| //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements the ScheduleDAG class, which is a base class used by |
| // scheduling implementation classes. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "pre-RA-sched" |
| #include "SDNodeDbgValue.h" |
| #include "ScheduleDAGSDNodes.h" |
| #include "InstrEmitter.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/MC/MCInstrItineraries.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Target/TargetSubtargetInfo.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace llvm; |
| |
| STATISTIC(LoadsClustered, "Number of loads clustered together"); |
| |
| // This allows latency based scheduler to notice high latency instructions |
| // without a target itinerary. The choise if number here has more to do with |
| // balancing scheduler heursitics than with the actual machine latency. |
| static cl::opt<int> HighLatencyCycles( |
| "sched-high-latency-cycles", cl::Hidden, cl::init(10), |
| cl::desc("Roughly estimate the number of cycles that 'long latency'" |
| "instructions take for targets with no itinerary")); |
| |
| ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf) |
| : ScheduleDAG(mf), |
| InstrItins(mf.getTarget().getInstrItineraryData()) {} |
| |
| /// Run - perform scheduling. |
| /// |
| void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb, |
| MachineBasicBlock::iterator insertPos) { |
| DAG = dag; |
| ScheduleDAG::Run(bb, insertPos); |
| } |
| |
| /// NewSUnit - Creates a new SUnit and return a ptr to it. |
| /// |
| SUnit *ScheduleDAGSDNodes::NewSUnit(SDNode *N) { |
| #ifndef NDEBUG |
| const SUnit *Addr = 0; |
| if (!SUnits.empty()) |
| Addr = &SUnits[0]; |
| #endif |
| SUnits.push_back(SUnit(N, (unsigned)SUnits.size())); |
| assert((Addr == 0 || Addr == &SUnits[0]) && |
| "SUnits std::vector reallocated on the fly!"); |
| SUnits.back().OrigNode = &SUnits.back(); |
| SUnit *SU = &SUnits.back(); |
| const TargetLowering &TLI = DAG->getTargetLoweringInfo(); |
| if (!N || |
| (N->isMachineOpcode() && |
| N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF)) |
| SU->SchedulingPref = Sched::None; |
| else |
| SU->SchedulingPref = TLI.getSchedulingPreference(N); |
| return SU; |
| } |
| |
| SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) { |
| SUnit *SU = NewSUnit(Old->getNode()); |
| SU->OrigNode = Old->OrigNode; |
| SU->Latency = Old->Latency; |
| SU->isVRegCycle = Old->isVRegCycle; |
| SU->isCall = Old->isCall; |
| SU->isCallOp = Old->isCallOp; |
| SU->isTwoAddress = Old->isTwoAddress; |
| SU->isCommutable = Old->isCommutable; |
| SU->hasPhysRegDefs = Old->hasPhysRegDefs; |
| SU->hasPhysRegClobbers = Old->hasPhysRegClobbers; |
| SU->isScheduleHigh = Old->isScheduleHigh; |
| SU->isScheduleLow = Old->isScheduleLow; |
| SU->SchedulingPref = Old->SchedulingPref; |
| Old->isCloned = true; |
| return SU; |
| } |
| |
| /// CheckForPhysRegDependency - Check if the dependency between def and use of |
| /// a specified operand is a physical register dependency. If so, returns the |
| /// register and the cost of copying the register. |
| static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op, |
| const TargetRegisterInfo *TRI, |
| const TargetInstrInfo *TII, |
| unsigned &PhysReg, int &Cost) { |
| if (Op != 2 || User->getOpcode() != ISD::CopyToReg) |
| return; |
| |
| unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); |
| if (TargetRegisterInfo::isVirtualRegister(Reg)) |
| return; |
| |
| unsigned ResNo = User->getOperand(2).getResNo(); |
| if (Def->isMachineOpcode()) { |
| const MCInstrDesc &II = TII->get(Def->getMachineOpcode()); |
| if (ResNo >= II.getNumDefs() && |
| II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) { |
| PhysReg = Reg; |
| const TargetRegisterClass *RC = |
| TRI->getMinimalPhysRegClass(Reg, Def->getValueType(ResNo)); |
| Cost = RC->getCopyCost(); |
| } |
| } |
| } |
| |
| static void AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) { |
