| #include "llvm/Analysis/Passes.h" |
| #include "llvm/ExecutionEngine/ExecutionEngine.h" |
| #include "llvm/ExecutionEngine/MCJIT.h" |
| #include "llvm/ExecutionEngine/ObjectCache.h" |
| #include "llvm/ExecutionEngine/SectionMemoryManager.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/LegacyPassManager.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Verifier.h" |
| #include "llvm/IRReader/IRReader.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/FileSystem.h" |
| #include "llvm/Support/Path.h" |
| #include "llvm/Support/SourceMgr.h" |
| #include "llvm/Support/TargetSelect.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include <cctype> |
| #include <cstdio> |
| #include <map> |
| #include <string> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // Command-line options |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| cl::opt<std::string> |
| InputIR("input-IR", |
| cl::desc("Specify the name of an IR file to load for function definitions"), |
| cl::value_desc("input IR file name")); |
| |
| cl::opt<bool> |
| VerboseOutput("verbose", |
| cl::desc("Enable verbose output (results, IR, etc.) to stderr"), |
| cl::init(false)); |
| |
| cl::opt<bool> |
| SuppressPrompts("suppress-prompts", |
| cl::desc("Disable printing the 'ready' prompt"), |
| cl::init(false)); |
| |
| cl::opt<bool> |
| DumpModulesOnExit("dump-modules", |
| cl::desc("Dump IR from modules to stderr on shutdown"), |
| cl::init(false)); |
| |
| cl::opt<bool> EnableLazyCompilation( |
| "enable-lazy-compilation", cl::desc("Enable lazy compilation when using the MCJIT engine"), |
| cl::init(true)); |
| |
| cl::opt<bool> UseObjectCache( |
| "use-object-cache", cl::desc("Enable use of the MCJIT object caching"), |
| cl::init(false)); |
| } // namespace |
| |
| //===----------------------------------------------------------------------===// |
| // Lexer |
| //===----------------------------------------------------------------------===// |
| |
| // The lexer returns tokens [0-255] if it is an unknown character, otherwise one |
| // of these for known things. |
| enum Token { |
| tok_eof = -1, |
| |
| // commands |
| tok_def = -2, tok_extern = -3, |
| |
| // primary |
| tok_identifier = -4, tok_number = -5, |
| |
| // control |
| tok_if = -6, tok_then = -7, tok_else = -8, |
| tok_for = -9, tok_in = -10, |
| |
| // operators |
| tok_binary = -11, tok_unary = -12, |
| |
| // var definition |
| tok_var = -13 |
| }; |
| |
| static std::string IdentifierStr; // Filled in if tok_identifier |
| static double NumVal; // Filled in if tok_number |
| |
| /// gettok - Return the next token from standard input. |
| static int gettok() { |
| static int LastChar = ' '; |
| |
| // Skip any whitespace. |
| while (isspace(LastChar)) |
| LastChar = getchar(); |
| |
| if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* |
| IdentifierStr = LastChar; |
| while (isalnum((LastChar = getchar()))) |
| IdentifierStr += LastChar; |
| |
| if (IdentifierStr == "def") return tok_def; |
| if (IdentifierStr == "extern") return tok_extern; |
| if (IdentifierStr == "if") return tok_if; |
| if (IdentifierStr == "then") return tok_then; |
| if (IdentifierStr == "else") return tok_else; |
| if (IdentifierStr == "for") return tok_for; |
| if (IdentifierStr == "in") return tok_in; |
| if (IdentifierStr == "binary") return tok_binary; |
| if (IdentifierStr == "unary") return tok_unary; |
| if (IdentifierStr == "var") return tok_var; |
| return tok_identifier; |
| } |
| |
| if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ |
| std::string NumStr; |
| do { |
| NumStr += LastChar; |
| LastChar = getchar(); |
| } while (isdigit(LastChar) || LastChar == '.'); |
| |
| NumVal = strtod(NumStr.c_str(), 0); |
| return tok_number; |
| } |
| |
| if (LastChar == '#') { |
| // Comment until end of line. |
| do LastChar = getchar(); |
| while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); |
| |
| if (LastChar != EOF) |
| return gettok(); |
| } |
| |
| // Check for end of file. Don't eat the EOF. |
| if (LastChar == EOF) |
| return tok_eof; |
| |
| // Otherwise, just return the character as its ascii value. |
| int ThisChar = LastChar; |
| LastChar = getchar(); |
| return ThisChar; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Abstract Syntax Tree (aka Parse Tree) |
| //===----------------------------------------------------------------------===// |
