| //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements the SelectionDAGISel class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "isel" |
| #include "ScheduleDAGSDNodes.h" |
| #include "SelectionDAGBuilder.h" |
| #include "llvm/CodeGen/FunctionLoweringInfo.h" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/BranchProbabilityInfo.h" |
| #include "llvm/Analysis/DebugInfo.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Function.h" |
| #include "llvm/InlineAsm.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/IntrinsicInst.h" |
| #include "llvm/LLVMContext.h" |
| #include "llvm/Module.h" |
| #include "llvm/CodeGen/FastISel.h" |
| #include "llvm/CodeGen/GCStrategy.h" |
| #include "llvm/CodeGen/GCMetadata.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/ScheduleHazardRecognizer.h" |
| #include "llvm/CodeGen/SchedulerRegistry.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Target/TargetIntrinsicInfo.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/Timer.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/ADT/PostOrderIterator.h" |
| #include "llvm/ADT/Statistic.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on"); |
| STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected"); |
| STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel"); |
| STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG"); |
| STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path"); |
| |
| static cl::opt<bool> |
| EnableFastISelVerbose("fast-isel-verbose", cl::Hidden, |
| cl::desc("Enable verbose messages in the \"fast\" " |
| "instruction selector")); |
| static cl::opt<bool> |
| EnableFastISelAbort("fast-isel-abort", cl::Hidden, |
| cl::desc("Enable abort calls when \"fast\" instruction fails")); |
| |
| static cl::opt<bool> |
| UseMBPI("use-mbpi", |
| cl::desc("use Machine Branch Probability Info"), |
| cl::init(true), cl::Hidden); |
| |
| #ifndef NDEBUG |
| static cl::opt<bool> |
| ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, |
| cl::desc("Pop up a window to show dags before the first " |
| "dag combine pass")); |
| static cl::opt<bool> |
| ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, |
| cl::desc("Pop up a window to show dags before legalize types")); |
| static cl::opt<bool> |
| ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, |
| cl::desc("Pop up a window to show dags before legalize")); |
| static cl::opt<bool> |
| ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, |
| cl::desc("Pop up a window to show dags before the second " |
| "dag combine pass")); |
| static cl::opt<bool> |
| ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden, |
| cl::desc("Pop up a window to show dags before the post legalize types" |
| " dag combine pass")); |
| static cl::opt<bool> |
| ViewISelDAGs("view-isel-dags", cl::Hidden, |
| cl::desc("Pop up a window to show isel dags as they are selected")); |
| static cl::opt<bool> |
| ViewSchedDAGs("view-sched-dags", cl::Hidden, |
| cl::desc("Pop up a window to show sched dags as they are processed")); |
| static cl::opt<bool> |
| ViewSUnitDAGs("view-sunit-dags", cl::Hidden, |
| cl::desc("Pop up a window to show SUnit dags after they are processed")); |
| #else |
| static const bool ViewDAGCombine1 = false, |
| ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false, |
| ViewDAGCombine2 = false, |
| ViewDAGCombineLT = false, |
| ViewISelDAGs = false, ViewSchedDAGs = false, |
| ViewSUnitDAGs = false; |
| #endif |
| |
| //===---------------------------------------------------------------------===// |
| /// |
| /// RegisterScheduler class - Track the registration of instruction schedulers. |
| /// |
| //===---------------------------------------------------------------------===// |
| MachinePassRegistry RegisterScheduler::Registry; |
| |
| //===---------------------------------------------------------------------===// |
| /// |
| /// ISHeuristic command line option for instruction schedulers. |
| /// |
| //===---------------------------------------------------------------------===// |
| static cl::opt<RegisterScheduler::FunctionPassCtor, false, |
| RegisterPassParser<RegisterScheduler> > |
| ISHeuristic("pre-RA-sched", |
| cl::init(&createDefaultScheduler), |
| cl::desc("Instruction schedulers available (before register" |
| " allocation):")); |
| |
| static RegisterScheduler |
| defaultListDAGScheduler("default", "Best scheduler for the target", |
| createDefaultScheduler); |
| |
| namespace llvm { |
| //===--------------------------------------------------------------------===// |
| /// createDefaultScheduler - This creates an instruction scheduler appropriate |
| /// for the target. |
| ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS, |
| CodeGenOpt::Level OptLevel) { |
| const TargetLowering &TLI = IS->getTargetLowering(); |
| |
| if (OptLevel == CodeGenOpt::None) |
| return createSourceListDAGScheduler(IS, OptLevel); |
| if (TLI.getSchedulingPreference() == Sched::Latency) |
| return createTDListDAGScheduler(IS, OptLevel); |
| if (TLI.getSchedulingPreference() == Sched::RegPressure) |
| return createBURRListDAGScheduler(IS, OptLevel); |
| if (TLI.getSchedulingPreference() == Sched::Hybrid) |
| return createHybridListDAGScheduler(IS, OptLevel); |
| assert(TLI.getSchedulingPreference() == Sched::ILP && |
| "Unknown sched type!"); |
| return createILPListDAGScheduler(IS, OptLevel); |
| } |
| } |
| |
| // EmitInstrWithCustomInserter - This method should be implemented by targets |
| // that mark instructions with the 'usesCustomInserter' flag. These |
| // instructions are special in various ways, which require special support to |
| // insert. The specified MachineInstr is created but not inserted into any |
| // basic blocks, and this method is called to expand it into a sequence of |
| // instructions, potentially also creating new basic blocks and control flow. |
| // When new basic blocks are inserted and the edges from MBB to its successors |
| // are modified, the method should insert pairs of <OldSucc, NewSucc> into the |
| // DenseMap. |
| MachineBasicBlock * |
| TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, |
| MachineBasicBlock *MBB) const { |
| #ifndef NDEBUG |
| dbgs() << "If a target marks an instruction with " |
| "'usesCustomInserter', it must implement " |
| "TargetLowering::EmitInstrWithCustomInserter!"; |
| #endif |
| llvm_unreachable(0); |
| return 0; |
| } |
| |
| void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI, |
| SDNode *Node) const { |
| assert(!MI->getDesc().hasPostISelHook() && |
| "If a target marks an instruction with 'hasPostISelHook', " |
| "it must implement TargetLowering::AdjustInstrPostInstrSelection!"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SelectionDAGISel code |
| //===----------------------------------------------------------------------===// |
| |
| SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm, |
| CodeGenOpt::Level OL) : |
| MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()), |
| FuncInfo(new FunctionLoweringInfo(TLI)), |
| CurDAG(new SelectionDAG(tm)), |
| SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)), |
| GFI(), |
| OptLevel(OL), |
| DAGSize(0) { |
| initializeGCModuleInfoPass(*PassRegistry::getPassRegistry()); |
| initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry()); |
| initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| SelectionDAGISel::~SelectionDAGISel() { |
| delete SDB; |
| delete CurDAG; |
| delete FuncInfo; |
| } |
| |
| void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<AliasAnalysis>(); |
| AU.addPreserved<AliasAnalysis>(); |
| AU.addRequired<GCModuleInfo>(); |
| AU.addPreserved<GCModuleInfo>(); |
| if (UseMBPI && OptLevel != CodeGenOpt::None) |
| AU.addRequired<BranchProbabilityInfo>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that |
| /// may trap on it. In this case we have to split the edge so that the path |
| /// through the predecessor block that doesn't go to the phi block doesn't |
| /// execute the possibly trapping instruction. |
| /// |
| /// This is required for correctness, so it must be done at -O0. |
| /// |
| static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) { |
| // Loop for blocks with phi nodes. |
| for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { |
| PHINode *PN = dyn_cast<PHINode>(BB->begin()); |
| if (PN == 0) continue; |
| |
| ReprocessBlock: |
| // For each block with a PHI node, check to see if any of the input values |
| // are potentially trapping constant expressions. Constant expressions are |
| // the only potentially trapping value that can occur as the argument to a |
| // PHI. |
| for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I) |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i)); |
| if (CE == 0 || !CE->canTrap()) continue; |
| |
| // The only case we have to worry about is when the edge is critical. |
| // Since this block has a PHI Node, we assume it has multiple input |
| // edges: check to see if the pred has multiple successors. |
| BasicBlock *Pred = PN->getIncomingBlock(i); |
| if (Pred->getTerminator()->getNumSuccessors() == 1) |
| continue; |
| |
| // Okay, we have to split this edge. |
| SplitCriticalEdge(Pred->getTerminator(), |
| GetSuccessorNumber(Pred, BB), SDISel, true); |
| goto ReprocessBlock; |
| } |
| } |
| } |
| |
| bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { |
| // Do some sanity-checking on the command-line options. |
| assert((!EnableFastISelVerbose || EnableFastISel) && |
| "-fast-isel-verbose requires -fast-isel"); |
| assert((!EnableFastISelAbort || EnableFastISel) && |
| "-fast-isel-abort requires -fast-isel"); |
| |
| const Function &Fn = *mf.getFunction(); |
| const TargetInstrInfo &TII = *TM.getInstrInfo(); |
| const TargetRegisterInfo &TRI = *TM.getRegisterInfo(); |
| |
| MF = &mf; |
| RegInfo = &MF->getRegInfo(); |
| AA = &getAnalysis<AliasAnalysis>(); |
| GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0; |
| |
| DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n"); |
| |
| SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this); |
| |
| CurDAG->init(*MF); |
| FuncInfo->set(Fn, *MF); |
| |
| if (UseMBPI && OptLevel != CodeGenOpt::None) |
| FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>(); |
| else |
| FuncInfo->BPI = 0; |
| |
| SDB->init(GFI, *AA); |
| |
| SelectAllBasicBlocks(Fn); |
| |
| // If the first basic block in the function has live ins that need to be |
| // copied into vregs, emit the copies into the top of the block before |
| // emitting the code for the block. |
| MachineBasicBlock *EntryMBB = MF->begin(); |
| RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII); |
| |
| DenseMap<unsigned, unsigned> LiveInMap; |
| if (!FuncInfo->ArgDbgValues.empty()) |
| for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(), |
| E = RegInfo->livein_end(); LI != E; ++LI) |
| if (LI->second) |
| LiveInMap.insert(std::make_pair(LI->first, LI->second)); |
| |
| // Insert DBG_VALUE instructions for function arguments to the entry block. |
| for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) { |
| MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1]; |
| unsigned Reg = MI->getOperand(0).getReg(); |
| if (TargetRegisterInfo::isPhysicalRegister(Reg)) |
| EntryMBB->insert(EntryMBB->begin(), MI); |
| else { |
| MachineInstr *Def = RegInfo->getVRegDef(Reg); |
| MachineBasicBlock::iterator InsertPos = Def; |
| // FIXME: VR def may not be in entry block. |
| Def->getParent()->insert(llvm::next(InsertPos), MI); |
| } |
| |
| // If Reg is live-in then update debug info to track its copy in a vreg. |
| DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg); |
| if (LDI != LiveInMap.end()) { |
| MachineInstr *Def = RegInfo->getVRegDef(LDI->second); |
| MachineBasicBlock::iterator InsertPos = Def; |
| const MDNode *Variable = |
| MI->getOperand(MI->getNumOperands()-1).getMetadata(); |
| unsigned Offset = MI->getOperand(1).getImm(); |
| // Def is never a terminator here, so it is ok to increment InsertPos. |
| BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(), |
| TII.get(TargetOpcode::DBG_VALUE)) |
| .addReg(LDI->second, RegState::Debug) |
| .addImm(Offset).addMetadata(Variable); |
| |
| // If this vreg is directly copied into an exported register then |
| // that COPY instructions also need DBG_VALUE, if it is the only |
| // user of LDI->second. |
| MachineInstr *CopyUseMI = NULL; |
| for (MachineRegisterInfo::use_iterator |
| UI = RegInfo->use_begin(LDI->second); |
| MachineInstr *UseMI = UI.skipInstruction();) { |
| if (UseMI->isDebugValue()) continue; |
| if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) { |
| CopyUseMI = UseMI; continue; |
| } |
| // Otherwise this is another use or second copy use. |