| SmallVector<EVT, 4> VTs; |
| SDNode *GlueDestNode = Glue.getNode(); |
| |
| // Don't add glue from a node to itself. |
| if (GlueDestNode == N) return; |
| |
| // Don't add glue to something which already has glue. |
| if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return; |
| |
| for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) |
| VTs.push_back(N->getValueType(I)); |
| |
| if (AddGlue) |
| VTs.push_back(MVT::Glue); |
| |
| SmallVector<SDValue, 4> Ops; |
| for (unsigned I = 0, E = N->getNumOperands(); I != E; ++I) |
| Ops.push_back(N->getOperand(I)); |
| |
| if (GlueDestNode) |
| Ops.push_back(Glue); |
| |
| SDVTList VTList = DAG->getVTList(&VTs[0], VTs.size()); |
| MachineSDNode::mmo_iterator Begin = 0, End = 0; |
| MachineSDNode *MN = dyn_cast<MachineSDNode>(N); |
| |
| // Store memory references. |
| if (MN) { |
| Begin = MN->memoperands_begin(); |
| End = MN->memoperands_end(); |
| } |
| |
| DAG->MorphNodeTo(N, N->getOpcode(), VTList, &Ops[0], Ops.size()); |
| |
| // Reset the memory references |
| if (MN) |
| MN->setMemRefs(Begin, End); |
| } |
| |
| /// ClusterNeighboringLoads - Force nearby loads together by "gluing" them. |
| /// This function finds loads of the same base and different offsets. If the |
| /// offsets are not far apart (target specific), it add MVT::Glue inputs and |
| /// outputs to ensure they are scheduled together and in order. This |
| /// optimization may benefit some targets by improving cache locality. |
| void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) { |
| SDNode *Chain = 0; |
| unsigned NumOps = Node->getNumOperands(); |
| if (Node->getOperand(NumOps-1).getValueType() == MVT::Other) |
| Chain = Node->getOperand(NumOps-1).getNode(); |
| if (!Chain) |
| return; |
| |
| // Look for other loads of the same chain. Find loads that are loading from |
| // the same base pointer and different offsets. |
| SmallPtrSet<SDNode*, 16> Visited; |
| SmallVector<int64_t, 4> Offsets; |
| DenseMap<long long, SDNode*> O2SMap; // Map from offset to SDNode. |
| bool Cluster = false; |
| SDNode *Base = Node; |
| for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end(); |
| I != E; ++I) { |
| SDNode *User = *I; |
| if (User == Node || !Visited.insert(User)) |
| continue; |
| int64_t Offset1, Offset2; |
| if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) || |
| Offset1 == Offset2) |
| // FIXME: Should be ok if they addresses are identical. But earlier |
| // optimizations really should have eliminated one of the loads. |
| continue; |
| if (O2SMap.insert(std::make_pair(Offset1, Base)).second) |
| Offsets.push_back(Offset1); |
| O2SMap.insert(std::make_pair(Offset2, User)); |
| Offsets.push_back(Offset2); |
| if (Offset2 < Offset1) |
| Base = User; |
| Cluster = true; |
| } |
| |
| if (!Cluster) |
| return; |
| |
| // Sort them in increasing order. |
| std::sort(Offsets.begin(), Offsets.end()); |
| |
| // Check if the loads are close enough. |
| SmallVector<SDNode*, 4> Loads; |
| unsigned NumLoads = 0; |
| int64_t BaseOff = Offsets[0]; |
| SDNode *BaseLoad = O2SMap[BaseOff]; |
| Loads.push_back(BaseLoad); |
| for (unsigned i = 1, e = Offsets.size(); i != e; ++i) { |
| int64_t Offset = Offsets[i]; |
| SDNode *Load = O2SMap[Offset]; |
| if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads)) |
| break; // Stop right here. Ignore loads that are further away. |
| Loads.push_back(Load); |
| ++NumLoads; |
| } |
| |
| if (NumLoads == 0) |
| return; |
| |
| // Cluster loads by adding MVT::Glue outputs and inputs. This also |
| // ensure they are scheduled in order of increasing addresses. |
| SDNode *Lead = Loads[0]; |
| AddGlue(Lead, SDValue(0, 0), true, DAG); |
| |
| SDValue InGlue = SDValue(Lead, Lead->getNumValues() - 1); |
| for (unsigned I = 1, E = Loads.size(); I != E; ++I) { |
| bool OutGlue = I < E - 1; |
| SDNode *Load = Loads[I]; |
| |
| AddGlue(Load, InGlue, OutGlue, DAG); |
| |
| if (OutGlue) |
