| //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the SSAUpdater class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "ssaupdater" |
| #include "llvm/Constants.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/IntrinsicInst.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/TinyPtrVector.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Support/AlignOf.h" |
| #include "llvm/Support/Allocator.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Utils/SSAUpdater.h" |
| #include "llvm/Transforms/Utils/SSAUpdaterImpl.h" |
| |
| using namespace llvm; |
| |
| typedef DenseMap<BasicBlock*, Value*> AvailableValsTy; |
| static AvailableValsTy &getAvailableVals(void *AV) { |
| return *static_cast<AvailableValsTy*>(AV); |
| } |
| |
| SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI) |
| : AV(0), ProtoType(0), ProtoName(), InsertedPHIs(NewPHI) {} |
| |
| SSAUpdater::~SSAUpdater() { |
| delete &getAvailableVals(AV); |
| } |
| |
| /// Initialize - Reset this object to get ready for a new set of SSA |
| /// updates with type 'Ty'. PHI nodes get a name based on 'Name'. |
| void SSAUpdater::Initialize(Type *Ty, StringRef Name) { |
| if (AV == 0) |
| AV = new AvailableValsTy(); |
| else |
| getAvailableVals(AV).clear(); |
| ProtoType = Ty; |
| ProtoName = Name; |
| } |
| |
| /// HasValueForBlock - Return true if the SSAUpdater already has a value for |
| /// the specified block. |
| bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const { |
| return getAvailableVals(AV).count(BB); |
| } |
| |
| /// AddAvailableValue - Indicate that a rewritten value is available in the |
| /// specified block with the specified value. |
| void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) { |
| assert(ProtoType != 0 && "Need to initialize SSAUpdater"); |
| assert(ProtoType == V->getType() && |
| "All rewritten values must have the same type"); |
| getAvailableVals(AV)[BB] = V; |
| } |
| |
| /// IsEquivalentPHI - Check if PHI has the same incoming value as specified |
| /// in ValueMapping for each predecessor block. |
| static bool IsEquivalentPHI(PHINode *PHI, |
| DenseMap<BasicBlock*, Value*> &ValueMapping) { |
| unsigned PHINumValues = PHI->getNumIncomingValues(); |
| if (PHINumValues != ValueMapping.size()) |
| return false; |
| |
| // Scan the phi to see if it matches. |
| for (unsigned i = 0, e = PHINumValues; i != e; ++i) |
| if (ValueMapping[PHI->getIncomingBlock(i)] != |
| PHI->getIncomingValue(i)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is |
| /// live at the end of the specified block. |
| Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) { |
| Value *Res = GetValueAtEndOfBlockInternal(BB); |
| return Res; |
| } |
| |
| /// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that |
| /// is live in the middle of the specified block. |
| /// |
| /// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one |
| /// important case: if there is a definition of the rewritten value after the |
| /// 'use' in BB. Consider code like this: |
| /// |
| /// X1 = ... |
| /// SomeBB: |
| /// use(X) |
| /// X2 = ... |
| /// br Cond, SomeBB, OutBB |
| /// |
| /// In this case, there are two values (X1 and X2) added to the AvailableVals |
| /// set by the client of the rewriter, and those values are both live out of |
| /// their respective blocks. However, the use of X happens in the *middle* of |
| /// a block. Because of this, we need to insert a new PHI node in SomeBB to |
| /// merge the appropriate values, and this value isn't live out of the block. |
| /// |
| Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) { |
| // If there is no definition of the renamed variable in this block, just use |
| // GetValueAtEndOfBlock to do our work. |
| if (!HasValueForBlock(BB)) |
| return GetValueAtEndOfBlock(BB); |
| |
| // Otherwise, we have the hard case. Get the live-in values for each |
| // predecessor. |
| SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues; |
| Value *SingularValue = 0; |
| |
| // We can get our predecessor info by walking the pred_iterator list, but it |
| // is relatively slow. If we already have PHI nodes in this block, walk one |
| // of them to get the predecessor list instead. |
| if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) { |
| for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) { |
| BasicBlock *PredBB = SomePhi->getIncomingBlock(i); |
| Value *PredVal = GetValueAtEndOfBlock(PredBB); |
| PredValues.push_back(std::make_pair(PredBB, PredVal)); |
| |
| // Compute SingularValue. |
| if (i == 0) |
| SingularValue = PredVal; |
| else if (PredVal != SingularValue) |