| CopyUseMI = NULL; break; |
| } |
| if (CopyUseMI) { |
| MachineInstr *NewMI = |
| BuildMI(*MF, CopyUseMI->getDebugLoc(), |
| TII.get(TargetOpcode::DBG_VALUE)) |
| .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug) |
| .addImm(Offset).addMetadata(Variable); |
| EntryMBB->insertAfter(CopyUseMI, NewMI); |
| } |
| } |
| } |
| |
| // Determine if there are any calls in this machine function. |
| MachineFrameInfo *MFI = MF->getFrameInfo(); |
| if (!MFI->hasCalls()) { |
| for (MachineFunction::const_iterator |
| I = MF->begin(), E = MF->end(); I != E; ++I) { |
| const MachineBasicBlock *MBB = I; |
| for (MachineBasicBlock::const_iterator |
| II = MBB->begin(), IE = MBB->end(); II != IE; ++II) { |
| const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode()); |
| |
| if ((MCID.isCall() && !MCID.isReturn()) || |
| II->isStackAligningInlineAsm()) { |
| MFI->setHasCalls(true); |
| goto done; |
| } |
| } |
| } |
| done:; |
| } |
| |
| // Determine if there is a call to setjmp in the machine function. |
| MF->setCallsSetJmp(Fn.callsFunctionThatReturnsTwice()); |
| |
| // Replace forward-declared registers with the registers containing |
| // the desired value. |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| for (DenseMap<unsigned, unsigned>::iterator |
| I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end(); |
| I != E; ++I) { |
| unsigned From = I->first; |
| unsigned To = I->second; |
| // If To is also scheduled to be replaced, find what its ultimate |
| // replacement is. |
| for (;;) { |
| DenseMap<unsigned, unsigned>::iterator J = |
| FuncInfo->RegFixups.find(To); |
| if (J == E) break; |
| To = J->second; |
| } |
| // Replace it. |
| MRI.replaceRegWith(From, To); |
| } |
| |
| // Release function-specific state. SDB and CurDAG are already cleared |
| // at this point. |
| FuncInfo->clear(); |
| |
| return true; |
| } |
| |
| void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin, |
| BasicBlock::const_iterator End, |
| bool &HadTailCall) { |
| // Lower all of the non-terminator instructions. If a call is emitted |
| // as a tail call, cease emitting nodes for this block. Terminators |
| // are handled below. |
| for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) |
| SDB->visit(*I); |
| |
| // Make sure the root of the DAG is up-to-date. |
| CurDAG->setRoot(SDB->getControlRoot()); |
| HadTailCall = SDB->HasTailCall; |
| SDB->clear(); |
| |
| // Final step, emit the lowered DAG as machine code. |
| CodeGenAndEmitDAG(); |
| } |
| |
| void SelectionDAGISel::ComputeLiveOutVRegInfo() { |
| SmallPtrSet<SDNode*, 128> VisitedNodes; |
| SmallVector<SDNode*, 128> Worklist; |
| |
| Worklist.push_back(CurDAG->getRoot().getNode()); |
| |
| APInt Mask; |
| APInt KnownZero; |
| APInt KnownOne; |
| |
| do { |
| SDNode *N = Worklist.pop_back_val(); |
| |
| // If we've already seen this node, ignore it. |
| if (!VisitedNodes.insert(N)) |
| continue; |
| |
| // Otherwise, add all chain operands to the worklist. |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) |
| if (N->getOperand(i).getValueType() == MVT::Other) |
| Worklist.push_back(N->getOperand(i).getNode()); |
| |
| // If this is a CopyToReg with a vreg dest, process it. |
| if (N->getOpcode() != ISD::CopyToReg) |
| continue; |
| |
| unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); |
| if (!TargetRegisterInfo::isVirtualRegister(DestReg)) |
| continue; |
| |
| // Ignore non-scalar or non-integer values. |
| SDValue Src = N->getOperand(2); |
| EVT SrcVT = Src.getValueType(); |
| if (!SrcVT.isInteger() || SrcVT.isVector()) |
| continue; |
| |
| unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src); |
| Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits()); |
| CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne); |
| FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne); |
| } while (!Worklist.empty()); |
| } |
| |
| void SelectionDAGISel::CodeGenAndEmitDAG() { |
| std::string GroupName; |
| if (TimePassesIsEnabled) |
| GroupName = "Instruction Selection and Scheduling"; |
| std::string BlockName; |
| int BlockNumber = -1; |
| (void)BlockNumber; |
| #ifdef NDEBUG |
| if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs || |
| ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs || |
| ViewSUnitDAGs) |
| #endif |
| { |
| BlockNumber = FuncInfo->MBB->getNumber(); |
| BlockName = MF->getFunction()->getNameStr() + ":" + |
| FuncInfo->MBB->getBasicBlock()->getNameStr(); |
| } |
| DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber |
| << " '" << BlockName << "'\n"; CurDAG->dump()); |
| |
| if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName); |
| |
| // Run the DAG combiner in pre-legalize mode. |
| { |
| NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled); |
| CurDAG->Combine(Unrestricted, *AA, OptLevel); |
| } |
| |
| DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber |
| << " '" << BlockName << "'\n"; CurDAG->dump()); |
| |
| // Second step, hack on the DAG until it only uses operations and types that |
| // the target supports. |
| if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " + |
| BlockName); |
| |
| bool Changed; |
| { |
| NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled); |
| Changed = CurDAG->LegalizeTypes(); |
| } |
| |
| DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber |
| << " '" << BlockName << "'\n"; CurDAG->dump()); |
| |
| if (Changed) { |
| if (ViewDAGCombineLT) |
| CurDAG->viewGraph("dag-combine-lt input for " + BlockName); |
| |
| // Run the DAG combiner in post-type-legalize mode. |
| { |
| NamedRegionTimer T("DAG Combining after legalize types", GroupName, |
| TimePassesIsEnabled); |
| CurDAG->Combine(NoIllegalTypes, *AA, OptLevel); |
| } |
| |
| DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber |
| << " '" << BlockName << "'\n"; CurDAG->dump()); |
| } |
| |
| { |
| NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled); |
| Changed = CurDAG->LegalizeVectors(); |
| } |
| |
| if (Changed) { |
| { |
| NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled); |
| CurDAG->LegalizeTypes(); |
| } |
| |
| if (ViewDAGCombineLT) |
| CurDAG->viewGraph("dag-combine-lv input for " + BlockName); |
| |
| // Run the DAG combiner in post-type-legalize mode. |
| { |
| NamedRegionTimer T("DAG Combining after legalize vectors", GroupName, |
| TimePassesIsEnabled); |
| CurDAG->Combine(NoIllegalOperations, *AA, OptLevel); |
| } |
| |
| DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#" |
| << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump()); |
| } |
| |
| if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName); |
| |
| { |
| NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled); |
| CurDAG->Legalize(); |
| } |
| |
| DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber |
| << " '" << BlockName << "'\n"; CurDAG->dump()); |
| |
| if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName); |
| |
| // Run the DAG combiner in post-legalize mode. |
| { |
| NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled); |
| CurDAG->Combine(NoIllegalOperations, *AA, OptLevel); |
| } |
| |
| DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber |
| << " '" << BlockName << "'\n"; CurDAG->dump()); |
| |
| if (OptLevel != CodeGenOpt::None) |
| ComputeLiveOutVRegInfo(); |
| |
| if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName); |
| |
| // Third, instruction select all of the operations to machine code, adding the |
| // code to the MachineBasicBlock. |
| { |
| NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled); |
| DoInstructionSelection(); |
| } |
| |
| DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber |
| << " '" << BlockName << "'\n"; CurDAG->dump()); |
| |
| if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName); |
| |
| // Schedule machine code. |
| ScheduleDAGSDNodes *Scheduler = CreateScheduler(); |
| { |
| NamedRegionTimer T("Instruction Scheduling", GroupName, |
| TimePassesIsEnabled); |
| Scheduler->Run(CurDAG, FuncInfo->MBB, FuncInfo->InsertPt); |
| } |
| |
| if (ViewSUnitDAGs) Scheduler->viewGraph(); |
| |
| // Emit machine code to BB. This can change 'BB' to the last block being |
| // inserted into. |
| MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB; |
| { |
| NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled); |
| |
| LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(); |
| FuncInfo->InsertPt = Scheduler->InsertPos; |
| } |
| |
| // If the block was split, make sure we update any references that are used to |
| // update PHI nodes later on. |
| if (FirstMBB != LastMBB) |
| SDB->UpdateSplitBlock(FirstMBB, LastMBB); |
| |
| // Free the scheduler state. |
| { |
| NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName, |
| TimePassesIsEnabled); |
| delete Scheduler; |
| } |
| |
| // Free the SelectionDAG state, now that we're finished with it. |
| CurDAG->clear(); |
| } |
| |
| void SelectionDAGISel::DoInstructionSelection() { |
| DEBUG(errs() << "===== Instruction selection begins: BB#" |
| << FuncInfo->MBB->getNumber() |
| << " '" << FuncInfo->MBB->getName() << "'\n"); |
| |
| PreprocessISelDAG(); |
| |
| // Select target instructions for the DAG. |
| { |
| // Number all nodes with a topological order and set DAGSize. |
| DAGSize = CurDAG->AssignTopologicalOrder(); |
| |
| // Create a dummy node (which is not added to allnodes), that adds |
| // a reference to the root node, preventing it from being deleted, |
| // and tracking any changes of the root. |
| HandleSDNode Dummy(CurDAG->getRoot()); |
| ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode()); |
| ++ISelPosition; |
| |
| // The AllNodes list is now topological-sorted. Visit the |
| // nodes by starting at the end of the list (the root of the |
| // graph) and preceding back toward the beginning (the entry |
| // node). |
| while (ISelPosition != CurDAG->allnodes_begin()) { |
| SDNode *Node = --ISelPosition; |
| // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes, |
| // but there are currently some corner cases that it misses. Also, this |
| // makes it theoretically possible to disable the DAGCombiner. |
| if (Node->use_empty()) |
| continue; |
| |
| SDNode *ResNode = Select(Node); |
| |
| // FIXME: This is pretty gross. 'Select' should be changed to not return |
| // anything at all and this code should be nuked with a tactical strike. |
| |
| // If node should not be replaced, continue with the next one. |
| if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE) |
| continue; |
| // Replace node. |
| if (ResNode) |
| ReplaceUses(Node, ResNode); |
| |
| // If after the replacement this node is not used any more, |
| // remove this dead node. |
| if (Node->use_empty()) { // Don't delete EntryToken, etc. |
| ISelUpdater ISU(ISelPosition); |
| CurDAG->RemoveDeadNode(Node, &ISU); |
| } |
| } |
| |
| CurDAG->setRoot(Dummy.getValue()); |
| } |
| |
| DEBUG(errs() << "===== Instruction selection ends:\n"); |
| |
| PostprocessISelDAG(); |
| } |
| |
| /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and |
| /// do other setup for EH landing-pad blocks. |
| void SelectionDAGISel::PrepareEHLandingPad() { |
| MachineBasicBlock *MBB = FuncInfo->MBB; |
| |
| // Add a label to mark the beginning of the landing pad. Deletion of the |
| // landing pad can thus be detected via the MachineModuleInfo. |
| MCSymbol *Label = MF->getMMI().addLandingPad(MBB); |
| |
| // Assign the call site to the landing pad's begin label. |
| MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]); |
| |
| const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL); |
| BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II) |
| .addSym(Label); |
| |
| // Mark exception register as live in. |
| unsigned Reg = TLI.getExceptionAddressRegister(); |
| if (Reg) MBB->addLiveIn(Reg); |
| |
| // Mark exception selector register as live in. |
| Reg = TLI.getExceptionSelectorRegister(); |
| if (Reg) MBB->addLiveIn(Reg); |
| |
| // FIXME: Hack around an exception handling flaw (PR1508): the personality |
| // function and list of typeids logically belong to the invoke (or, if you |
| // like, the basic block containing the invoke), and need to be associated |
| // with it in the dwarf exception handling tables. Currently however the |
| // information is provided by an intrinsic (eh.selector) that can be moved |
| // to unexpected places by the optimizers: if the unwind edge is critical, |
| // then breaking it can result in the intrinsics being in the successor of |
| // the landing pad, not the landing pad itself. This results |
| // in exceptions not being caught because no typeids are associated with |
| // the invoke. This may not be the only way things can go wrong, but it |
