| ; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py |
| ; RUN: llc < %s -mtriple=x86_64-unknown-unknown | FileCheck %s |
| |
| ; The fundamental problem: an add separated from other arithmetic by a sign or |
| ; zero extension can't be combined with the later instructions. However, if the |
| ; first add is 'nsw' or 'nuw' respectively, then we can promote the extension |
| ; ahead of that add to allow optimizations. |
| |
| define i64 @add_nsw_consts(i32 %i) { |
| ; CHECK-LABEL: add_nsw_consts: |
| ; CHECK: # %bb.0: |
| ; CHECK-NEXT: movslq %edi, %rax |
| ; CHECK-NEXT: addq $12, %rax |
| ; CHECK-NEXT: retq |
| |
| %add = add nsw i32 %i, 5 |
| %ext = sext i32 %add to i64 |
| %idx = add i64 %ext, 7 |
| ret i64 %idx |
| } |
| |
| ; An x86 bonus: If we promote the sext ahead of the 'add nsw', |
| ; we allow LEA formation and eliminate an add instruction. |
| |
| define i64 @add_nsw_sext_add(i32 %i, i64 %x) { |
| ; CHECK-LABEL: add_nsw_sext_add: |
| ; CHECK: # %bb.0: |
| ; CHECK-NEXT: movslq %edi, %rax |
| ; CHECK-NEXT: leaq 5(%rsi,%rax), %rax |
| ; CHECK-NEXT: retq |
| |
| %add = add nsw i32 %i, 5 |
| %ext = sext i32 %add to i64 |
| %idx = add i64 %x, %ext |
| ret i64 %idx |
| } |
| |
| ; Throw in a scale (left shift) because an LEA can do that too. |
| ; Use a negative constant (LEA displacement) to verify that's handled correctly. |
| |
| define i64 @add_nsw_sext_lsh_add(i32 %i, i64 %x) { |
| ; CHECK-LABEL: add_nsw_sext_lsh_add: |
| ; CHECK: # %bb.0: |
| ; CHECK-NEXT: movslq %edi, %rax |
| ; CHECK-NEXT: leaq -40(%rsi,%rax,8), %rax |
| ; CHECK-NEXT: retq |
| |
| %add = add nsw i32 %i, -5 |
| %ext = sext i32 %add to i64 |
| %shl = shl i64 %ext, 3 |
| %idx = add i64 %x, %shl |
| ret i64 %idx |
| } |
| |
| ; Don't promote the sext if it has no users. The wider add instruction needs an |
| ; extra byte to encode. |
| |
| define i64 @add_nsw_sext(i32 %i, i64 %x) { |
| ; CHECK-LABEL: add_nsw_sext: |
| ; CHECK: # %bb.0: |
| ; CHECK-NEXT: addl $5, %edi |
| ; CHECK-NEXT: movslq %edi, %rax |
| ; CHECK-NEXT: retq |
| |
| %add = add nsw i32 %i, 5 |
| %ext = sext i32 %add to i64 |
| ret i64 %ext |
| } |
| |
| ; The typical use case: a 64-bit system where an 'int' is used as an index into an array. |
| |
| define i8* @gep8(i32 %i, i8* %x) { |
| ; CHECK-LABEL: gep8: |
| ; CHECK: # %bb.0: |
| ; CHECK-NEXT: movslq %edi, %rax |
| ; CHECK-NEXT: leaq 5(%rsi,%rax), %rax |
| ; CHECK-NEXT: retq |
| |
| %add = add nsw i32 %i, 5 |
| %ext = sext i32 %add to i64 |
| %idx = getelementptr i8, i8* %x, i64 %ext |
| ret i8* %idx |
| } |
| |
| define i16* @gep16(i32 %i, i16* %x) { |
| ; CHECK-LABEL: gep16: |
| ; CHECK: # %bb.0: |
| ; CHECK-NEXT: movslq %edi, %rax |
| ; CHECK-NEXT: leaq -10(%rsi,%rax,2), %rax |
| ; CHECK-NEXT: retq |
| |
| %add = add nsw i32 %i, -5 |
| %ext = sext i32 %add to i64 |
| %idx = getelementptr i16, i16* %x, i64 %ext |
| ret i16* %idx |
| } |
| |
| define i32* @gep32(i32 %i, i32* %x) { |
