blob: bb5b7aae883bb47f244eb2d0238a3ff735b5fce9 [file] [log] [blame]
//===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Stack allocation
//===----------------------------------------------------------------------===//
// The callseq_start node requires the hasSideEffects flag, even though these
// instructions are noops on SystemZ.
let hasNoSchedulingInfo = 1, hasSideEffects = 1 in {
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
[(callseq_start timm:$amt1, timm:$amt2)]>;
def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
[(callseq_end timm:$amt1, timm:$amt2)]>;
}
// Takes as input the value of the stack pointer after a dynamic allocation
// has been made. Sets the output to the address of the dynamically-
// allocated area itself, skipping the outgoing arguments.
//
// This expands to an LA or LAY instruction. We restrict the offset
// to the range of LA and keep the LAY range in reserve for when
// the size of the outgoing arguments is added.
def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
[(set GR64:$dst, dynalloc12only:$src)]>;
//===----------------------------------------------------------------------===//
// Branch instructions
//===----------------------------------------------------------------------===//
// Conditional branches.
let isBranch = 1, isTerminator = 1, Uses = [CC] in {
// It's easier for LLVM to handle these branches in their raw BRC/BRCL form
// with the condition-code mask being the first operand. It seems friendlier
// to use mnemonic forms like JE and JLH when writing out the assembly though.
let isCodeGenOnly = 1 in {
// An assembler extended mnemonic for BRC.
def BRC : CondBranchRI <"j#", 0xA74, z_br_ccmask>;
// An assembler extended mnemonic for BRCL. (The extension is "G"
// rather than "L" because "JL" is "Jump if Less".)
def BRCL : CondBranchRIL<"jg#", 0xC04>;
let isIndirectBranch = 1 in {
def BC : CondBranchRX<"b#", 0x47>;
def BCR : CondBranchRR<"b#r", 0x07>;
def BIC : CondBranchRXY<"bi#", 0xe347>,
Requires<[FeatureMiscellaneousExtensions2]>;
}
}
// Allow using the raw forms directly from the assembler (and occasional
// special code generation needs) as well.
def BRCAsm : AsmCondBranchRI <"brc", 0xA74>;
def BRCLAsm : AsmCondBranchRIL<"brcl", 0xC04>;
let isIndirectBranch = 1 in {
def BCAsm : AsmCondBranchRX<"bc", 0x47>;
def BCRAsm : AsmCondBranchRR<"bcr", 0x07>;
def BICAsm : AsmCondBranchRXY<"bic", 0xe347>,
Requires<[FeatureMiscellaneousExtensions2]>;
}
// Define AsmParser extended mnemonics for each general condition-code mask
// (integer or floating-point)
foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
"Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
def JAsm#V : FixedCondBranchRI <CV<V>, "j#", 0xA74>;
def JGAsm#V : FixedCondBranchRIL<CV<V>, "jg#", 0xC04>;
let isIndirectBranch = 1 in {
def BAsm#V : FixedCondBranchRX <CV<V>, "b#", 0x47>;
def BRAsm#V : FixedCondBranchRR <CV<V>, "b#r", 0x07>;
def BIAsm#V : FixedCondBranchRXY<CV<V>, "bi#", 0xe347>,
Requires<[FeatureMiscellaneousExtensions2]>;
}
}
}
// Unconditional branches. These are in fact simply variants of the
// conditional branches with the condition mask set to "always".
let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
def J : FixedCondBranchRI <CondAlways, "j", 0xA74, br>;
def JG : FixedCondBranchRIL<CondAlways, "jg", 0xC04>;
let isIndirectBranch = 1 in {
def B : FixedCondBranchRX<CondAlways, "b", 0x47>;
def BR : FixedCondBranchRR<CondAlways, "br", 0x07, brind>;
def BI : FixedCondBranchRXY<CondAlways, "bi", 0xe347, brind>,
Requires<[FeatureMiscellaneousExtensions2]>;
}
}
// NOPs. These are again variants of the conditional branches,
// with the condition mask set to "never".
def NOP : InstAlias<"nop\t$XBD", (BCAsm 0, bdxaddr12only:$XBD), 0>;
def NOPR : InstAlias<"nopr\t$R", (BCRAsm 0, GR64:$R), 0>;
// Fused compare-and-branch instructions.
//
// These instructions do not use or clobber the condition codes.
// We nevertheless pretend that the relative compare-and-branch
// instructions clobber CC, so that we can lower them to separate
// comparisons and BRCLs if the branch ends up being out of range.
let isBranch = 1, isTerminator = 1 in {
// As for normal branches, we handle these instructions internally in
// their raw CRJ-like form, but use assembly macros like CRJE when writing
// them out. Using the *Pair multiclasses, we also create the raw forms.
let Defs = [CC] in {
defm CRJ : CmpBranchRIEbPair<"crj", 0xEC76, GR32>;
defm CGRJ : CmpBranchRIEbPair<"cgrj", 0xEC64, GR64>;
defm CIJ : CmpBranchRIEcPair<"cij", 0xEC7E, GR32, imm32sx8>;
defm CGIJ : CmpBranchRIEcPair<"cgij", 0xEC7C, GR64, imm64sx8>;
defm CLRJ : CmpBranchRIEbPair<"clrj", 0xEC77, GR32>;
defm CLGRJ : CmpBranchRIEbPair<"clgrj", 0xEC65, GR64>;
defm CLIJ : CmpBranchRIEcPair<"clij", 0xEC7F, GR32, imm32zx8>;
defm CLGIJ : CmpBranchRIEcPair<"clgij", 0xEC7D, GR64, imm64zx8>;
}
let isIndirectBranch = 1 in {
defm CRB : CmpBranchRRSPair<"crb", 0xECF6, GR32>;
defm CGRB : CmpBranchRRSPair<"cgrb", 0xECE4, GR64>;
defm CIB : CmpBranchRISPair<"cib", 0xECFE, GR32, imm32sx8>;
defm CGIB : CmpBranchRISPair<"cgib", 0xECFC, GR64, imm64sx8>;
defm CLRB : CmpBranchRRSPair<"clrb", 0xECF7, GR32>;
defm CLGRB : CmpBranchRRSPair<"clgrb", 0xECE5, GR64>;
defm CLIB : CmpBranchRISPair<"clib", 0xECFF, GR32, imm32zx8>;
defm CLGIB : CmpBranchRISPair<"clgib", 0xECFD, GR64, imm64zx8>;
}
// Define AsmParser mnemonics for each integer condition-code mask.
foreach V = [ "E", "H", "L", "HE", "LE", "LH",
"NE", "NH", "NL", "NHE", "NLE", "NLH" ] in {
let Defs = [CC] in {
def CRJAsm#V : FixedCmpBranchRIEb<ICV<V>, "crj", 0xEC76, GR32>;
def CGRJAsm#V : FixedCmpBranchRIEb<ICV<V>, "cgrj", 0xEC64, GR64>;
def CIJAsm#V : FixedCmpBranchRIEc<ICV<V>, "cij", 0xEC7E, GR32,
imm32sx8>;
def CGIJAsm#V : FixedCmpBranchRIEc<ICV<V>, "cgij", 0xEC7C, GR64,
imm64sx8>;
def CLRJAsm#V : FixedCmpBranchRIEb<ICV<V>, "clrj", 0xEC77, GR32>;
def CLGRJAsm#V : FixedCmpBranchRIEb<ICV<V>, "clgrj", 0xEC65, GR64>;
def CLIJAsm#V : FixedCmpBranchRIEc<ICV<V>, "clij", 0xEC7F, GR32,
imm32zx8>;
def CLGIJAsm#V : FixedCmpBranchRIEc<ICV<V>, "clgij", 0xEC7D, GR64,
imm64zx8>;
}
let isIndirectBranch = 1 in {
def CRBAsm#V : FixedCmpBranchRRS<ICV<V>, "crb", 0xECF6, GR32>;
def CGRBAsm#V : FixedCmpBranchRRS<ICV<V>, "cgrb", 0xECE4, GR64>;
def CIBAsm#V : FixedCmpBranchRIS<ICV<V>, "cib", 0xECFE, GR32,
imm32sx8>;
def CGIBAsm#V : FixedCmpBranchRIS<ICV<V>, "cgib", 0xECFC, GR64,
imm64sx8>;
def CLRBAsm#V : FixedCmpBranchRRS<ICV<V>, "clrb", 0xECF7, GR32>;
def CLGRBAsm#V : FixedCmpBranchRRS<ICV<V>, "clgrb", 0xECE5, GR64>;
def CLIBAsm#V : FixedCmpBranchRIS<ICV<V>, "clib", 0xECFF, GR32,
imm32zx8>;
def CLGIBAsm#V : FixedCmpBranchRIS<ICV<V>, "clgib", 0xECFD, GR64,
imm64zx8>;
}
}
}
// Decrement a register and branch if it is nonzero. These don't clobber CC,
// but we might need to split long relative branches into sequences that do.
let isBranch = 1, isTerminator = 1 in {
let Defs = [CC] in {
def BRCT : BranchUnaryRI<"brct", 0xA76, GR32>;
def BRCTG : BranchUnaryRI<"brctg", 0xA77, GR64>;
}
// This doesn't need to clobber CC since we never need to split it.
def BRCTH : BranchUnaryRIL<"brcth", 0xCC6, GRH32>,
Requires<[FeatureHighWord]>;
def BCT : BranchUnaryRX<"bct", 0x46,GR32>;
def BCTR : BranchUnaryRR<"bctr", 0x06, GR32>;
def BCTG : BranchUnaryRXY<"bctg", 0xE346, GR64>;
def BCTGR : BranchUnaryRRE<"bctgr", 0xB946, GR64>;
}
let isBranch = 1, isTerminator = 1 in {
let Defs = [CC] in {
def BRXH : BranchBinaryRSI<"brxh", 0x84, GR32>;
def BRXLE : BranchBinaryRSI<"brxle", 0x85, GR32>;
def BRXHG : BranchBinaryRIEe<"brxhg", 0xEC44, GR64>;
def BRXLG : BranchBinaryRIEe<"brxlg", 0xEC45, GR64>;
}
def BXH : BranchBinaryRS<"bxh", 0x86, GR32>;
def BXLE : BranchBinaryRS<"bxle", 0x87, GR32>;
def BXHG : BranchBinaryRSY<"bxhg", 0xEB44, GR64>;
def BXLEG : BranchBinaryRSY<"bxleg", 0xEB45, GR64>;
}
//===----------------------------------------------------------------------===//
// Trap instructions
//===----------------------------------------------------------------------===//
// Unconditional trap.
let hasCtrlDep = 1, hasSideEffects = 1 in
def Trap : Alias<4, (outs), (ins), [(trap)]>;
// Conditional trap.
let hasCtrlDep = 1, Uses = [CC], hasSideEffects = 1 in
def CondTrap : Alias<4, (outs), (ins cond4:$valid, cond4:$R1), []>;
// Fused compare-and-trap instructions.
let hasCtrlDep = 1, hasSideEffects = 1 in {
// These patterns work the same way as for compare-and-branch.
defm CRT : CmpBranchRRFcPair<"crt", 0xB972, GR32>;
defm CGRT : CmpBranchRRFcPair<"cgrt", 0xB960, GR64>;
defm CLRT : CmpBranchRRFcPair<"clrt", 0xB973, GR32>;
defm CLGRT : CmpBranchRRFcPair<"clgrt", 0xB961, GR64>;
defm CIT : CmpBranchRIEaPair<"cit", 0xEC72, GR32, imm32sx16>;
defm CGIT : CmpBranchRIEaPair<"cgit", 0xEC70, GR64, imm64sx16>;
defm CLFIT : CmpBranchRIEaPair<"clfit", 0xEC73, GR32, imm32zx16>;
defm CLGIT : CmpBranchRIEaPair<"clgit", 0xEC71, GR64, imm64zx16>;
let Predicates = [FeatureMiscellaneousExtensions] in {
defm CLT : CmpBranchRSYbPair<"clt", 0xEB23, GR32>;
defm CLGT : CmpBranchRSYbPair<"clgt", 0xEB2B, GR64>;
}
foreach V = [ "E", "H", "L", "HE", "LE", "LH",
"NE", "NH", "NL", "NHE", "NLE", "NLH" ] in {
def CRTAsm#V : FixedCmpBranchRRFc<ICV<V>, "crt", 0xB972, GR32>;
def CGRTAsm#V : FixedCmpBranchRRFc<ICV<V>, "cgrt", 0xB960, GR64>;
def CLRTAsm#V : FixedCmpBranchRRFc<ICV<V>, "clrt", 0xB973, GR32>;
def CLGRTAsm#V : FixedCmpBranchRRFc<ICV<V>, "clgrt", 0xB961, GR64>;
def CITAsm#V : FixedCmpBranchRIEa<ICV<V>, "cit", 0xEC72, GR32,
imm32sx16>;
def CGITAsm#V : FixedCmpBranchRIEa<ICV<V>, "cgit", 0xEC70, GR64,
imm64sx16>;
def CLFITAsm#V : FixedCmpBranchRIEa<ICV<V>, "clfit", 0xEC73, GR32,
imm32zx16>;
def CLGITAsm#V : FixedCmpBranchRIEa<ICV<V>, "clgit", 0xEC71, GR64,
imm64zx16>;
let Predicates = [FeatureMiscellaneousExtensions] in {
def CLTAsm#V : FixedCmpBranchRSYb<ICV<V>, "clt", 0xEB23, GR32>;
def CLGTAsm#V : FixedCmpBranchRSYb<ICV<V>, "clgt", 0xEB2B, GR64>;
}
}
}
//===----------------------------------------------------------------------===//
// Call and return instructions
//===----------------------------------------------------------------------===//
// Define the general form of the call instructions for the asm parser.