| |
| /// ExprAST - Base class for all expression nodes. |
| class ExprAST { |
| public: |
| virtual ~ExprAST() {} |
| virtual Value *Codegen() = 0; |
| }; |
| |
| /// NumberExprAST - Expression class for numeric literals like "1.0". |
| class NumberExprAST : public ExprAST { |
| double Val; |
| public: |
| NumberExprAST(double val) : Val(val) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// VariableExprAST - Expression class for referencing a variable, like "a". |
| class VariableExprAST : public ExprAST { |
| std::string Name; |
| public: |
| VariableExprAST(const std::string &name) : Name(name) {} |
| const std::string &getName() const { return Name; } |
| virtual Value *Codegen(); |
| }; |
| |
| /// UnaryExprAST - Expression class for a unary operator. |
| class UnaryExprAST : public ExprAST { |
| char Opcode; |
| ExprAST *Operand; |
| public: |
| UnaryExprAST(char opcode, ExprAST *operand) |
| : Opcode(opcode), Operand(operand) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// BinaryExprAST - Expression class for a binary operator. |
| class BinaryExprAST : public ExprAST { |
| char Op; |
| ExprAST *LHS, *RHS; |
| public: |
| BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) |
| : Op(op), LHS(lhs), RHS(rhs) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// CallExprAST - Expression class for function calls. |
| class CallExprAST : public ExprAST { |
| std::string Callee; |
| std::vector<ExprAST*> Args; |
| public: |
| CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) |
| : Callee(callee), Args(args) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// IfExprAST - Expression class for if/then/else. |
| class IfExprAST : public ExprAST { |
| ExprAST *Cond, *Then, *Else; |
| public: |
| IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else) |
| : Cond(cond), Then(then), Else(_else) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// ForExprAST - Expression class for for/in. |
| class ForExprAST : public ExprAST { |
| std::string VarName; |
| ExprAST *Start, *End, *Step, *Body; |
| public: |
| ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end, |
| ExprAST *step, ExprAST *body) |
| : VarName(varname), Start(start), End(end), Step(step), Body(body) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// VarExprAST - Expression class for var/in |
| class VarExprAST : public ExprAST { |
| std::vector<std::pair<std::string, ExprAST*> > VarNames; |
| ExprAST *Body; |
| public: |
| VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames, |
| ExprAST *body) |
| : VarNames(varnames), Body(body) {} |
| |
| virtual Value *Codegen(); |
| }; |
| |
| /// PrototypeAST - This class represents the "prototype" for a function, |
| /// which captures its argument names as well as if it is an operator. |
| class PrototypeAST { |
| std::string Name; |
| std::vector<std::string> Args; |
| bool isOperator; |
| unsigned Precedence; // Precedence if a binary op. |
| public: |
| PrototypeAST(const std::string &name, const std::vector<std::string> &args, |
| bool isoperator = false, unsigned prec = 0) |
| : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {} |
| |
| bool isUnaryOp() const { return isOperator && Args.size() == 1; } |
| bool isBinaryOp() const { return isOperator && Args.size() == 2; } |
| |
| char getOperatorName() const { |
| assert(isUnaryOp() || isBinaryOp()); |
| return Name[Name.size()-1]; |
| } |
| |
| unsigned getBinaryPrecedence() const { return Precedence; } |
| |
| Function *Codegen(); |
| |
| void CreateArgumentAllocas(Function *F); |
| }; |
| |
| /// FunctionAST - This class represents a function definition itself. |
| class FunctionAST { |
| PrototypeAST *Proto; |
| ExprAST *Body; |
| public: |
| FunctionAST(PrototypeAST *proto, ExprAST *body) |
| : Proto(proto), Body(body) {} |
| |
| Function *Codegen(); |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Parser |
| //===----------------------------------------------------------------------===// |
| |
| /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current |
| /// token the parser is looking at. getNextToken reads another token from the |
| /// lexer and updates CurTok with its results. |
| static int CurTok; |
| static int getNextToken() { |
| return CurTok = gettok(); |
| } |
| |