| // is the only way we try to work around for the moment. |
| const BasicBlock *LLVMBB = MBB->getBasicBlock(); |
| const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator()); |
| |
| if (Br && Br->isUnconditional()) { // Critical edge? |
| BasicBlock::const_iterator I, E; |
| for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I) |
| if (isa<EHSelectorInst>(I)) |
| break; |
| |
| if (I == E) |
| // No catch info found - try to extract some from the successor. |
| CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo); |
| } |
| } |
| |
| /// TryToFoldFastISelLoad - We're checking to see if we can fold the specified |
| /// load into the specified FoldInst. Note that we could have a sequence where |
| /// multiple LLVM IR instructions are folded into the same machineinstr. For |
| /// example we could have: |
| /// A: x = load i32 *P |
| /// B: y = icmp A, 42 |
| /// C: br y, ... |
| /// |
| /// In this scenario, LI is "A", and FoldInst is "C". We know about "B" (and |
| /// any other folded instructions) because it is between A and C. |
| /// |
| /// If we succeed in folding the load into the operation, return true. |
| /// |
| bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI, |
| const Instruction *FoldInst, |
| FastISel *FastIS) { |
| // We know that the load has a single use, but don't know what it is. If it |
| // isn't one of the folded instructions, then we can't succeed here. Handle |
| // this by scanning the single-use users of the load until we get to FoldInst. |
| unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. |
| |
| const Instruction *TheUser = LI->use_back(); |
| while (TheUser != FoldInst && // Scan up until we find FoldInst. |
| // Stay in the right block. |
| TheUser->getParent() == FoldInst->getParent() && |
| --MaxUsers) { // Don't scan too far. |
| // If there are multiple or no uses of this instruction, then bail out. |
| if (!TheUser->hasOneUse()) |
| return false; |
| |
| TheUser = TheUser->use_back(); |
| } |
| |
| // If we didn't find the fold instruction, then we failed to collapse the |
| // sequence. |
| if (TheUser != FoldInst) |
| return false; |
| |
| // Don't try to fold volatile loads. Target has to deal with alignment |
| // constraints. |
| if (LI->isVolatile()) return false; |
| |
| // Figure out which vreg this is going into. If there is no assigned vreg yet |
| // then there actually was no reference to it. Perhaps the load is referenced |
| // by a dead instruction. |
| unsigned LoadReg = FastIS->getRegForValue(LI); |
| if (LoadReg == 0) |
| return false; |
| |
| // Check to see what the uses of this vreg are. If it has no uses, or more |
| // than one use (at the machine instr level) then we can't fold it. |
| MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg); |
| if (RI == RegInfo->reg_end()) |
| return false; |
| |
| // See if there is exactly one use of the vreg. If there are multiple uses, |
| // then the instruction got lowered to multiple machine instructions or the |
| // use of the loaded value ended up being multiple operands of the result, in |
| // either case, we can't fold this. |
| MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI; |
| if (PostRI != RegInfo->reg_end()) |
| return false; |
| |
| assert(RI.getOperand().isUse() && |
| "The only use of the vreg must be a use, we haven't emitted the def!"); |
| |
| MachineInstr *User = &*RI; |
| |
| // Set the insertion point properly. Folding the load can cause generation of |
| // other random instructions (like sign extends) for addressing modes, make |
| // sure they get inserted in a logical place before the new instruction. |
| FuncInfo->InsertPt = User; |
| FuncInfo->MBB = User->getParent(); |
| |
| // Ask the target to try folding the load. |
| return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI); |
| } |
| |
| /// isFoldedOrDeadInstruction - Return true if the specified instruction is |
| /// side-effect free and is either dead or folded into a generated instruction. |
| /// Return false if it needs to be emitted. |
| static bool isFoldedOrDeadInstruction(const Instruction *I, |
| FunctionLoweringInfo *FuncInfo) { |
| return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded. |
| !isa<TerminatorInst>(I) && // Terminators aren't folded. |
| !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded. |
| !isa<LandingPadInst>(I) && // Landingpad instructions aren't folded. |
| !FuncInfo->isExportedInst(I); // Exported instrs must be computed. |
| } |
| |
| void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) { |
| // Initialize the Fast-ISel state, if needed. |
| FastISel *FastIS = 0; |
| if (EnableFastISel) |
| FastIS = TLI.createFastISel(*FuncInfo); |
| |
| // Iterate over all basic blocks in the function. |
| ReversePostOrderTraversal<const Function*> RPOT(&Fn); |
| for (ReversePostOrderTraversal<const Function*>::rpo_iterator |
| I = RPOT.begin(), E = RPOT.end(); I != E; ++I) { |
| const BasicBlock *LLVMBB = *I; |
| |
| if (OptLevel != CodeGenOpt::None) { |
| bool AllPredsVisited = true; |
| for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB); |
| PI != PE; ++PI) { |
| if (!FuncInfo->VisitedBBs.count(*PI)) { |
| AllPredsVisited = false; |
| break; |
| } |
| } |
| |
| if (AllPredsVisited) { |
| for (BasicBlock::const_iterator I = LLVMBB->begin(); |
| isa<PHINode>(I); ++I) |
| FuncInfo->ComputePHILiveOutRegInfo(cast<PHINode>(I)); |
| } else { |
| for (BasicBlock::const_iterator I = LLVMBB->begin(); |
| isa<PHINode>(I); ++I) |
| FuncInfo->InvalidatePHILiveOutRegInfo(cast<PHINode>(I)); |
| } |
| |
| FuncInfo->VisitedBBs.insert(LLVMBB); |
| } |
| |
| FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB]; |
| FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI(); |
| |
| BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI(); |
| BasicBlock::const_iterator const End = LLVMBB->end(); |
| BasicBlock::const_iterator BI = End; |
| |
| FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI(); |
| |
| // Setup an EH landing-pad block. |
| if (FuncInfo->MBB->isLandingPad()) |
| PrepareEHLandingPad(); |
| |
| // Lower any arguments needed in this block if this is the entry block. |
| if (LLVMBB == &Fn.getEntryBlock()) |
| LowerArguments(LLVMBB); |
| |
| // Before doing SelectionDAG ISel, see if FastISel has been requested. |
| if (FastIS) { |
| FastIS->startNewBlock(); |
| |
| // Emit code for any incoming arguments. This must happen before |
| // beginning FastISel on the entry block. |
| if (LLVMBB == &Fn.getEntryBlock()) { |
| CurDAG->setRoot(SDB->getControlRoot()); |
| SDB->clear(); |
| CodeGenAndEmitDAG(); |
| |
| // If we inserted any instructions at the beginning, make a note of |
| // where they are, so we can be sure to emit subsequent instructions |
| // after them. |
| if (FuncInfo->InsertPt != FuncInfo->MBB->begin()) |
| FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt)); |
| else |
| FastIS->setLastLocalValue(0); |
| } |
| |
| // Do FastISel on as many instructions as possible. |
| for (; BI != Begin; --BI) { |
| const Instruction *Inst = llvm::prior(BI); |
| |
| // If we no longer require this instruction, skip it. |
| if (isFoldedOrDeadInstruction(Inst, FuncInfo)) |
| continue; |
| |
| // Bottom-up: reset the insert pos at the top, after any local-value |
| // instructions. |
| FastIS->recomputeInsertPt(); |
| |
| // Try to select the instruction with FastISel. |
| if (FastIS->SelectInstruction(Inst)) { |
| ++NumFastIselSuccess; |
| // If fast isel succeeded, skip over all the folded instructions, and |
| // then see if there is a load right before the selected instructions. |
| // Try to fold the load if so. |
| const Instruction *BeforeInst = Inst; |
| while (BeforeInst != Begin) { |
| BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst)); |
| if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo)) |
| break; |
| } |
| if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) && |
| BeforeInst->hasOneUse() && |
| TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), Inst, FastIS)) |
| // If we succeeded, don't re-select the load. |
| BI = llvm::next(BasicBlock::const_iterator(BeforeInst)); |
| continue; |
| } |
| |
| // Then handle certain instructions as single-LLVM-Instruction blocks. |
| if (isa<CallInst>(Inst)) { |
| ++NumFastIselFailures; |
| if (EnableFastISelVerbose || EnableFastISelAbort) { |
| dbgs() << "FastISel missed call: "; |
| Inst->dump(); |
| } |
| |
| if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) { |
| unsigned &R = FuncInfo->ValueMap[Inst]; |
| if (!R) |
| R = FuncInfo->CreateRegs(Inst->getType()); |
| } |
| |
| bool HadTailCall = false; |
| SelectBasicBlock(Inst, BI, HadTailCall); |
| |
| // If the call was emitted as a tail call, we're done with the block. |
| if (HadTailCall) { |
| --BI; |
| break; |
| } |
| |
| continue; |
| } |
| |
| if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) { |
| // Don't abort, and use a different message for terminator misses. |
| ++NumFastIselFailures; |
| if (EnableFastISelVerbose || EnableFastISelAbort) { |
| dbgs() << "FastISel missed terminator: "; |
| Inst->dump(); |
| } |
| } else { |
| ++NumFastIselFailures; |
| if (EnableFastISelVerbose || EnableFastISelAbort) { |
| dbgs() << "FastISel miss: "; |
| Inst->dump(); |
| } |
| if (EnableFastISelAbort) |
| // The "fast" selector couldn't handle something and bailed. |
| // For the purpose of debugging, just abort. |
| llvm_unreachable("FastISel didn't select the entire block"); |
| } |
| break; |
| } |
| |
| FastIS->recomputeInsertPt(); |
| } |
| |
| if (Begin != BI) |
| ++NumDAGBlocks; |
| else |
| ++NumFastIselBlocks; |
| |
| if (Begin != BI) { |
| // Run SelectionDAG instruction selection on the remainder of the block |
| // not handled by FastISel. If FastISel is not run, this is the entire |
| // block. |
| bool HadTailCall; |
| SelectBasicBlock(Begin, BI, HadTailCall); |
| } |
| |
| FinishBasicBlock(); |
| FuncInfo->PHINodesToUpdate.clear(); |
| } |
| |
| delete FastIS; |
| SDB->clearDanglingDebugInfo(); |
| } |
| |
| void |
| SelectionDAGISel::FinishBasicBlock() { |
| |
| DEBUG(dbgs() << "Total amount of phi nodes to update: " |
| << FuncInfo->PHINodesToUpdate.size() << "\n"; |
| for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) |
| dbgs() << "Node " << i << " : (" |
| << FuncInfo->PHINodesToUpdate[i].first |
| << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n"); |
| |
| // Next, now that we know what the last MBB the LLVM BB expanded is, update |
| // PHI nodes in successors. |
| if (SDB->SwitchCases.empty() && |
| SDB->JTCases.empty() && |
| SDB->BitTestCases.empty()) { |
| for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { |
| MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first; |
| assert(PHI->isPHI() && |
| "This is not a machine PHI node that we are updating!"); |
| if (!FuncInfo->MBB->isSuccessor(PHI->getParent())) |
| continue; |
| PHI->addOperand( |
| MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false)); |
| PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB)); |
| } |
| return; |
| } |
| |
| for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) { |
| // Lower header first, if it wasn't already lowered |
| if (!SDB->BitTestCases[i].Emitted) { |
| // Set the current basic block to the mbb we wish to insert the code into |
| FuncInfo->MBB = SDB->BitTestCases[i].Parent; |
| FuncInfo->InsertPt = FuncInfo->MBB->end(); |
| // Emit the code |
| SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB); |
| CurDAG->setRoot(SDB->getRoot()); |
| SDB->clear(); |
| CodeGenAndEmitDAG(); |
| } |
| |
| for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) { |
| // Set the current basic block to the mbb we wish to insert the code into |
| FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB; |
| FuncInfo->InsertPt = FuncInfo->MBB->end(); |
| // Emit the code |
| if (j+1 != ej) |
| SDB->visitBitTestCase(SDB->BitTestCases[i], |
| SDB->BitTestCases[i].Cases[j+1].ThisBB, |
| SDB->BitTestCases[i].Reg, |
| SDB->BitTestCases[i].Cases[j], |
| FuncInfo->MBB); |
| else |
| SDB->visitBitTestCase(SDB->BitTestCases[i], |
| SDB->BitTestCases[i].Default, |
| SDB->BitTestCases[i].Reg, |
| SDB->BitTestCases[i].Cases[j], |
| FuncInfo->MBB); |
| |
| |
| CurDAG->setRoot(SDB->getRoot()); |
| SDB->clear(); |
| CodeGenAndEmitDAG(); |
| } |
| |
| // Update PHI Nodes |
| for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); |
| pi != pe; ++pi) { |
| MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first; |
| MachineBasicBlock *PHIBB = PHI->getParent(); |
| assert(PHI->isPHI() && |
| "This is not a machine PHI node that we are updating!"); |
| // This is "default" BB. We have two jumps to it. From "header" BB and |