// These instructions don't hard-code %r14 as the return address register.
let isCall = 1, Defs = [CC] in {
def BRAS : CallRI <"bras", 0xA75>;
def BRASL : CallRIL<"brasl", 0xC05>;
def BAS : CallRX <"bas", 0x4D>;
def BASR : CallRR <"basr", 0x0D>;
}
// Regular calls.
let isCall = 1, Defs = [R14D, CC] in {
def CallBRASL : Alias<6, (outs), (ins pcrel32:$I2, variable_ops),
[(z_call pcrel32:$I2)]>;
def CallBASR : Alias<2, (outs), (ins ADDR64:$R2, variable_ops),
[(z_call ADDR64:$R2)]>;
}
// TLS calls. These will be lowered into a call to __tls_get_offset,
// with an extra relocation specifying the TLS symbol.
let isCall = 1, Defs = [R14D, CC] in {
def TLS_GDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
[(z_tls_gdcall tglobaltlsaddr:$I2)]>;
def TLS_LDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
[(z_tls_ldcall tglobaltlsaddr:$I2)]>;
}
// Sibling calls. Indirect sibling calls must be via R1, since R2 upwards
// are argument registers and since branching to R0 is a no-op.
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in {
def CallJG : Alias<6, (outs), (ins pcrel32:$I2),
[(z_sibcall pcrel32:$I2)]>;
let Uses = [R1D] in
def CallBR : Alias<2, (outs), (ins), [(z_sibcall R1D)]>;
}
// Conditional sibling calls.
let CCMaskFirst = 1, isCall = 1, isTerminator = 1, isReturn = 1 in {
def CallBRCL : Alias<6, (outs), (ins cond4:$valid, cond4:$R1,
pcrel32:$I2), []>;
let Uses = [R1D] in
def CallBCR : Alias<2, (outs), (ins cond4:$valid, cond4:$R1), []>;
}
// Fused compare and conditional sibling calls.
let isCall = 1, isTerminator = 1, isReturn = 1, Uses = [R1D] in {
def CRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
def CGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
def CIBCall : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3), []>;
def CGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3), []>;
def CLRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
def CLGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
def CLIBCall : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3), []>;
def CLGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3), []>;
}
// A return instruction (br %r14).
let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in
def Return : Alias<2, (outs), (ins), [(z_retflag)]>;
// A conditional return instruction (bcr <cond>, %r14).
let isReturn = 1, isTerminator = 1, hasCtrlDep = 1, CCMaskFirst = 1, Uses = [CC] in
def CondReturn : Alias<2, (outs), (ins cond4:$valid, cond4:$R1), []>;
// Fused compare and conditional returns.
let isReturn = 1, isTerminator = 1, hasCtrlDep = 1 in {
def CRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
def CGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
def CIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3), []>;
def CGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3), []>;
def CLRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
def CLGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
def CLIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3), []>;
def CLGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3), []>;
}
//===----------------------------------------------------------------------===//
// Select instructions
//===----------------------------------------------------------------------===//
def Select32 : SelectWrapper<i32, GR32>,
Requires<[FeatureNoLoadStoreOnCond]>;
def Select64 : SelectWrapper<i64, GR64>,
Requires<[FeatureNoLoadStoreOnCond]>;
// We don't define 32-bit Mux stores if we don't have STOCFH, because the
// low-only STOC should then always be used if possible.
defm CondStore8Mux : CondStores<GRX32, nonvolatile_truncstorei8,
nonvolatile_anyextloadi8, bdxaddr20only>,
Requires<[FeatureHighWord]>;
defm CondStore16Mux : CondStores<GRX32, nonvolatile_truncstorei16,
nonvolatile_anyextloadi16, bdxaddr20only>,
Requires<[FeatureHighWord]>;
defm CondStore32Mux : CondStores<GRX32, nonvolatile_store,
nonvolatile_load, bdxaddr20only>,
Requires<[FeatureLoadStoreOnCond2]>;
defm CondStore8 : CondStores<GR32, nonvolatile_truncstorei8,
nonvolatile_anyextloadi8, bdxaddr20only>;
defm CondStore16 : CondStores<GR32, nonvolatile_truncstorei16,
nonvolatile_anyextloadi16, bdxaddr20only>;
defm CondStore32 : CondStores<GR32, nonvolatile_store,
nonvolatile_load, bdxaddr20only>;
defm : CondStores64<CondStore8, CondStore8Inv, nonvolatile_truncstorei8,
nonvolatile_anyextloadi8, bdxaddr20only>;
defm : CondStores64<CondStore16, CondStore16Inv, nonvolatile_truncstorei16,
nonvolatile_anyextloadi16, bdxaddr20only>;
defm : CondStores64<CondStore32, CondStore32Inv, nonvolatile_truncstorei32,
nonvolatile_anyextloadi32, bdxaddr20only>;
defm CondStore64 : CondStores<GR64, nonvolatile_store,
nonvolatile_load, bdxaddr20only>;
//===----------------------------------------------------------------------===//
// Move instructions
//===----------------------------------------------------------------------===//
// Register moves.
// Expands to LR, RISBHG or RISBLG, depending on the choice of registers.
def LRMux : UnaryRRPseudo<"lr", null_frag, GRX32, GRX32>,
Requires<[FeatureHighWord]>;
def LR : UnaryRR <"lr", 0x18, null_frag, GR32, GR32>;
def LGR : UnaryRRE<"lgr", 0xB904, null_frag, GR64, GR64>;
let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
def LTR : UnaryRR <"ltr", 0x12, null_frag, GR32, GR32>;
def LTGR : UnaryRRE<"ltgr", 0xB902, null_frag, GR64, GR64>;
}
let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
def PAIR128 : Pseudo<(outs GR128:$dst), (ins GR64:$hi, GR64:$lo), []>;
// Immediate moves.
let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
// 16-bit sign-extended immediates. LHIMux expands to LHI or IIHF,
// deopending on the choice of register.
def LHIMux : UnaryRIPseudo<bitconvert, GRX32, imm32sx16>,
Requires<[FeatureHighWord]>;
def LHI : UnaryRI<"lhi", 0xA78, bitconvert, GR32, imm32sx16>;
def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;
// Other 16-bit immediates.
def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;
// 32-bit immediates.
def LGFI : UnaryRIL<"lgfi", 0xC01, bitconvert, GR64, imm64sx32>;
def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
}
// Register loads.
let canFoldAsLoad = 1, SimpleBDXLoad = 1, mayLoad = 1 in {
// Expands to L, LY or LFH, depending on the choice of register.
def LMux : UnaryRXYPseudo<"l", load, GRX32, 4>,
Requires<[FeatureHighWord]>;
defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32, 4>;
def LFH : UnaryRXY<"lfh", 0xE3CA, load, GRH32, 4>,
Requires<[FeatureHighWord]>;
def LG : UnaryRXY<"lg", 0xE304, load, GR64, 8>;
// These instructions are split after register allocation, so we don't
// want a custom inserter.
let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
[(set GR128:$dst, (load bdxaddr20only128:$src))]>;
}
}
let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
def LT : UnaryRXY<"lt", 0xE312, load, GR32, 4>;
def LTG : UnaryRXY<"ltg", 0xE302, load, GR64, 8>;
}
let canFoldAsLoad = 1 in {
def LRL : UnaryRILPC<"lrl", 0xC4D, aligned_load, GR32>;
def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>;
}
// Load and zero rightmost byte.
let Predicates = [FeatureLoadAndZeroRightmostByte] in {
def LZRF : UnaryRXY<"lzrf", 0xE33B, null_frag, GR32, 4>;
def LZRG : UnaryRXY<"lzrg", 0xE32A, null_frag, GR64, 8>;
def : Pat<(and (i32 (load bdxaddr20only:$src)), 0xffffff00),
(LZRF bdxaddr20only:$src)>;
def : Pat<(and (i64 (load bdxaddr20only:$src)), 0xffffffffffffff00),
(LZRG bdxaddr20only:$src)>;
}
// Load and trap.
let Predicates = [FeatureLoadAndTrap], hasSideEffects = 1 in {
def LAT : UnaryRXY<"lat", 0xE39F, null_frag, GR32, 4>;
def LFHAT : UnaryRXY<"lfhat", 0xE3C8, null_frag, GRH32, 4>;
def LGAT : UnaryRXY<"lgat", 0xE385, null_frag, GR64, 8>;
}
// Register stores.
let SimpleBDXStore = 1, mayStore = 1 in {
// Expands to ST, STY or STFH, depending on the choice of register.
def STMux : StoreRXYPseudo<store, GRX32, 4>,
Requires<[FeatureHighWord]>;
defm ST : StoreRXPair<"st", 0x50, 0xE350, store, GR32, 4>;
def STFH : StoreRXY<"stfh", 0xE3CB, store, GRH32, 4>,
Requires<[FeatureHighWord]>;
def STG : StoreRXY<"stg", 0xE324, store, GR64, 8>;
// These instructions are split after register allocation, so we don't
// want a custom inserter.
let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
[(store GR128:$src, bdxaddr20only128:$dst)]>;
}
}
def STRL : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;
// 8-bit immediate stores to 8-bit fields.
defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;
// 16-bit immediate stores to 16-, 32- or 64-bit fields.
def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
def MVHI : StoreSIL<"mvhi", 0xE54C, store, imm32sx16>;
def MVGHI : StoreSIL<"mvghi", 0xE548, store, imm64sx16>;
// Memory-to-memory moves.
let mayLoad = 1, mayStore = 1 in
defm MVC : MemorySS<"mvc", 0xD2, z_mvc, z_mvc_loop>;
let mayLoad = 1, mayStore = 1, Defs = [CC] in {
def MVCL : SideEffectBinaryMemMemRR<"mvcl", 0x0E, GR128, GR128>;
def MVCLE : SideEffectTernaryMemMemRS<"mvcle", 0xA8, GR128, GR128>;
def MVCLU : SideEffectTernaryMemMemRSY<"mvclu", 0xEB8E, GR128, GR128>;
}
// String moves.
let mayLoad = 1, mayStore = 1, Defs = [CC] in
defm MVST : StringRRE<"mvst", 0xB255, z_stpcpy>;
//===----------------------------------------------------------------------===//
// Conditional move instructions
//===----------------------------------------------------------------------===//
let Predicates = [FeatureLoadStoreOnCond2], Uses = [CC] in {
// Load immediate on condition. Matched via DAG pattern and created
// by the PeepholeOptimizer via FoldImmediate.
// Expands to LOCHI or LOCHHI, depending on the choice of register.
def LOCHIMux : CondBinaryRIEPseudo<GRX32, imm32sx16>;
defm LOCHHI : CondBinaryRIEPair<"lochhi", 0xEC4E, GRH32, imm32sx16>;
defm LOCHI : CondBinaryRIEPair<"lochi", 0xEC42, GR32, imm32sx16>;
defm LOCGHI : CondBinaryRIEPair<"locghi", 0xEC46, GR64, imm64sx16>;
// Move register on condition. Matched via DAG pattern and
// created by early if-conversion.
let isCommutable = 1 in {
// Expands to LOCR or LOCFHR or a branch-and-move sequence,
// depending on the choice of registers.
def LOCRMux : CondBinaryRRFPseudo<GRX32, GRX32>;
defm LOCFHR : CondBinaryRRFPair<"locfhr", 0xB9E0, GRH32, GRH32>;
}
// Load on condition. Matched via DAG pattern.
// Expands to LOC or LOCFH, depending on the choice of register.
def LOCMux : CondUnaryRSYPseudo<nonvolatile_load, GRX32, 4>;
defm LOCFH : CondUnaryRSYPair<"locfh", 0xEBE0, nonvolatile_load, GRH32, 4>;
// Store on condition. Expanded from CondStore* pseudos.
// Expands to STOC or STOCFH, depending on the choice of register.
def STOCMux : CondStoreRSYPseudo<GRX32, 4>;
defm STOCFH : CondStoreRSYPair<"stocfh", 0xEBE1, GRH32, 4>;
// Define AsmParser extended mnemonics for each general condition-code mask.
foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
"Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
def LOCHIAsm#V : FixedCondBinaryRIE<CV<V>, "lochi", 0xEC42, GR32,
imm32sx16>;
def LOCGHIAsm#V : FixedCondBinaryRIE<CV<V>, "locghi", 0xEC46, GR64,
imm64sx16>;
def LOCHHIAsm#V : FixedCondBinaryRIE<CV<V>, "lochhi", 0xEC4E, GRH32,
imm32sx16>;
def LOCFHRAsm#V : FixedCondBinaryRRF<CV<V>, "locfhr", 0xB9E0, GRH32, GRH32>;
def LOCFHAsm#V : FixedCondUnaryRSY<CV<V>, "locfh", 0xEBE0, GRH32, 4>;
def STOCFHAsm#V : FixedCondStoreRSY<CV<V>, "stocfh", 0xEBE1, GRH32, 4>;
}
}
let Predicates = [FeatureLoadStoreOnCond], Uses = [CC] in {
// Move register on condition. Matched via DAG pattern and
// created by early if-conversion.
let isCommutable = 1 in {
defm LOCR : CondBinaryRRFPair<"locr", 0xB9F2, GR32, GR32>;
defm LOCGR : CondBinaryRRFPair<"locgr", 0xB9E2, GR64, GR64>;
}
// Load on condition. Matched via DAG pattern.
defm LOC : CondUnaryRSYPair<"loc", 0xEBF2, nonvolatile_load, GR32, 4>;
defm LOCG : CondUnaryRSYPair<"locg", 0xEBE2, nonvolatile_load, GR64, 8>;
// Store on condition. Expanded from CondStore* pseudos.
defm STOC : CondStoreRSYPair<"stoc", 0xEBF3, GR32, 4>;
defm STOCG : CondStoreRSYPair<"stocg", 0xEBE3, GR64, 8>;
// Define AsmParser extended mnemonics for each general condition-code mask.
foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
"Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
def LOCRAsm#V : FixedCondBinaryRRF<CV<V>, "locr", 0xB9F2, GR32, GR32>;
def LOCGRAsm#V : FixedCondBinaryRRF<CV<V>, "locgr", 0xB9E2, GR64, GR64>;
def LOCAsm#V : FixedCondUnaryRSY<CV<V>, "loc", 0xEBF2, GR32, 4>;
def LOCGAsm#V : FixedCondUnaryRSY<CV<V>, "locg", 0xEBE2, GR64, 8>;
def STOCAsm#V : FixedCondStoreRSY<CV<V>, "stoc", 0xEBF3, GR32, 4>;
def STOCGAsm#V : FixedCondStoreRSY<CV<V>, "stocg", 0xEBE3, GR64, 8>;
}
}
//===----------------------------------------------------------------------===//
// Sign extensions
//===----------------------------------------------------------------------===//
//
// Note that putting these before zero extensions mean that we will prefer
// them for anyextload*. There's not really much to choose between the two
// either way, but signed-extending loads have a short LH and a long LHY,
// while zero-extending loads have only the long LLH.