| SingularValue = 0; |
| } |
| } else { |
| bool isFirstPred = true; |
| for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { |
| BasicBlock *PredBB = *PI; |
| Value *PredVal = GetValueAtEndOfBlock(PredBB); |
| PredValues.push_back(std::make_pair(PredBB, PredVal)); |
| |
| // Compute SingularValue. |
| if (isFirstPred) { |
| SingularValue = PredVal; |
| isFirstPred = false; |
| } else if (PredVal != SingularValue) |
| SingularValue = 0; |
| } |
| } |
| |
| // If there are no predecessors, just return undef. |
| if (PredValues.empty()) |
| return UndefValue::get(ProtoType); |
| |
| // Otherwise, if all the merged values are the same, just use it. |
| if (SingularValue != 0) |
| return SingularValue; |
| |
| // Otherwise, we do need a PHI: check to see if we already have one available |
| // in this block that produces the right value. |
| if (isa<PHINode>(BB->begin())) { |
| DenseMap<BasicBlock*, Value*> ValueMapping(PredValues.begin(), |
| PredValues.end()); |
| PHINode *SomePHI; |
| for (BasicBlock::iterator It = BB->begin(); |
| (SomePHI = dyn_cast<PHINode>(It)); ++It) { |
| if (IsEquivalentPHI(SomePHI, ValueMapping)) |
| return SomePHI; |
| } |
| } |
| |
| // Ok, we have no way out, insert a new one now. |
| PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(), |
| ProtoName, &BB->front()); |
| |
| // Fill in all the predecessors of the PHI. |
| for (unsigned i = 0, e = PredValues.size(); i != e; ++i) |
| InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first); |
| |
| // See if the PHI node can be merged to a single value. This can happen in |
| // loop cases when we get a PHI of itself and one other value. |
| if (Value *V = SimplifyInstruction(InsertedPHI)) { |
| InsertedPHI->eraseFromParent(); |
| return V; |
| } |
| |
| // Set DebugLoc. |
| InsertedPHI->setDebugLoc(GetFirstDebugLocInBasicBlock(BB)); |
| |
| // If the client wants to know about all new instructions, tell it. |
| if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI); |
| |
| DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n"); |
| return InsertedPHI; |
| } |
| |
| /// RewriteUse - Rewrite a use of the symbolic value. This handles PHI nodes, |
| /// which use their value in the corresponding predecessor. |
| void SSAUpdater::RewriteUse(Use &U) { |
| Instruction *User = cast<Instruction>(U.getUser()); |
| |
| Value *V; |
| if (PHINode *UserPN = dyn_cast<PHINode>(User)) |
| V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); |
| else |
| V = GetValueInMiddleOfBlock(User->getParent()); |
| |
| U.set(V); |
| } |
| |
| /// RewriteUseAfterInsertions - Rewrite a use, just like RewriteUse. However, |
| /// this version of the method can rewrite uses in the same block as a |
| /// definition, because it assumes that all uses of a value are below any |
| /// inserted values. |
| void SSAUpdater::RewriteUseAfterInsertions(Use &U) { |
| Instruction *User = cast<Instruction>(U.getUser()); |
| |
| Value *V; |
| if (PHINode *UserPN = dyn_cast<PHINode>(User)) |
| V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); |
| else |
| V = GetValueAtEndOfBlock(User->getParent()); |
| |
| U.set(V); |
| } |
| |
| /// PHIiter - Iterator for PHI operands. This is used for the PHI_iterator |
| /// in the SSAUpdaterImpl template. |
| namespace { |
| class PHIiter { |
| private: |
| PHINode *PHI; |
| unsigned idx; |
| |
| public: |
| explicit PHIiter(PHINode *P) // begin iterator |
| : PHI(P), idx(0) {} |
| PHIiter(PHINode *P, bool) // end iterator |
| : PHI(P), idx(PHI->getNumIncomingValues()) {} |
| |
| PHIiter &operator++() { ++idx; return *this; } |
| bool operator==(const PHIiter& x) const { return idx == x.idx; } |
| bool operator!=(const PHIiter& x) const { return !operator==(x); } |
| Value *getIncomingValue() { return PHI->getIncomingValue(idx); } |
| BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); } |
| }; |
| } |
| |
| /// SSAUpdaterTraits<SSAUpdater> - Traits for the SSAUpdaterImpl template, |
| /// specialized for SSAUpdater. |
| namespace llvm { |
| template<> |
| class SSAUpdaterTraits<SSAUpdater> { |
| public: |
| typedef BasicBlock BlkT; |
| typedef Value *ValT; |
| typedef PHINode PhiT; |
| |
| typedef succ_iterator BlkSucc_iterator; |
| static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); } |
| static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); } |
| |
| typedef PHIiter PHI_iterator; |
| static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); } |
| static inline PHI_iterator PHI_end(PhiT *PHI) { |
| return PHI_iterator(PHI, true); |
| } |
| |