| // from last "case" BB. |
| if (PHIBB == SDB->BitTestCases[i].Default) { |
| PHI->addOperand(MachineOperand:: |
| CreateReg(FuncInfo->PHINodesToUpdate[pi].second, |
| false)); |
| PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent)); |
| PHI->addOperand(MachineOperand:: |
| CreateReg(FuncInfo->PHINodesToUpdate[pi].second, |
| false)); |
| PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases. |
| back().ThisBB)); |
| } |
| // One of "cases" BB. |
| for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); |
| j != ej; ++j) { |
| MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB; |
| if (cBB->isSuccessor(PHIBB)) { |
| PHI->addOperand(MachineOperand:: |
| CreateReg(FuncInfo->PHINodesToUpdate[pi].second, |
| false)); |
| PHI->addOperand(MachineOperand::CreateMBB(cBB)); |
| } |
| } |
| } |
| } |
| SDB->BitTestCases.clear(); |
| |
| // If the JumpTable record is filled in, then we need to emit a jump table. |
| // Updating the PHI nodes is tricky in this case, since we need to determine |
| // whether the PHI is a successor of the range check MBB or the jump table MBB |
| for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) { |
| // Lower header first, if it wasn't already lowered |
| if (!SDB->JTCases[i].first.Emitted) { |
| // Set the current basic block to the mbb we wish to insert the code into |
| FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB; |
| FuncInfo->InsertPt = FuncInfo->MBB->end(); |
| // Emit the code |
| SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first, |
| FuncInfo->MBB); |
| CurDAG->setRoot(SDB->getRoot()); |
| SDB->clear(); |
| CodeGenAndEmitDAG(); |
| } |
| |
| // Set the current basic block to the mbb we wish to insert the code into |
| FuncInfo->MBB = SDB->JTCases[i].second.MBB; |
| FuncInfo->InsertPt = FuncInfo->MBB->end(); |
| // Emit the code |
| SDB->visitJumpTable(SDB->JTCases[i].second); |
| CurDAG->setRoot(SDB->getRoot()); |
| SDB->clear(); |
| CodeGenAndEmitDAG(); |
| |
| // Update PHI Nodes |
| for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); |
| pi != pe; ++pi) { |
| MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first; |
| MachineBasicBlock *PHIBB = PHI->getParent(); |
| assert(PHI->isPHI() && |
| "This is not a machine PHI node that we are updating!"); |
| // "default" BB. We can go there only from header BB. |
| if (PHIBB == SDB->JTCases[i].second.Default) { |
| PHI->addOperand |
| (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second, |
| false)); |
| PHI->addOperand |
| (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB)); |
| } |
| // JT BB. Just iterate over successors here |
| if (FuncInfo->MBB->isSuccessor(PHIBB)) { |
| PHI->addOperand |
| (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second, |
| false)); |
| PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB)); |
| } |
| } |
| } |
| SDB->JTCases.clear(); |
| |
| // If the switch block involved a branch to one of the actual successors, we |
| // need to update PHI nodes in that block. |
| for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { |
| MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first; |
| assert(PHI->isPHI() && |
| "This is not a machine PHI node that we are updating!"); |
| if (FuncInfo->MBB->isSuccessor(PHI->getParent())) { |
| PHI->addOperand( |
| MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false)); |
| PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB)); |
| } |
| } |
| |
| // If we generated any switch lowering information, build and codegen any |
| // additional DAGs necessary. |
| for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) { |
| // Set the current basic block to the mbb we wish to insert the code into |
| FuncInfo->MBB = SDB->SwitchCases[i].ThisBB; |
| FuncInfo->InsertPt = FuncInfo->MBB->end(); |
| |
| // Determine the unique successors. |
| SmallVector<MachineBasicBlock *, 2> Succs; |
| Succs.push_back(SDB->SwitchCases[i].TrueBB); |
| if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB) |
| Succs.push_back(SDB->SwitchCases[i].FalseBB); |
| |
| // Emit the code. Note that this could result in FuncInfo->MBB being split. |
| SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB); |
| CurDAG->setRoot(SDB->getRoot()); |
| SDB->clear(); |
| CodeGenAndEmitDAG(); |
| |
| // Remember the last block, now that any splitting is done, for use in |
| // populating PHI nodes in successors. |
| MachineBasicBlock *ThisBB = FuncInfo->MBB; |
| |
| // Handle any PHI nodes in successors of this chunk, as if we were coming |
| // from the original BB before switch expansion. Note that PHI nodes can |
| // occur multiple times in PHINodesToUpdate. We have to be very careful to |
| // handle them the right number of times. |
| for (unsigned i = 0, e = Succs.size(); i != e; ++i) { |
| FuncInfo->MBB = Succs[i]; |
| FuncInfo->InsertPt = FuncInfo->MBB->end(); |
| // FuncInfo->MBB may have been removed from the CFG if a branch was |
| // constant folded. |
| if (ThisBB->isSuccessor(FuncInfo->MBB)) { |
| for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin(); |
| Phi != FuncInfo->MBB->end() && Phi->isPHI(); |
| ++Phi) { |
| // This value for this PHI node is recorded in PHINodesToUpdate. |
| for (unsigned pn = 0; ; ++pn) { |
| assert(pn != FuncInfo->PHINodesToUpdate.size() && |
| "Didn't find PHI entry!"); |
| if (FuncInfo->PHINodesToUpdate[pn].first == Phi) { |
| Phi->addOperand(MachineOperand:: |
| CreateReg(FuncInfo->PHINodesToUpdate[pn].second, |
| false)); |
| Phi->addOperand(MachineOperand::CreateMBB(ThisBB)); |
| break; |
| } |
| } |
| } |
| } |
| } |
| } |
| SDB->SwitchCases.clear(); |
| } |
| |
| |
| /// Create the scheduler. If a specific scheduler was specified |
| /// via the SchedulerRegistry, use it, otherwise select the |
| /// one preferred by the target. |
| /// |
| ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() { |
| RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault(); |
| |
| if (!Ctor) { |
| Ctor = ISHeuristic; |
| RegisterScheduler::setDefault(Ctor); |
| } |
| |
| return Ctor(this, OptLevel); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Helper functions used by the generated instruction selector. |
| //===----------------------------------------------------------------------===// |
| // Calls to these methods are generated by tblgen. |
| |
| /// CheckAndMask - The isel is trying to match something like (and X, 255). If |
| /// the dag combiner simplified the 255, we still want to match. RHS is the |
| /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value |
| /// specified in the .td file (e.g. 255). |
| bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, |
| int64_t DesiredMaskS) const { |
| const APInt &ActualMask = RHS->getAPIntValue(); |
| const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); |
| |
| // If the actual mask exactly matches, success! |
| if (ActualMask == DesiredMask) |
| return true; |
| |
| // If the actual AND mask is allowing unallowed bits, this doesn't match. |
| if (ActualMask.intersects(~DesiredMask)) |
| return false; |
| |
| // Otherwise, the DAG Combiner may have proven that the value coming in is |
| // either already zero or is not demanded. Check for known zero input bits. |
| APInt NeededMask = DesiredMask & ~ActualMask; |
| if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) |
| return true; |
| |
| // TODO: check to see if missing bits are just not demanded. |
| |
| // Otherwise, this pattern doesn't match. |
| return false; |
| } |
| |
| /// CheckOrMask - The isel is trying to match something like (or X, 255). If |
| /// the dag combiner simplified the 255, we still want to match. RHS is the |
| /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value |
| /// specified in the .td file (e.g. 255). |
| bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, |
| int64_t DesiredMaskS) const { |
| const APInt &ActualMask = RHS->getAPIntValue(); |
| const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); |
| |
| // If the actual mask exactly matches, success! |
| if (ActualMask == DesiredMask) |
| return true; |
| |
| // If the actual AND mask is allowing unallowed bits, this doesn't match. |
| if (ActualMask.intersects(~DesiredMask)) |
| return false; |
| |
| // Otherwise, the DAG Combiner may have proven that the value coming in is |
| // either already zero or is not demanded. Check for known zero input bits. |
| APInt NeededMask = DesiredMask & ~ActualMask; |
| |
| APInt KnownZero, KnownOne; |
| CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne); |
| |
| // If all the missing bits in the or are already known to be set, match! |
| if ((NeededMask & KnownOne) == NeededMask) |
| return true; |
| |
| // TODO: check to see if missing bits are just not demanded. |
| |
| // Otherwise, this pattern doesn't match. |
| return false; |
| } |
| |
| |
| /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated |
| /// by tblgen. Others should not call it. |
| void SelectionDAGISel:: |
| SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) { |
| std::vector<SDValue> InOps; |
| std::swap(InOps, Ops); |
| |
| Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0 |
| Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1 |
| Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc |
| Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack) |
| |
| unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size(); |
| if (InOps[e-1].getValueType() == MVT::Glue) |
| --e; // Don't process a glue operand if it is here. |
| |
| while (i != e) { |
| unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue(); |
| if (!InlineAsm::isMemKind(Flags)) { |
| // Just skip over this operand, copying the operands verbatim. |
| Ops.insert(Ops.end(), InOps.begin()+i, |
| InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1); |
| i += InlineAsm::getNumOperandRegisters(Flags) + 1; |
| } else { |
| assert(InlineAsm::getNumOperandRegisters(Flags) == 1 && |
| "Memory operand with multiple values?"); |
| // Otherwise, this is a memory operand. Ask the target to select it. |
| std::vector<SDValue> SelOps; |
| if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) |
| report_fatal_error("Could not match memory address. Inline asm" |
| " failure!"); |
| |
| // Add this to the output node. |
| unsigned NewFlags = |
| InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size()); |
| Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32)); |
| Ops.insert(Ops.end(), SelOps.begin(), SelOps.end()); |
| i += 2; |
| } |
| } |
| |
| // Add the glue input back if present. |
| if (e != InOps.size()) |
| Ops.push_back(InOps.back()); |
| } |
| |
| /// findGlueUse - Return use of MVT::Glue value produced by the specified |
| /// SDNode. |
| /// |
| static SDNode *findGlueUse(SDNode *N) { |
| unsigned FlagResNo = N->getNumValues()-1; |
| for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { |
| SDUse &Use = I.getUse(); |
| if (Use.getResNo() == FlagResNo) |
| return Use.getUser(); |
| } |
| return NULL; |
| } |
| |
| /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def". |
| /// This function recursively traverses up the operand chain, ignoring |
| /// certain nodes. |
| static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse, |
| SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited, |
| bool IgnoreChains) { |
| // The NodeID's are given uniques ID's where a node ID is guaranteed to be |
| // greater than all of its (recursive) operands. If we scan to a point where |
| // 'use' is smaller than the node we're scanning for, then we know we will |
| // never find it. |
| // |
| // The Use may be -1 (unassigned) if it is a newly allocated node. This can |
| // happen because we scan down to newly selected nodes in the case of glue |
| // uses. |
| if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1)) |
| return false; |
| |
| // Don't revisit nodes if we already scanned it and didn't fail, we know we |
| // won't fail if we scan it again. |
| if (!Visited.insert(Use)) |
| return false; |
| |
| for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) { |
| // Ignore chain uses, they are validated by HandleMergeInputChains. |
| if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains) |
| continue; |
| |
| SDNode *N = Use->getOperand(i).getNode(); |
| if (N == Def) { |
| if (Use == ImmedUse || Use == Root) |
| continue; // We are not looking for immediate use. |
| assert(N != Root); |
| return true; |
| } |
| |
| // Traverse up the operand chain. |
| if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains)) |
| return true; |
| } |
| return false; |
| } |
| |
| /// IsProfitableToFold - Returns true if it's profitable to fold the specific |