//
//===----------------------------------------------------------------------===//
// 32-bit extensions from registers.
def LBR : UnaryRRE<"lbr", 0xB926, sext8, GR32, GR32>;
def LHR : UnaryRRE<"lhr", 0xB927, sext16, GR32, GR32>;
// 64-bit extensions from registers.
def LGBR : UnaryRRE<"lgbr", 0xB906, sext8, GR64, GR64>;
def LGHR : UnaryRRE<"lghr", 0xB907, sext16, GR64, GR64>;
def LGFR : UnaryRRE<"lgfr", 0xB914, sext32, GR64, GR32>;
let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
def LTGFR : UnaryRRE<"ltgfr", 0xB912, null_frag, GR64, GR32>;
// Match 32-to-64-bit sign extensions in which the source is already
// in a 64-bit register.
def : Pat<(sext_inreg GR64:$src, i32),
(LGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
// 32-bit extensions from 8-bit memory. LBMux expands to LB or LBH,
// depending on the choice of register.
def LBMux : UnaryRXYPseudo<"lb", asextloadi8, GRX32, 1>,
Requires<[FeatureHighWord]>;
def LB : UnaryRXY<"lb", 0xE376, asextloadi8, GR32, 1>;
def LBH : UnaryRXY<"lbh", 0xE3C0, asextloadi8, GRH32, 1>,
Requires<[FeatureHighWord]>;
// 32-bit extensions from 16-bit memory. LHMux expands to LH or LHH,
// depending on the choice of register.
def LHMux : UnaryRXYPseudo<"lh", asextloadi16, GRX32, 2>,
Requires<[FeatureHighWord]>;
defm LH : UnaryRXPair<"lh", 0x48, 0xE378, asextloadi16, GR32, 2>;
def LHH : UnaryRXY<"lhh", 0xE3C4, asextloadi16, GRH32, 2>,
Requires<[FeatureHighWord]>;
def LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_asextloadi16, GR32>;
// 64-bit extensions from memory.
def LGB : UnaryRXY<"lgb", 0xE377, asextloadi8, GR64, 1>;
def LGH : UnaryRXY<"lgh", 0xE315, asextloadi16, GR64, 2>;
def LGF : UnaryRXY<"lgf", 0xE314, asextloadi32, GR64, 4>;
def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_asextloadi16, GR64>;
def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_asextloadi32, GR64>;
let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
def LTGF : UnaryRXY<"ltgf", 0xE332, asextloadi32, GR64, 4>;
//===----------------------------------------------------------------------===//
// Zero extensions
//===----------------------------------------------------------------------===//
// 32-bit extensions from registers.
// Expands to LLCR or RISB[LH]G, depending on the choice of registers.
def LLCRMux : UnaryRRPseudo<"llcr", zext8, GRX32, GRX32>,
Requires<[FeatureHighWord]>;
def LLCR : UnaryRRE<"llcr", 0xB994, zext8, GR32, GR32>;
// Expands to LLHR or RISB[LH]G, depending on the choice of registers.
def LLHRMux : UnaryRRPseudo<"llhr", zext16, GRX32, GRX32>,
Requires<[FeatureHighWord]>;
def LLHR : UnaryRRE<"llhr", 0xB995, zext16, GR32, GR32>;
// 64-bit extensions from registers.
def LLGCR : UnaryRRE<"llgcr", 0xB984, zext8, GR64, GR64>;
def LLGHR : UnaryRRE<"llghr", 0xB985, zext16, GR64, GR64>;
def LLGFR : UnaryRRE<"llgfr", 0xB916, zext32, GR64, GR32>;
// Match 32-to-64-bit zero extensions in which the source is already
// in a 64-bit register.
def : Pat<(and GR64:$src, 0xffffffff),
(LLGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
// 32-bit extensions from 8-bit memory. LLCMux expands to LLC or LLCH,
// depending on the choice of register.
def LLCMux : UnaryRXYPseudo<"llc", azextloadi8, GRX32, 1>,
Requires<[FeatureHighWord]>;
def LLC : UnaryRXY<"llc", 0xE394, azextloadi8, GR32, 1>;
def LLCH : UnaryRXY<"llch", 0xE3C2, azextloadi8, GRH32, 1>,
Requires<[FeatureHighWord]>;
// 32-bit extensions from 16-bit memory. LLHMux expands to LLH or LLHH,
// depending on the choice of register.
def LLHMux : UnaryRXYPseudo<"llh", azextloadi16, GRX32, 2>,
Requires<[FeatureHighWord]>;
def LLH : UnaryRXY<"llh", 0xE395, azextloadi16, GR32, 2>;
def LLHH : UnaryRXY<"llhh", 0xE3C6, azextloadi16, GRH32, 2>,
Requires<[FeatureHighWord]>;
def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_azextloadi16, GR32>;
// 64-bit extensions from memory.
def LLGC : UnaryRXY<"llgc", 0xE390, azextloadi8, GR64, 1>;
def LLGH : UnaryRXY<"llgh", 0xE391, azextloadi16, GR64, 2>;
def LLGF : UnaryRXY<"llgf", 0xE316, azextloadi32, GR64, 4>;
def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_azextloadi16, GR64>;
def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_azextloadi32, GR64>;
// 31-to-64-bit zero extensions.
def LLGTR : UnaryRRE<"llgtr", 0xB917, null_frag, GR64, GR64>;
def LLGT : UnaryRXY<"llgt", 0xE317, null_frag, GR64, 4>;
def : Pat<(and GR64:$src, 0x7fffffff),
(LLGTR GR64:$src)>;
def : Pat<(and (i64 (azextloadi32 bdxaddr20only:$src)), 0x7fffffff),
(LLGT bdxaddr20only:$src)>;
// Load and zero rightmost byte.
let Predicates = [FeatureLoadAndZeroRightmostByte] in {
def LLZRGF : UnaryRXY<"llzrgf", 0xE33A, null_frag, GR64, 4>;
def : Pat<(and (i64 (azextloadi32 bdxaddr20only:$src)), 0xffffff00),
(LLZRGF bdxaddr20only:$src)>;
}
// Load and trap.
let Predicates = [FeatureLoadAndTrap], hasSideEffects = 1 in {
def LLGFAT : UnaryRXY<"llgfat", 0xE39D, null_frag, GR64, 4>;
def LLGTAT : UnaryRXY<"llgtat", 0xE39C, null_frag, GR64, 4>;
}
// Extend GR64s to GR128s.
let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
def ZEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
//===----------------------------------------------------------------------===//
// "Any" extensions
//===----------------------------------------------------------------------===//
// Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
def : Pat<(i64 (anyext GR32:$src)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32)>;
// Extend GR64s to GR128s.
let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
def AEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
//===----------------------------------------------------------------------===//
// Truncations
//===----------------------------------------------------------------------===//
// Truncations of 64-bit registers to 32-bit registers.
def : Pat<(i32 (trunc GR64:$src)),
(EXTRACT_SUBREG GR64:$src, subreg_l32)>;
// Truncations of 32-bit registers to 8-bit memory. STCMux expands to
// STC, STCY or STCH, depending on the choice of register.
def STCMux : StoreRXYPseudo<truncstorei8, GRX32, 1>,
Requires<[FeatureHighWord]>;
defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32, 1>;
def STCH : StoreRXY<"stch", 0xE3C3, truncstorei8, GRH32, 1>,
Requires<[FeatureHighWord]>;
// Truncations of 32-bit registers to 16-bit memory. STHMux expands to
// STH, STHY or STHH, depending on the choice of register.
def STHMux : StoreRXYPseudo<truncstorei16, GRX32, 1>,
Requires<[FeatureHighWord]>;
defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32, 2>;
def STHH : StoreRXY<"sthh", 0xE3C7, truncstorei16, GRH32, 2>,
Requires<[FeatureHighWord]>;
def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;
// Truncations of 64-bit registers to memory.
defm : StoreGR64Pair<STC, STCY, truncstorei8>;
defm : StoreGR64Pair<STH, STHY, truncstorei16>;
def : StoreGR64PC<STHRL, aligned_truncstorei16>;
defm : StoreGR64Pair<ST, STY, truncstorei32>;
def : StoreGR64PC<STRL, aligned_truncstorei32>;
// Store characters under mask -- not (yet) used for codegen.
defm STCM : StoreBinaryRSPair<"stcm", 0xBE, 0xEB2D, GR32, 0>;
def STCMH : StoreBinaryRSY<"stcmh", 0xEB2C, GRH32, 0>;
//===----------------------------------------------------------------------===//
// Multi-register moves
//===----------------------------------------------------------------------===//
// Multi-register loads.
defm LM : LoadMultipleRSPair<"lm", 0x98, 0xEB98, GR32>;
def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;
def LMH : LoadMultipleRSY<"lmh", 0xEB96, GRH32>;
def LMD : LoadMultipleSSe<"lmd", 0xEF, GR64>;
// Multi-register stores.
defm STM : StoreMultipleRSPair<"stm", 0x90, 0xEB90, GR32>;
def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
def STMH : StoreMultipleRSY<"stmh", 0xEB26, GRH32>;
//===----------------------------------------------------------------------===//
// Byte swaps
//===----------------------------------------------------------------------===//
// Byte-swapping register moves.
def LRVR : UnaryRRE<"lrvr", 0xB91F, bswap, GR32, GR32>;
def LRVGR : UnaryRRE<"lrvgr", 0xB90F, bswap, GR64, GR64>;
// Byte-swapping loads. Unlike normal loads, these instructions are
// allowed to access storage more than once.
def LRVH : UnaryRXY<"lrvh", 0xE31F, z_lrvh, GR32, 2>;
def LRV : UnaryRXY<"lrv", 0xE31E, z_lrv, GR32, 4>;
def LRVG : UnaryRXY<"lrvg", 0xE30F, z_lrvg, GR64, 8>;
// Likewise byte-swapping stores.
def STRVH : StoreRXY<"strvh", 0xE33F, z_strvh, GR32, 2>;
def STRV : StoreRXY<"strv", 0xE33E, z_strv, GR32, 4>;
def STRVG : StoreRXY<"strvg", 0xE32F, z_strvg, GR64, 8>;
// Byte-swapping memory-to-memory moves.
let mayLoad = 1, mayStore = 1 in
def MVCIN : SideEffectBinarySSa<"mvcin", 0xE8>;
//===----------------------------------------------------------------------===//
// Load address instructions
//===----------------------------------------------------------------------===//
// Load BDX-style addresses.
let isAsCheapAsAMove = 1, isReMaterializable = 1 in
defm LA : LoadAddressRXPair<"la", 0x41, 0xE371, bitconvert>;
// Load a PC-relative address. There's no version of this instruction
// with a 16-bit offset, so there's no relaxation.
let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in
def LARL : LoadAddressRIL<"larl", 0xC00, bitconvert>;
// Load the Global Offset Table address. This will be lowered into a
// larl $R1, _GLOBAL_OFFSET_TABLE_
// instruction.
def GOT : Alias<6, (outs GR64:$R1), (ins),
[(set GR64:$R1, (global_offset_table))]>;
//===----------------------------------------------------------------------===//
// Absolute and Negation
//===----------------------------------------------------------------------===//
let Defs = [CC] in {
let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
def LPR : UnaryRR <"lpr", 0x10, z_iabs, GR32, GR32>;
def LPGR : UnaryRRE<"lpgr", 0xB900, z_iabs, GR64, GR64>;
}
let CCValues = 0xE, CompareZeroCCMask = 0xE in
def LPGFR : UnaryRRE<"lpgfr", 0xB910, null_frag, GR64, GR32>;
}
def : Pat<(z_iabs32 GR32:$src), (LPR GR32:$src)>;
def : Pat<(z_iabs64 GR64:$src), (LPGR GR64:$src)>;
defm : SXU<z_iabs, LPGFR>;
defm : SXU<z_iabs64, LPGFR>;
let Defs = [CC] in {
let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
def LNR : UnaryRR <"lnr", 0x11, z_inegabs, GR32, GR32>;
def LNGR : UnaryRRE<"lngr", 0xB901, z_inegabs, GR64, GR64>;
}
let CCValues = 0xE, CompareZeroCCMask = 0xE in
def LNGFR : UnaryRRE<"lngfr", 0xB911, null_frag, GR64, GR32>;
}
def : Pat<(z_inegabs32 GR32:$src), (LNR GR32:$src)>;
def : Pat<(z_inegabs64 GR64:$src), (LNGR GR64:$src)>;
defm : SXU<z_inegabs, LNGFR>;
defm : SXU<z_inegabs64, LNGFR>;
let Defs = [CC] in {
let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
def LCR : UnaryRR <"lcr", 0x13, ineg, GR32, GR32>;
def LCGR : UnaryRRE<"lcgr", 0xB903, ineg, GR64, GR64>;
}
let CCValues = 0xE, CompareZeroCCMask = 0xE in
def LCGFR : UnaryRRE<"lcgfr", 0xB913, null_frag, GR64, GR32>;
}
defm : SXU<ineg, LCGFR>;
//===----------------------------------------------------------------------===//
// Insertion
//===----------------------------------------------------------------------===//
let isCodeGenOnly = 1 in
defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, azextloadi8, 1>;
defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, azextloadi8, 1>;
defm : InsertMem<"inserti8", IC32, GR32, azextloadi8, bdxaddr12pair>;
defm : InsertMem<"inserti8", IC32Y, GR32, azextloadi8, bdxaddr20pair>;
defm : InsertMem<"inserti8", IC, GR64, azextloadi8, bdxaddr12pair>;
defm : InsertMem<"inserti8", ICY, GR64, azextloadi8, bdxaddr20pair>;
// Insert characters under mask -- not (yet) used for codegen.
let Defs = [CC] in {
defm ICM : TernaryRSPair<"icm", 0xBF, 0xEB81, GR32, 0>;
def ICMH : TernaryRSY<"icmh", 0xEB80, GRH32, 0>;
}
// Insertions of a 16-bit immediate, leaving other bits unaffected.