| InGlue = SDValue(Load, Load->getNumValues() - 1); |
| |
| ++LoadsClustered; |
| } |
| } |
| |
| /// ClusterNodes - Cluster certain nodes which should be scheduled together. |
| /// |
| void ScheduleDAGSDNodes::ClusterNodes() { |
| for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(), |
| E = DAG->allnodes_end(); NI != E; ++NI) { |
| SDNode *Node = &*NI; |
| if (!Node || !Node->isMachineOpcode()) |
| continue; |
| |
| unsigned Opc = Node->getMachineOpcode(); |
| const MCInstrDesc &MCID = TII->get(Opc); |
| if (MCID.mayLoad()) |
| // Cluster loads from "near" addresses into combined SUnits. |
| ClusterNeighboringLoads(Node); |
| } |
| } |
| |
| void ScheduleDAGSDNodes::BuildSchedUnits() { |
| // During scheduling, the NodeId field of SDNode is used to map SDNodes |
| // to their associated SUnits by holding SUnits table indices. A value |
| // of -1 means the SDNode does not yet have an associated SUnit. |
| unsigned NumNodes = 0; |
| for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(), |
| E = DAG->allnodes_end(); NI != E; ++NI) { |
| NI->setNodeId(-1); |
| ++NumNodes; |
| } |
| |
| // Reserve entries in the vector for each of the SUnits we are creating. This |
| // ensure that reallocation of the vector won't happen, so SUnit*'s won't get |
| // invalidated. |
| // FIXME: Multiply by 2 because we may clone nodes during scheduling. |
| // This is a temporary workaround. |
| SUnits.reserve(NumNodes * 2); |
| |
| // Add all nodes in depth first order. |
| SmallVector<SDNode*, 64> Worklist; |
| SmallPtrSet<SDNode*, 64> Visited; |
| Worklist.push_back(DAG->getRoot().getNode()); |
| Visited.insert(DAG->getRoot().getNode()); |
| |
| SmallVector<SUnit*, 8> CallSUnits; |
| while (!Worklist.empty()) { |
| SDNode *NI = Worklist.pop_back_val(); |
| |
| // Add all operands to the worklist unless they've already been added. |
| for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i) |
| if (Visited.insert(NI->getOperand(i).getNode())) |
| Worklist.push_back(NI->getOperand(i).getNode()); |
| |
| if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate. |
| continue; |
| |
| // If this node has already been processed, stop now. |
| if (NI->getNodeId() != -1) continue; |
| |
| SUnit *NodeSUnit = NewSUnit(NI); |
| |
| // See if anything is glued to this node, if so, add them to glued |
| // nodes. Nodes can have at most one glue input and one glue output. Glue |
| // is required to be the last operand and result of a node. |
| |
| // Scan up to find glued preds. |
| SDNode *N = NI; |
| while (N->getNumOperands() && |
| N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) { |
| N = N->getOperand(N->getNumOperands()-1).getNode(); |
| assert(N->getNodeId() == -1 && "Node already inserted!"); |
| N->setNodeId(NodeSUnit->NodeNum); |
| if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall()) |
| NodeSUnit->isCall = true; |
| } |
| |
| // Scan down to find any glued succs. |
| N = NI; |
| while (N->getValueType(N->getNumValues()-1) == MVT::Glue) { |
| SDValue GlueVal(N, N->getNumValues()-1); |
| |
| // There are either zero or one users of the Glue result. |
| bool HasGlueUse = false; |
| for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); |
| UI != E; ++UI) |
| if (GlueVal.isOperandOf(*UI)) { |
| HasGlueUse = true; |
| assert(N->getNodeId() == -1 && "Node already inserted!"); |
| N->setNodeId(NodeSUnit->NodeNum); |
| N = *UI; |
| if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall()) |
| NodeSUnit->isCall = true; |
| break; |
| } |
| if (!HasGlueUse) break; |
| } |
| |
| if (NodeSUnit->isCall) |
| CallSUnits.push_back(NodeSUnit); |
| |
| // Schedule zero-latency TokenFactor below any nodes that may increase the |
| // schedule height. Otherwise, ancestors of the TokenFactor may appear to |
| // have false stalls. |
| if (NI->getOpcode() == ISD::TokenFactor) |
| NodeSUnit->isScheduleLow = true; |
| |
| // If there are glue operands involved, N is now the bottom-most node |