| /// operand node N of U during instruction selection that starts at Root. |
| bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U, |
| SDNode *Root) const { |
| if (OptLevel == CodeGenOpt::None) return false; |
| return N.hasOneUse(); |
| } |
| |
| /// IsLegalToFold - Returns true if the specific operand node N of |
| /// U can be folded during instruction selection that starts at Root. |
| bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root, |
| CodeGenOpt::Level OptLevel, |
| bool IgnoreChains) { |
| if (OptLevel == CodeGenOpt::None) return false; |
| |
| // If Root use can somehow reach N through a path that that doesn't contain |
| // U then folding N would create a cycle. e.g. In the following |
| // diagram, Root can reach N through X. If N is folded into into Root, then |
| // X is both a predecessor and a successor of U. |
| // |
| // [N*] // |
| // ^ ^ // |
| // / \ // |
| // [U*] [X]? // |
| // ^ ^ // |
| // \ / // |
| // \ / // |
| // [Root*] // |
| // |
| // * indicates nodes to be folded together. |
| // |
| // If Root produces glue, then it gets (even more) interesting. Since it |
| // will be "glued" together with its glue use in the scheduler, we need to |
| // check if it might reach N. |
| // |
| // [N*] // |
| // ^ ^ // |
| // / \ // |
| // [U*] [X]? // |
| // ^ ^ // |
| // \ \ // |
| // \ | // |
| // [Root*] | // |
| // ^ | // |
| // f | // |
| // | / // |
| // [Y] / // |
| // ^ / // |
| // f / // |
| // | / // |
| // [GU] // |
| // |
| // If GU (glue use) indirectly reaches N (the load), and Root folds N |
| // (call it Fold), then X is a predecessor of GU and a successor of |
| // Fold. But since Fold and GU are glued together, this will create |
| // a cycle in the scheduling graph. |
| |
| // If the node has glue, walk down the graph to the "lowest" node in the |
| // glueged set. |
| EVT VT = Root->getValueType(Root->getNumValues()-1); |
| while (VT == MVT::Glue) { |
| SDNode *GU = findGlueUse(Root); |
| if (GU == NULL) |
| break; |
| Root = GU; |
| VT = Root->getValueType(Root->getNumValues()-1); |
| |
| // If our query node has a glue result with a use, we've walked up it. If |
| // the user (which has already been selected) has a chain or indirectly uses |
| // the chain, our WalkChainUsers predicate will not consider it. Because of |
| // this, we cannot ignore chains in this predicate. |
| IgnoreChains = false; |
| } |
| |
| |
| SmallPtrSet<SDNode*, 16> Visited; |
| return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains); |
| } |
| |
| SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) { |
| std::vector<SDValue> Ops(N->op_begin(), N->op_end()); |
| SelectInlineAsmMemoryOperands(Ops); |
| |
| std::vector<EVT> VTs; |
| VTs.push_back(MVT::Other); |
| VTs.push_back(MVT::Glue); |
| SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(), |
| VTs, &Ops[0], Ops.size()); |
| New->setNodeId(-1); |
| return New.getNode(); |
| } |
| |
| SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) { |
| return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0)); |
| } |
| |
| /// GetVBR - decode a vbr encoding whose top bit is set. |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t |
| GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) { |
| assert(Val >= 128 && "Not a VBR"); |
| Val &= 127; // Remove first vbr bit. |
| |
| unsigned Shift = 7; |
| uint64_t NextBits; |
| do { |
| NextBits = MatcherTable[Idx++]; |
| Val |= (NextBits&127) << Shift; |
| Shift += 7; |
| } while (NextBits & 128); |
| |
| return Val; |
| } |
| |
| |
| /// UpdateChainsAndGlue - When a match is complete, this method updates uses of |
| /// interior glue and chain results to use the new glue and chain results. |
| void SelectionDAGISel:: |
| UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain, |
| const SmallVectorImpl<SDNode*> &ChainNodesMatched, |
| SDValue InputGlue, |
| const SmallVectorImpl<SDNode*> &GlueResultNodesMatched, |
| bool isMorphNodeTo) { |
| SmallVector<SDNode*, 4> NowDeadNodes; |
| |
| ISelUpdater ISU(ISelPosition); |
| |
| // Now that all the normal results are replaced, we replace the chain and |
| // glue results if present. |
| if (!ChainNodesMatched.empty()) { |
| assert(InputChain.getNode() != 0 && |
| "Matched input chains but didn't produce a chain"); |
| // Loop over all of the nodes we matched that produced a chain result. |
| // Replace all the chain results with the final chain we ended up with. |
| for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { |
| SDNode *ChainNode = ChainNodesMatched[i]; |
| |
| // If this node was already deleted, don't look at it. |
| if (ChainNode->getOpcode() == ISD::DELETED_NODE) |
| continue; |
| |
| // Don't replace the results of the root node if we're doing a |
| // MorphNodeTo. |
| if (ChainNode == NodeToMatch && isMorphNodeTo) |
| continue; |
| |
| SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1); |
| if (ChainVal.getValueType() == MVT::Glue) |
| ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2); |
| assert(ChainVal.getValueType() == MVT::Other && "Not a chain?"); |
| CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU); |
| |
| // If the node became dead and we haven't already seen it, delete it. |
| if (ChainNode->use_empty() && |
| !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode)) |
| NowDeadNodes.push_back(ChainNode); |
| } |
| } |
| |
| // If the result produces glue, update any glue results in the matched |
| // pattern with the glue result. |
| if (InputGlue.getNode() != 0) { |
| // Handle any interior nodes explicitly marked. |
| for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) { |
| SDNode *FRN = GlueResultNodesMatched[i]; |
| |
| // If this node was already deleted, don't look at it. |
| if (FRN->getOpcode() == ISD::DELETED_NODE) |
| continue; |
| |
| assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue && |
| "Doesn't have a glue result"); |
| CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1), |
| InputGlue, &ISU); |
| |
| // If the node became dead and we haven't already seen it, delete it. |
| if (FRN->use_empty() && |
| !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN)) |
| NowDeadNodes.push_back(FRN); |
| } |
| } |
| |
| if (!NowDeadNodes.empty()) |
| CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU); |
| |
| DEBUG(errs() << "ISEL: Match complete!\n"); |
| } |
| |
| enum ChainResult { |
| CR_Simple, |
| CR_InducesCycle, |
| CR_LeadsToInteriorNode |
| }; |
| |
| /// WalkChainUsers - Walk down the users of the specified chained node that is |
| /// part of the pattern we're matching, looking at all of the users we find. |
| /// This determines whether something is an interior node, whether we have a |
| /// non-pattern node in between two pattern nodes (which prevent folding because |
| /// it would induce a cycle) and whether we have a TokenFactor node sandwiched |
| /// between pattern nodes (in which case the TF becomes part of the pattern). |
| /// |
| /// The walk we do here is guaranteed to be small because we quickly get down to |
| /// already selected nodes "below" us. |
| static ChainResult |
| WalkChainUsers(SDNode *ChainedNode, |
| SmallVectorImpl<SDNode*> &ChainedNodesInPattern, |
| SmallVectorImpl<SDNode*> &InteriorChainedNodes) { |
| ChainResult Result = CR_Simple; |
| |
| for (SDNode::use_iterator UI = ChainedNode->use_begin(), |
| E = ChainedNode->use_end(); UI != E; ++UI) { |
| // Make sure the use is of the chain, not some other value we produce. |
| if (UI.getUse().getValueType() != MVT::Other) continue; |
| |
| SDNode *User = *UI; |
| |
| // If we see an already-selected machine node, then we've gone beyond the |
| // pattern that we're selecting down into the already selected chunk of the |
| // DAG. |
| if (User->isMachineOpcode() || |
| User->getOpcode() == ISD::HANDLENODE) // Root of the graph. |
| continue; |
| |
| if (User->getOpcode() == ISD::CopyToReg || |
| User->getOpcode() == ISD::CopyFromReg || |
| User->getOpcode() == ISD::INLINEASM || |
| User->getOpcode() == ISD::EH_LABEL) { |
| // If their node ID got reset to -1 then they've already been selected. |
| // Treat them like a MachineOpcode. |
| if (User->getNodeId() == -1) |
| continue; |
| } |
| |
| // If we have a TokenFactor, we handle it specially. |
| if (User->getOpcode() != ISD::TokenFactor) { |
| // If the node isn't a token factor and isn't part of our pattern, then it |
| // must be a random chained node in between two nodes we're selecting. |
| // This happens when we have something like: |
| // x = load ptr |
| // call |
| // y = x+4 |
| // store y -> ptr |
| // Because we structurally match the load/store as a read/modify/write, |
| // but the call is chained between them. We cannot fold in this case |
| // because it would induce a cycle in the graph. |
| if (!std::count(ChainedNodesInPattern.begin(), |
| ChainedNodesInPattern.end(), User)) |
| return CR_InducesCycle; |
| |
| // Otherwise we found a node that is part of our pattern. For example in: |
| // x = load ptr |
| // y = x+4 |
| // store y -> ptr |
| // This would happen when we're scanning down from the load and see the |
| // store as a user. Record that there is a use of ChainedNode that is |
| // part of the pattern and keep scanning uses. |
| Result = CR_LeadsToInteriorNode; |
| InteriorChainedNodes.push_back(User); |
| continue; |
| } |
| |
| // If we found a TokenFactor, there are two cases to consider: first if the |
| // TokenFactor is just hanging "below" the pattern we're matching (i.e. no |
| // uses of the TF are in our pattern) we just want to ignore it. Second, |
| // the TokenFactor can be sandwiched in between two chained nodes, like so: |
| // [Load chain] |
| // ^ |
| // | |
| // [Load] |
| // ^ ^ |
| // | \ DAG's like cheese |
| // / \ do you? |
| // / | |
| // [TokenFactor] [Op] |
| // ^ ^ |
| // | | |
| // \ / |
| // \ / |
| // [Store] |
| // |
| // In this case, the TokenFactor becomes part of our match and we rewrite it |
| // as a new TokenFactor. |
| // |
| // To distinguish these two cases, do a recursive walk down the uses. |
| switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) { |
| case CR_Simple: |
| // If the uses of the TokenFactor are just already-selected nodes, ignore |
| // it, it is "below" our pattern. |
| continue; |
| case CR_InducesCycle: |
| // If the uses of the TokenFactor lead to nodes that are not part of our |
| // pattern that are not selected, folding would turn this into a cycle, |
| // bail out now. |
| return CR_InducesCycle; |
| case CR_LeadsToInteriorNode: |
| break; // Otherwise, keep processing. |
| } |
| |
| // Okay, we know we're in the interesting interior case. The TokenFactor |
| // is now going to be considered part of the pattern so that we rewrite its |
| // uses (it may have uses that are not part of the pattern) with the |
| // ultimate chain result of the generated code. We will also add its chain |
| // inputs as inputs to the ultimate TokenFactor we create. |
| Result = CR_LeadsToInteriorNode; |
| ChainedNodesInPattern.push_back(User); |
| InteriorChainedNodes.push_back(User); |
| continue; |
| } |
| |
| return Result; |
| } |
| |
| /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains |
| /// operation for when the pattern matched at least one node with a chains. The |
| /// input vector contains a list of all of the chained nodes that we match. We |
| /// must determine if this is a valid thing to cover (i.e. matching it won't |
| /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will |
| /// be used as the input node chain for the generated nodes. |
| static SDValue |
| HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched, |
| SelectionDAG *CurDAG) { |
| // Walk all of the chained nodes we've matched, recursively scanning down the |
| // users of the chain result. This adds any TokenFactor nodes that are caught |
| // in between chained nodes to the chained and interior nodes list. |
| SmallVector<SDNode*, 3> InteriorChainedNodes; |
| for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { |
| if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched, |
| InteriorChainedNodes) == CR_InducesCycle) |
| return SDValue(); // Would induce a cycle. |
| } |
| |
| // Okay, we have walked all the matched nodes and collected TokenFactor nodes |
| // that we are interested in. Form our input TokenFactor node. |
| SmallVector<SDValue, 3> InputChains; |
| for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { |
| // Add the input chain of this node to the InputChains list (which will be |
| // the operands of the generated TokenFactor) if it's not an interior node. |
| SDNode *N = ChainNodesMatched[i]; |
| if (N->getOpcode() != ISD::TokenFactor) { |
| if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N)) |
