList(), IfBlock2->begin(), |
| IfBlock2->getTerminator()); |
| |
| while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { |
| // Change the PHI node into a select instruction. |
| Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); |
| Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); |
| |
| SelectInst *NV = |
| cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, "")); |
| PN->replaceAllUsesWith(NV); |
| NV->takeName(PN); |
| PN->eraseFromParent(); |
| } |
| |
| // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement |
| // has been flattened. Change DomBlock to jump directly to our new block to |
| // avoid other simplifycfg's kicking in on the diamond. |
| TerminatorInst *OldTI = DomBlock->getTerminator(); |
| Builder.SetInsertPoint(OldTI); |
| Builder.CreateBr(BB); |
| OldTI->eraseFromParent(); |
| return true; |
| } |
| |
| /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes |
| /// to two returning blocks, try to merge them together into one return, |
| /// introducing a select if the return values disagree. |
| static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, |
| IRBuilder<> &Builder) { |
| assert(BI->isConditional() && "Must be a conditional branch"); |
| BasicBlock *TrueSucc = BI->getSuccessor(0); |
| BasicBlock *FalseSucc = BI->getSuccessor(1); |
| ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); |
| ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); |
| |
| // Check to ensure both blocks are empty (just a return) or optionally empty |
| // with PHI nodes. If there are other instructions, merging would cause extra |
| // computation on one path or the other. |
| if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) |
| return false; |
| if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) |
| return false; |
| |
| Builder.SetInsertPoint(BI); |
| // Okay, we found a branch that is going to two return nodes. If |
| // there is no return value for this function, just change the |
| // branch into a return. |
| if (FalseRet->getNumOperands() == 0) { |
| TrueSucc->removePredecessor(BI->getParent()); |
| FalseSucc->removePredecessor(BI->getParent()); |
| Builder.CreateRetVoid(); |
| EraseTerminatorInstAndDCECond(BI); |
| return true; |
| } |
| |
| // Otherwise, figure out what the true and false return values are |
| // so we can insert a new select instruction. |
| Value *TrueValue = TrueRet->getReturnValue(); |
| Value *FalseValue = FalseRet->getReturnValue(); |
| |
| // Unwrap any PHI nodes in the return blocks. |
| if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) |
| if (TVPN->getParent() == TrueSucc) |
| TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); |
| if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) |
| if (FVPN->getParent() == FalseSucc) |
| FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); |
| |
| // In order for this transformation to be safe, we must be able to |
| // unconditionally execute both operands to the return. This is |
| // normally the case, but we could have a potentially-trapping |
| // constant expression that prevents this transformation from being |
| // safe. |
| if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) |
| if (TCV->canTrap()) |
| return false; |
| if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) |
| if (FCV->canTrap()) |
| return false; |
| |
| // Okay, we collected all the mapped values and checked them for sanity, and |
| // defined to really do this transformation. First, update the CFG. |
| TrueSucc->removePredecessor(BI->getParent()); |
| FalseSucc->removePredecessor(BI->getParent()); |
| |
| // Insert select instructions where needed. |
| Value *BrCond = BI->getCondition(); |
| if (TrueValue) { |
| // Insert a select if the results differ. |
| if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { |
| } else if (isa<UndefValue>(TrueValue)) { |
| TrueValue = FalseValue; |
| } else { |
| TrueValue = Builder.CreateSelect(BrCond, TrueValue, |
| FalseValue, "retval"); |
| } |
| } |
| |
| Value *RI = !TrueValue ? |
| Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); |
| |
| (void) RI; |
| |
| DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" |
| << "\n " << *BI << "NewRet = " << *RI |
| << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc); |
| |
| EraseTerminatorInstAndDCECond(BI); |
| |
| return true; |
| } |
| |
| /// FoldBranchToCommonDest - If this basic block is simple enough, and if a |
| /// predecessor branches to us and one of our successors, fold the block into |
| /// the predecessor and use logical operations to pick the right destination. |
| bool llvm::FoldBranchToCommonDest(BranchInst *BI) { |
| BasicBlock *BB = BI->getParent(); |
| |
| Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); |
| if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || |
| Cond->getParent() != BB || !Cond->hasOneUse()) |
| return false; |
| |
| // Only allow this if the condition is a simple instruction that can be |
| // executed unconditionally. It must be in the same block as the branch, and |
| // must be at the front of the block. |
| BasicBlock::iterator FrontIt = BB->front(); |
| |
| // Ignore dbg intrinsics. |
| while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; |
| |
| // Allow a single instruction to be hoisted in addition to the compare |
| // that feeds the branch. We later ensure that any values that _it_ uses |
| // were also live in the predecessor, so that we don't unnecessarily create |
| // register pressure or inhibit out-of-order execution. |
| Instruction *BonusInst = 0; |
| if (&*FrontIt != Cond && |
| FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond && |
| FrontIt->isSafeToSpeculativelyExecute()) { |
| BonusInst = &*FrontIt; |
| ++FrontIt; |
| |
| // Ignore dbg intrinsics. |
| while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; |
| } |
| |
| // Only a single bonus inst is allowed. |
| if (&*FrontIt != Cond) |
| return false; |
| |
| // Make sure the instruction after the condition is the cond branch. |
| BasicBlock::iterator CondIt = Cond; ++CondIt; |
| |
| // Ingore dbg intrinsics. |
| while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt; |
| |
| if (&*CondIt != BI) |
| return false; |
| |
| // Cond is known to be a compare or binary operator. Check to make sure that |
| // neither operand is a potentially-trapping constant expression. |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) |
| if (CE->canTrap()) |
| return false; |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) |
| if (CE->canTrap()) |
| return false; |
| |
| // Finally, don't infinitely unroll conditional loops. |
| BasicBlock *TrueDest = BI->getSuccessor(0); |
| BasicBlock *FalseDest = BI->getSuccessor(1); |
| if (TrueDest == BB || FalseDest == BB) |
| return false; |
| |
| for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { |
| BasicBlock *PredBlock = *PI; |
| BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); |
| |
| // Check that we have two conditional branches. If there is a PHI node in |
| // the common successor, verify that the same value flows in from both |
| // blocks. |
| if (PBI == 0 || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) |
| continue; |
| |
| // Determine if the two branches share a common destination. |
| Instruction::BinaryOps Opc; |
| bool InvertPredCond = false; |
| |
| if (PBI->getSuccessor(0) == TrueDest) |