| // of the sequence of nodes that are glued together. |
| // Update the SUnit. |
| NodeSUnit->setNode(N); |
| assert(N->getNodeId() == -1 && "Node already inserted!"); |
| N->setNodeId(NodeSUnit->NodeNum); |
| |
| // Compute NumRegDefsLeft. This must be done before AddSchedEdges. |
| InitNumRegDefsLeft(NodeSUnit); |
| |
| // Assign the Latency field of NodeSUnit using target-provided information. |
| ComputeLatency(NodeSUnit); |
| } |
| |
| // Find all call operands. |
| while (!CallSUnits.empty()) { |
| SUnit *SU = CallSUnits.pop_back_val(); |
| for (const SDNode *SUNode = SU->getNode(); SUNode; |
| SUNode = SUNode->getGluedNode()) { |
| if (SUNode->getOpcode() != ISD::CopyToReg) |
| continue; |
| SDNode *SrcN = SUNode->getOperand(2).getNode(); |
| if (isPassiveNode(SrcN)) continue; // Not scheduled. |
| SUnit *SrcSU = &SUnits[SrcN->getNodeId()]; |
| SrcSU->isCallOp = true; |
| } |
| } |
| } |
| |
| void ScheduleDAGSDNodes::AddSchedEdges() { |
| const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); |
| |
| // Check to see if the scheduler cares about latencies. |
| bool UnitLatencies = ForceUnitLatencies(); |
| |
| // Pass 2: add the preds, succs, etc. |
| for (unsigned su = 0, e = SUnits.size(); su != e; ++su) { |
| SUnit *SU = &SUnits[su]; |
| SDNode *MainNode = SU->getNode(); |
| |
| if (MainNode->isMachineOpcode()) { |
| unsigned Opc = MainNode->getMachineOpcode(); |
| const MCInstrDesc &MCID = TII->get(Opc); |
| for (unsigned i = 0; i != MCID.getNumOperands(); ++i) { |
| if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) { |
| SU->isTwoAddress = true; |
| break; |
| } |
| } |
| if (MCID.isCommutable()) |
| SU->isCommutable = true; |
| } |
| |
| // Find all predecessors and successors of the group. |
| for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) { |
| if (N->isMachineOpcode() && |
| TII->get(N->getMachineOpcode()).getImplicitDefs()) { |
| SU->hasPhysRegClobbers = true; |
| unsigned NumUsed = InstrEmitter::CountResults(N); |
| while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1)) |
| --NumUsed; // Skip over unused values at the end. |
| if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs()) |
| SU->hasPhysRegDefs = true; |
| } |
| |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { |
| SDNode *OpN = N->getOperand(i).getNode(); |
| if (isPassiveNode(OpN)) continue; // Not scheduled. |
| SUnit *OpSU = &SUnits[OpN->getNodeId()]; |
| assert(OpSU && "Node has no SUnit!"); |
| if (OpSU == SU) continue; // In the same group. |
| |
| EVT OpVT = N->getOperand(i).getValueType(); |
| assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!"); |
| bool isChain = OpVT == MVT::Other; |
| |
| unsigned PhysReg = 0; |
| int Cost = 1; |
| // Determine if this is a physical register dependency. |
| CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost); |
| assert((PhysReg == 0 || !isChain) && |
| "Chain dependence via physreg data?"); |
| // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler |
| // emits a copy from the physical register to a virtual register unless |
| // it requires a cross class copy (cost < 0). That means we are only |
| // treating "expensive to copy" register dependency as physical register |
| // dependency. This may change in the future though. |
| if (Cost >= 0 && !StressSched) |
| PhysReg = 0; |
| |
| // If this is a ctrl dep, latency is 1. |
| unsigned OpLatency = isChain ? 1 : OpSU->Latency; |
| // Special-case TokenFactor chains as zero-latency. |
| if(isChain && OpN->getOpcode() == ISD::TokenFactor) |
| OpLatency = 0; |
| |
| const SDep &dep = SDep(OpSU, isChain ? SDep::Order : SDep::Data, |
| OpLatency, PhysReg); |
| if (!isChain && !UnitLatencies) { |
| ComputeOperandLatency(OpN, N, i, const_cast<SDep &>(dep)); |
| ST.adjustSchedDependency(OpSU, SU, const_cast<SDep &>(dep)); |
| } |
| |
| if (!SU->addPred(dep) && !dep.isCtrl() && OpSU->NumRegDefsLeft > 1) { |