| continue; |
| |
| // Otherwise, add the input chain. |
| SDValue InChain = ChainNodesMatched[i]->getOperand(0); |
| assert(InChain.getValueType() == MVT::Other && "Not a chain"); |
| InputChains.push_back(InChain); |
| continue; |
| } |
| |
| // If we have a token factor, we want to add all inputs of the token factor |
| // that are not part of the pattern we're matching. |
| for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) { |
| if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(), |
| N->getOperand(op).getNode())) |
| InputChains.push_back(N->getOperand(op)); |
| } |
| } |
| |
| SDValue Res; |
| if (InputChains.size() == 1) |
| return InputChains[0]; |
| return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(), |
| MVT::Other, &InputChains[0], InputChains.size()); |
| } |
| |
| /// MorphNode - Handle morphing a node in place for the selector. |
| SDNode *SelectionDAGISel:: |
| MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList, |
| const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) { |
| // It is possible we're using MorphNodeTo to replace a node with no |
| // normal results with one that has a normal result (or we could be |
| // adding a chain) and the input could have glue and chains as well. |
| // In this case we need to shift the operands down. |
| // FIXME: This is a horrible hack and broken in obscure cases, no worse |
| // than the old isel though. |
| int OldGlueResultNo = -1, OldChainResultNo = -1; |
| |
| unsigned NTMNumResults = Node->getNumValues(); |
| if (Node->getValueType(NTMNumResults-1) == MVT::Glue) { |
| OldGlueResultNo = NTMNumResults-1; |
| if (NTMNumResults != 1 && |
| Node->getValueType(NTMNumResults-2) == MVT::Other) |
| OldChainResultNo = NTMNumResults-2; |
| } else if (Node->getValueType(NTMNumResults-1) == MVT::Other) |
| OldChainResultNo = NTMNumResults-1; |
| |
| // Call the underlying SelectionDAG routine to do the transmogrification. Note |
| // that this deletes operands of the old node that become dead. |
| SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps); |
| |
| // MorphNodeTo can operate in two ways: if an existing node with the |
| // specified operands exists, it can just return it. Otherwise, it |
| // updates the node in place to have the requested operands. |
| if (Res == Node) { |
| // If we updated the node in place, reset the node ID. To the isel, |
| // this should be just like a newly allocated machine node. |
| Res->setNodeId(-1); |
| } |
| |
| unsigned ResNumResults = Res->getNumValues(); |
| // Move the glue if needed. |
| if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 && |
| (unsigned)OldGlueResultNo != ResNumResults-1) |
| CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo), |
| SDValue(Res, ResNumResults-1)); |
| |
| if ((EmitNodeInfo & OPFL_GlueOutput) != 0) |
| --ResNumResults; |
| |
| // Move the chain reference if needed. |
| if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 && |
| (unsigned)OldChainResultNo != ResNumResults-1) |
| CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo), |
| SDValue(Res, ResNumResults-1)); |
| |
| // Otherwise, no replacement happened because the node already exists. Replace |
| // Uses of the old node with the new one. |
| if (Res != Node) |
| CurDAG->ReplaceAllUsesWith(Node, Res); |
| |
| return Res; |
| } |
| |
| /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| SDValue N, |
| const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) { |
| // Accept if it is exactly the same as a previously recorded node. |
| unsigned RecNo = MatcherTable[MatcherIndex++]; |
| assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); |
| return N == RecordedNodes[RecNo].first; |
| } |
| |
| /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| SelectionDAGISel &SDISel) { |
| return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]); |
| } |
| |
| /// CheckNodePredicate - Implements OP_CheckNodePredicate. |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| SelectionDAGISel &SDISel, SDNode *N) { |
| return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]); |
| } |
| |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| SDNode *N) { |
| uint16_t Opc = MatcherTable[MatcherIndex++]; |
| Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; |
| return N->getOpcode() == Opc; |
| } |
| |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| SDValue N, const TargetLowering &TLI) { |
| MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; |
| if (N.getValueType() == VT) return true; |
| |
| // Handle the case when VT is iPTR. |
| return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy(); |
| } |
| |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| SDValue N, const TargetLowering &TLI, |
| unsigned ChildNo) { |
| if (ChildNo >= N.getNumOperands()) |
| return false; // Match fails if out of range child #. |
| return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI); |
| } |
| |
| |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| SDValue N) { |
| return cast<CondCodeSDNode>(N)->get() == |
| (ISD::CondCode)MatcherTable[MatcherIndex++]; |
| } |
| |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| SDValue N, const TargetLowering &TLI) { |
| MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; |
| if (cast<VTSDNode>(N)->getVT() == VT) |
| return true; |
| |
| // Handle the case when VT is iPTR. |
| return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy(); |
| } |
| |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| SDValue N) { |
| int64_t Val = MatcherTable[MatcherIndex++]; |
| if (Val & 128) |
| Val = GetVBR(Val, MatcherTable, MatcherIndex); |
| |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); |
| return C != 0 && C->getSExtValue() == Val; |
| } |
| |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| SDValue N, SelectionDAGISel &SDISel) { |
| int64_t Val = MatcherTable[MatcherIndex++]; |
| if (Val & 128) |
| Val = GetVBR(Val, MatcherTable, MatcherIndex); |
| |
| if (N->getOpcode() != ISD::AND) return false; |
| |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val); |
| } |
| |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static bool |
| CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| SDValue N, SelectionDAGISel &SDISel) { |
| int64_t Val = MatcherTable[MatcherIndex++]; |
| if (Val & 128) |
| Val = GetVBR(Val, MatcherTable, MatcherIndex); |
| |
| if (N->getOpcode() != ISD::OR) return false; |
| |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val); |
| } |
| |
| /// IsPredicateKnownToFail - If we know how and can do so without pushing a |
| /// scope, evaluate the current node. If the current predicate is known to |
| /// fail, set Result=true and return anything. If the current predicate is |
| /// known to pass, set Result=false and return the MatcherIndex to continue |
| /// with. If the current predicate is unknown, set Result=false and return the |
| /// MatcherIndex to continue with. |
| static unsigned IsPredicateKnownToFail(const unsigned char *Table, |
| unsigned Index, SDValue N, |
| bool &Result, SelectionDAGISel &SDISel, |
| SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) { |
| switch (Table[Index++]) { |
| default: |
| Result = false; |
| return Index-1; // Could not evaluate this predicate. |
| case SelectionDAGISel::OPC_CheckSame: |
| Result = !::CheckSame(Table, Index, N, RecordedNodes); |
| return Index; |
| case SelectionDAGISel::OPC_CheckPatternPredicate: |
| Result = !::CheckPatternPredicate(Table, Index, SDISel); |
| return Index; |
| case SelectionDAGISel::OPC_CheckPredicate: |
| Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode()); |
| return Index; |
| case SelectionDAGISel::OPC_CheckOpcode: |
| Result = !::CheckOpcode(Table, Index, N.getNode()); |
| return Index; |
| case SelectionDAGISel::OPC_CheckType: |
| Result = !::CheckType(Table, Index, N, SDISel.TLI); |
| return Index; |
| case SelectionDAGISel::OPC_CheckChild0Type: |
| case SelectionDAGISel::OPC_CheckChild1Type: |
| case SelectionDAGISel::OPC_CheckChild2Type: |
| case SelectionDAGISel::OPC_CheckChild3Type: |
| case SelectionDAGISel::OPC_CheckChild4Type: |
| case SelectionDAGISel::OPC_CheckChild5Type: |
| case SelectionDAGISel::OPC_CheckChild6Type: |
| case SelectionDAGISel::OPC_CheckChild7Type: |
| Result = !::CheckChildType(Table, Index, N, SDISel.TLI, |
| Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type); |
| return Index; |
| case SelectionDAGISel::OPC_CheckCondCode: |
| Result = !::CheckCondCode(Table, Index, N); |
| return Index; |
| case SelectionDAGISel::OPC_CheckValueType: |
| Result = !::CheckValueType(Table, Index, N, SDISel.TLI); |
| return Index; |
| case SelectionDAGISel::OPC_CheckInteger: |
| Result = !::CheckInteger(Table, Index, N); |
| return Index; |
| case SelectionDAGISel::OPC_CheckAndImm: |
| Result = !::CheckAndImm(Table, Index, N, SDISel); |
| return Index; |
| case SelectionDAGISel::OPC_CheckOrImm: |
| Result = !::CheckOrImm(Table, Index, N, SDISel); |
| return Index; |
| } |
| } |
| |
| namespace { |
| |
| struct MatchScope { |
| /// FailIndex - If this match fails, this is the index to continue with. |
| unsigned FailIndex; |
| |
| /// NodeStack - The node stack when the scope was formed. |
| SmallVector<SDValue, 4> NodeStack; |
| |
| /// NumRecordedNodes - The number of recorded nodes when the scope was formed. |
| unsigned NumRecordedNodes; |
| |
| /// NumMatchedMemRefs - The number of matched memref entries. |
| unsigned NumMatchedMemRefs; |
| |
| /// InputChain/InputGlue - The current chain/glue |
| SDValue InputChain, InputGlue; |
| |
| /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty. |
| bool HasChainNodesMatched, HasGlueResultNodesMatched; |
| }; |
| |
| } |
| |
| SDNode *SelectionDAGISel:: |
| SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable, |
| unsigned TableSize) { |
| // FIXME: Should these even be selected? Handle these cases in the caller? |
| switch (NodeToMatch->getOpcode()) { |
| default: |
| break; |
| case ISD::EntryToken: // These nodes remain the same. |
| case ISD::BasicBlock: |
| case ISD::Register: |
| //case ISD::VALUETYPE: |
| //case ISD::CONDCODE: |
| case ISD::HANDLENODE: |
| case ISD::MDNODE_SDNODE: |
| case ISD::TargetConstant: |
| case ISD::TargetConstantFP: |
| case ISD::TargetConstantPool: |
| case ISD::TargetFrameIndex: |
| case ISD::TargetExternalSymbol: |
| case ISD::TargetBlockAddress: |
| case ISD::TargetJumpTable: |
| case ISD::TargetGlobalTLSAddress: |
| case ISD::TargetGlobalAddress: |
| case ISD::TokenFactor: |
| case ISD::CopyFromReg: |
| case ISD::CopyToReg: |
| case ISD::EH_LABEL: |
| NodeToMatch->setNodeId(-1); // Mark selected. |
| return 0; |
| case ISD::AssertSext: |
| case ISD::AssertZext: |
| CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0), |
| NodeToMatch->getOperand(0)); |
| return 0; |
| case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch); |
| case ISD::UNDEF: return Select_UNDEF(NodeToMatch); |
| } |
| |
| assert(!NodeToMatch->isMachineOpcode() && "Node already selected!"); |
| |
| // Set up the node stack with NodeToMatch as the only node on the stack. |
| SmallVector<SDValue, 8> NodeStack; |
| SDValue N = SDValue(NodeToMatch, 0); |
| NodeStack.push_back(N); |
| |
| // MatchScopes - Scopes used when matching, if a match failure happens, this |
| // indicates where to continue checking. |
| SmallVector<MatchScope, 8> MatchScopes; |
| |
| // RecordedNodes - This is the set of nodes that have been recorded by the |
| // state machine. The second value is the parent of the node, or null if the |
| // root is recorded. |
| SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes; |
| |
| // MatchedMemRefs - This is the set of MemRef's we've seen in the input |
| // pattern. |
| SmallVector<MachineMemOperand*, 2> MatchedMemRefs; |
| |
| // These are the current input chain and glue for use when generating nodes. |
| // Various Emit operations change these. For example, emitting a copytoreg |
| // uses and updates these. |
| SDValue InputChain, InputGlue; |
| |
| // ChainNodesMatched - If a pattern matches nodes that have input/output |
| // chains, the OPC_EmitMergeInputChains operation is emitted which indicates |
| // which ones they are. The result is captured into this list so that we can |
| // update the chain results when the pattern is complete. |
| SmallVector<SDNode*, 3> ChainNodesMatched; |
| SmallVector<SDNode*, 3> GlueResultNodesMatched; |
| |
| DEBUG(errs() << "ISEL: Starting pattern match on root node: "; |
| NodeToMatch->dump(CurDAG); |
| errs() << '\n'); |
| |
| // Determine where to start the interpreter. Normally we start at opcode #0, |
| // but if the state machine starts with an OPC_SwitchOpcode, then we |