| Opc = Instruction::Or; |
| else if (PBI->getSuccessor(1) == FalseDest) |
| Opc = Instruction::And; |
| else if (PBI->getSuccessor(0) == FalseDest) |
| Opc = Instruction::And, InvertPredCond = true; |
| else if (PBI->getSuccessor(1) == TrueDest) |
| Opc = Instruction::Or, InvertPredCond = true; |
| else |
| continue; |
| |
| // Ensure that any values used in the bonus instruction are also used |
| // by the terminator of the predecessor. This means that those values |
| // must already have been resolved, so we won't be inhibiting the |
| // out-of-order core by speculating them earlier. |
| if (BonusInst) { |
| // Collect the values used by the bonus inst |
| SmallPtrSet<Value*, 4> UsedValues; |
| for (Instruction::op_iterator OI = BonusInst->op_begin(), |
| OE = BonusInst->op_end(); OI != OE; ++OI) { |
| Value* V = *OI; |
| if (!isa<Constant>(V)) |
| UsedValues.insert(V); |
| } |
| |
| SmallVector<std::pair<Value*, unsigned>, 4> Worklist; |
| Worklist.push_back(std::make_pair(PBI->getOperand(0), 0)); |
| |
| // Walk up to four levels back up the use-def chain of the predecessor's |
| // terminator to see if all those values were used. The choice of four |
| // levels is arbitrary, to provide a compile-time-cost bound. |
| while (!Worklist.empty()) { |
| std::pair<Value*, unsigned> Pair = Worklist.back(); |
| Worklist.pop_back(); |
| |
| if (Pair.second >= 4) continue; |
| UsedValues.erase(Pair.first); |
| if (UsedValues.empty()) break; |
| |
| if (Instruction *I = dyn_cast<Instruction>(Pair.first)) { |
| for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); |
| OI != OE; ++OI) |
| Worklist.push_back(std::make_pair(OI->get(), Pair.second+1)); |
| } |
| } |
| |
| if (!UsedValues.empty()) return false; |
| } |
| |
| DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); |
| IRBuilder<> Builder(PBI); |
| |
| // If we need to invert the condition in the pred block to match, do so now. |
| if (InvertPredCond) { |
| Value *NewCond = PBI->getCondition(); |
| |
| if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { |
| CmpInst *CI = cast<CmpInst>(NewCond); |
| CI->setPredicate(CI->getInversePredicate()); |
| } else { |
| NewCond = Builder.CreateNot(NewCond, |
| PBI->getCondition()->getName()+".not"); |
| } |
| |
| PBI->setCondition(NewCond); |
| BasicBlock *OldTrue = PBI->getSuccessor(0); |
| BasicBlock *OldFalse = PBI->getSuccessor(1); |
| PBI->setSuccessor(0, OldFalse); |
| PBI->setSuccessor(1, OldTrue); |
| } |
| |
| // If we have a bonus inst, clone it into the predecessor block. |
| Instruction *NewBonus = 0; |
| if (BonusInst) { |
| NewBonus = BonusInst->clone(); |
| PredBlock->getInstList().insert(PBI, NewBonus); |
| NewBonus->takeName(BonusInst); |
| BonusInst->setName(BonusInst->getName()+".old"); |
| } |
| |
| // Clone Cond into the predecessor basic block, and or/and the |
| // two conditions together. |
| Instruction *New = Cond->clone(); |
| if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus); |
| PredBlock->getInstList().insert(PBI, New); |
| New->takeName(Cond); |
| Cond->setName(New->getName()+".old"); |
| |
| Instruction *NewCond = |
| cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(), |
| New, "or.cond")); |
| PBI->setCondition(NewCond); |
| if (PBI->getSuccessor(0) == BB) { |
| AddPredecessorToBlock(TrueDest, PredBlock, BB); |
| PBI->setSuccessor(0, TrueDest); |
| } |
| if (PBI->getSuccessor(1) == BB) { |
| AddPredecessorToBlock(FalseDest, PredBlock, BB); |
| PBI->setSuccessor(1, FalseDest); |
| } |
| |
| // Copy any debug value intrinsics into the end of PredBlock. |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) |
| if (isa<DbgInfoIntrinsic>(*I)) |
| I->clone()->insertBefore(PBI); |
| |
| return true; |
| } |
| return false; |
| } |
| |
| /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a |
| /// predecessor of another block, this function tries to simplify it. We know |
| /// that PBI and BI are both conditional branches, and BI is in one of the |
| /// successor blocks of PBI - PBI branches to BI. |
| static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { |
| assert(PBI->isConditional() && BI->isConditional()); |
| BasicBlock *BB = BI->getParent(); |
| |
| // If this block ends with a branch instruction, and if there is a |
| // predecessor that ends on a branch of the same condition, make |
| // this conditional branch redundant. |
| if (PBI->getCondition() == BI->getCondition() && |
| PBI->getSuccessor(0) != PBI->getSuccessor(1)) { |
| // Okay, the outcome of this conditional branch is statically |
| // knowable. If this block had a single pred, handle specially. |
| if (BB->getSinglePredecessor()) { |
| // Turn this into a branch on constant. |
| bool CondIsTrue = PBI->getSuccessor(0) == BB; |
| BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), |
| CondIsTrue)); |
| return true; // Nuke the branch on constant. |
| } |
| |
| // Otherwise, if there are multiple predecessors, insert a PHI that merges |
| // in the constant and simplify the block result. Subsequent passes of |
| // simplifycfg will thread the block. |
| if (BlockIsSimpleEnoughToThreadThrough(BB)) { |
| pred_iterator PB = pred_begin(BB), PE = pred_end(BB); |
| PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()), |
| std::distance(PB, PE), |
| BI->getCondition()->getName() + ".pr", |
| BB->begin()); |
| // Okay, we're going to insert the PHI node. Since PBI is not the only |
| // predecessor, compute the PHI'd conditional value for all of the preds. |
| // Any predecessor where the condition is not computable we keep symbolic. |
| for (pred_iterator PI = PB; PI != PE; ++PI) { |
| BasicBlock *P = *PI; |
| if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && |
| PBI != BI && PBI->isConditional() && |
| PBI->getCondition() == BI->getCondition() && |
| PBI->getSuccessor(0) != PBI->getSuccessor(1)) { |
| bool CondIsTrue = PBI->getSuccessor(0) == BB; |
| NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), |
| CondIsTrue), P); |
| } else { |
| NewPN->addIncoming(BI->getCondition(), P); |
| } |
| } |
| |
| BI->setCondition(NewPN); |
| return true; |
| } |
| } |
| |
| // If this is a conditional branch in an empty block, and if any |
| // predecessors is a conditional branch to one of our destinations, |
| // fold the conditions into logical ops and one cond br. |
| BasicBlock::iterator BBI = BB->begin(); |
| // Ignore dbg intrinsics. |
| while (isa<DbgInfoIntrinsic>(BBI)) |
| ++BBI; |
| if (&*BBI != BI) |
| return false; |
| |
| |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition())) |
| if (CE->canTrap()) |
| return false; |
| |
| int PBIOp, BIOp; |
| if (PBI->getSuccessor(0) == BI->getSuccessor(0)) |
| PBIOp = BIOp = 0; |
| else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) |
| PBIOp = 0, BIOp = 1; |
| else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) |
| PBIOp = 1, BIOp = 0; |
| else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) |
| PBIOp = BIOp = 1; |
| else |
| return false; |
| |
| // Check to make sure that the other destination of this branch |
| // isn't BB itself. If so, this is an infinite loop that will |
| // keep getting unwound. |
| if (PBI->getSuccessor(PBIOp) == BB) |
| return false; |
| |
| // Do not perform this transformation if it would require |
| // insertion of a large number of select instructions. For targets |