| // Multiple register uses are combined in the same SUnit. For example, |
| // we could have a set of glued nodes with all their defs consumed by |
| // another set of glued nodes. Register pressure tracking sees this as |
| // a single use, so to keep pressure balanced we reduce the defs. |
| // |
| // We can't tell (without more book-keeping) if this results from |
| // glued nodes or duplicate operands. As long as we don't reduce |
| // NumRegDefsLeft to zero, we handle the common cases well. |
| --OpSU->NumRegDefsLeft; |
| } |
| } |
| } |
| } |
| } |
| |
| /// BuildSchedGraph - Build the SUnit graph from the selection dag that we |
| /// are input. This SUnit graph is similar to the SelectionDAG, but |
| /// excludes nodes that aren't interesting to scheduling, and represents |
| /// glued together nodes with a single SUnit. |
| void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) { |
| // Cluster certain nodes which should be scheduled together. |
| ClusterNodes(); |
| // Populate the SUnits array. |
| BuildSchedUnits(); |
| // Compute all the scheduling dependencies between nodes. |
| AddSchedEdges(); |
| } |
| |
| // Initialize NumNodeDefs for the current Node's opcode. |
| void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() { |
| // Check for phys reg copy. |
| if (!Node) |
| return; |
| |
| if (!Node->isMachineOpcode()) { |
| if (Node->getOpcode() == ISD::CopyFromReg) |
| NodeNumDefs = 1; |
| else |
| NodeNumDefs = 0; |
| return; |
| } |
| unsigned POpc = Node->getMachineOpcode(); |
| if (POpc == TargetOpcode::IMPLICIT_DEF) { |
| // No register need be allocated for this. |
| NodeNumDefs = 0; |
| return; |
| } |
| unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs(); |
| // Some instructions define regs that are not represented in the selection DAG |
| // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues. |
| NodeNumDefs = std::min(Node->getNumValues(), NRegDefs); |
| DefIdx = 0; |
| } |
| |
| // Construct a RegDefIter for this SUnit and find the first valid value. |
| ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU, |
| const ScheduleDAGSDNodes *SD) |
| : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) { |
| InitNodeNumDefs(); |
| Advance(); |
| } |
| |
| // Advance to the next valid value defined by the SUnit. |
| void ScheduleDAGSDNodes::RegDefIter::Advance() { |
| for (;Node;) { // Visit all glued nodes. |
| for (;DefIdx < NodeNumDefs; ++DefIdx) { |
| if (!Node->hasAnyUseOfValue(DefIdx)) |
| continue; |
| ValueType = Node->getValueType(DefIdx); |
| ++DefIdx; |
| return; // Found a normal regdef. |
| } |
| Node = Node->getGluedNode(); |
| if (Node == NULL) { |
| return; // No values left to visit. |
| } |
| InitNodeNumDefs(); |
| } |
| } |
| |
| void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) { |
| assert(SU->NumRegDefsLeft == 0 && "expect a new node"); |
| for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) { |
| assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected"); |
| ++SU->NumRegDefsLeft; |
| } |
| } |
| |
| void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) { |
| SDNode *N = SU->getNode(); |
| |
| // TokenFactor operands are considered zero latency, and some schedulers |
| // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero |
| // whenever node latency is nonzero. |
| if (N && N->getOpcode() == ISD::TokenFactor) { |
| SU->Latency = 0; |
| return; |
| } |
| |
| // Check to see if the scheduler cares about latencies. |
| if (ForceUnitLatencies()) { |
| SU->Latency = 1; |
| return; |
| } |
| |
| if (!InstrItins || InstrItins->isEmpty()) { |
| if (N && N->isMachineOpcode() && |
| TII->isHighLatencyDef(N->getMachineOpcode())) |
| SU->Latency = HighLatencyCycles; |
| else |
| SU->Latency = 1; |
| return; |
| } |
| |
| // Compute the latency for the node. We use the sum of the latencies for |
| // all nodes glued together into this SUnit. |
| SU->Latency = 0; |