| /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds |
| /// vector, set Info->NumPreds, and allocate space in Info->Preds. |
| static void FindPredecessorBlocks(BasicBlock *BB, |
| SmallVectorImpl<BasicBlock*> *Preds) { |
| // We can get our predecessor info by walking the pred_iterator list, |
| // but it is relatively slow. If we already have PHI nodes in this |
| // block, walk one of them to get the predecessor list instead. |
| if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) { |
| for (unsigned PI = 0, E = SomePhi->getNumIncomingValues(); PI != E; ++PI) |
| Preds->push_back(SomePhi->getIncomingBlock(PI)); |
| } else { |
| for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) |
| Preds->push_back(*PI); |
| } |
| } |
| |
| /// GetUndefVal - Get an undefined value of the same type as the value |
| /// being handled. |
| static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) { |
| return UndefValue::get(Updater->ProtoType); |
| } |
| |
| /// CreateEmptyPHI - Create a new PHI instruction in the specified block. |
| /// Reserve space for the operands but do not fill them in yet. |
| static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds, |
| SSAUpdater *Updater) { |
| PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds, |
| Updater->ProtoName, &BB->front()); |
| return PHI; |
| } |
| |
| /// AddPHIOperand - Add the specified value as an operand of the PHI for |
| /// the specified predecessor block. |
| static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) { |
| PHI->addIncoming(Val, Pred); |
| } |
| |
| /// InstrIsPHI - Check if an instruction is a PHI. |
| /// |
| static PHINode *InstrIsPHI(Instruction *I) { |
| return dyn_cast<PHINode>(I); |
| } |
| |
| /// ValueIsPHI - Check if a value is a PHI. |
| /// |
| static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) { |
| return dyn_cast<PHINode>(Val); |
| } |
| |
| /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source |
| /// operands, i.e., it was just added. |
| static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) { |
| PHINode *PHI = ValueIsPHI(Val, Updater); |
| if (PHI && PHI->getNumIncomingValues() == 0) |
| return PHI; |
| return 0; |
| } |
| |
| /// GetPHIValue - For the specified PHI instruction, return the value |
| /// that it defines. |
| static Value *GetPHIValue(PHINode *PHI) { |
| return PHI; |
| } |
| }; |
| |
| } // End llvm namespace |
| |
| /// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry |
| /// for the specified BB and if so, return it. If not, construct SSA form by |
| /// first calculating the required placement of PHIs and then inserting new |
| /// PHIs where needed. |
| Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) { |
| AvailableValsTy &AvailableVals = getAvailableVals(AV); |
| if (Value *V = AvailableVals[BB]) |
| return V; |
| |
| SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs); |
| return Impl.GetValue(BB); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LoadAndStorePromoter Implementation |
| //===----------------------------------------------------------------------===// |
| |
| LoadAndStorePromoter:: |
| LoadAndStorePromoter(const SmallVectorImpl<Instruction*> &Insts, |
| SSAUpdater &S, StringRef BaseName) : SSA(S) { |
| if (Insts.empty()) return; |
| |
| Value *SomeVal; |
| if (LoadInst *LI = dyn_cast<LoadInst>(Insts[0])) |
| SomeVal = LI; |
| else |
| SomeVal = cast<StoreInst>(Insts[0])->getOperand(0); |
| |
| if (BaseName.empty()) |
| BaseName = SomeVal->getName(); |
| SSA.Initialize(SomeVal->getType(), BaseName); |
| } |
| |
| |
| void LoadAndStorePromoter:: |
| run(const SmallVectorImpl<Instruction*> &Insts) const { |
| |
| // First step: bucket up uses of the alloca by the block they occur in. |
| // This is important because we have to handle multiple defs/uses in a block |
| // ourselves: SSAUpdater is purely for cross-block references. |
| DenseMap<BasicBlock*, TinyPtrVector<Instruction*> > UsesByBlock; |
| |
| for (unsigned i = 0, e = Insts.size(); i != e; ++i) { |
| Instruction *User = Insts[i]; |
| UsesByBlock[User->getParent()].push_back(User); |
| } |
| |
| // Okay, now we can iterate over all the blocks in the function with uses, |
| // processing them. Keep track of which loads are loading a live-in value. |
| // Walk the uses in the use-list order to be determinstic. |
| SmallVector<LoadInst*, 32> LiveInLoads; |
| DenseMap<Value*, Value*> ReplacedLoads; |
| |
| for (unsigned i = 0, e = Insts.size(); i != e; ++i) { |
| Instruction *User = Insts[i]; |
| BasicBlock *BB = User->getParent(); |
| TinyPtrVector<Instruction*> &BlockUses = UsesByBlock[BB]; |