// We don't have or_as_insert equivalents of these operations because
// OI is available instead.
//
// IIxMux expands to II[LH]x, depending on the choice of register.
def IILMux : BinaryRIPseudo<insertll, GRX32, imm32ll16>,
Requires<[FeatureHighWord]>;
def IIHMux : BinaryRIPseudo<insertlh, GRX32, imm32lh16>,
Requires<[FeatureHighWord]>;
def IILL : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
def IIHL : BinaryRI<"iihl", 0xA51, insertll, GRH32, imm32ll16>;
def IIHH : BinaryRI<"iihh", 0xA50, insertlh, GRH32, imm32lh16>;
def IILL64 : BinaryAliasRI<insertll, GR64, imm64ll16>;
def IILH64 : BinaryAliasRI<insertlh, GR64, imm64lh16>;
def IIHL64 : BinaryAliasRI<inserthl, GR64, imm64hl16>;
def IIHH64 : BinaryAliasRI<inserthh, GR64, imm64hh16>;
// ...likewise for 32-bit immediates. For GR32s this is a general
// full-width move. (We use IILF rather than something like LLILF
// for 32-bit moves because IILF leaves the upper 32 bits of the
// GR64 unchanged.)
let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
def IIFMux : UnaryRIPseudo<bitconvert, GRX32, uimm32>,
Requires<[FeatureHighWord]>;
def IILF : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
def IIHF : UnaryRIL<"iihf", 0xC08, bitconvert, GRH32, uimm32>;
}
def IILF64 : BinaryAliasRIL<insertlf, GR64, imm64lf32>;
def IIHF64 : BinaryAliasRIL<inserthf, GR64, imm64hf32>;
// An alternative model of inserthf, with the first operand being
// a zero-extended value.
def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
(IIHF64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
imm64hf32:$imm)>;
//===----------------------------------------------------------------------===//
// Addition
//===----------------------------------------------------------------------===//
// Addition producing a signed overflow flag.
let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in {
// Addition of a register.
let isCommutable = 1 in {
defm AR : BinaryRRAndK<"ar", 0x1A, 0xB9F8, z_sadd, GR32, GR32>;
defm AGR : BinaryRREAndK<"agr", 0xB908, 0xB9E8, z_sadd, GR64, GR64>;
}
def AGFR : BinaryRRE<"agfr", 0xB918, null_frag, GR64, GR32>;
// Addition to a high register.
def AHHHR : BinaryRRFa<"ahhhr", 0xB9C8, null_frag, GRH32, GRH32, GRH32>,
Requires<[FeatureHighWord]>;
def AHHLR : BinaryRRFa<"ahhlr", 0xB9D8, null_frag, GRH32, GRH32, GR32>,
Requires<[FeatureHighWord]>;
// Addition of signed 16-bit immediates.
defm AHIMux : BinaryRIAndKPseudo<"ahimux", z_sadd, GRX32, imm32sx16>;
defm AHI : BinaryRIAndK<"ahi", 0xA7A, 0xECD8, z_sadd, GR32, imm32sx16>;
defm AGHI : BinaryRIAndK<"aghi", 0xA7B, 0xECD9, z_sadd, GR64, imm64sx16>;
// Addition of signed 32-bit immediates.
def AFIMux : BinaryRIPseudo<z_sadd, GRX32, simm32>,
Requires<[FeatureHighWord]>;
def AFI : BinaryRIL<"afi", 0xC29, z_sadd, GR32, simm32>;
def AIH : BinaryRIL<"aih", 0xCC8, z_sadd, GRH32, simm32>,
Requires<[FeatureHighWord]>;
def AGFI : BinaryRIL<"agfi", 0xC28, z_sadd, GR64, imm64sx32>;
// Addition of memory.
defm AH : BinaryRXPair<"ah", 0x4A, 0xE37A, z_sadd, GR32, asextloadi16, 2>;
defm A : BinaryRXPair<"a", 0x5A, 0xE35A, z_sadd, GR32, load, 4>;
def AGH : BinaryRXY<"agh", 0xE338, z_sadd, GR64, asextloadi16, 2>,
Requires<[FeatureMiscellaneousExtensions2]>;
def AGF : BinaryRXY<"agf", 0xE318, z_sadd, GR64, asextloadi32, 4>;
def AG : BinaryRXY<"ag", 0xE308, z_sadd, GR64, load, 8>;
// Addition to memory.
def ASI : BinarySIY<"asi", 0xEB6A, add, imm32sx8>;
def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
}
defm : SXB<z_sadd, GR64, AGFR>;
// Addition producing a carry.
let Defs = [CC] in {
// Addition of a register.
let isCommutable = 1 in {
defm ALR : BinaryRRAndK<"alr", 0x1E, 0xB9FA, z_uadd, GR32, GR32>;
defm ALGR : BinaryRREAndK<"algr", 0xB90A, 0xB9EA, z_uadd, GR64, GR64>;
}
def ALGFR : BinaryRRE<"algfr", 0xB91A, null_frag, GR64, GR32>;
// Addition to a high register.
def ALHHHR : BinaryRRFa<"alhhhr", 0xB9CA, null_frag, GRH32, GRH32, GRH32>,
Requires<[FeatureHighWord]>;
def ALHHLR : BinaryRRFa<"alhhlr", 0xB9DA, null_frag, GRH32, GRH32, GR32>,
Requires<[FeatureHighWord]>;
// Addition of signed 16-bit immediates.
def ALHSIK : BinaryRIE<"alhsik", 0xECDA, z_uadd, GR32, imm32sx16>,
Requires<[FeatureDistinctOps]>;
def ALGHSIK : BinaryRIE<"alghsik", 0xECDB, z_uadd, GR64, imm64sx16>,
Requires<[FeatureDistinctOps]>;
// Addition of unsigned 32-bit immediates.
def ALFI : BinaryRIL<"alfi", 0xC2B, z_uadd, GR32, uimm32>;
def ALGFI : BinaryRIL<"algfi", 0xC2A, z_uadd, GR64, imm64zx32>;
// Addition of signed 32-bit immediates.
def ALSIH : BinaryRIL<"alsih", 0xCCA, null_frag, GRH32, simm32>,
Requires<[FeatureHighWord]>;
// Addition of memory.
defm AL : BinaryRXPair<"al", 0x5E, 0xE35E, z_uadd, GR32, load, 4>;
def ALGF : BinaryRXY<"algf", 0xE31A, z_uadd, GR64, azextloadi32, 4>;
def ALG : BinaryRXY<"alg", 0xE30A, z_uadd, GR64, load, 8>;
// Addition to memory.
def ALSI : BinarySIY<"alsi", 0xEB6E, null_frag, imm32sx8>;
def ALGSI : BinarySIY<"algsi", 0xEB7E, null_frag, imm64sx8>;
}
defm : ZXB<z_uadd, GR64, ALGFR>;
// Addition producing and using a carry.
let Defs = [CC], Uses = [CC] in {
// Addition of a register.
def ALCR : BinaryRRE<"alcr", 0xB998, z_addcarry, GR32, GR32>;
def ALCGR : BinaryRRE<"alcgr", 0xB988, z_addcarry, GR64, GR64>;
// Addition of memory.
def ALC : BinaryRXY<"alc", 0xE398, z_addcarry, GR32, load, 4>;
def ALCG : BinaryRXY<"alcg", 0xE388, z_addcarry, GR64, load, 8>;
}
// Addition that does not modify the condition code.
def ALSIHN : BinaryRIL<"alsihn", 0xCCB, null_frag, GRH32, simm32>,
Requires<[FeatureHighWord]>;
//===----------------------------------------------------------------------===//
// Subtraction
//===----------------------------------------------------------------------===//
// Subtraction producing a signed overflow flag.
let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in {
// Subtraction of a register.
defm SR : BinaryRRAndK<"sr", 0x1B, 0xB9F9, z_ssub, GR32, GR32>;
def SGFR : BinaryRRE<"sgfr", 0xB919, null_frag, GR64, GR32>;
defm SGR : BinaryRREAndK<"sgr", 0xB909, 0xB9E9, z_ssub, GR64, GR64>;
// Subtraction from a high register.
def SHHHR : BinaryRRFa<"shhhr", 0xB9C9, null_frag, GRH32, GRH32, GRH32>,
Requires<[FeatureHighWord]>;
def SHHLR : BinaryRRFa<"shhlr", 0xB9D9, null_frag, GRH32, GRH32, GR32>,
Requires<[FeatureHighWord]>;
// Subtraction of memory.
defm SH : BinaryRXPair<"sh", 0x4B, 0xE37B, z_ssub, GR32, asextloadi16, 2>;
defm S : BinaryRXPair<"s", 0x5B, 0xE35B, z_ssub, GR32, load, 4>;
def SGH : BinaryRXY<"sgh", 0xE339, z_ssub, GR64, asextloadi16, 2>,
Requires<[FeatureMiscellaneousExtensions2]>;
def SGF : BinaryRXY<"sgf", 0xE319, z_ssub, GR64, asextloadi32, 4>;
def SG : BinaryRXY<"sg", 0xE309, z_ssub, GR64, load, 8>;
}
defm : SXB<z_ssub, GR64, SGFR>;
// Subtracting an immediate is the same as adding the negated immediate.
let AddedComplexity = 1 in {
def : Pat<(z_ssub GR32:$src1, imm32sx16n:$src2),
(AHIMux GR32:$src1, imm32sx16n:$src2)>,
Requires<[FeatureHighWord]>;
def : Pat<(z_ssub GR32:$src1, simm32n:$src2),
(AFIMux GR32:$src1, simm32n:$src2)>,
Requires<[FeatureHighWord]>;
def : Pat<(z_ssub GR32:$src1, imm32sx16n:$src2),
(AHI GR32:$src1, imm32sx16n:$src2)>;
def : Pat<(z_ssub GR32:$src1, simm32n:$src2),
(AFI GR32:$src1, simm32n:$src2)>;
def : Pat<(z_ssub GR64:$src1, imm64sx16n:$src2),
(AGHI GR64:$src1, imm64sx16n:$src2)>;
def : Pat<(z_ssub GR64:$src1, imm64sx32n:$src2),
(AGFI GR64:$src1, imm64sx32n:$src2)>;
}
// Subtraction producing a carry.
let Defs = [CC] in {
// Subtraction of a register.
defm SLR : BinaryRRAndK<"slr", 0x1F, 0xB9FB, z_usub, GR32, GR32>;
def SLGFR : BinaryRRE<"slgfr", 0xB91B, null_frag, GR64, GR32>;
defm SLGR : BinaryRREAndK<"slgr", 0xB90B, 0xB9EB, z_usub, GR64, GR64>;
// Subtraction from a high register.
def SLHHHR : BinaryRRFa<"slhhhr", 0xB9CB, null_frag, GRH32, GRH32, GRH32>,
Requires<[FeatureHighWord]>;
def SLHHLR : BinaryRRFa<"slhhlr", 0xB9DB, null_frag, GRH32, GRH32, GR32>,
Requires<[FeatureHighWord]>;
// Subtraction of unsigned 32-bit immediates.
def SLFI : BinaryRIL<"slfi", 0xC25, z_usub, GR32, uimm32>;
def SLGFI : BinaryRIL<"slgfi", 0xC24, z_usub, GR64, imm64zx32>;
// Subtraction of memory.
defm SL : BinaryRXPair<"sl", 0x5F, 0xE35F, z_usub, GR32, load, 4>;
def SLGF : BinaryRXY<"slgf", 0xE31B, z_usub, GR64, azextloadi32, 4>;
def SLG : BinaryRXY<"slg", 0xE30B, z_usub, GR64, load, 8>;
}
defm : ZXB<z_usub, GR64, SLGFR>;
// Subtracting an immediate is the same as adding the negated immediate.
let AddedComplexity = 1 in {
def : Pat<(z_usub GR32:$src1, imm32sx16n:$src2),
(ALHSIK GR32:$src1, imm32sx16n:$src2)>,
Requires<[FeatureDistinctOps]>;
def : Pat<(z_usub GR64:$src1, imm64sx16n:$src2),
(ALGHSIK GR64:$src1, imm64sx16n:$src2)>,
Requires<[FeatureDistinctOps]>;
}
// And vice versa in one special case (but we prefer addition).
def : Pat<(add GR64:$src1, imm64zx32n:$src2),
(SLGFI GR64:$src1, imm64zx32n:$src2)>;
// Subtraction producing and using a carry.
let Defs = [CC], Uses = [CC] in {
// Subtraction of a register.
def SLBR : BinaryRRE<"slbr", 0xB999, z_subcarry, GR32, GR32>;
def SLBGR : BinaryRRE<"slbgr", 0xB989, z_subcarry, GR64, GR64>;
// Subtraction of memory.
def SLB : BinaryRXY<"slb", 0xE399, z_subcarry, GR32, load, 4>;
def SLBG : BinaryRXY<"slbg", 0xE389, z_subcarry, GR64, load, 8>;
}
//===----------------------------------------------------------------------===//
// AND
//===----------------------------------------------------------------------===//
let Defs = [CC] in {
// ANDs of a register.
let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
defm NR : BinaryRRAndK<"nr", 0x14, 0xB9F4, and, GR32, GR32>;
defm NGR : BinaryRREAndK<"ngr", 0xB980, 0xB9E4, and, GR64, GR64>;
}
let isConvertibleToThreeAddress = 1 in {
// ANDs of a 16-bit immediate, leaving other bits unaffected.