| // without predication/cmovs, this is a big pessimization. |
| BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); |
| |
| unsigned NumPhis = 0; |
| for (BasicBlock::iterator II = CommonDest->begin(); |
| isa<PHINode>(II); ++II, ++NumPhis) |
| if (NumPhis > 2) // Disable this xform. |
| return false; |
| |
| // Finally, if everything is ok, fold the branches to logical ops. |
| BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); |
| |
| DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() |
| << "AND: " << *BI->getParent()); |
| |
| |
| // If OtherDest *is* BB, then BB is a basic block with a single conditional |
| // branch in it, where one edge (OtherDest) goes back to itself but the other |
| // exits. We don't *know* that the program avoids the infinite loop |
| // (even though that seems likely). If we do this xform naively, we'll end up |
| // recursively unpeeling the loop. Since we know that (after the xform is |
| // done) that the block *is* infinite if reached, we just make it an obviously |
| // infinite loop with no cond branch. |
| if (OtherDest == BB) { |
| // Insert it at the end of the function, because it's either code, |
| // or it won't matter if it's hot. :) |
| BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(), |
| "infloop", BB->getParent()); |
| BranchInst::Create(InfLoopBlock, InfLoopBlock); |
| OtherDest = InfLoopBlock; |
| } |
| |
| DEBUG(dbgs() << *PBI->getParent()->getParent()); |
| |
| // BI may have other predecessors. Because of this, we leave |
| // it alone, but modify PBI. |
| |
| // Make sure we get to CommonDest on True&True directions. |
| Value *PBICond = PBI->getCondition(); |
| IRBuilder<true, NoFolder> Builder(PBI); |
| if (PBIOp) |
| PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not"); |
| |
| Value *BICond = BI->getCondition(); |
| if (BIOp) |
| BICond = Builder.CreateNot(BICond, BICond->getName()+".not"); |
| |
| // Merge the conditions. |
| Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); |
| |
| // Modify PBI to branch on the new condition to the new dests. |
| PBI->setCondition(Cond); |
| PBI->setSuccessor(0, CommonDest); |
| PBI->setSuccessor(1, OtherDest); |
| |
| // OtherDest may have phi nodes. If so, add an entry from PBI's |
| // block that are identical to the entries for BI's block. |
| AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); |
| |
| // We know that the CommonDest already had an edge from PBI to |
| // it. If it has PHIs though, the PHIs may have different |
| // entries for BB and PBI's BB. If so, insert a select to make |
| // them agree. |
| PHINode *PN; |
| for (BasicBlock::iterator II = CommonDest->begin(); |
| (PN = dyn_cast<PHINode>(II)); ++II) { |
| Value *BIV = PN->getIncomingValueForBlock(BB); |
| unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); |
| Value *PBIV = PN->getIncomingValue(PBBIdx); |
| if (BIV != PBIV) { |
| // Insert a select in PBI to pick the right value. |
| Value *NV = cast<SelectInst> |
| (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux")); |
| PN->setIncomingValue(PBBIdx, NV); |
| } |
| } |
| |
| DEBUG(dbgs() << "INTO: " << *PBI->getParent()); |
| DEBUG(dbgs() << *PBI->getParent()->getParent()); |
| |
| // This basic block is probably dead. We know it has at least |
| // one fewer predecessor. |
| return true; |
| } |
| |
| // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a |
| // branch to TrueBB if Cond is true or to FalseBB if Cond is false. |
| // Takes care of updating the successors and removing the old terminator. |
| // Also makes sure not to introduce new successors by assuming that edges to |
| // non-successor TrueBBs and FalseBBs aren't reachable. |
| static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, |
| BasicBlock *TrueBB, BasicBlock *FalseBB){ |
| // Remove any superfluous successor edges from the CFG. |
| // First, figure out which successors to preserve. |
| // If TrueBB and FalseBB are equal, only try to preserve one copy of that |
| // successor. |
| BasicBlock *KeepEdge1 = TrueBB; |
| BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0; |
| |
| // Then remove the rest. |
| for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) { |
| BasicBlock *Succ = OldTerm->getSuccessor(I); |
| // Make sure only to keep exactly one copy of each edge. |
| if (Succ == KeepEdge1) |
| KeepEdge1 = 0; |
| else if (Succ == KeepEdge2) |
| KeepEdge2 = 0; |
| else |
| Succ->removePredecessor(OldTerm->getParent()); |
| } |
| |
| IRBuilder<> Builder(OldTerm); |
| Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); |
| |
| // Insert an appropriate new terminator. |
| if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) { |
| if (TrueBB == FalseBB) |
| // We were only looking for one successor, and it was present. |
| // Create an unconditional branch to it. |
| Builder.CreateBr(TrueBB); |
| else |
| // We found both of the successors we were looking for. |
| // Create a conditional branch sharing the condition of the select. |
| Builder.CreateCondBr(Cond, TrueBB, FalseBB); |
| } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { |
| // Neither of the selected blocks were successors, so this |
| // terminator must be unreachable. |
| new UnreachableInst(OldTerm->getContext(), OldTerm); |
| } else { |
| // One of the selected values was a successor, but the other wasn't. |
| // Insert an unconditional branch to the one that was found; |
| // the edge to the one that wasn't must be unreachable. |
| if (KeepEdge1 == 0) |
| // Only TrueBB was found. |
| Builder.CreateBr(TrueBB); |
| else |
| // Only FalseBB was found. |
| Builder.CreateBr(FalseBB); |
| } |
| |
| EraseTerminatorInstAndDCECond(OldTerm); |
| return true; |
| } |
| |
| // SimplifySwitchOnSelect - Replaces |
| // (switch (select cond, X, Y)) on constant X, Y |
| // with a branch - conditional if X and Y lead to distinct BBs, |
| // unconditional otherwise. |
| static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { |
| // Check for constant integer values in the select. |
| ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); |
| ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); |
| if (!TrueVal || !FalseVal) |
| return false; |
| |
| // Find the relevant condition and destinations. |
| Value *Condition = Select->getCondition(); |
| BasicBlock *TrueBB = SI->getSuccessor(SI->findCaseValue(TrueVal)); |
| BasicBlock *FalseBB = SI->getSuccessor(SI->findCaseValue(FalseVal)); |
| |
| // Perform the actual simplification. |
| return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB); |
| } |
| |
| // SimplifyIndirectBrOnSelect - Replaces |
| // (indirectbr (select cond, blockaddress(@fn, BlockA), |
| // blockaddress(@fn, BlockB))) |
| // with |
| // (br cond, BlockA, BlockB). |
| static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { |
| // Check that both operands of the select are block addresses. |
| BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); |
| BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); |
| if (!TBA || !FBA) |
| return false; |
| |
| // Extract the actual blocks. |
| BasicBlock *TrueBB = TBA->getBasicBlock(); |
| BasicBlock *FalseBB = FBA->getBasicBlock(); |
| |
| // Perform the actual simplification. |
| return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB); |
| } |
| |
| /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp |
| /// instruction (a seteq/setne with a constant) as the only instruction in a |
| /// block that ends with an uncond branch. We are looking for a very specific |
| /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In |
| /// this case, we merge the first two "or's of icmp" into a switch, but then the |
| /// default value goes to an uncond block with a seteq in it, we get something |
| /// like: |
| /// |
| /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] |
| /// DEFAULT: |
| /// %tmp = icmp eq i8 %A, 92 |
| /// br label %end |
| /// end: |
| /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] |
| /// |
| /// We prefer to split the edge to 'end' so that there is a true/false entry to |
| /// the PHI, merging the third icmp into the switch. |
| static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, |
| const TargetData *TD, |
| IRBuilder<> &Builder) { |
| BasicBlock *BB = ICI->getParent(); |
| |
| // If the block has any PHIs in it or the icmp has multiple uses, it is too |
| // complex. |
| if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false; |
| |
| Value *V = ICI->getOperand(0); |
| ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); |
| |
| // The pattern we're looking for is where our only predecessor is a switch on |
| // 'V' and this block is the default case for the switch. In this case we can |
| // fold the compared value into the switch to simplify things. |
| BasicBlock *Pred = BB->getSinglePredecessor(); |
| if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false; |
| |
| SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); |
| if (SI->getCondition() != V) |
| return false; |
| |
| // If BB is reachable on a non-default case, then we simply know the value of |
| // V in this block. Substitute it and constant fold the icmp instruction |
| // away. |
| if (SI->getDefaultDest() != BB) { |
| ConstantInt *VVal = SI->findCaseDest(BB); |
| assert(VVal && "Should have a unique destination value"); |
| ICI->setOperand(0, VVal); |
| |
| if (Value *V = SimplifyInstruction(ICI, TD)) { |
| ICI->replaceAllUsesWith(V); |
| ICI->eraseFromParent(); |
| } |
| // BB is now empty, so it is likely to simplify away. |
| return SimplifyCFG(BB) | true; |
| } |
| |
| // Ok, the block is reachable from the default dest. If the constant we're |
| // comparing exists in one of the other edges, then we can constant fold ICI |
| // and zap it. |
| if (SI->findCaseValue(Cst) != 0) { |
| Value *V; |
| if (ICI->getPredicate() == ICmpInst::ICMP_EQ) |
| V = ConstantInt::getFalse(BB->getContext()); |
| else |
| V = ConstantInt::getTrue(BB->getContext()); |
| |
| ICI->replaceAllUsesWith(V); |
| ICI->eraseFromParent(); |
| // BB is now empty, so it is likely to simplify away. |
| return SimplifyCFG(BB) | true; |
| } |
| |
| // The use of the icmp has to be in the 'end' block, by the only PHI node in |
| // the block. |
| BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); |
| PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back()); |
| if (PHIUse == 0 || PHIUse != &SuccBlock->front() || |
| isa<PHINode>(++BasicBlock::iterator(PHIUse))) |
| return false; |
| |
| // If the icmp is a SETEQ, then the default dest gets false, the new edge gets |
| // true in the PHI. |
| Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); |
| Constant *NewCst = ConstantInt::getFalse(BB->getContext()); |
| |
| if (ICI->getPredicate() == ICmpInst::ICMP_EQ) |
| std::swap(DefaultCst, NewCst); |
| |
| // Replace ICI (which is used by the PHI for the default value) with true or |
| // false depending on if it is EQ or NE. |
| ICI->replaceAllUsesWith(DefaultCst); |
| ICI->eraseFromParent(); |
| |
| // Okay, the switch goes to this block on a default value. Add an edge from |
| // the switch to the merge point on the compared value. |
| BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge", |
| BB->getParent(), BB); |
| SI->addCase(Cst, NewBB); |
| |
| // NewBB branches to the phi block, add the uncond branch and the phi entry. |
| Builder.SetInsertPoint(NewBB); |
| Builder.SetCurrentDebugLocation(SI->getDebugLoc()); |
| Builder.CreateBr(SuccBlock); |
| PHIUse->addIncoming(NewCst, NewBB); |
| return true; |
| } |
| |
| /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch. |
| /// Check to see if it is branching on an or/and chain of icmp instructions, and |
| /// fold it into a switch instruction if so. |
| static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD, |
| IRBuilder<> &Builder) { |
| Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); |
| if (Cond == 0) return false; |
| |
| |
| // Change br (X == 0 | X == 1), T, F into a switch instruction. |
| // If this is a bunch of seteq's or'd together, or if it's a bunch of |
| // 'setne's and'ed together, collect them. |
| Value *CompVal = 0; |
| std::vector<ConstantInt*> Values; |
| bool TrueWhenEqual = true; |
| Value *ExtraCase = 0; |
| unsigned UsedICmps = 0; |
| |
| if (Cond->getOpcode() == Instruction::Or) { |
| CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true, |
| UsedICmps); |
| } else if (Cond->getOpcode() == Instruction::And) { |
| CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false, |
| UsedICmps); |
| TrueWhenEqual = false; |
| } |
| |
| // If we didn't have a multiply compared value, fail. |
| if (CompVal == 0) return false; |
| |
| // Avoid turning single icmps into a switch. |
| if (UsedICmps <= 1) |
| return false; |
| |
| // There might be duplicate constants in the list, which the switch |
| // instruction can't handle, remove them now. |
| array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); |
| Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); |
| |
| // If Extra was used, we require at least two switch values to do the |
| // transformation. A switch with one value is just an cond branch. |
| if (ExtraCase && Values.size() < 2) return false; |
| |
| // Figure out which block is which destination. |
| BasicBlock *DefaultBB = BI->getSuccessor(1); |
| BasicBlock *EdgeBB = BI->getSuccessor(0); |
| if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB); |
| |
| BasicBlock *BB = BI->getParent(); |
| |
| DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() |
| << " cases into SWITCH. BB is:\n" << *BB); |
| |
| // If there are any extra values that couldn't be folded into the switch |
| // then we evaluate them with an explicit branch first. Split the block |
| // right before the condbr to handle it. |
| if (ExtraCase) { |
| BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test"); |
| // Remove the uncond branch added to the old block. |
| TerminatorInst *OldTI = BB->getTerminator(); |
| Builder.SetInsertPoint(OldTI); |
| |
| if (TrueWhenEqual) |
| Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); |
| else |
| Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); |
| |
| OldTI->eraseFromParent(); |
| |
| // If there are PHI nodes in EdgeBB, then we need to add a new entry to them |
| // for the edge we just added. |
| AddPredecessorToBlock(EdgeBB, BB, NewBB); |
| |
| DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase |
| << "\nEXTRABB = " << *BB); |
| BB = NewBB; |
| } |
| |
| Builder.SetInsertPoint(BI); |
| // Convert pointer to int before we switch. |
| if (CompVal->getType()->isPointerTy()) { |
| assert(TD && "Cannot switch on pointer without TargetData"); |
| CompVal = Builder.CreatePtrToInt(CompVal, |