| ; CHECK-LABEL: gep32: |
| ; CHECK: # %bb.0: |
| ; CHECK-NEXT: movslq %edi, %rax |
| ; CHECK-NEXT: leaq 20(%rsi,%rax,4), %rax |
| ; CHECK-NEXT: retq |
| |
| %add = add nsw i32 %i, 5 |
| %ext = sext i32 %add to i64 |
| %idx = getelementptr i32, i32* %x, i64 %ext |
| ret i32* %idx |
| } |
| |
| define i64* @gep64(i32 %i, i64* %x) { |
| ; CHECK-LABEL: gep64: |
| ; CHECK: # %bb.0: |
| ; CHECK-NEXT: movslq %edi, %rax |
| ; CHECK-NEXT: leaq -40(%rsi,%rax,8), %rax |
| ; CHECK-NEXT: retq |
| |
| %add = add nsw i32 %i, -5 |
| %ext = sext i32 %add to i64 |
| %idx = getelementptr i64, i64* %x, i64 %ext |
| ret i64* %idx |
| } |
| |
| ; LEA can't scale by 16, but the adds can still be combined into an LEA. |
| |
| define i128* @gep128(i32 %i, i128* %x) { |
| ; CHECK-LABEL: gep128: |
| ; CHECK: # %bb.0: |
| ; CHECK-NEXT: movslq %edi, %rax |
| ; CHECK-NEXT: shlq $4, %rax |
| ; CHECK-NEXT: leaq 80(%rsi,%rax), %rax |
| ; CHECK-NEXT: retq |
| |
| %add = add nsw i32 %i, 5 |
| %ext = sext i32 %add to i64 |
| %idx = getelementptr i128, i128* %x, i64 %ext |
| ret i128* %idx |
| } |
| |
| ; A bigger win can be achieved when there is more than one use of the |
| ; sign extended value. In this case, we can eliminate sign extension |
| ; instructions plus use more efficient addressing modes for memory ops. |
| |
| define void @PR20134(i32* %a, i32 %i) { |
| ; CHECK-LABEL: PR20134: |
| ; CHECK: # %bb.0: |
| ; CHECK-NEXT: movslq %esi, %rax |
| ; CHECK-NEXT: movl 4(%rdi,%rax,4), %ecx |
| ; CHECK-NEXT: addl 8(%rdi,%rax,4), %ecx |
| ; CHECK-NEXT: movl %ecx, (%rdi,%rax,4) |
| ; CHECK-NEXT: retq |
| |
| %add1 = add nsw i32 %i, 1 |
| %idx1 = sext i32 %add1 to i64 |
| %gep1 = getelementptr i32, i32* %a, i64 %idx1 |
| %load1 = load i32, i32* %gep1, align 4 |
| |
| %add2 = add nsw i32 %i, 2 |
| %idx2 = sext i32 %add2 to i64 |
| %gep2 = getelementptr i32, i32* %a, i64 %idx2 |
| %load2 = load i32, i32* %gep2, align 4 |
| |
| %add3 = add i32 %load1, %load2 |
| %idx3 = sext i32 %i to i64 |
| %gep3 = getelementptr i32, i32* %a, i64 %idx3 |
| store i32 %add3, i32* %gep3, align 4 |
| ret void |
| } |
| |
| ; The same as @PR20134 but sign extension is replaced with zero extension |
| define void @PR20134_zext(i32* %a, i32 %i) { |
| ; CHECK: # %bb.0: |
| ; CHECK-NEXT: movl %esi, %eax |
| ; CHECK-NEXT: movl 4(%rdi,%rax,4), %ecx |
| ; CHECK-NEXT: addl 8(%rdi,%rax,4), %ecx |
| ; CHECK-NEXT: movl %ecx, (%rdi,%rax,4) |
| ; CHECK-NEXT: retq |
| |
| %add1 = add nuw i32 %i, 1 |
| %idx1 = zext i32 %add1 to i64 |
| %gep1 = getelementptr i32, i32* %a, i64 %idx1 |
| %load1 = load i32, i32* %gep1, align 4 |
| |
| %add2 = add nuw i32 %i, 2 |
| %idx2 = zext i32 %add2 to i64 |
| %gep2 = getelementptr i32, i32* %a, i64 %idx2 |
| %load2 = load i32, i32* %gep2, align 4 |
| |
| %add3 = add i32 %load1, %load2 |
| %idx3 = zext i32 %i to i64 |
| %gep3 = getelementptr i32, i32* %a, i64 %idx3 |
| store i32 %add3, i32* %gep3, align 4 |
| ret void |
| } |