// The CC result only reflects the 16-bit field, not the full register.
//
// NIxMux expands to NI[LH]x, depending on the choice of register.
def NILMux : BinaryRIPseudo<and, GRX32, imm32ll16c>,
Requires<[FeatureHighWord]>;
def NIHMux : BinaryRIPseudo<and, GRX32, imm32lh16c>,
Requires<[FeatureHighWord]>;
def NILL : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
def NILH : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
def NIHL : BinaryRI<"nihl", 0xA55, and, GRH32, imm32ll16c>;
def NIHH : BinaryRI<"nihh", 0xA54, and, GRH32, imm32lh16c>;
def NILL64 : BinaryAliasRI<and, GR64, imm64ll16c>;
def NILH64 : BinaryAliasRI<and, GR64, imm64lh16c>;
def NIHL64 : BinaryAliasRI<and, GR64, imm64hl16c>;
def NIHH64 : BinaryAliasRI<and, GR64, imm64hh16c>;
// ANDs of a 32-bit immediate, leaving other bits unaffected.
// The CC result only reflects the 32-bit field, which means we can
// use it as a zero indicator for i32 operations but not otherwise.
let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
// Expands to NILF or NIHF, depending on the choice of register.
def NIFMux : BinaryRIPseudo<and, GRX32, uimm32>,
Requires<[FeatureHighWord]>;
def NILF : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
def NIHF : BinaryRIL<"nihf", 0xC0A, and, GRH32, uimm32>;
}
def NILF64 : BinaryAliasRIL<and, GR64, imm64lf32c>;
def NIHF64 : BinaryAliasRIL<and, GR64, imm64hf32c>;
}
// ANDs of memory.
let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
defm N : BinaryRXPair<"n", 0x54, 0xE354, and, GR32, load, 4>;
def NG : BinaryRXY<"ng", 0xE380, and, GR64, load, 8>;
}
// AND to memory
defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, imm32zx8>;
// Block AND.
let mayLoad = 1, mayStore = 1 in
defm NC : MemorySS<"nc", 0xD4, z_nc, z_nc_loop>;
}
defm : RMWIByte<and, bdaddr12pair, NI>;
defm : RMWIByte<and, bdaddr20pair, NIY>;
//===----------------------------------------------------------------------===//
// OR
//===----------------------------------------------------------------------===//
let Defs = [CC] in {
// ORs of a register.
let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
defm OR : BinaryRRAndK<"or", 0x16, 0xB9F6, or, GR32, GR32>;
defm OGR : BinaryRREAndK<"ogr", 0xB981, 0xB9E6, or, GR64, GR64>;
}
// ORs of a 16-bit immediate, leaving other bits unaffected.
// The CC result only reflects the 16-bit field, not the full register.
//
// OIxMux expands to OI[LH]x, depending on the choice of register.
def OILMux : BinaryRIPseudo<or, GRX32, imm32ll16>,
Requires<[FeatureHighWord]>;
def OIHMux : BinaryRIPseudo<or, GRX32, imm32lh16>,
Requires<[FeatureHighWord]>;
def OILL : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
def OILH : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
def OIHL : BinaryRI<"oihl", 0xA59, or, GRH32, imm32ll16>;
def OIHH : BinaryRI<"oihh", 0xA58, or, GRH32, imm32lh16>;
def OILL64 : BinaryAliasRI<or, GR64, imm64ll16>;
def OILH64 : BinaryAliasRI<or, GR64, imm64lh16>;
def OIHL64 : BinaryAliasRI<or, GR64, imm64hl16>;
def OIHH64 : BinaryAliasRI<or, GR64, imm64hh16>;
// ORs of a 32-bit immediate, leaving other bits unaffected.
// The CC result only reflects the 32-bit field, which means we can
// use it as a zero indicator for i32 operations but not otherwise.
let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
// Expands to OILF or OIHF, depending on the choice of register.
def OIFMux : BinaryRIPseudo<or, GRX32, uimm32>,
Requires<[FeatureHighWord]>;
def OILF : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
def OIHF : BinaryRIL<"oihf", 0xC0C, or, GRH32, uimm32>;
}
def OILF64 : BinaryAliasRIL<or, GR64, imm64lf32>;
def OIHF64 : BinaryAliasRIL<or, GR64, imm64hf32>;
// ORs of memory.
let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
defm O : BinaryRXPair<"o", 0x56, 0xE356, or, GR32, load, 4>;
def OG : BinaryRXY<"og", 0xE381, or, GR64, load, 8>;
}
// OR to memory
defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, imm32zx8>;
// Block OR.
let mayLoad = 1, mayStore = 1 in
defm OC : MemorySS<"oc", 0xD6, z_oc, z_oc_loop>;
}
defm : RMWIByte<or, bdaddr12pair, OI>;
defm : RMWIByte<or, bdaddr20pair, OIY>;
//===----------------------------------------------------------------------===//
// XOR
//===----------------------------------------------------------------------===//
let Defs = [CC] in {
// XORs of a register.
let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
defm XR : BinaryRRAndK<"xr", 0x17, 0xB9F7, xor, GR32, GR32>;
defm XGR : BinaryRREAndK<"xgr", 0xB982, 0xB9E7, xor, GR64, GR64>;
}
// XORs of a 32-bit immediate, leaving other bits unaffected.
// The CC result only reflects the 32-bit field, which means we can
// use it as a zero indicator for i32 operations but not otherwise.
let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
// Expands to XILF or XIHF, depending on the choice of register.
def XIFMux : BinaryRIPseudo<xor, GRX32, uimm32>,
Requires<[FeatureHighWord]>;
def XILF : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
def XIHF : BinaryRIL<"xihf", 0xC06, xor, GRH32, uimm32>;
}
def XILF64 : BinaryAliasRIL<xor, GR64, imm64lf32>;
def XIHF64 : BinaryAliasRIL<xor, GR64, imm64hf32>;
// XORs of memory.
let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
defm X : BinaryRXPair<"x",0x57, 0xE357, xor, GR32, load, 4>;
def XG : BinaryRXY<"xg", 0xE382, xor, GR64, load, 8>;
}
// XOR to memory
defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, imm32zx8>;
// Block XOR.
let mayLoad = 1, mayStore = 1 in
defm XC : MemorySS<"xc", 0xD7, z_xc, z_xc_loop>;
}
defm : RMWIByte<xor, bdaddr12pair, XI>;
defm : RMWIByte<xor, bdaddr20pair, XIY>;
//===----------------------------------------------------------------------===//
// Multiplication
//===----------------------------------------------------------------------===//
// Multiplication of a register, setting the condition code. We prefer these
// over MS(G)R if available, even though we cannot use the condition code,
// since they are three-operand instructions.
let Predicates = [FeatureMiscellaneousExtensions2],
Defs = [CC], isCommutable = 1 in {
def MSRKC : BinaryRRFa<"msrkc", 0xB9FD, mul, GR32, GR32, GR32>;
def MSGRKC : BinaryRRFa<"msgrkc", 0xB9ED, mul, GR64, GR64, GR64>;
}
// Multiplication of a register.
let isCommutable = 1 in {
def MSR : BinaryRRE<"msr", 0xB252, mul, GR32, GR32>;
def MSGR : BinaryRRE<"msgr", 0xB90C, mul, GR64, GR64>;
}
def MSGFR : BinaryRRE<"msgfr", 0xB91C, null_frag, GR64, GR32>;
defm : SXB<mul, GR64, MSGFR>;
// Multiplication of a signed 16-bit immediate.
def MHI : BinaryRI<"mhi", 0xA7C, mul, GR32, imm32sx16>;
def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;
// Multiplication of a signed 32-bit immediate.
def MSFI : BinaryRIL<"msfi", 0xC21, mul, GR32, simm32>;
def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;
// Multiplication of memory.
defm MH : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, asextloadi16, 2>;
defm MS : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load, 4>;
def MGH : BinaryRXY<"mgh", 0xE33C, mul, GR64, asextloadi16, 2>,
Requires<[FeatureMiscellaneousExtensions2]>;
def MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, asextloadi32, 4>;
def MSG : BinaryRXY<"msg", 0xE30C, mul, GR64, load, 8>;
// Multiplication of memory, setting the condition code.
let Predicates = [FeatureMiscellaneousExtensions2], Defs = [CC] in {
def MSC : BinaryRXY<"msc", 0xE353, null_frag, GR32, load, 4>;
def MSGC : BinaryRXY<"msgc", 0xE383, null_frag, GR64, load, 8>;
}
// Multiplication of a register, producing two results.
def MR : BinaryRR <"mr", 0x1C, null_frag, GR128, GR32>;
def MGRK : BinaryRRFa<"mgrk", 0xB9EC, null_frag, GR128, GR64, GR64>,
Requires<[FeatureMiscellaneousExtensions2]>;
def MLR : BinaryRRE<"mlr", 0xB996, null_frag, GR128, GR32>;
def MLGR : BinaryRRE<"mlgr", 0xB986, null_frag, GR128, GR64>;
def : Pat<(z_smul_lohi GR64:$src1, GR64:$src2),
(MGRK GR64:$src1, GR64:$src2)>;
def : Pat<(z_umul_lohi GR64:$src1, GR64:$src2),
(MLGR (AEXT128 GR64:$src1), GR64:$src2)>;
// Multiplication of memory, producing two results.
def M : BinaryRX <"m", 0x5C, null_frag, GR128, load, 4>;
def MFY : BinaryRXY<"mfy", 0xE35C, null_frag, GR128, load, 4>;
def MG : BinaryRXY<"mg", 0xE384, null_frag, GR128, load, 8>,
Requires<[FeatureMiscellaneousExtensions2]>;
def ML : BinaryRXY<"ml", 0xE396, null_frag, GR128, load, 4>;
def MLG : BinaryRXY<"mlg", 0xE386, null_frag, GR128, load, 8>;
def : Pat<(z_smul_lohi GR64:$src1, (i64 (load bdxaddr20only:$src2))),
(MG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
def : Pat<(z_umul_lohi GR64:$src1, (i64 (load bdxaddr20only:$src2))),
(MLG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
//===----------------------------------------------------------------------===//
// Division and remainder
//===----------------------------------------------------------------------===//
let hasSideEffects = 1 in { // Do not speculatively execute.
// Division and remainder, from registers.
def DR : BinaryRR <"dr", 0x1D, null_frag, GR128, GR32>;
def DSGFR : BinaryRRE<"dsgfr", 0xB91D, null_frag, GR128, GR32>;
def DSGR : BinaryRRE<"dsgr", 0xB90D, null_frag, GR128, GR64>;
def DLR : BinaryRRE<"dlr", 0xB997, null_frag, GR128, GR32>;
def DLGR : BinaryRRE<"dlgr", 0xB987, null_frag, GR128, GR64>;
// Division and remainder, from memory.
def D : BinaryRX <"d", 0x5D, null_frag, GR128, load, 4>;
def DSGF : BinaryRXY<"dsgf", 0xE31D, null_frag, GR128, load, 4>;
def DSG : BinaryRXY<"dsg", 0xE30D, null_frag, GR128, load, 8>;
def DL : BinaryRXY<"dl", 0xE397, null_frag, GR128, load, 4>;
def DLG : BinaryRXY<"dlg", 0xE387, null_frag, GR128, load, 8>;
}
def : Pat<(z_sdivrem GR64:$src1, GR32:$src2),
(DSGFR (AEXT128 GR64:$src1), GR32:$src2)>;
def : Pat<(z_sdivrem GR64:$src1, (i32 (load bdxaddr20only:$src2))),
(DSGF (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
def : Pat<(z_sdivrem GR64:$src1, GR64:$src2),
(DSGR (AEXT128 GR64:$src1), GR64:$src2)>;
def : Pat<(z_sdivrem GR64:$src1, (i64 (load bdxaddr20only:$src2))),
(DSG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
def : Pat<(z_udivrem GR32:$src1, GR32:$src2),
(DLR (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1,
subreg_l32)), GR32:$src2)>;
def : Pat<(z_udivrem GR32:$src1, (i32 (load bdxaddr20only:$src2))),
(DL (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1,
subreg_l32)), bdxaddr20only:$src2)>;
def : Pat<(z_udivrem GR64:$src1, GR64:$src2),
(DLGR (ZEXT128 GR64:$src1), GR64:$src2)>;
def : Pat<(z_udivrem GR64:$src1, (i64 (load bdxaddr20only:$src2))),
(DLG (ZEXT128 GR64:$src1), bdxaddr20only:$src2)>;
//===----------------------------------------------------------------------===//
// Shifts
//===----------------------------------------------------------------------===//
// Logical shift left.
defm SLL : BinaryRSAndK<"sll", 0x89, 0xEBDF, shiftop<shl>, GR32>;
def SLLG : BinaryRSY<"sllg", 0xEB0D, shiftop<shl>, GR64>;
def SLDL : BinaryRS<"sldl", 0x8D, null_frag, GR128>;
// Arithmetic shift left.
let Defs = [CC] in {
defm SLA : BinaryRSAndK<"sla", 0x8B, 0xEBDD, null_frag, GR32>;
def SLAG : BinaryRSY<"slag", 0xEB0B, null_frag, GR64>;
def SLDA : BinaryRS<"slda", 0x8F, null_frag, GR128>;
}
// Logical shift right.
defm SRL : BinaryRSAndK<"srl", 0x88, 0xEBDE, shiftop<srl>, GR32>;
def SRLG : BinaryRSY<"srlg", 0xEB0C, shiftop<srl>, GR64>;
def SRDL : BinaryRS<"srdl", 0x8C, null_frag, GR128>;
// Arithmetic shift right.
let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
defm SRA : BinaryRSAndK<"sra", 0x8A, 0xEBDC, shiftop<sra>, GR32>;
def SRAG : BinaryRSY<"srag", 0xEB0A, shiftop<sra>, GR64>;
def SRDA : BinaryRS<"srda", 0x8E, null_frag, GR128>;
}
// Rotate left.
def RLL : BinaryRSY<"rll", 0xEB1D, shiftop<rotl>, GR32>;
def RLLG : BinaryRSY<"rllg", 0xEB1C, shiftop<rotl>, GR64>;
// Rotate second operand left and inserted selected bits into first operand.