| // accelerate the first lookup (which is guaranteed to be hot) with the |
| // OpcodeOffset table. |
| unsigned MatcherIndex = 0; |
| |
| if (!OpcodeOffset.empty()) { |
| // Already computed the OpcodeOffset table, just index into it. |
| if (N.getOpcode() < OpcodeOffset.size()) |
| MatcherIndex = OpcodeOffset[N.getOpcode()]; |
| DEBUG(errs() << " Initial Opcode index to " << MatcherIndex << "\n"); |
| |
| } else if (MatcherTable[0] == OPC_SwitchOpcode) { |
| // Otherwise, the table isn't computed, but the state machine does start |
| // with an OPC_SwitchOpcode instruction. Populate the table now, since this |
| // is the first time we're selecting an instruction. |
| unsigned Idx = 1; |
| while (1) { |
| // Get the size of this case. |
| unsigned CaseSize = MatcherTable[Idx++]; |
| if (CaseSize & 128) |
| CaseSize = GetVBR(CaseSize, MatcherTable, Idx); |
| if (CaseSize == 0) break; |
| |
| // Get the opcode, add the index to the table. |
| uint16_t Opc = MatcherTable[Idx++]; |
| Opc |= (unsigned short)MatcherTable[Idx++] << 8; |
| if (Opc >= OpcodeOffset.size()) |
| OpcodeOffset.resize((Opc+1)*2); |
| OpcodeOffset[Opc] = Idx; |
| Idx += CaseSize; |
| } |
| |
| // Okay, do the lookup for the first opcode. |
| if (N.getOpcode() < OpcodeOffset.size()) |
| MatcherIndex = OpcodeOffset[N.getOpcode()]; |
| } |
| |
| while (1) { |
| assert(MatcherIndex < TableSize && "Invalid index"); |
| #ifndef NDEBUG |
| unsigned CurrentOpcodeIndex = MatcherIndex; |
| #endif |
| BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++]; |
| switch (Opcode) { |
| case OPC_Scope: { |
| // Okay, the semantics of this operation are that we should push a scope |
| // then evaluate the first child. However, pushing a scope only to have |
| // the first check fail (which then pops it) is inefficient. If we can |
| // determine immediately that the first check (or first several) will |
| // immediately fail, don't even bother pushing a scope for them. |
| unsigned FailIndex; |
| |
| while (1) { |
| unsigned NumToSkip = MatcherTable[MatcherIndex++]; |
| if (NumToSkip & 128) |
| NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); |
| // Found the end of the scope with no match. |
| if (NumToSkip == 0) { |
| FailIndex = 0; |
| break; |
| } |
| |
| FailIndex = MatcherIndex+NumToSkip; |
| |
| unsigned MatcherIndexOfPredicate = MatcherIndex; |
| (void)MatcherIndexOfPredicate; // silence warning. |
| |
| // If we can't evaluate this predicate without pushing a scope (e.g. if |
| // it is a 'MoveParent') or if the predicate succeeds on this node, we |
| // push the scope and evaluate the full predicate chain. |
| bool Result; |
| MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N, |
| Result, *this, RecordedNodes); |
| if (!Result) |
| break; |
| |
| DEBUG(errs() << " Skipped scope entry (due to false predicate) at " |
| << "index " << MatcherIndexOfPredicate |
| << ", continuing at " << FailIndex << "\n"); |
| ++NumDAGIselRetries; |
| |
| // Otherwise, we know that this case of the Scope is guaranteed to fail, |
| // move to the next case. |
| MatcherIndex = FailIndex; |
| } |
| |
| // If the whole scope failed to match, bail. |
| if (FailIndex == 0) break; |
| |
| // Push a MatchScope which indicates where to go if the first child fails |
| // to match. |
| MatchScope NewEntry; |
| NewEntry.FailIndex = FailIndex; |
| NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end()); |
| NewEntry.NumRecordedNodes = RecordedNodes.size(); |
| NewEntry.NumMatchedMemRefs = MatchedMemRefs.size(); |
| NewEntry.InputChain = InputChain; |
| NewEntry.InputGlue = InputGlue; |
| NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty(); |
| NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty(); |
| MatchScopes.push_back(NewEntry); |
| continue; |
| } |
| case OPC_RecordNode: { |
| // Remember this node, it may end up being an operand in the pattern. |
| SDNode *Parent = 0; |
| if (NodeStack.size() > 1) |
| Parent = NodeStack[NodeStack.size()-2].getNode(); |
| RecordedNodes.push_back(std::make_pair(N, Parent)); |
| continue; |
| } |
| |
| case OPC_RecordChild0: case OPC_RecordChild1: |
| case OPC_RecordChild2: case OPC_RecordChild3: |
| case OPC_RecordChild4: case OPC_RecordChild5: |
| case OPC_RecordChild6: case OPC_RecordChild7: { |
| unsigned ChildNo = Opcode-OPC_RecordChild0; |
| if (ChildNo >= N.getNumOperands()) |
| break; // Match fails if out of range child #. |
| |
| RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo), |
| N.getNode())); |
| continue; |
| } |
| case OPC_RecordMemRef: |
| MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand()); |
| continue; |
| |
| case OPC_CaptureGlueInput: |
| // If the current node has an input glue, capture it in InputGlue. |
| if (N->getNumOperands() != 0 && |
| N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) |
| InputGlue = N->getOperand(N->getNumOperands()-1); |
| continue; |
| |
| case OPC_MoveChild: { |
| unsigned ChildNo = MatcherTable[MatcherIndex++]; |
| if (ChildNo >= N.getNumOperands()) |
| break; // Match fails if out of range child #. |
| N = N.getOperand(ChildNo); |
| NodeStack.push_back(N); |
| continue; |
| } |
| |
| case OPC_MoveParent: |
| // Pop the current node off the NodeStack. |
| NodeStack.pop_back(); |
| assert(!NodeStack.empty() && "Node stack imbalance!"); |
| N = NodeStack.back(); |
| continue; |
| |
| case OPC_CheckSame: |
| if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break; |
| continue; |
| case OPC_CheckPatternPredicate: |
| if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break; |
| continue; |
| case OPC_CheckPredicate: |
| if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this, |
| N.getNode())) |
| break; |
| continue; |
| case OPC_CheckComplexPat: { |
| unsigned CPNum = MatcherTable[MatcherIndex++]; |
| unsigned RecNo = MatcherTable[MatcherIndex++]; |
| assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat"); |
| if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second, |
| RecordedNodes[RecNo].first, CPNum, |
| RecordedNodes)) |
| break; |
| continue; |
| } |
| case OPC_CheckOpcode: |
| if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break; |
| continue; |
| |
| case OPC_CheckType: |
| if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break; |
| continue; |
| |
| case OPC_SwitchOpcode: { |
| unsigned CurNodeOpcode = N.getOpcode(); |
| unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; |
| unsigned CaseSize; |
| while (1) { |
| // Get the size of this case. |
| CaseSize = MatcherTable[MatcherIndex++]; |
| if (CaseSize & 128) |
| CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); |
| if (CaseSize == 0) break; |
| |
| uint16_t Opc = MatcherTable[MatcherIndex++]; |
| Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; |
| |
| // If the opcode matches, then we will execute this case. |
| if (CurNodeOpcode == Opc) |
| break; |
| |
| // Otherwise, skip over this case. |
| MatcherIndex += CaseSize; |
| } |
| |
| // If no cases matched, bail out. |
| if (CaseSize == 0) break; |
| |
| // Otherwise, execute the case we found. |
| DEBUG(errs() << " OpcodeSwitch from " << SwitchStart |
| << " to " << MatcherIndex << "\n"); |
| continue; |
| } |
| |
| case OPC_SwitchType: { |
| MVT CurNodeVT = N.getValueType().getSimpleVT(); |
| unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; |
| unsigned CaseSize; |
| while (1) { |
| // Get the size of this case. |
| CaseSize = MatcherTable[MatcherIndex++]; |
| if (CaseSize & 128) |
| CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); |
| if (CaseSize == 0) break; |
| |
| MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; |
| if (CaseVT == MVT::iPTR) |
| CaseVT = TLI.getPointerTy(); |
| |
| // If the VT matches, then we will execute this case. |
| if (CurNodeVT == CaseVT) |
| break; |
| |
| // Otherwise, skip over this case. |
| MatcherIndex += CaseSize; |
| } |
| |
| // If no cases matched, bail out. |
| if (CaseSize == 0) break; |
| |
| // Otherwise, execute the case we found. |
| DEBUG(errs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString() |
| << "] from " << SwitchStart << " to " << MatcherIndex<<'\n'); |
| continue; |
| } |
| case OPC_CheckChild0Type: case OPC_CheckChild1Type: |
| case OPC_CheckChild2Type: case OPC_CheckChild3Type: |
| case OPC_CheckChild4Type: case OPC_CheckChild5Type: |
| case OPC_CheckChild6Type: case OPC_CheckChild7Type: |
| if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI, |
| Opcode-OPC_CheckChild0Type)) |
| break; |
| continue; |
| case OPC_CheckCondCode: |
| if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break; |
| continue; |
| case OPC_CheckValueType: |
| if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break; |
| continue; |
| case OPC_CheckInteger: |
| if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break; |
| continue; |
| case OPC_CheckAndImm: |
| if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break; |
| continue; |
| case OPC_CheckOrImm: |
| if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break; |
| continue; |
| |
| case OPC_CheckFoldableChainNode: { |
| assert(NodeStack.size() != 1 && "No parent node"); |
| // Verify that all intermediate nodes between the root and this one have |
| // a single use. |
| bool HasMultipleUses = false; |
| for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) |
| if (!NodeStack[i].hasOneUse()) { |
| HasMultipleUses = true; |
| break; |
| } |
| if (HasMultipleUses) break; |
| |
| // Check to see that the target thinks this is profitable to fold and that |
| // we can fold it without inducing cycles in the graph. |
| if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(), |
| NodeToMatch) || |
| !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(), |
| NodeToMatch, OptLevel, |
| true/*We validate our own chains*/)) |
| break; |
| |
| continue; |
| } |
| case OPC_EmitInteger: { |
| MVT::SimpleValueType VT = |
| (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; |
| int64_t Val = MatcherTable[MatcherIndex++]; |
| if (Val & 128) |
| Val = GetVBR(Val, MatcherTable, MatcherIndex); |
| RecordedNodes.push_back(std::pair<SDValue, SDNode*>( |
| CurDAG->getTargetConstant(Val, VT), (SDNode*)0)); |
| continue; |
| } |
| case OPC_EmitRegister: { |
| MVT::SimpleValueType VT = |
| (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; |
| unsigned RegNo = MatcherTable[MatcherIndex++]; |
| RecordedNodes.push_back(std::pair<SDValue, SDNode*>( |
| CurDAG->getRegister(RegNo, VT), (SDNode*)0)); |
| continue; |
| } |
| case OPC_EmitRegister2: { |
| // For targets w/ more than 256 register names, the register enum |
| // values are stored in two bytes in the matcher table (just like |
| // opcodes). |
| MVT::SimpleValueType VT = |
| (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; |
| unsigned RegNo = MatcherTable[MatcherIndex++]; |
| RegNo |= MatcherTable[MatcherIndex++] << 8; |
| RecordedNodes.push_back(std::pair<SDValue, SDNode*>( |
| CurDAG->getRegister(RegNo, VT), (SDNode*)0)); |
| continue; |
| } |
| |
| case OPC_EmitConvertToTarget: { |
| // Convert from IMM/FPIMM to target version. |
| unsigned RecNo = MatcherTable[MatcherIndex++]; |
| assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); |
| SDValue Imm = RecordedNodes[RecNo].first; |
| |
| if (Imm->getOpcode() == ISD::Constant) { |
| int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue(); |
| Imm = CurDAG->getTargetConstant(Val, Imm.getValueType()); |
| } else if (Imm->getOpcode() == ISD::ConstantFP) { |
| const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue(); |
| Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType()); |
| } |
| |
| RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second)); |
| continue; |
| } |
| |
| case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0 |
| case OPC_EmitMergeInputChains1_1: { // OPC_EmitMergeInputChains, 1, 1 |
| // These are space-optimized forms of OPC_EmitMergeInputChains. |
| assert(InputChain.getNode() == 0 && |
| "EmitMergeInputChains should be the first chain producing node"); |
| assert(ChainNodesMatched.empty() && |
| "Should only have one EmitMergeInputChains per match"); |
| |
| // Read all of the chained nodes. |
| unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1; |
| assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); |
| ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); |
| |
| // FIXME: What if other value results of the node have uses not matched |
| // by this pattern? |
| if (ChainNodesMatched.back() != NodeToMatch && |
| !RecordedNodes[RecNo].first.hasOneUse()) { |
| ChainNodesMatched.clear(); |
| break; |
| } |
| |
| // Merge the input chains if they are not intra-pattern references. |
| InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); |