| TD->getIntPtrType(CompVal->getContext()), |
| "magicptr"); |
| } |
| |
| // Create the new switch instruction now. |
| SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); |
| |
| // Add all of the 'cases' to the switch instruction. |
| for (unsigned i = 0, e = Values.size(); i != e; ++i) |
| New->addCase(Values[i], EdgeBB); |
| |
| // We added edges from PI to the EdgeBB. As such, if there were any |
| // PHI nodes in EdgeBB, they need entries to be added corresponding to |
| // the number of edges added. |
| for (BasicBlock::iterator BBI = EdgeBB->begin(); |
| isa<PHINode>(BBI); ++BBI) { |
| PHINode *PN = cast<PHINode>(BBI); |
| Value *InVal = PN->getIncomingValueForBlock(BB); |
| for (unsigned i = 0, e = Values.size()-1; i != e; ++i) |
| PN->addIncoming(InVal, BB); |
| } |
| |
| // Erase the old branch instruction. |
| EraseTerminatorInstAndDCECond(BI); |
| |
| DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); |
| return true; |
| } |
| |
| bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { |
| // If this is a trivial landing pad that just continues unwinding the caught |
| // exception then zap the landing pad, turning its invokes into calls. |
| BasicBlock *BB = RI->getParent(); |
| LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); |
| if (RI->getValue() != LPInst) |
| // Not a landing pad, or the resume is not unwinding the exception that |
| // caused control to branch here. |
| return false; |
| |
| // Check that there are no other instructions except for debug intrinsics. |
| BasicBlock::iterator I = LPInst, E = RI; |
| while (++I != E) |
| if (!isa<DbgInfoIntrinsic>(I)) |
| return false; |
| |
| // Turn all invokes that unwind here into calls and delete the basic block. |
| for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { |
| InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator()); |
| SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); |
| // Insert a call instruction before the invoke. |
| CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II); |
| Call->takeName(II); |
| Call->setCallingConv(II->getCallingConv()); |
| Call->setAttributes(II->getAttributes()); |
| Call->setDebugLoc(II->getDebugLoc()); |
| |
| // Anything that used the value produced by the invoke instruction now uses |
| // the value produced by the call instruction. Note that we do this even |
| // for void functions and calls with no uses so that the callgraph edge is |
| // updated. |
| II->replaceAllUsesWith(Call); |
| BB->removePredecessor(II->getParent()); |
| |
| // Insert a branch to the normal destination right before the invoke. |
| BranchInst::Create(II->getNormalDest(), II); |
| |
| // Finally, delete the invoke instruction! |
| II->eraseFromParent(); |
| } |
| |
| // The landingpad is now unreachable. Zap it. |
| BB->eraseFromParent(); |
| return true; |
| } |
| |
| bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { |
| BasicBlock *BB = RI->getParent(); |
| if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; |
| |
| // Find predecessors that end with branches. |
| SmallVector<BasicBlock*, 8> UncondBranchPreds; |
| SmallVector<BranchInst*, 8> CondBranchPreds; |
| for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { |
| BasicBlock *P = *PI; |
| TerminatorInst *PTI = P->getTerminator(); |
| if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { |
| if (BI->isUnconditional()) |
| UncondBranchPreds.push_back(P); |
| else |
| CondBranchPreds.push_back(BI); |
| } |
| } |
| |
| // If we found some, do the transformation! |
| if (!UncondBranchPreds.empty() && DupRet) { |
| while (!UncondBranchPreds.empty()) { |
| BasicBlock *Pred = UncondBranchPreds.pop_back_val(); |
| DEBUG(dbgs() << "FOLDING: " << *BB |
| << "INTO UNCOND BRANCH PRED: " << *Pred); |
| (void)FoldReturnIntoUncondBranch(RI, BB, Pred); |
| } |
| |
| // If we eliminated all predecessors of the block, delete the block now. |
| if (pred_begin(BB) == pred_end(BB)) |
| // We know there are no successors, so just nuke the block. |
| BB->eraseFromParent(); |
| |
| return true; |
| } |
| |
| // Check out all of the conditional branches going to this return |
| // instruction. If any of them just select between returns, change the |
| // branch itself into a select/return pair. |
| while (!CondBranchPreds.empty()) { |
| BranchInst *BI = CondBranchPreds.pop_back_val(); |
| |
| // Check to see if the non-BB successor is also a return block. |
| if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && |
| isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && |
| SimplifyCondBranchToTwoReturns(BI, Builder)) |
| return true; |
| } |
| return false; |
| } |
| |
| bool SimplifyCFGOpt::SimplifyUnwind(UnwindInst *UI, IRBuilder<> &Builder) { |
| // Check to see if the first instruction in this block is just an unwind. |
| // If so, replace any invoke instructions which use this as an exception |
| // destination with call instructions. |
| BasicBlock *BB = UI->getParent(); |
| if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; |
| |
| bool Changed = false; |
| SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); |
| while (!Preds.empty()) { |
| BasicBlock *Pred = Preds.back(); |
| InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()); |
| if (II && II->getUnwindDest() == BB) { |
| // Insert a new branch instruction before the invoke, because this |
| // is now a fall through. |
| Builder.SetInsertPoint(II); |
| BranchInst *BI = Builder.CreateBr(II->getNormalDest()); |
| Pred->getInstList().remove(II); // Take out of symbol table |
| |
| // Insert the call now. |
| SmallVector<Value*,8> Args(II->op_begin(), II->op_end()-3); |
| Builder.SetInsertPoint(BI); |
| CallInst *CI = Builder.CreateCall(II->getCalledValue(), |
| Args, II->getName()); |
| CI->setCallingConv(II->getCallingConv()); |
| CI->setAttributes(II->getAttributes()); |
| // If the invoke produced a value, the Call now does instead. |
| II->replaceAllUsesWith(CI); |
| delete II; |
| Changed = true; |
| } |
| |
| Preds.pop_back(); |
| } |
| |
| // If this block is now dead (and isn't the entry block), remove it. |
| if (pred_begin(BB) == pred_end(BB) && |
| BB != &BB->getParent()->getEntryBlock()) { |
| // We know there are no successors, so just nuke the block. |
| BB->eraseFromParent(); |
| return true; |
| } |
| |
| return Changed; |
| } |
| |
| bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { |
| BasicBlock *BB = UI->getParent(); |
| |
| bool Changed = false; |
| |
| // If there are any instructions immediately before the unreachable that can |
| // be removed, do so. |
| while (UI != BB->begin()) { |
| BasicBlock::iterator BBI = UI; |
| --BBI; |
| // Do not delete instructions that can have side effects which might cause |
| // the unreachable to not be reachable; specifically, calls and volatile |
| // operations may have this effect. |
| if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break; |
| |
| if (BBI->mayHaveSideEffects()) { |
| if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { |
| if (SI->isVolatile()) |
| break; |
| } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { |
| if (LI->isVolatile()) |
| break; |
| } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { |
| if (RMWI->isVolatile()) |
| break; |
| } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { |
| if (CXI->isVolatile()) |
| break; |
| } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && |
| !isa<LandingPadInst>(BBI)) { |
| break; |
| } |
| // Note that deleting LandingPad's here is in fact okay, although it |
| // involves a bit of subtle reasoning. If this inst is a LandingPad, |
| // all the predecessors of this block will be the unwind edges of Invokes, |
| // and we can therefore guarantee this block will be erased. |
| } |
| |
| // Delete this instruction (any uses are guaranteed to be dead) |
| if (!BBI->use_empty()) |
| BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); |
| BBI->eraseFromParent(); |
| Changed = true; |
| } |
| |
| // If the unreachable instruction is the first in the block, take a gander |
| // at all of the predecessors of this instruction, and simplify them. |
| if (&BB->front() != UI) return Changed; |
| |
| SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); |
| for (unsigned i = 0, e = Preds.size(); i != e; ++i) { |
| TerminatorInst *TI = Preds[i]->getTerminator(); |
| IRBuilder<> Builder(TI); |
| if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { |
| if (BI->isUnconditional()) { |
| if (BI->getSuccessor(0) == BB) { |
| new UnreachableInst(TI->getContext(), TI); |
| TI->eraseFromParent(); |
| Changed = true; |
| } |
| } else { |
| if (BI->getSuccessor(0) == BB) { |
| Builder.CreateBr(BI->getSuccessor(1)); |
| EraseTerminatorInstAndDCECond(BI); |
| } else if (BI->getSuccessor(1) == BB) { |
| Builder.CreateBr(BI->getSuccessor(0)); |
| EraseTerminatorInstAndDCECond(BI); |
| Changed = true; |
| } |
| } |
| } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { |
| for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) |
| if (SI->getSuccessor(i) == BB) { |
| BB->removePredecessor(SI->getParent()); |
| SI->removeCase(i); |
| --i; --e; |
| Changed = true; |
| } |
| // If the default value is unreachable, figure out the most popular |
| // destination and make it the default. |
| if (SI->getSuccessor(0) == BB) { |
| std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity; |
| for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) { |
| std::pair<unsigned, unsigned>& entry = |
| Popularity[SI->getSuccessor(i)]; |
| if (entry.first == 0) { |
| entry.first = 1; |
| entry.second = i; |
| } else { |
| entry.first++; |
| } |
| } |
| |
| // Find the most popular block. |
| unsigned MaxPop = 0; |
| unsigned MaxIndex = 0; |
| BasicBlock *MaxBlock = 0; |
| for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator |
| I = Popularity.begin(), E = Popularity.end(); I != E; ++I) { |
| if (I->second.first > MaxPop || |
| (I->second.first == MaxPop && MaxIndex > I->second.second)) { |
| MaxPop = I->second.first; |
| MaxIndex = I->second.second; |
| MaxBlock = I->first; |
| } |
| } |
| if (MaxBlock) { |
| // Make this the new default, allowing us to delete any explicit |
| // edges to it. |
| SI->setSuccessor(0, MaxBlock); |
| Changed = true; |
| |
| // If MaxBlock has phinodes in it, remove MaxPop-1 entries from |
| // it. |
| if (isa<PHINode>(MaxBlock->begin())) |
| for (unsigned i = 0; i != MaxPop-1; ++i) |
| MaxBlock->removePredecessor(SI->getParent()); |
| |
| for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) |
| if (SI->getSuccessor(i) == MaxBlock) { |
| SI->removeCase(i); |
| --i; --e; |
| } |
| } |
| } |
| } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) { |
| if (II->getUnwindDest() == BB) { |
| // Convert the invoke to a call instruction. This would be a good |
| // place to note that the call does not throw though. |
| BranchInst *BI = Builder.CreateBr(II->getNormalDest()); |
| II->removeFromParent(); // Take out of symbol table |
| |
| // Insert the call now... |
| SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3); |
| Builder.SetInsertPoint(BI); |
| CallInst *CI = Builder.CreateCall(II->getCalledValue(), |
| Args, II->getName()); |
| CI->setCallingConv(II->getCallingConv()); |
| CI->setAttributes(II->getAttributes()); |
| // If the invoke produced a value, the call does now instead. |
| II->replaceAllUsesWith(CI); |
| delete II; |
| Changed = true; |
| } |
| } |
| } |
| |
| // If this block is now dead, remove it. |
| if (pred_begin(BB) == pred_end(BB) && |
| BB != &BB->getParent()->getEntryBlock()) { |
| // We know there are no successors, so just nuke the block. |
| BB->eraseFromParent(); |
| return true; |
| } |
| |
| return Changed; |
| } |
| |
| /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a |
| /// integer range comparison into a sub, an icmp and a branch. |
| static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { |
| assert(SI->getNumCases() > 2 && "Degenerate switch?"); |
| |
| // Make sure all cases point to the same destination and gather the values. |
| SmallVector<ConstantInt *, 16> Cases; |
| Cases.push_back(SI->getCaseValue(1)); |
| for (unsigned I = 2, E = SI->getNumCases(); I != E; ++I) { |
| if (SI->getSuccessor(I-1) != SI->getSuccessor(I)) |
| return false; |
| Cases.push_back(SI->getCaseValue(I)); |
| } |
| assert(Cases.size() == SI->getNumCases()-1 && "Not all cases gathered"); |
| |
| // Sort the case values, then check if they form a range we can transform. |
| array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); |
| for (unsigned I = 1, E = Cases.size(); I != E; ++I) { |
| if (Cases[I-1]->getValue() != Cases[I]->getValue()+1) |
| return false; |
| } |
| |
| Constant *Offset = ConstantExpr::getNeg(Cases.back()); |
| Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases()-1); |
| |
| Value *Sub = SI->getCondition(); |
| if (!Offset->isNullValue()) |
| Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off"); |
| Value *Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); |
| Builder.CreateCondBr(Cmp, SI->getSuccessor(1), SI->getDefaultDest()); |
| |
| // Prune obsolete incoming values off the successor's PHI nodes. |
| for (BasicBlock::iterator BBI = SI->getSuccessor(1)->begin(); |
| isa<PHINode>(BBI); ++BBI) { |
| for (unsigned I = 0, E = SI->getNumCases()-2; I != E; ++I) |
| cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); |
| } |
| SI->eraseFromParent(); |
| |
| return true; |
| } |
| |
| /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch |
| /// and use it to remove dead cases. |
| static bool EliminateDeadSwitchCases(SwitchInst *SI) { |
| Value *Cond = SI->getCondition(); |
| unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth(); |
| APInt KnownZero(Bits, 0), KnownOne(Bits, 0); |
| ComputeMaskedBits(Cond, APInt::getAllOnesValue(Bits), KnownZero, KnownOne); |
| |
| // Gather dead cases. |
| SmallVector<ConstantInt*, 8> DeadCases; |
| for (unsigned I = 1, E = SI->getNumCases(); I != E; ++I) { |
| if ((SI->getCaseValue(I)->getValue() & KnownZero) != 0 || |
| (SI->getCaseValue(I)->getValue() & KnownOne) != KnownOne) { |
| DeadCases.push_back(SI->getCaseValue(I)); |
| DEBUG(dbgs() << "SimplifyCFG: switch case '" |
| << SI->getCaseValue(I)->getValue() << "' is dead.\n"); |
| } |
| } |
| |
| // Remove dead cases from the switch. |
| for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) { |
| unsigned Case = SI->findCaseValue(DeadCases[I]); |
| // Prune unused values from PHI nodes. |
| SI->getSuccessor(Case)->removePredecessor(SI->getParent()); |
| SI->removeCase(Case); |
| } |
| |
| return !DeadCases.empty(); |
| } |
| |
| /// FindPHIForConditionForwarding - If BB would be eligible for simplification |
| /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated |
| /// by an unconditional branch), look at the phi node for BB in the successor |
| /// block and see if the incoming value is equal to CaseValue. If so, return |
| /// the phi node, and set PhiIndex to BB's index in the phi node. |
| static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, |
| BasicBlock *BB, |
| int *PhiIndex) { |
| if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) |
| return NULL; // BB must be empty to be a candidate for simplification. |
| if (!BB->getSinglePredecessor()) |
| return NULL; // BB must be dominated by the switch. |
| |
| BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); |
| if (!Branch || !Branch->isUnconditional()) |
| return NULL; // Terminator must be unconditional branch. |
| |
| BasicBlock *Succ = Branch->getSuccessor(0); |
| |
| BasicBlock::iterator I = Succ->begin(); |
| while (PHINode *PHI = dyn_cast<PHINode>(I++)) { |
| int Idx = PHI->getBasicBlockIndex(BB); |
| assert(Idx >= 0 && "PHI has no entry for predecessor?"); |
| |
| Value *InValue = PHI->getIncomingValue(Idx); |
| if (InValue != CaseValue) continue; |
| |
| *PhiIndex = Idx; |
| return PHI; |
| } |
| |
| return NULL; |
| } |
| |
| /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch |
| /// instruction to a phi node dominated by the switch, if that would mean that |
| /// some of the destination blocks of the switch can be folded away. |
| /// Returns true if a change is made. |
| static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { |
| typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap; |
| ForwardingNodesMap ForwardingNodes; |
| |
| for (unsigned I = 1; I < SI->getNumCases(); ++I) { // 0 is the default case. |
| ConstantInt *CaseValue = SI->getCaseValue(I); |
| BasicBlock *CaseDest = SI->getSuccessor(I); |
| |
| int PhiIndex; |
| PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest, |
| &PhiIndex); |
| if (!PHI) continue; |
| |
| ForwardingNodes[PHI].push_back(PhiIndex); |
| } |
| |
| bool Changed = false; |
| |
| for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), |
| E = ForwardingNodes.end(); I != E; ++I) { |
| PHINode *Phi = I->first; |
| SmallVector<int,4> &Indexes = I->second; |
| |
| if (Indexes.size() < 2) continue; |
| |
| for (size_t I = 0, E = Indexes.size(); I != E; ++I) |
| Phi->setIncomingValue(Indexes[I], SI->getCondition()); |
| Changed = true; |
| } |
| |
| return Changed; |
| } |
| |
| bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { |
| // If this switch is too complex to want to look at, ignore it. |
| if (!isValueEqualityComparison(SI)) |
| return false; |
| |
| BasicBlock *BB = SI->getParent(); |
| |
| // If we only have one predecessor, and if it is a branch on this value, |
| // see if that predecessor totally determines the outcome of this switch. |
| if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) |
| if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) |
| return SimplifyCFG(BB) | true; |
| |
| Value *Cond = SI->getCondition(); |
| if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) |
| if (SimplifySwitchOnSelect(SI, Select)) |
| return SimplifyCFG(BB) | true; |
| |
| // If the block only contains the switch, see if we can fold the block |
| // away into any preds. |
| BasicBlock::iterator BBI = BB->begin(); |
| // Ignore dbg intrinsics. |
| while (isa<DbgInfoIntrinsic>(BBI)) |
| ++BBI; |
| if (SI == &*BBI) |
| if (FoldValueComparisonIntoPredecessors(SI, Builder)) |
| return SimplifyCFG(BB) | true; |
| |
| // Try to transform the switch into an icmp and a branch. |
| if (TurnSwitchRangeIntoICmp(SI, Builder)) |
| return SimplifyCFG(BB) | true; |
| |
| // Remove unreachable cases. |
| if (EliminateDeadSwitchCases(SI)) |
| return SimplifyCFG(BB) | true; |
| |
| if (ForwardSwitchConditionToPHI(SI)) |
| return SimplifyCFG(BB) | true; |
| |
| return false; |
| } |
| |
| bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { |
| BasicBlock *BB = IBI->getParent(); |
| bool Changed = false; |
| |
| // Eliminate redundant destinations. |
| SmallPtrSet<Value *, 8> Succs; |
| for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { |
| BasicBlock *Dest = IBI->getDestination(i); |
| if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) { |
| Dest->removePredecessor(BB); |
| IBI->removeDestination(i); |
| --i; --e; |
| Changed = true; |
| } |
| } |
| |
| if (IBI->getNumDestinations() == 0) { |
| // If the indirectbr has no successors, change it to unreachable. |
| new UnreachableInst(IBI->getContext(), IBI); |
| EraseTerminatorInstAndDCECond(IBI); |
| return true; |
| } |
| |
| if (IBI->getNumDestinations() == 1) { |
| // If the indirectbr has one successor, change it to a direct branch. |
| BranchInst::Create(IBI->getDestination(0), IBI); |
| EraseTerminatorInstAndDCECond(IBI); |
| return true; |
| } |
| |
| if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { |
| if (SimplifyIndirectBrOnSelect(IBI, SI)) |
| return SimplifyCFG(BB) | true; |
| } |
| return Changed; |
| } |
| |
| bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){ |
| BasicBlock *BB = BI->getParent(); |
| |
| // If the Terminator is the only non-phi instruction, simplify the block. |
| BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime(); |
| if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && |
| TryToSimplifyUncondBranchFromEmptyBlock(BB)) |
| return true; |
| |
| // If the only instruction in the block is a seteq/setne comparison |
| // against a constant, try to simplify the block. |
| if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) |
| if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { |
| for (++I; isa<DbgInfoIntrinsic>(I); ++I) |
| ; |
| if (I->isTerminator() |
| && TryToSimplifyUncondBranchWithICmpInIt(ICI, TD, Builder)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| |
| bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { |
| BasicBlock *BB = BI->getParent(); |
| |
| // Conditional branch |
| if (isValueEqualityComparison(BI)) { |
| // If we only have one predecessor, and if it is a branch on this value, |
| // see if that predecessor totally determines the outcome of this |
| // switch. |
| if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) |
| if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) |
| return SimplifyCFG(BB) | true; |
| |
| // This block must be empty, except for the setcond inst, if it exists. |
| // Ignore dbg intrinsics. |
| BasicBlock::iterator I = BB->begin(); |
| // Ignore dbg intrinsics. |
| while (isa<DbgInfoIntrinsic>(I)) |
| ++I; |
| if (&*I == BI) { |
| if (FoldValueComparisonIntoPredecessors(BI, Builder)) |
| return SimplifyCFG(BB) | true; |
| } else if (&*I == cast<Instruction>(BI->getCondition())){ |
| ++I; |
| // Ignore dbg intrinsics. |
| while (isa<DbgInfoIntrinsic>(I)) |
| ++I; |
| if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) |
| return SimplifyCFG(BB) | true; |
| } |
| } |
| |
| // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. |
| if (SimplifyBranchOnICmpChain(BI, TD, Builder)) |
| return true; |
| |
| // We have a conditional branch to two blocks that are only reachable |
| // from BI. We know that the condbr dominates the two blocks, so see if |
| // there is any identical code in the "then" and "else" blocks. If so, we |
| // can hoist it up to the branching block. |
| if (BI->getSuccessor(0)->getSinglePredecessor() != 0) { |