// These can act like 32-bit operands provided that the constant start and
// end bits (operands 2 and 3) are in the range [32, 64).
let Defs = [CC] in {
let isCodeGenOnly = 1 in
def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>;
let CCValues = 0xE, CompareZeroCCMask = 0xE in
def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>;
}
// On zEC12 we have a variant of RISBG that does not set CC.
let Predicates = [FeatureMiscellaneousExtensions] in
def RISBGN : RotateSelectRIEf<"risbgn", 0xEC59, GR64, GR64>;
// Forms of RISBG that only affect one word of the destination register.
// They do not set CC.
let Predicates = [FeatureHighWord] in {
def RISBMux : RotateSelectRIEfPseudo<GRX32, GRX32>;
def RISBLL : RotateSelectAliasRIEf<GR32, GR32>;
def RISBLH : RotateSelectAliasRIEf<GR32, GRH32>;
def RISBHL : RotateSelectAliasRIEf<GRH32, GR32>;
def RISBHH : RotateSelectAliasRIEf<GRH32, GRH32>;
def RISBLG : RotateSelectRIEf<"risblg", 0xEC51, GR32, GR64>;
def RISBHG : RotateSelectRIEf<"risbhg", 0xEC5D, GRH32, GR64>;
}
// Rotate second operand left and perform a logical operation with selected
// bits of the first operand. The CC result only describes the selected bits,
// so isn't useful for a full comparison against zero.
let Defs = [CC] in {
def RNSBG : RotateSelectRIEf<"rnsbg", 0xEC54, GR64, GR64>;
def ROSBG : RotateSelectRIEf<"rosbg", 0xEC56, GR64, GR64>;
def RXSBG : RotateSelectRIEf<"rxsbg", 0xEC57, GR64, GR64>;
}
//===----------------------------------------------------------------------===//
// Comparison
//===----------------------------------------------------------------------===//
// Signed comparisons. We put these before the unsigned comparisons because
// some of the signed forms have COMPARE AND BRANCH equivalents whereas none
// of the unsigned forms do.
let Defs = [CC], CCValues = 0xE in {
// Comparison with a register.
def CR : CompareRR <"cr", 0x19, z_scmp, GR32, GR32>;
def CGFR : CompareRRE<"cgfr", 0xB930, null_frag, GR64, GR32>;
def CGR : CompareRRE<"cgr", 0xB920, z_scmp, GR64, GR64>;
// Comparison with a high register.
def CHHR : CompareRRE<"chhr", 0xB9CD, null_frag, GRH32, GRH32>,
Requires<[FeatureHighWord]>;
def CHLR : CompareRRE<"chlr", 0xB9DD, null_frag, GRH32, GR32>,
Requires<[FeatureHighWord]>;
// Comparison with a signed 16-bit immediate. CHIMux expands to CHI or CIH,
// depending on the choice of register.
def CHIMux : CompareRIPseudo<z_scmp, GRX32, imm32sx16>,
Requires<[FeatureHighWord]>;
def CHI : CompareRI<"chi", 0xA7E, z_scmp, GR32, imm32sx16>;
def CGHI : CompareRI<"cghi", 0xA7F, z_scmp, GR64, imm64sx16>;
// Comparison with a signed 32-bit immediate. CFIMux expands to CFI or CIH,
// depending on the choice of register.
def CFIMux : CompareRIPseudo<z_scmp, GRX32, simm32>,
Requires<[FeatureHighWord]>;
def CFI : CompareRIL<"cfi", 0xC2D, z_scmp, GR32, simm32>;
def CIH : CompareRIL<"cih", 0xCCD, z_scmp, GRH32, simm32>,
Requires<[FeatureHighWord]>;
def CGFI : CompareRIL<"cgfi", 0xC2C, z_scmp, GR64, imm64sx32>;
// Comparison with memory.
defm CH : CompareRXPair<"ch", 0x49, 0xE379, z_scmp, GR32, asextloadi16, 2>;
def CMux : CompareRXYPseudo<z_scmp, GRX32, load, 4>,
Requires<[FeatureHighWord]>;
defm C : CompareRXPair<"c", 0x59, 0xE359, z_scmp, GR32, load, 4>;
def CHF : CompareRXY<"chf", 0xE3CD, z_scmp, GRH32, load, 4>,
Requires<[FeatureHighWord]>;
def CGH : CompareRXY<"cgh", 0xE334, z_scmp, GR64, asextloadi16, 2>;
def CGF : CompareRXY<"cgf", 0xE330, z_scmp, GR64, asextloadi32, 4>;
def CG : CompareRXY<"cg", 0xE320, z_scmp, GR64, load, 8>;
def CHRL : CompareRILPC<"chrl", 0xC65, z_scmp, GR32, aligned_asextloadi16>;
def CRL : CompareRILPC<"crl", 0xC6D, z_scmp, GR32, aligned_load>;
def CGHRL : CompareRILPC<"cghrl", 0xC64, z_scmp, GR64, aligned_asextloadi16>;
def CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_scmp, GR64, aligned_asextloadi32>;
def CGRL : CompareRILPC<"cgrl", 0xC68, z_scmp, GR64, aligned_load>;
// Comparison between memory and a signed 16-bit immediate.
def CHHSI : CompareSIL<"chhsi", 0xE554, z_scmp, asextloadi16, imm32sx16>;
def CHSI : CompareSIL<"chsi", 0xE55C, z_scmp, load, imm32sx16>;
def CGHSI : CompareSIL<"cghsi", 0xE558, z_scmp, load, imm64sx16>;
}
defm : SXB<z_scmp, GR64, CGFR>;
// Unsigned comparisons.
let Defs = [CC], CCValues = 0xE, IsLogical = 1 in {
// Comparison with a register.
def CLR : CompareRR <"clr", 0x15, z_ucmp, GR32, GR32>;
def CLGFR : CompareRRE<"clgfr", 0xB931, null_frag, GR64, GR32>;
def CLGR : CompareRRE<"clgr", 0xB921, z_ucmp, GR64, GR64>;
// Comparison with a high register.
def CLHHR : CompareRRE<"clhhr", 0xB9CF, null_frag, GRH32, GRH32>,
Requires<[FeatureHighWord]>;
def CLHLR : CompareRRE<"clhlr", 0xB9DF, null_frag, GRH32, GR32>,
Requires<[FeatureHighWord]>;
// Comparison with an unsigned 32-bit immediate. CLFIMux expands to CLFI
// or CLIH, depending on the choice of register.
def CLFIMux : CompareRIPseudo<z_ucmp, GRX32, uimm32>,
Requires<[FeatureHighWord]>;
def CLFI : CompareRIL<"clfi", 0xC2F, z_ucmp, GR32, uimm32>;
def CLIH : CompareRIL<"clih", 0xCCF, z_ucmp, GRH32, uimm32>,
Requires<[FeatureHighWord]>;
def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;
// Comparison with memory.
def CLMux : CompareRXYPseudo<z_ucmp, GRX32, load, 4>,
Requires<[FeatureHighWord]>;
defm CL : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load, 4>;
def CLHF : CompareRXY<"clhf", 0xE3CF, z_ucmp, GRH32, load, 4>,
Requires<[FeatureHighWord]>;
def CLGF : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, azextloadi32, 4>;
def CLG : CompareRXY<"clg", 0xE321, z_ucmp, GR64, load, 8>;
def CLHRL : CompareRILPC<"clhrl", 0xC67, z_ucmp, GR32,
aligned_azextloadi16>;
def CLRL : CompareRILPC<"clrl", 0xC6F, z_ucmp, GR32,
aligned_load>;
def CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
aligned_azextloadi16>;
def CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
aligned_azextloadi32>;
def CLGRL : CompareRILPC<"clgrl", 0xC6A, z_ucmp, GR64,
aligned_load>;
// Comparison between memory and an unsigned 8-bit immediate.
defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, azextloadi8, imm32zx8>;
// Comparison between memory and an unsigned 16-bit immediate.
def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, azextloadi16, imm32zx16>;
def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>;
def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>;
}
defm : ZXB<z_ucmp, GR64, CLGFR>;
// Memory-to-memory comparison.
let mayLoad = 1, Defs = [CC] in {
defm CLC : CompareMemorySS<"clc", 0xD5, z_clc, z_clc_loop>;
def CLCL : SideEffectBinaryMemMemRR<"clcl", 0x0F, GR128, GR128>;
def CLCLE : SideEffectTernaryMemMemRS<"clcle", 0xA9, GR128, GR128>;
def CLCLU : SideEffectTernaryMemMemRSY<"clclu", 0xEB8F, GR128, GR128>;
}
// String comparison.
let mayLoad = 1, Defs = [CC] in
defm CLST : StringRRE<"clst", 0xB25D, z_strcmp>;
// Test under mask.
let Defs = [CC] in {
// TMxMux expands to TM[LH]x, depending on the choice of register.
def TMLMux : CompareRIPseudo<z_tm_reg, GRX32, imm32ll16>,
Requires<[FeatureHighWord]>;
def TMHMux : CompareRIPseudo<z_tm_reg, GRX32, imm32lh16>,
Requires<[FeatureHighWord]>;
def TMLL : CompareRI<"tmll", 0xA71, z_tm_reg, GR32, imm32ll16>;
def TMLH : CompareRI<"tmlh", 0xA70, z_tm_reg, GR32, imm32lh16>;
def TMHL : CompareRI<"tmhl", 0xA73, z_tm_reg, GRH32, imm32ll16>;
def TMHH : CompareRI<"tmhh", 0xA72, z_tm_reg, GRH32, imm32lh16>;
def TMLL64 : CompareAliasRI<z_tm_reg, GR64, imm64ll16>;
def TMLH64 : CompareAliasRI<z_tm_reg, GR64, imm64lh16>;
def TMHL64 : CompareAliasRI<z_tm_reg, GR64, imm64hl16>;
def TMHH64 : CompareAliasRI<z_tm_reg, GR64, imm64hh16>;
defm TM : CompareSIPair<"tm", 0x91, 0xEB51, z_tm_mem, anyextloadi8, imm32zx8>;
}
def TML : InstAlias<"tml\t$R, $I", (TMLL GR32:$R, imm32ll16:$I), 0>;
def TMH : InstAlias<"tmh\t$R, $I", (TMLH GR32:$R, imm32lh16:$I), 0>;
// Compare logical characters under mask -- not (yet) used for codegen.
let Defs = [CC] in {
defm CLM : CompareRSPair<"clm", 0xBD, 0xEB21, GR32, 0>;
def CLMH : CompareRSY<"clmh", 0xEB20, GRH32, 0>;
}
//===----------------------------------------------------------------------===//
// Prefetch and execution hint
//===----------------------------------------------------------------------===//
let mayLoad = 1, mayStore = 1 in {
def PFD : PrefetchRXY<"pfd", 0xE336, z_prefetch>;
def PFDRL : PrefetchRILPC<"pfdrl", 0xC62, z_prefetch>;
}
let Predicates = [FeatureExecutionHint], hasSideEffects = 1 in {
// Branch Prediction Preload
def BPP : BranchPreloadSMI<"bpp", 0xC7>;
def BPRP : BranchPreloadMII<"bprp", 0xC5>;
// Next Instruction Access Intent
def NIAI : SideEffectBinaryIE<"niai", 0xB2FA, imm32zx4, imm32zx4>;
}
//===----------------------------------------------------------------------===//
// Atomic operations
//===----------------------------------------------------------------------===//
// A serialization instruction that acts as a barrier for all memory
// accesses, which expands to "bcr 14, 0".
let hasSideEffects = 1 in
def Serialize : Alias<2, (outs), (ins), []>;
// A pseudo instruction that serves as a compiler barrier.