| /// BinopPrecedence - This holds the precedence for each binary operator that is |
| /// defined. |
| static std::map<char, int> BinopPrecedence; |
| |
| /// GetTokPrecedence - Get the precedence of the pending binary operator token. |
| static int GetTokPrecedence() { |
| if (!isascii(CurTok)) |
| return -1; |
| |
| // Make sure it's a declared binop. |
| int TokPrec = BinopPrecedence[CurTok]; |
| if (TokPrec <= 0) return -1; |
| return TokPrec; |
| } |
| |
| /// Error* - These are little helper functions for error handling. |
| ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} |
| PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } |
| FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } |
| |
| static ExprAST *ParseExpression(); |
| |
| /// identifierexpr |
| /// ::= identifier |
| /// ::= identifier '(' expression* ')' |
| static ExprAST *ParseIdentifierExpr() { |
| std::string IdName = IdentifierStr; |
| |
| getNextToken(); // eat identifier. |
| |
| if (CurTok != '(') // Simple variable ref. |
| return new VariableExprAST(IdName); |
| |
| // Call. |
| getNextToken(); // eat ( |
| std::vector<ExprAST*> Args; |
| if (CurTok != ')') { |
| while (1) { |
| ExprAST *Arg = ParseExpression(); |
| if (!Arg) return 0; |
| Args.push_back(Arg); |
| |
| if (CurTok == ')') break; |
| |
| if (CurTok != ',') |
| return Error("Expected ')' or ',' in argument list"); |
| getNextToken(); |
| } |
| } |
| |
| // Eat the ')'. |
| getNextToken(); |
| |
| return new CallExprAST(IdName, Args); |
| } |
| |
| /// numberexpr ::= number |
| static ExprAST *ParseNumberExpr() { |
| ExprAST *Result = new NumberExprAST(NumVal); |
| getNextToken(); // consume the number |
| return Result; |
| } |
| |
| /// parenexpr ::= '(' expression ')' |
| static ExprAST *ParseParenExpr() { |
| getNextToken(); // eat (. |
| ExprAST *V = ParseExpression(); |
| if (!V) return 0; |
| |
| if (CurTok != ')') |
| return Error("expected ')'"); |
| getNextToken(); // eat ). |
| return V; |
| } |
| |
| /// ifexpr ::= 'if' expression 'then' expression 'else' expression |
| static ExprAST *ParseIfExpr() { |
| getNextToken(); // eat the if. |
| |
| // condition. |
| ExprAST *Cond = ParseExpression(); |
| if (!Cond) return 0; |
| |
| if (CurTok != tok_then) |
| return Error("expected then"); |
| getNextToken(); // eat the then |
| |
| ExprAST *Then = ParseExpression(); |
| if (Then == 0) return 0; |
| |
| if (CurTok != tok_else) |
| return Error("expected else"); |
| |
| getNextToken(); |
| |
| ExprAST *Else = ParseExpression(); |
| if (!Else) return 0; |
| |
| return new IfExprAST(Cond, Then, Else); |
| } |
| |
| /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression |
| static ExprAST *ParseForExpr() { |
| getNextToken(); // eat the for. |
| |
| if (CurTok != tok_identifier) |
| return Error("expected identifier after for"); |
| |
| std::string IdName = IdentifierStr; |
| getNextToken(); // eat identifier. |
| |
| if (CurTok != '=') |
| return Error("expected '=' after for"); |
| getNextToken(); // eat '='. |
| |
| |
| ExprAST *Start = ParseExpression(); |
| if (Start == 0) return 0; |
| if (CurTok != ',') |
| return Error("expected ',' after for start value"); |
| getNextToken(); |
| |
| ExprAST *End = ParseExpression(); |
| if (End == 0) return 0; |
| |
| // The step value is optional. |
| ExprAST *Step = 0; |
| if (CurTok == ',') { |
| getNextToken(); |
| Step = ParseExpression(); |
| if (Step == 0) return 0; |
| } |
| |
| if (CurTok != tok_in) |
| return Error("expected 'in' after for"); |
| getNextToken(); // eat 'in'. |
| |
| ExprAST *Body = ParseExpression(); |
| if (Body == 0) return 0; |
| |
| return new ForExprAST(IdName, Start, End, Step, Body); |
| } |
| |
| /// varexpr ::= 'var' identifier ('=' expression)? |
| // (',' identifier ('=' expression)?)* 'in' expression |
| static ExprAST *ParseVarExpr() { |
| getNextToken(); // eat the var. |
| |
| std::vector<std::pair<std::string, ExprAST*> > VarNames; |
| |
| // At least one variable name is required. |
| if (CurTok != tok_identifier) |
| return Error("expected identifier after var"); |
| |
| while (1) { |
| std::string Name = IdentifierStr; |
| getNextToken(); // eat identifier. |
| |
| // Read the optional initializer. |
| ExprAST *Init = 0; |
| if (CurTok == '=') { |
| getNextToken(); // eat the '='. |
| |
| Init = ParseExpression(); |
| if (Init == 0) return 0; |