| |
| // If this block has already been processed, ignore this repeat use. |
| if (BlockUses.empty()) continue; |
| |
| // Okay, this is the first use in the block. If this block just has a |
| // single user in it, we can rewrite it trivially. |
| if (BlockUses.size() == 1) { |
| // If it is a store, it is a trivial def of the value in the block. |
| if (StoreInst *SI = dyn_cast<StoreInst>(User)) { |
| updateDebugInfo(SI); |
| SSA.AddAvailableValue(BB, SI->getOperand(0)); |
| } else |
| // Otherwise it is a load, queue it to rewrite as a live-in load. |
| LiveInLoads.push_back(cast<LoadInst>(User)); |
| BlockUses.clear(); |
| continue; |
| } |
| |
| // Otherwise, check to see if this block is all loads. |
| bool HasStore = false; |
| for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) { |
| if (isa<StoreInst>(BlockUses[i])) { |
| HasStore = true; |
| break; |
| } |
| } |
| |
| // If so, we can queue them all as live in loads. We don't have an |
| // efficient way to tell which on is first in the block and don't want to |
| // scan large blocks, so just add all loads as live ins. |
| if (!HasStore) { |
| for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) |
| LiveInLoads.push_back(cast<LoadInst>(BlockUses[i])); |
| BlockUses.clear(); |
| continue; |
| } |
| |
| // Otherwise, we have mixed loads and stores (or just a bunch of stores). |
| // Since SSAUpdater is purely for cross-block values, we need to determine |
| // the order of these instructions in the block. If the first use in the |
| // block is a load, then it uses the live in value. The last store defines |
| // the live out value. We handle this by doing a linear scan of the block. |
| Value *StoredValue = 0; |
| for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) { |
| if (LoadInst *L = dyn_cast<LoadInst>(II)) { |
| // If this is a load from an unrelated pointer, ignore it. |
| if (!isInstInList(L, Insts)) continue; |
| |
| // If we haven't seen a store yet, this is a live in use, otherwise |
| // use the stored value. |
| if (StoredValue) { |
| replaceLoadWithValue(L, StoredValue); |
| L->replaceAllUsesWith(StoredValue); |
| ReplacedLoads[L] = StoredValue; |
| } else { |
| LiveInLoads.push_back(L); |
| } |
| continue; |
| } |
| |
| if (StoreInst *SI = dyn_cast<StoreInst>(II)) { |
| // If this is a store to an unrelated pointer, ignore it. |
| if (!isInstInList(SI, Insts)) continue; |
| updateDebugInfo(SI); |
| |
| // Remember that this is the active value in the block. |
| StoredValue = SI->getOperand(0); |
| } |
| } |
| |
| // The last stored value that happened is the live-out for the block. |
| assert(StoredValue && "Already checked that there is a store in block"); |
| SSA.AddAvailableValue(BB, StoredValue); |
| BlockUses.clear(); |
| } |
| |
| // Okay, now we rewrite all loads that use live-in values in the loop, |
| // inserting PHI nodes as necessary. |
| for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) { |
| LoadInst *ALoad = LiveInLoads[i]; |
| Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent()); |
| replaceLoadWithValue(ALoad, NewVal); |
| |
| // Avoid assertions in unreachable code. |
| if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType()); |
| ALoad->replaceAllUsesWith(NewVal); |
| ReplacedLoads[ALoad] = NewVal; |
| } |
| |
| // Allow the client to do stuff before we start nuking things. |
| doExtraRewritesBeforeFinalDeletion(); |
| |
| // Now that everything is rewritten, delete the old instructions from the |
| // function. They should all be dead now. |
| for (unsigned i = 0, e = Insts.size(); i != e; ++i) { |
| Instruction *User = Insts[i]; |
| |
| // If this is a load that still has uses, then the load must have been added |
| // as a live value in the SSAUpdate data structure for a block (e.g. because |
| // the loaded value was stored later). In this case, we need to recursively |
| // propagate the updates until we get to the real value. |
| if (!User->use_empty()) { |
| Value *NewVal = ReplacedLoads[User]; |
| assert(NewVal && "not a replaced load?"); |
| |
| // Propagate down to the ultimate replacee. The intermediately loads |
| // could theoretically already have been deleted, so we don't want to |
| // dereference the Value*'s. |
| DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal); |
| while (RLI != ReplacedLoads.end()) { |
| NewVal = RLI->second; |
| RLI = ReplacedLoads.find(NewVal); |
| } |
| |
| replaceLoadWithValue(cast<LoadInst>(User), NewVal); |
| User->replaceAllUsesWith(NewVal); |
| } |
| |
| instructionDeleted(User); |
| User->eraseFromParent(); |
| } |
| } |