let hasSideEffects = 1, hasNoSchedulingInfo = 1 in
def MemBarrier : Pseudo<(outs), (ins), [(z_membarrier)]>;
let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in {
def LAA : LoadAndOpRSY<"laa", 0xEBF8, atomic_load_add_32, GR32>;
def LAAG : LoadAndOpRSY<"laag", 0xEBE8, atomic_load_add_64, GR64>;
def LAAL : LoadAndOpRSY<"laal", 0xEBFA, null_frag, GR32>;
def LAALG : LoadAndOpRSY<"laalg", 0xEBEA, null_frag, GR64>;
def LAN : LoadAndOpRSY<"lan", 0xEBF4, atomic_load_and_32, GR32>;
def LANG : LoadAndOpRSY<"lang", 0xEBE4, atomic_load_and_64, GR64>;
def LAO : LoadAndOpRSY<"lao", 0xEBF6, atomic_load_or_32, GR32>;
def LAOG : LoadAndOpRSY<"laog", 0xEBE6, atomic_load_or_64, GR64>;
def LAX : LoadAndOpRSY<"lax", 0xEBF7, atomic_load_xor_32, GR32>;
def LAXG : LoadAndOpRSY<"laxg", 0xEBE7, atomic_load_xor_64, GR64>;
}
def ATOMIC_SWAPW : AtomicLoadWBinaryReg<z_atomic_swapw>;
def ATOMIC_SWAP_32 : AtomicLoadBinaryReg32<atomic_swap_32>;
def ATOMIC_SWAP_64 : AtomicLoadBinaryReg64<atomic_swap_64>;
def ATOMIC_LOADW_AR : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
let Predicates = [FeatureNoInterlockedAccess1] in {
def ATOMIC_LOAD_AR : AtomicLoadBinaryReg32<atomic_load_add_32>;
def ATOMIC_LOAD_AHI : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>;
def ATOMIC_LOAD_AFI : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>;
def ATOMIC_LOAD_AGR : AtomicLoadBinaryReg64<atomic_load_add_64>;
def ATOMIC_LOAD_AGHI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>;
def ATOMIC_LOAD_AGFI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>;
}
def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
def ATOMIC_LOAD_SR : AtomicLoadBinaryReg32<atomic_load_sub_32>;
def ATOMIC_LOAD_SGR : AtomicLoadBinaryReg64<atomic_load_sub_64>;
def ATOMIC_LOADW_NR : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
let Predicates = [FeatureNoInterlockedAccess1] in {
def ATOMIC_LOAD_NR : AtomicLoadBinaryReg32<atomic_load_and_32>;
def ATOMIC_LOAD_NILL : AtomicLoadBinaryImm32<atomic_load_and_32,
imm32ll16c>;
def ATOMIC_LOAD_NILH : AtomicLoadBinaryImm32<atomic_load_and_32,
imm32lh16c>;
def ATOMIC_LOAD_NILF : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>;
def ATOMIC_LOAD_NGR : AtomicLoadBinaryReg64<atomic_load_and_64>;
def ATOMIC_LOAD_NILL64 : AtomicLoadBinaryImm64<atomic_load_and_64,
imm64ll16c>;
def ATOMIC_LOAD_NILH64 : AtomicLoadBinaryImm64<atomic_load_and_64,
imm64lh16c>;
def ATOMIC_LOAD_NIHL64 : AtomicLoadBinaryImm64<atomic_load_and_64,
imm64hl16c>;
def ATOMIC_LOAD_NIHH64 : AtomicLoadBinaryImm64<atomic_load_and_64,
imm64hh16c>;
def ATOMIC_LOAD_NILF64 : AtomicLoadBinaryImm64<atomic_load_and_64,
imm64lf32c>;
def ATOMIC_LOAD_NIHF64 : AtomicLoadBinaryImm64<atomic_load_and_64,
imm64hf32c>;
}
def ATOMIC_LOADW_OR : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
def ATOMIC_LOADW_OILH : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
let Predicates = [FeatureNoInterlockedAccess1] in {
def ATOMIC_LOAD_OR : AtomicLoadBinaryReg32<atomic_load_or_32>;
def ATOMIC_LOAD_OILL : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>;
def ATOMIC_LOAD_OILH : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>;
def ATOMIC_LOAD_OILF : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>;
def ATOMIC_LOAD_OGR : AtomicLoadBinaryReg64<atomic_load_or_64>;
def ATOMIC_LOAD_OILL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>;
def ATOMIC_LOAD_OILH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>;
def ATOMIC_LOAD_OIHL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>;
def ATOMIC_LOAD_OIHH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>;
def ATOMIC_LOAD_OILF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>;
def ATOMIC_LOAD_OIHF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>;
}
def ATOMIC_LOADW_XR : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
def ATOMIC_LOADW_XILF : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
let Predicates = [FeatureNoInterlockedAccess1] in {
def ATOMIC_LOAD_XR : AtomicLoadBinaryReg32<atomic_load_xor_32>;
def ATOMIC_LOAD_XILF : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>;
def ATOMIC_LOAD_XGR : AtomicLoadBinaryReg64<atomic_load_xor_64>;
def ATOMIC_LOAD_XILF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>;
def ATOMIC_LOAD_XIHF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>;
}
def ATOMIC_LOADW_NRi : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
def ATOMIC_LOADW_NILHi : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
imm32lh16c>;
def ATOMIC_LOAD_NRi : AtomicLoadBinaryReg32<atomic_load_nand_32>;
def ATOMIC_LOAD_NILLi : AtomicLoadBinaryImm32<atomic_load_nand_32,
imm32ll16c>;
def ATOMIC_LOAD_NILHi : AtomicLoadBinaryImm32<atomic_load_nand_32,
imm32lh16c>;
def ATOMIC_LOAD_NILFi : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>;
def ATOMIC_LOAD_NGRi : AtomicLoadBinaryReg64<atomic_load_nand_64>;
def ATOMIC_LOAD_NILL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
imm64ll16c>;
def ATOMIC_LOAD_NILH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
imm64lh16c>;
def ATOMIC_LOAD_NIHL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
imm64hl16c>;
def ATOMIC_LOAD_NIHH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
imm64hh16c>;
def ATOMIC_LOAD_NILF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
imm64lf32c>;
def ATOMIC_LOAD_NIHF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
imm64hf32c>;
def ATOMIC_LOADW_MIN : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
def ATOMIC_LOAD_MIN_32 : AtomicLoadBinaryReg32<atomic_load_min_32>;
def ATOMIC_LOAD_MIN_64 : AtomicLoadBinaryReg64<atomic_load_min_64>;
def ATOMIC_LOADW_MAX : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
def ATOMIC_LOAD_MAX_32 : AtomicLoadBinaryReg32<atomic_load_max_32>;
def ATOMIC_LOAD_MAX_64 : AtomicLoadBinaryReg64<atomic_load_max_64>;
def ATOMIC_LOADW_UMIN : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>;
def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>;
def ATOMIC_LOADW_UMAX : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>;
def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>;
def ATOMIC_CMP_SWAPW
: Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
ADDR32:$bitshift, ADDR32:$negbitshift,
uimm32:$bitsize),
[(set GR32:$dst,
(z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
ADDR32:$bitshift, ADDR32:$negbitshift,
uimm32:$bitsize))]> {
let Defs = [CC];
let mayLoad = 1;
let mayStore = 1;
let usesCustomInserter = 1;
let hasNoSchedulingInfo = 1;
}
// Test and set.
let mayLoad = 1, Defs = [CC] in
def TS : StoreInherentS<"ts", 0x9300, null_frag, 1>;
// Compare and swap.
let Defs = [CC] in {
defm CS : CmpSwapRSPair<"cs", 0xBA, 0xEB14, z_atomic_cmp_swap, GR32>;
def CSG : CmpSwapRSY<"csg", 0xEB30, z_atomic_cmp_swap, GR64>;
}
// Compare double and swap.
let Defs = [CC] in {
defm CDS : CmpSwapRSPair<"cds", 0xBB, 0xEB31, null_frag, GR128>;
def CDSG : CmpSwapRSY<"cdsg", 0xEB3E, z_atomic_cmp_swap_128, GR128>;
}
// Compare and swap and store.
let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad = 1 in
def CSST : SideEffectTernarySSF<"csst", 0xC82, GR64>;
// Perform locked operation.
let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad =1 in
def PLO : SideEffectQuaternarySSe<"plo", 0xEE, GR64>;
// Load/store pair from/to quadword.
def LPQ : UnaryRXY<"lpq", 0xE38F, z_atomic_load_128, GR128, 16>;
def STPQ : StoreRXY<"stpq", 0xE38E, z_atomic_store_128, GR128, 16>;
// Load pair disjoint.
let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in {
def LPD : BinarySSF<"lpd", 0xC84, GR128>;
def LPDG : BinarySSF<"lpdg", 0xC85, GR128>;
}
//===----------------------------------------------------------------------===//
// Translate and convert
//===----------------------------------------------------------------------===//
let mayLoad = 1, mayStore = 1 in
def TR : SideEffectBinarySSa<"tr", 0xDC>;
let mayLoad = 1, Defs = [CC, R0L, R1D] in {
def TRT : SideEffectBinarySSa<"trt", 0xDD>;
def TRTR : SideEffectBinarySSa<"trtr", 0xD0>;
}
let mayLoad = 1, mayStore = 1, Uses = [R0L] in
def TRE : SideEffectBinaryMemMemRRE<"tre", 0xB2A5, GR128, GR64>;
let mayLoad = 1, Uses = [R1D], Defs = [CC] in {
defm TRTE : BinaryMemRRFcOpt<"trte", 0xB9BF, GR128, GR64>;
defm TRTRE : BinaryMemRRFcOpt<"trtre", 0xB9BD, GR128, GR64>;
}
let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in {
defm TROO : SideEffectTernaryMemMemRRFcOpt<"troo", 0xB993, GR128, GR64>;
defm TROT : SideEffectTernaryMemMemRRFcOpt<"trot", 0xB992, GR128, GR64>;
defm TRTO : SideEffectTernaryMemMemRRFcOpt<"trto", 0xB991, GR128, GR64>;
defm TRTT : SideEffectTernaryMemMemRRFcOpt<"trtt", 0xB990, GR128, GR64>;
}
let mayLoad = 1, mayStore = 1, Defs = [CC] in {
defm CU12 : SideEffectTernaryMemMemRRFcOpt<"cu12", 0xB2A7, GR128, GR128>;
defm CU14 : SideEffectTernaryMemMemRRFcOpt<"cu14", 0xB9B0, GR128, GR128>;
defm CU21 : SideEffectTernaryMemMemRRFcOpt<"cu21", 0xB2A6, GR128, GR128>;
defm CU24 : SideEffectTernaryMemMemRRFcOpt<"cu24", 0xB9B1, GR128, GR128>;
def CU41 : SideEffectBinaryMemMemRRE<"cu41", 0xB9B2, GR128, GR128>;
def CU42 : SideEffectBinaryMemMemRRE<"cu42", 0xB9B3, GR128, GR128>;
let isAsmParserOnly = 1 in {
defm CUUTF : SideEffectTernaryMemMemRRFcOpt<"cuutf", 0xB2A6, GR128, GR128>;
defm CUTFU : SideEffectTernaryMemMemRRFcOpt<"cutfu", 0xB2A7, GR128, GR128>;
}
}
//===----------------------------------------------------------------------===//
// Message-security assist
//===----------------------------------------------------------------------===//
let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in {
def KM : SideEffectBinaryMemMemRRE<"km", 0xB92E, GR128, GR128>;
def KMC : SideEffectBinaryMemMemRRE<"kmc", 0xB92F, GR128, GR128>;
def KIMD : SideEffectBinaryMemRRE<"kimd", 0xB93E, GR64, GR128>;
def KLMD : SideEffectBinaryMemRRE<"klmd", 0xB93F, GR64, GR128>;
def KMAC : SideEffectBinaryMemRRE<"kmac", 0xB91E, GR64, GR128>;
let Predicates = [FeatureMessageSecurityAssist4] in {
def KMF : SideEffectBinaryMemMemRRE<"kmf", 0xB92A, GR128, GR128>;
def KMO : SideEffectBinaryMemMemRRE<"kmo", 0xB92B, GR128, GR128>;
def KMCTR : SideEffectTernaryMemMemMemRRFb<"kmctr", 0xB92D,
GR128, GR128, GR128>;
def PCC : SideEffectInherentRRE<"pcc", 0xB92C>;
}
let Predicates = [FeatureMessageSecurityAssist5] in
def PPNO : SideEffectBinaryMemMemRRE<"ppno", 0xB93C, GR128, GR128>;
let Predicates = [FeatureMessageSecurityAssist7], isAsmParserOnly = 1 in
def PRNO : SideEffectBinaryMemMemRRE<"prno", 0xB93C, GR128, GR128>;
let Predicates = [FeatureMessageSecurityAssist8] in
def KMA : SideEffectTernaryMemMemMemRRFb<"kma", 0xB929,
GR128, GR128, GR128>;
}
//===----------------------------------------------------------------------===//
// Guarded storage
//===----------------------------------------------------------------------===//
// These instructions use and/or modify the guarded storage control
// registers, which we do not otherwise model, so they should have
// hasSideEffects.
let Predicates = [FeatureGuardedStorage], hasSideEffects = 1 in {
def LGG : UnaryRXY<"lgg", 0xE34C, null_frag, GR64, 8>;
def LLGFSG : UnaryRXY<"llgfsg", 0xE348, null_frag, GR64, 4>;
let mayLoad = 1 in
def LGSC : SideEffectBinaryRXY<"lgsc", 0xE34D, GR64>;
let mayStore = 1 in
def STGSC : SideEffectBinaryRXY<"stgsc", 0xE349, GR64>;
}
//===----------------------------------------------------------------------===//
// Decimal arithmetic
//===----------------------------------------------------------------------===//
defm CVB : BinaryRXPair<"cvb",0x4F, 0xE306, null_frag, GR32, load, 4>;
def CVBG : BinaryRXY<"cvbg", 0xE30E, null_frag, GR64, load, 8>;
defm CVD : StoreRXPair<"cvd", 0x4E, 0xE326, null_frag, GR32, 4>;
def CVDG : StoreRXY<"cvdg", 0xE32E, null_frag, GR64, 8>;
let mayLoad = 1, mayStore = 1 in {
def MVN : SideEffectBinarySSa<"mvn", 0xD1>;
def MVZ : SideEffectBinarySSa<"mvz", 0xD3>;
def MVO : SideEffectBinarySSb<"mvo", 0xF1>;
def PACK : SideEffectBinarySSb<"pack", 0xF2>;
def PKA : SideEffectBinarySSf<"pka", 0xE9>;
def PKU : SideEffectBinarySSf<"pku", 0xE1>;
def UNPK : SideEffectBinarySSb<"unpk", 0xF3>;
let Defs = [CC] in {
def UNPKA : SideEffectBinarySSa<"unpka", 0xEA>;
def UNPKU : SideEffectBinarySSa<"unpku", 0xE2>;
}
}
let mayLoad = 1, mayStore = 1 in {
let Defs = [CC] in {
def AP : SideEffectBinarySSb<"ap", 0xFA>;
def SP : SideEffectBinarySSb<"sp", 0xFB>;
def ZAP : SideEffectBinarySSb<"zap", 0xF8>;
def SRP : SideEffectTernarySSc<"srp", 0xF0>;
}
def MP : SideEffectBinarySSb<"mp", 0xFC>;
def DP : SideEffectBinarySSb<"dp", 0xFD>;
let Defs = [CC] in {
def ED : SideEffectBinarySSa<"ed", 0xDE>;
def EDMK : SideEffectBinarySSa<"edmk", 0xDF>;
}
}
let Defs = [CC] in {
def CP : CompareSSb<"cp", 0xF9>;
def TP : TestRSL<"tp", 0xEBC0>;
}
//===----------------------------------------------------------------------===//
// Access registers
//===----------------------------------------------------------------------===//
// Read a 32-bit access register into a GR32. As with all GR32 operations,
// the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
// when a 64-bit address is stored in a pair of access registers.