| for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) |
| if (N->isMachineOpcode()) |
| SU->Latency += TII->getInstrLatency(InstrItins, N); |
| } |
| |
| void ScheduleDAGSDNodes::ComputeOperandLatency(SDNode *Def, SDNode *Use, |
| unsigned OpIdx, SDep& dep) const{ |
| // Check to see if the scheduler cares about latencies. |
| if (ForceUnitLatencies()) |
| return; |
| |
| if (dep.getKind() != SDep::Data) |
| return; |
| |
| unsigned DefIdx = Use->getOperand(OpIdx).getResNo(); |
| if (Use->isMachineOpcode()) |
| // Adjust the use operand index by num of defs. |
| OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs(); |
| int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx); |
| if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg && |
| !BB->succ_empty()) { |
| unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg(); |
| if (TargetRegisterInfo::isVirtualRegister(Reg)) |
| // This copy is a liveout value. It is likely coalesced, so reduce the |
| // latency so not to penalize the def. |
| // FIXME: need target specific adjustment here? |
| Latency = (Latency > 1) ? Latency - 1 : 1; |
| } |
| if (Latency >= 0) |
| dep.setLatency(Latency); |
| } |
| |
| void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const { |
| if (!SU->getNode()) { |
| dbgs() << "PHYS REG COPY\n"; |
| return; |
| } |
| |
| SU->getNode()->dump(DAG); |
| dbgs() << "\n"; |
| SmallVector<SDNode *, 4> GluedNodes; |
| for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode()) |
| GluedNodes.push_back(N); |
| while (!GluedNodes.empty()) { |
| dbgs() << " "; |
| GluedNodes.back()->dump(DAG); |
| dbgs() << "\n"; |
| GluedNodes.pop_back(); |
| } |
| } |
| |
| namespace { |
| struct OrderSorter { |
| bool operator()(const std::pair<unsigned, MachineInstr*> &A, |
| const std::pair<unsigned, MachineInstr*> &B) { |
| return A.first < B.first; |
| } |
| }; |
| } |
| |
| /// ProcessSDDbgValues - Process SDDbgValues associated with this node. |
| static void ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, |
| InstrEmitter &Emitter, |
| SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders, |
| DenseMap<SDValue, unsigned> &VRBaseMap, |
| unsigned Order) { |
| if (!N->getHasDebugValue()) |
| return; |
| |
| // Opportunistically insert immediate dbg_value uses, i.e. those with source |
| // order number right after the N. |
| MachineBasicBlock *BB = Emitter.getBlock(); |
| MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos(); |
| ArrayRef<SDDbgValue*> DVs = DAG->GetDbgValues(N); |
| for (unsigned i = 0, e = DVs.size(); i != e; ++i) { |
| if (DVs[i]->isInvalidated()) |
| continue; |
| unsigned DVOrder = DVs[i]->getOrder(); |
| if (!Order || DVOrder == ++Order) { |
| MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap); |
| if (DbgMI) { |
| Orders.push_back(std::make_pair(DVOrder, DbgMI)); |
| BB->insert(InsertPos, DbgMI); |
| } |
| DVs[i]->setIsInvalidated(); |
| } |
| } |
| } |
| |
| // ProcessSourceNode - Process nodes with source order numbers. These are added |
| // to a vector which EmitSchedule uses to determine how to insert dbg_value |
| // instructions in the right order. |
| static void ProcessSourceNode(SDNode *N, SelectionDAG *DAG, |
| InstrEmitter &Emitter, |
| DenseMap<SDValue, unsigned> &VRBaseMap, |
| SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders, |
| SmallSet<unsigned, 8> &Seen) { |
| unsigned Order = DAG->GetOrdering(N); |
| if (!Order || !Seen.insert(Order)) { |
| // Process any valid SDDbgValues even if node does not have any order |
| // assigned. |
| ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0); |
| return; |
| } |
| |
| MachineBasicBlock *BB = Emitter.getBlock(); |
| if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI()) { |
| // Did not insert any instruction. |
| Orders.push_back(std::make_pair(Order, (MachineInstr*)0)); |
| return; |
| } |
| |
| Orders.push_back(std::make_pair(Order, prior(Emitter.getInsertPos()))); |
| ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order); |
| } |
| |
| |
| /// EmitSchedule - Emit the machine code in scheduled order. |
| MachineBasicBlock *ScheduleDAGSDNodes::EmitSchedule() { |
| InstrEmitter Emitter(BB, InsertPos); |
| DenseMap<SDValue, unsigned> VRBaseMap; |
| DenseMap<SUnit*, unsigned> CopyVRBaseMap; |
| SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders; |
| SmallSet<unsigned, 8> Seen; |
| bool HasDbg = DAG->hasDebugValues(); |
| |
| // If this is the first BB, emit byval parameter dbg_value's. |
| if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) { |
| SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin(); |
| SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd(); |
| for (; PDI != PDE; ++PDI) { |
| MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap); |
| if (DbgMI) |
| BB->insert(InsertPos, DbgMI); |
| } |
| } |
| |
| for (unsigned i = 0, e = Sequence.size(); i != e; i++) { |
| SUnit *SU = Sequence[i]; |
| if (!SU) { |
| // Null SUnit* is a noop. |
| EmitNoop(); |
| continue; |
| } |
| |
| // For pre-regalloc scheduling, create instructions corresponding to the |
| // SDNode and any glued SDNodes and append them to the block. |
| if (!SU->getNode()) { |
| // Emit a copy. |
| EmitPhysRegCopy(SU, CopyVRBaseMap); |
| continue; |
| } |
| |
| SmallVector<SDNode *, 4> GluedNodes; |
| for (SDNode *N = SU->getNode()->getGluedNode(); N; |
| N = N->getGluedNode()) |
| GluedNodes.push_back(N); |
| while (!GluedNodes.empty()) { |
| SDNode *N = GluedNodes.back(); |
| Emitter.EmitNode(GluedNodes.back(), SU->OrigNode != SU, SU->isCloned, |
| VRBaseMap); |
| // Remember the source order of the inserted instruction. |
| if (HasDbg) |
| ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen); |
| GluedNodes.pop_back(); |
| } |
| Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned, |
| VRBaseMap); |
| // Remember the source order of the inserted instruction. |
| if (HasDbg) |
| ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders, |
| Seen); |
| } |
| |
| // Insert all the dbg_values which have not already been inserted in source |
| // order sequence. |
| if (HasDbg) { |
| MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI(); |
| |
| // Sort the source order instructions and use the order to insert debug |
| // values. |
| std::sort(Orders.begin(), Orders.end(), OrderSorter()); |
| |
| SDDbgInfo::DbgIterator DI = DAG->DbgBegin(); |
| SDDbgInfo::DbgIterator DE = DAG->DbgEnd(); |
| // Now emit the rest according to source order. |
| unsigned LastOrder = 0; |
| for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) { |
| unsigned Order = Orders[i].first; |
| MachineInstr *MI = Orders[i].second; |
| // Insert all SDDbgValue's whose order(s) are before "Order". |
| if (!MI) |
| continue; |
| for (; DI != DE && |
| (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) { |
| if ((*DI)->isInvalidated()) |
| continue; |
| MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap); |
| if (DbgMI) { |
| if (!LastOrder) |
| // Insert to start of the BB (after PHIs). |
| BB->insert(BBBegin, DbgMI); |
| else { |
| // Insert at the instruction, which may be in a different |
| // block, if the block was split by a custom inserter. |
| MachineBasicBlock::iterator Pos = MI; |
| MI->getParent()->insert(llvm::next(Pos), DbgMI); |
| } |
| } |
| } |
| LastOrder = Order; |
| } |
| // Add trailing DbgValue's before the terminator. FIXME: May want to add |
| // some of them before one or more conditional branches? |
| while (DI != DE) { |
| MachineBasicBlock *InsertBB = Emitter.getBlock(); |
| MachineBasicBlock::iterator Pos= Emitter.getBlock()->getFirstTerminator(); |
| if (!(*DI)->isInvalidated()) { |
| MachineInstr *DbgMI= Emitter.EmitDbgValue(*DI, VRBaseMap); |
| if (DbgMI) |
| InsertBB->insert(Pos, DbgMI); |
| } |
| ++DI; |
| } |
| } |
| |
| BB = Emitter.getBlock(); |
| InsertPos = Emitter.getInsertPos(); |
| return BB; |
| } |