| |
| if (InputChain.getNode() == 0) |
| break; // Failed to merge. |
| continue; |
| } |
| |
| case OPC_EmitMergeInputChains: { |
| assert(InputChain.getNode() == 0 && |
| "EmitMergeInputChains should be the first chain producing node"); |
| // This node gets a list of nodes we matched in the input that have |
| // chains. We want to token factor all of the input chains to these nodes |
| // together. However, if any of the input chains is actually one of the |
| // nodes matched in this pattern, then we have an intra-match reference. |
| // Ignore these because the newly token factored chain should not refer to |
| // the old nodes. |
| unsigned NumChains = MatcherTable[MatcherIndex++]; |
| assert(NumChains != 0 && "Can't TF zero chains"); |
| |
| assert(ChainNodesMatched.empty() && |
| "Should only have one EmitMergeInputChains per match"); |
| |
| // Read all of the chained nodes. |
| for (unsigned i = 0; i != NumChains; ++i) { |
| unsigned RecNo = MatcherTable[MatcherIndex++]; |
| assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); |
| ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); |
| |
| // FIXME: What if other value results of the node have uses not matched |
| // by this pattern? |
| if (ChainNodesMatched.back() != NodeToMatch && |
| !RecordedNodes[RecNo].first.hasOneUse()) { |
| ChainNodesMatched.clear(); |
| break; |
| } |
| } |
| |
| // If the inner loop broke out, the match fails. |
| if (ChainNodesMatched.empty()) |
| break; |
| |
| // Merge the input chains if they are not intra-pattern references. |
| InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); |
| |
| if (InputChain.getNode() == 0) |
| break; // Failed to merge. |
| |
| continue; |
| } |
| |
| case OPC_EmitCopyToReg: { |
| unsigned RecNo = MatcherTable[MatcherIndex++]; |
| assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); |
| unsigned DestPhysReg = MatcherTable[MatcherIndex++]; |
| |
| if (InputChain.getNode() == 0) |
| InputChain = CurDAG->getEntryNode(); |
| |
| InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(), |
| DestPhysReg, RecordedNodes[RecNo].first, |
| InputGlue); |
| |
| InputGlue = InputChain.getValue(1); |
| continue; |
| } |
| |
| case OPC_EmitNodeXForm: { |
| unsigned XFormNo = MatcherTable[MatcherIndex++]; |
| unsigned RecNo = MatcherTable[MatcherIndex++]; |
| assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); |
| SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo); |
| RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0)); |
| continue; |
| } |
| |
| case OPC_EmitNode: |
| case OPC_MorphNodeTo: { |
| uint16_t TargetOpc = MatcherTable[MatcherIndex++]; |
| TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; |
| unsigned EmitNodeInfo = MatcherTable[MatcherIndex++]; |
| // Get the result VT list. |
| unsigned NumVTs = MatcherTable[MatcherIndex++]; |
| SmallVector<EVT, 4> VTs; |
| for (unsigned i = 0; i != NumVTs; ++i) { |
| MVT::SimpleValueType VT = |
| (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; |
| if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy; |
| VTs.push_back(VT); |
| } |
| |
| if (EmitNodeInfo & OPFL_Chain) |
| VTs.push_back(MVT::Other); |
| if (EmitNodeInfo & OPFL_GlueOutput) |
| VTs.push_back(MVT::Glue); |
| |
| // This is hot code, so optimize the two most common cases of 1 and 2 |
| // results. |
| SDVTList VTList; |
| if (VTs.size() == 1) |
| VTList = CurDAG->getVTList(VTs[0]); |
| else if (VTs.size() == 2) |
| VTList = CurDAG->getVTList(VTs[0], VTs[1]); |
| else |
| VTList = CurDAG->getVTList(VTs.data(), VTs.size()); |
| |
| // Get the operand list. |
| unsigned NumOps = MatcherTable[MatcherIndex++]; |
| SmallVector<SDValue, 8> Ops; |
| for (unsigned i = 0; i != NumOps; ++i) { |
| unsigned RecNo = MatcherTable[MatcherIndex++]; |
| if (RecNo & 128) |
| RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); |
| |
| assert(RecNo < RecordedNodes.size() && "Invalid EmitNode"); |
| Ops.push_back(RecordedNodes[RecNo].first); |
| } |
| |
| // If there are variadic operands to add, handle them now. |
| if (EmitNodeInfo & OPFL_VariadicInfo) { |
| // Determine the start index to copy from. |
| unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo); |
| FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0; |
| assert(NodeToMatch->getNumOperands() >= FirstOpToCopy && |
| "Invalid variadic node"); |
| // Copy all of the variadic operands, not including a potential glue |
| // input. |
| for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands(); |
| i != e; ++i) { |
| SDValue V = NodeToMatch->getOperand(i); |
| if (V.getValueType() == MVT::Glue) break; |
| Ops.push_back(V); |
| } |
| } |
| |
| // If this has chain/glue inputs, add them. |
| if (EmitNodeInfo & OPFL_Chain) |
| Ops.push_back(InputChain); |
| if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0) |
| Ops.push_back(InputGlue); |
| |
| // Create the node. |
| SDNode *Res = 0; |
| if (Opcode != OPC_MorphNodeTo) { |
| // If this is a normal EmitNode command, just create the new node and |
| // add the results to the RecordedNodes list. |
| Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(), |
| VTList, Ops.data(), Ops.size()); |
| |
| // Add all the non-glue/non-chain results to the RecordedNodes list. |
| for (unsigned i = 0, e = VTs.size(); i != e; ++i) { |
| if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break; |
| RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i), |
| (SDNode*) 0)); |
| } |
| |
| } else { |
| Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(), |
| EmitNodeInfo); |
| } |
| |
| // If the node had chain/glue results, update our notion of the current |
| // chain and glue. |
| if (EmitNodeInfo & OPFL_GlueOutput) { |
| InputGlue = SDValue(Res, VTs.size()-1); |
| if (EmitNodeInfo & OPFL_Chain) |
| InputChain = SDValue(Res, VTs.size()-2); |
| } else if (EmitNodeInfo & OPFL_Chain) |
| InputChain = SDValue(Res, VTs.size()-1); |
| |
| // If the OPFL_MemRefs glue is set on this node, slap all of the |
| // accumulated memrefs onto it. |
| // |
| // FIXME: This is vastly incorrect for patterns with multiple outputs |
| // instructions that access memory and for ComplexPatterns that match |
| // loads. |
| if (EmitNodeInfo & OPFL_MemRefs) { |
| // Only attach load or store memory operands if the generated |
| // instruction may load or store. |
| const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc); |
| bool mayLoad = MCID.mayLoad(); |
| bool mayStore = MCID.mayStore(); |
| |
| unsigned NumMemRefs = 0; |
| for (SmallVector<MachineMemOperand*, 2>::const_iterator I = |
| MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) { |
| if ((*I)->isLoad()) { |
| if (mayLoad) |
| ++NumMemRefs; |
| } else if ((*I)->isStore()) { |
| if (mayStore) |
| ++NumMemRefs; |
| } else { |
| ++NumMemRefs; |
| } |
| } |
| |
| MachineSDNode::mmo_iterator MemRefs = |
| MF->allocateMemRefsArray(NumMemRefs); |
| |
| MachineSDNode::mmo_iterator MemRefsPos = MemRefs; |
| for (SmallVector<MachineMemOperand*, 2>::const_iterator I = |
| MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) { |
| if ((*I)->isLoad()) { |
| if (mayLoad) |
| *MemRefsPos++ = *I; |
| } else if ((*I)->isStore()) { |
| if (mayStore) |
| *MemRefsPos++ = *I; |
| } else { |
| *MemRefsPos++ = *I; |
| } |
| } |
| |
| cast<MachineSDNode>(Res) |
| ->setMemRefs(MemRefs, MemRefs + NumMemRefs); |
| } |
| |
| DEBUG(errs() << " " |
| << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created") |
| << " node: "; Res->dump(CurDAG); errs() << "\n"); |
| |
| // If this was a MorphNodeTo then we're completely done! |
| if (Opcode == OPC_MorphNodeTo) { |
| // Update chain and glue uses. |
| UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched, |
| InputGlue, GlueResultNodesMatched, true); |
| return Res; |
| } |
| |
| continue; |
| } |
| |
| case OPC_MarkGlueResults: { |
| unsigned NumNodes = MatcherTable[MatcherIndex++]; |
| |
| // Read and remember all the glue-result nodes. |
| for (unsigned i = 0; i != NumNodes; ++i) { |
| unsigned RecNo = MatcherTable[MatcherIndex++]; |
| if (RecNo & 128) |
| RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); |
| |
| assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); |
| GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); |
| } |
| continue; |
| } |
| |
| case OPC_CompleteMatch: { |
| // The match has been completed, and any new nodes (if any) have been |
| // created. Patch up references to the matched dag to use the newly |
| // created nodes. |
| unsigned NumResults = MatcherTable[MatcherIndex++]; |
| |
| for (unsigned i = 0; i != NumResults; ++i) { |
| unsigned ResSlot = MatcherTable[MatcherIndex++]; |
| if (ResSlot & 128) |
| ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex); |
| |
| assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame"); |
| SDValue Res = RecordedNodes[ResSlot].first; |
| |
| assert(i < NodeToMatch->getNumValues() && |
| NodeToMatch->getValueType(i) != MVT::Other && |
| NodeToMatch->getValueType(i) != MVT::Glue && |
| "Invalid number of results to complete!"); |
| assert((NodeToMatch->getValueType(i) == Res.getValueType() || |
| NodeToMatch->getValueType(i) == MVT::iPTR || |
| Res.getValueType() == MVT::iPTR || |
| NodeToMatch->getValueType(i).getSizeInBits() == |
| Res.getValueType().getSizeInBits()) && |
| "invalid replacement"); |
| CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res); |
| } |
| |
| // If the root node defines glue, add it to the glue nodes to update list. |
| if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue) |
| GlueResultNodesMatched.push_back(NodeToMatch); |
| |
| // Update chain and glue uses. |
| UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched, |
| InputGlue, GlueResultNodesMatched, false); |
| |
| assert(NodeToMatch->use_empty() && |
| "Didn't replace all uses of the node?"); |
| |
| // FIXME: We just return here, which interacts correctly with SelectRoot |
| // above. We should fix this to not return an SDNode* anymore. |
| return 0; |
| } |
| } |
| |
| // If the code reached this point, then the match failed. See if there is |
| // another child to try in the current 'Scope', otherwise pop it until we |
| // find a case to check. |
| DEBUG(errs() << " Match failed at index " << CurrentOpcodeIndex << "\n"); |
| ++NumDAGIselRetries; |
| while (1) { |
| if (MatchScopes.empty()) { |
| CannotYetSelect(NodeToMatch); |
| return 0; |
| } |
| |
| // Restore the interpreter state back to the point where the scope was |
| // formed. |
| MatchScope &LastScope = MatchScopes.back(); |
| RecordedNodes.resize(LastScope.NumRecordedNodes); |
| NodeStack.clear(); |
| NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end()); |
| N = NodeStack.back(); |
| |
| if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size()) |
| MatchedMemRefs.resize(LastScope.NumMatchedMemRefs); |
| MatcherIndex = LastScope.FailIndex; |
| |
| DEBUG(errs() << " Continuing at " << MatcherIndex << "\n"); |
| |
| InputChain = LastScope.InputChain; |
| InputGlue = LastScope.InputGlue; |
| if (!LastScope.HasChainNodesMatched) |
| ChainNodesMatched.clear(); |
| if (!LastScope.HasGlueResultNodesMatched) |
| GlueResultNodesMatched.clear(); |
| |
| // Check to see what the offset is at the new MatcherIndex. If it is zero |
| // we have reached the end of this scope, otherwise we have another child |
| // in the current scope to try. |
| unsigned NumToSkip = MatcherTable[MatcherIndex++]; |
| if (NumToSkip & 128) |
| NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); |
| |
| // If we have another child in this scope to match, update FailIndex and |
| // try it. |
| if (NumToSkip != 0) { |
| LastScope.FailIndex = MatcherIndex+NumToSkip; |
| break; |
| } |
| |
| // End of this scope, pop it and try the next child in the containing |
| // scope. |
| MatchScopes.pop_back(); |
| } |
| } |
| } |
| |
| |
| |
| void SelectionDAGISel::CannotYetSelect(SDNode *N) { |
| std::string msg; |
| raw_string_ostream Msg(msg); |
| Msg << "Cannot select: "; |
| |
| if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN && |
| N->getOpcode() != ISD::INTRINSIC_WO_CHAIN && |
| N->getOpcode() != ISD::INTRINSIC_VOID) { |
| N->printrFull(Msg, CurDAG); |
| } else { |
| bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other; |
| unsigned iid = |
| cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue(); |
| if (iid < Intrinsic::num_intrinsics) |
| Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid); |
| else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo()) |
| Msg << "target intrinsic %" << TII->getName(iid); |
| else |
| Msg << "unknown intrinsic #" << iid; |
| } |
| report_fatal_error(Msg.str()); |
| } |
| |
| char SelectionDAGISel::ID = 0; |