| if (BI->getSuccessor(1)->getSinglePredecessor() != 0) { |
| if (HoistThenElseCodeToIf(BI)) |
| return SimplifyCFG(BB) | true; |
| } else { |
| // If Successor #1 has multiple preds, we may be able to conditionally |
| // execute Successor #0 if it branches to successor #1. |
| TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); |
| if (Succ0TI->getNumSuccessors() == 1 && |
| Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) |
| if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0))) |
| return SimplifyCFG(BB) | true; |
| } |
| } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) { |
| // If Successor #0 has multiple preds, we may be able to conditionally |
| // execute Successor #1 if it branches to successor #0. |
| TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); |
| if (Succ1TI->getNumSuccessors() == 1 && |
| Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) |
| if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1))) |
| return SimplifyCFG(BB) | true; |
| } |
| |
| // If this is a branch on a phi node in the current block, thread control |
| // through this block if any PHI node entries are constants. |
| if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) |
| if (PN->getParent() == BI->getParent()) |
| if (FoldCondBranchOnPHI(BI, TD)) |
| return SimplifyCFG(BB) | true; |
| |
| // If this basic block is ONLY a setcc and a branch, and if a predecessor |
| // branches to us and one of our successors, fold the setcc into the |
| // predecessor and use logical operations to pick the right destination. |
| if (FoldBranchToCommonDest(BI)) |
| return SimplifyCFG(BB) | true; |
| |
| // Scan predecessor blocks for conditional branches. |
| for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) |
| if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) |
| if (PBI != BI && PBI->isConditional()) |
| if (SimplifyCondBranchToCondBranch(PBI, BI)) |
| return SimplifyCFG(BB) | true; |
| |
| return false; |
| } |
| |
| /// Check if passing a value to an instruction will cause undefined behavior. |
| static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { |
| Constant *C = dyn_cast<Constant>(V); |
| if (!C) |
| return false; |
| |
| if (!I->hasOneUse()) // Only look at single-use instructions, for compile time |
| return false; |
| |
| if (C->isNullValue()) { |
| Instruction *Use = I->use_back(); |
| |
| // Now make sure that there are no instructions in between that can alter |
| // control flow (eg. calls) |
| for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i) |
| if (i == I->getParent()->end() || i->mayHaveSideEffects()) |
| return false; |
| |
| // Look through GEPs. A load from a GEP derived from NULL is still undefined |
| if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) |
| if (GEP->getPointerOperand() == I) |
| return passingValueIsAlwaysUndefined(V, GEP); |
| |
| // Look through bitcasts. |
| if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) |
| return passingValueIsAlwaysUndefined(V, BC); |
| |
| // Load from null is undefined. |
| if (LoadInst *LI = dyn_cast<LoadInst>(Use)) |
| return LI->getPointerAddressSpace() == 0; |
| |
| // Store to null is undefined. |
| if (StoreInst *SI = dyn_cast<StoreInst>(Use)) |
| return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I; |
| } |
| return false; |
| } |
| |
| /// If BB has an incoming value that will always trigger undefined behavior |
| /// (eg. null pointer derefence), remove the branch leading here. |
| static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { |
| for (BasicBlock::iterator i = BB->begin(); |
| PHINode *PHI = dyn_cast<PHINode>(i); ++i) |
| for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) |
| if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { |
| TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); |
| IRBuilder<> Builder(T); |
| if (BranchInst *BI = dyn_cast<BranchInst>(T)) { |
| BB->removePredecessor(PHI->getIncomingBlock(i)); |
| // Turn uncoditional branches into unreachables and remove the dead |
| // destination from conditional branches. |
| if (BI->isUnconditional()) |
| Builder.CreateUnreachable(); |
| else |
| Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) : |
| BI->getSuccessor(0)); |
| BI->eraseFromParent(); |
| return true; |
| } |
| // TODO: SwitchInst. |
| } |
| |
| return false; |
| } |
| |
| bool SimplifyCFGOpt::run(BasicBlock *BB) { |
| bool Changed = false; |
| |
| assert(BB && BB->getParent() && "Block not embedded in function!"); |
| assert(BB->getTerminator() && "Degenerate basic block encountered!"); |
| |
| // Remove basic blocks that have no predecessors (except the entry block)... |
| // or that just have themself as a predecessor. These are unreachable. |
| if ((pred_begin(BB) == pred_end(BB) && |
| BB != &BB->getParent()->getEntryBlock()) || |
| BB->getSinglePredecessor() == BB) { |
| DEBUG(dbgs() << "Removing BB: \n" << *BB); |
| DeleteDeadBlock(BB); |
| return true; |
| } |
| |
| // Check to see if we can constant propagate this terminator instruction |
| // away... |
| Changed |= ConstantFoldTerminator(BB, true); |
| |
| // Check for and eliminate duplicate PHI nodes in this block. |
| Changed |= EliminateDuplicatePHINodes(BB); |
| |
| // Check for and remove branches that will always cause undefined behavior. |
| Changed |= removeUndefIntroducingPredecessor(BB); |
| |
| // Merge basic blocks into their predecessor if there is only one distinct |
| // pred, and if there is only one distinct successor of the predecessor, and |
| // if there are no PHI nodes. |
| // |
| if (MergeBlockIntoPredecessor(BB)) |
| return true; |
| |
| IRBuilder<> Builder(BB); |
| |
| // If there is a trivial two-entry PHI node in this basic block, and we can |
| // eliminate it, do so now. |
| if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) |
| if (PN->getNumIncomingValues() == 2) |
| Changed |= FoldTwoEntryPHINode(PN, TD); |
| |
| Builder.SetInsertPoint(BB->getTerminator()); |
| if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { |
| if (BI->isUnconditional()) { |
| if (SimplifyUncondBranch(BI, Builder)) return true; |
| } else { |
| if (SimplifyCondBranch(BI, Builder)) return true; |
| } |
| } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { |
| if (SimplifyResume(RI, Builder)) return true; |
| } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { |
| if (SimplifyReturn(RI, Builder)) return true; |
| } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { |
| if (SimplifySwitch(SI, Builder)) return true; |
| } else if (UnreachableInst *UI = |
| dyn_cast<UnreachableInst>(BB->getTerminator())) { |
| if (SimplifyUnreachable(UI)) return true; |
| } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { |
| if (SimplifyUnwind(UI, Builder)) return true; |
| } else if (IndirectBrInst *IBI = |
| dyn_cast<IndirectBrInst>(BB->getTerminator())) { |
| if (SimplifyIndirectBr(IBI)) return true; |
| } |
| |
| return Changed; |
| } |
| |
| /// SimplifyCFG - This function is used to do simplification of a CFG. For |
| /// example, it adjusts branches to branches to eliminate the extra hop, it |
| /// eliminates unreachable basic blocks, and does other "peephole" optimization |
| /// of the CFG. It returns true if a modification was made. |
| /// |
| bool llvm::SimplifyCFG(BasicBlock *BB, const TargetData *TD) { |
| return SimplifyCFGOpt(TD).run(BB); |
| } |