def EAR : UnaryRRE<"ear", 0xB24F, null_frag, GR32, AR32>;
// Set access register.
def SAR : UnaryRRE<"sar", 0xB24E, null_frag, AR32, GR32>;
// Copy access register.
def CPYA : UnaryRRE<"cpya", 0xB24D, null_frag, AR32, AR32>;
// Load address extended.
defm LAE : LoadAddressRXPair<"lae", 0x51, 0xE375, null_frag>;
// Load access multiple.
defm LAM : LoadMultipleRSPair<"lam", 0x9A, 0xEB9A, AR32>;
// Store access multiple.
defm STAM : StoreMultipleRSPair<"stam", 0x9B, 0xEB9B, AR32>;
//===----------------------------------------------------------------------===//
// Program mask and addressing mode
//===----------------------------------------------------------------------===//
// Extract CC and program mask into a register. CC ends up in bits 29 and 28.
let Uses = [CC] in
def IPM : InherentRRE<"ipm", 0xB222, GR32, z_ipm>;
// Set CC and program mask from a register.
let hasSideEffects = 1, Defs = [CC] in
def SPM : SideEffectUnaryRR<"spm", 0x04, GR32>;
// Branch and link - like BAS, but also extracts CC and program mask.
let isCall = 1, Uses = [CC], Defs = [CC] in {
def BAL : CallRX<"bal", 0x45>;
def BALR : CallRR<"balr", 0x05>;
}
// Test addressing mode.
let Defs = [CC] in
def TAM : SideEffectInherentE<"tam", 0x010B>;
// Set addressing mode.
let hasSideEffects = 1 in {
def SAM24 : SideEffectInherentE<"sam24", 0x010C>;
def SAM31 : SideEffectInherentE<"sam31", 0x010D>;
def SAM64 : SideEffectInherentE<"sam64", 0x010E>;
}
// Branch and set mode. Not really a call, but also sets an output register.
let isBranch = 1, isTerminator = 1, isBarrier = 1 in
def BSM : CallRR<"bsm", 0x0B>;
// Branch and save and set mode.
let isCall = 1, Defs = [CC] in
def BASSM : CallRR<"bassm", 0x0C>;
//===----------------------------------------------------------------------===//
// Transactional execution
//===----------------------------------------------------------------------===//
let hasSideEffects = 1, Predicates = [FeatureTransactionalExecution] in {
// Transaction Begin
let mayStore = 1, usesCustomInserter = 1, Defs = [CC] in {
def TBEGIN : TestBinarySIL<"tbegin", 0xE560, z_tbegin, imm32zx16>;
let hasNoSchedulingInfo = 1 in
def TBEGIN_nofloat : TestBinarySILPseudo<z_tbegin_nofloat, imm32zx16>;
def TBEGINC : SideEffectBinarySIL<"tbeginc", 0xE561,
int_s390_tbeginc, imm32zx16>;
}
// Transaction End
let Defs = [CC] in
def TEND : TestInherentS<"tend", 0xB2F8, z_tend>;
// Transaction Abort
let isTerminator = 1, isBarrier = 1, mayStore = 1,
hasSideEffects = 1 in
def TABORT : SideEffectAddressS<"tabort", 0xB2FC, int_s390_tabort>;
// Nontransactional Store
def NTSTG : StoreRXY<"ntstg", 0xE325, int_s390_ntstg, GR64, 8>;
// Extract Transaction Nesting Depth
def ETND : InherentRRE<"etnd", 0xB2EC, GR32, int_s390_etnd>;
}
//===----------------------------------------------------------------------===//
// Processor assist
//===----------------------------------------------------------------------===//
let Predicates = [FeatureProcessorAssist] in {
let hasSideEffects = 1 in
def PPA : SideEffectTernaryRRFc<"ppa", 0xB2E8, GR64, GR64, imm32zx4>;
def : Pat<(int_s390_ppa_txassist GR32:$src),
(PPA (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
0, 1)>;
}
//===----------------------------------------------------------------------===//
// Miscellaneous Instructions.
//===----------------------------------------------------------------------===//
// Find leftmost one, AKA count leading zeros. The instruction actually
// returns a pair of GR64s, the first giving the number of leading zeros
// and the second giving a copy of the source with the leftmost one bit
// cleared. We only use the first result here.
let Defs = [CC] in
def FLOGR : UnaryRRE<"flogr", 0xB983, null_frag, GR128, GR64>;
def : Pat<(ctlz GR64:$src),
(EXTRACT_SUBREG (FLOGR GR64:$src), subreg_h64)>;
// Population count. Counts bits set per byte.
let Predicates = [FeaturePopulationCount], Defs = [CC] in
def POPCNT : UnaryRRE<"popcnt", 0xB9E1, z_popcnt, GR64, GR64>;
// Search a block of memory for a character.
let mayLoad = 1, Defs = [CC] in
defm SRST : StringRRE<"srst", 0xB25E, z_search_string>;
let mayLoad = 1, Defs = [CC], Uses = [R0L] in
def SRSTU : SideEffectBinaryMemMemRRE<"srstu", 0xB9BE, GR64, GR64>;
// Compare until substring equal.
let mayLoad = 1, Defs = [CC], Uses = [R0L, R1L] in
def CUSE : SideEffectBinaryMemMemRRE<"cuse", 0xB257, GR128, GR128>;
// Compare and form codeword.
let mayLoad = 1, Defs = [CC, R1D, R2D, R3D], Uses = [R1D, R2D, R3D] in
def CFC : SideEffectAddressS<"cfc", 0xB21A, null_frag>;
// Update tree.
let mayLoad = 1, mayStore = 1, Defs = [CC, R0D, R1D, R2D, R3D, R5D],
Uses = [R0D, R1D, R2D, R3D, R4D, R5D] in
def UPT : SideEffectInherentE<"upt", 0x0102>;
// Checksum.
let mayLoad = 1, Defs = [CC] in
def CKSM : SideEffectBinaryMemMemRRE<"cksm", 0xB241, GR64, GR128>;
// Compression call.
let mayLoad = 1, mayStore = 1, Defs = [CC, R1D], Uses = [R0L, R1D] in
def CMPSC : SideEffectBinaryMemMemRRE<"cmpsc", 0xB263, GR128, GR128>;
// Execute.
let hasSideEffects = 1 in {
def EX : SideEffectBinaryRX<"ex", 0x44, GR64>;
def EXRL : SideEffectBinaryRILPC<"exrl", 0xC60, GR64>;
}
//===----------------------------------------------------------------------===//
// .insn directive instructions
//===----------------------------------------------------------------------===//
let isCodeGenOnly = 1, hasSideEffects = 1 in {
def InsnE : DirectiveInsnE<(outs), (ins imm64zx16:$enc), ".insn e,$enc", []>;
def InsnRI : DirectiveInsnRI<(outs), (ins imm64zx32:$enc, AnyReg:$R1,
imm32sx16:$I2),
".insn ri,$enc,$R1,$I2", []>;
def InsnRIE : DirectiveInsnRIE<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
AnyReg:$R3, brtarget16:$I2),
".insn rie,$enc,$R1,$R3,$I2", []>;
def InsnRIL : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
brtarget32:$I2),
".insn ril,$enc,$R1,$I2", []>;
def InsnRILU : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
uimm32:$I2),
".insn rilu,$enc,$R1,$I2", []>;
def InsnRIS : DirectiveInsnRIS<(outs),
(ins imm64zx48:$enc, AnyReg:$R1,
imm32sx8:$I2, imm32zx4:$M3,
bdaddr12only:$BD4),
".insn ris,$enc,$R1,$I2,$M3,$BD4", []>;
def InsnRR : DirectiveInsnRR<(outs),
(ins imm64zx16:$enc, AnyReg:$R1, AnyReg:$R2),
".insn rr,$enc,$R1,$R2", []>;
def InsnRRE : DirectiveInsnRRE<(outs), (ins imm64zx32:$enc,
AnyReg:$R1, AnyReg:$R2),
".insn rre,$enc,$R1,$R2", []>;
def InsnRRF : DirectiveInsnRRF<(outs),
(ins imm64zx32:$enc, AnyReg:$R1, AnyReg:$R2,
AnyReg:$R3, imm32zx4:$M4),
".insn rrf,$enc,$R1,$R2,$R3,$M4", []>;
def InsnRRS : DirectiveInsnRRS<(outs),
(ins imm64zx48:$enc, AnyReg:$R1,
AnyReg:$R2, imm32zx4:$M3,
bdaddr12only:$BD4),
".insn rrs,$enc,$R1,$R2,$M3,$BD4", []>;
def InsnRS : DirectiveInsnRS<(outs),
(ins imm64zx32:$enc, AnyReg:$R1,
AnyReg:$R3, bdaddr12only:$BD2),
".insn rs,$enc,$R1,$R3,$BD2", []>;
def InsnRSE : DirectiveInsnRSE<(outs),
(ins imm64zx48:$enc, AnyReg:$R1,
AnyReg:$R3, bdaddr12only:$BD2),
".insn rse,$enc,$R1,$R3,$BD2", []>;
def InsnRSI : DirectiveInsnRSI<(outs),
(ins imm64zx48:$enc, AnyReg:$R1,
AnyReg:$R3, brtarget16:$RI2),
".insn rsi,$enc,$R1,$R3,$RI2", []>;
def InsnRSY : DirectiveInsnRSY<(outs),
(ins imm64zx48:$enc, AnyReg:$R1,
AnyReg:$R3, bdaddr20only:$BD2),
".insn rsy,$enc,$R1,$R3,$BD2", []>;
def InsnRX : DirectiveInsnRX<(outs), (ins imm64zx32:$enc, AnyReg:$R1,
bdxaddr12only:$XBD2),
".insn rx,$enc,$R1,$XBD2", []>;
def InsnRXE : DirectiveInsnRXE<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
bdxaddr12only:$XBD2),
".insn rxe,$enc,$R1,$XBD2", []>;
def InsnRXF : DirectiveInsnRXF<(outs),
(ins imm64zx48:$enc, AnyReg:$R1,
AnyReg:$R3, bdxaddr12only:$XBD2),
".insn rxf,$enc,$R1,$R3,$XBD2", []>;
def InsnRXY : DirectiveInsnRXY<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
bdxaddr20only:$XBD2),
".insn rxy,$enc,$R1,$XBD2", []>;
def InsnS : DirectiveInsnS<(outs),
(ins imm64zx32:$enc, bdaddr12only:$BD2),
".insn s,$enc,$BD2", []>;
def InsnSI : DirectiveInsnSI<(outs),
(ins imm64zx32:$enc, bdaddr12only:$BD1,
imm32sx8:$I2),
".insn si,$enc,$BD1,$I2", []>;
def InsnSIY : DirectiveInsnSIY<(outs),
(ins imm64zx48:$enc,
bdaddr20only:$BD1, imm32zx8:$I2),
".insn siy,$enc,$BD1,$I2", []>;
def InsnSIL : DirectiveInsnSIL<(outs),
(ins imm64zx48:$enc, bdaddr12only:$BD1,
imm32zx16:$I2),
".insn sil,$enc,$BD1,$I2", []>;
def InsnSS : DirectiveInsnSS<(outs),
(ins imm64zx48:$enc, bdraddr12only:$RBD1,
bdaddr12only:$BD2, AnyReg:$R3),
".insn ss,$enc,$RBD1,$BD2,$R3", []>;
def InsnSSE : DirectiveInsnSSE<(outs),
(ins imm64zx48:$enc,
bdaddr12only:$BD1,bdaddr12only:$BD2),
".insn sse,$enc,$BD1,$BD2", []>;
def InsnSSF : DirectiveInsnSSF<(outs),
(ins imm64zx48:$enc, bdaddr12only:$BD1,
bdaddr12only:$BD2, AnyReg:$R3),
".insn ssf,$enc,$BD1,$BD2,$R3", []>;
}
//===----------------------------------------------------------------------===//
// Peepholes.
//===----------------------------------------------------------------------===//
// Avoid generating 2 XOR instructions. (xor (and x, y), y) is
// equivalent to (and (xor x, -1), y)
def : Pat<(and (xor GR64:$x, (i64 -1)), GR64:$y),
(XGR GR64:$y, (NGR GR64:$y, GR64:$x))>;
// Shift/rotate instructions only use the last 6 bits of the second operand
// register, so we can safely use NILL (16 fewer bits than NILF) to only AND the
// last 16 bits.
// Complexity is added so that we match this before we match NILF on the AND
// operation alone.
let AddedComplexity = 4 in {
def : Pat<(shl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
(SLL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
def : Pat<(sra GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
(SRA GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
def : Pat<(srl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
(SRL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
def : Pat<(shl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
(SLLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
def : Pat<(sra GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
(SRAG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
def : Pat<(srl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
(SRLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
def : Pat<(rotl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
(RLL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
def : Pat<(rotl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
(RLLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
}
// Peepholes for turning scalar operations into block operations.
defm : BlockLoadStore<anyextloadi8, i32, MVCSequence, NCSequence, OCSequence,
XCSequence, 1>;
defm : BlockLoadStore<anyextloadi16, i32, MVCSequence, NCSequence, OCSequence,
XCSequence, 2>;
defm : BlockLoadStore<load, i32, MVCSequence, NCSequence, OCSequence,
XCSequence, 4>;
defm : BlockLoadStore<anyextloadi8, i64, MVCSequence, NCSequence,
OCSequence, XCSequence, 1>;
defm : BlockLoadStore<anyextloadi16, i64, MVCSequence, NCSequence, OCSequence,
XCSequence, 2>;
defm : BlockLoadStore<anyextloadi32, i64, MVCSequence, NCSequence, OCSequence,
XCSequence, 4>;
defm : BlockLoadStore<load, i64, MVCSequence, NCSequence, OCSequence,
XCSequence, 8>;