| } |
| |
| VarNames.push_back(std::make_pair(Name, Init)); |
| |
| // End of var list, exit loop. |
| if (CurTok != ',') break; |
| getNextToken(); // eat the ','. |
| |
| if (CurTok != tok_identifier) |
| return Error("expected identifier list after var"); |
| } |
| |
| // At this point, we have to have 'in'. |
| if (CurTok != tok_in) |
| return Error("expected 'in' keyword after 'var'"); |
| getNextToken(); // eat 'in'. |
| |
| ExprAST *Body = ParseExpression(); |
| if (Body == 0) return 0; |
| |
| return new VarExprAST(VarNames, Body); |
| } |
| |
| /// primary |
| /// ::= identifierexpr |
| /// ::= numberexpr |
| /// ::= parenexpr |
| /// ::= ifexpr |
| /// ::= forexpr |
| /// ::= varexpr |
| static ExprAST *ParsePrimary() { |
| switch (CurTok) { |
| default: return Error("unknown token when expecting an expression"); |
| case tok_identifier: return ParseIdentifierExpr(); |
| case tok_number: return ParseNumberExpr(); |
| case '(': return ParseParenExpr(); |
| case tok_if: return ParseIfExpr(); |
| case tok_for: return ParseForExpr(); |
| case tok_var: return ParseVarExpr(); |
| } |
| } |
| |
| /// unary |
| /// ::= primary |
| /// ::= '!' unary |
| static ExprAST *ParseUnary() { |
| // If the current token is not an operator, it must be a primary expr. |
| if (!isascii(CurTok) || CurTok == '(' || CurTok == ',') |
| return ParsePrimary(); |
| |
| // If this is a unary operator, read it. |
| int Opc = CurTok; |
| getNextToken(); |
| if (ExprAST *Operand = ParseUnary()) |
| return new UnaryExprAST(Opc, Operand); |
| return 0; |
| } |
| |
| /// binoprhs |
| /// ::= ('+' unary)* |
| static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { |
| // If this is a binop, find its precedence. |
| while (1) { |
| int TokPrec = GetTokPrecedence(); |
| |
| // If this is a binop that binds at least as tightly as the current binop, |
| // consume it, otherwise we are done. |
| if (TokPrec < ExprPrec) |
| return LHS; |
| |
| // Okay, we know this is a binop. |
| int BinOp = CurTok; |
| getNextToken(); // eat binop |
| |
| // Parse the unary expression after the binary operator. |
| ExprAST *RHS = ParseUnary(); |
| if (!RHS) return 0; |
| |
| // If BinOp binds less tightly with RHS than the operator after RHS, let |
| // the pending operator take RHS as its LHS. |
| int NextPrec = GetTokPrecedence(); |
| if (TokPrec < NextPrec) { |
| RHS = ParseBinOpRHS(TokPrec+1, RHS); |
| if (RHS == 0) return 0; |
| } |
| |
| // Merge LHS/RHS. |
| LHS = new BinaryExprAST(BinOp, LHS, RHS); |
| } |
| } |
| |
| /// expression |
| /// ::= unary binoprhs |
| /// |
| static ExprAST *ParseExpression() { |
| ExprAST *LHS = ParseUnary(); |
| if (!LHS) return 0; |
| |
| return ParseBinOpRHS(0, LHS); |
| } |
| |
| /// prototype |
| /// ::= id '(' id* ')' |
| /// ::= binary LETTER number? (id, id) |
| /// ::= unary LETTER (id) |
| static PrototypeAST *ParsePrototype() { |
| std::string FnName; |
| |
| unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. |
| unsigned BinaryPrecedence = 30; |
| |
| switch (CurTok) { |
| default: |
| return ErrorP("Expected function name in prototype"); |
| case tok_identifier: |
| FnName = IdentifierStr; |
| Kind = 0; |
| getNextToken(); |
| break; |
| case tok_unary: |
| getNextToken(); |
| if (!isascii(CurTok)) |
| return ErrorP("Expected unary operator"); |
| FnName = "unary"; |
| FnName += (char)CurTok; |
| Kind = 1; |
| getNextToken(); |
| break; |
| case tok_binary: |
| getNextToken(); |
| if (!isascii(CurTok)) |
| return ErrorP("Expected binary operator"); |
| FnName = "binary"; |
| FnName += (char)CurTok; |
| Kind = 2; |
| getNextToken(); |
| |
| // Read the precedence if present. |
| if (CurTok == tok_number) { |
| if (NumVal < 1 || NumVal > 100) |
| return ErrorP("Invalid precedecnce: must be 1..100"); |
| BinaryPrecedence = (unsigned)NumVal; |
| getNextToken(); |
| } |
| break; |
| } |
| |
| if (CurTok != '(') |
| return ErrorP("Expected '(' in prototype"); |
| |
| std::vector<std::string> ArgNames; |
| while (getNextToken() == tok_identifier) |
| ArgNames.push_back(IdentifierStr); |
| if (CurTok != ')') |
| return ErrorP("Expected ')' in prototype"); |
| |
| // success. |
| getNextToken(); // eat ')'. |
| |
| // Verify right number of names for operator. |
| if (Kind && ArgNames.size() != Kind) |
| return ErrorP("Invalid number of operands for operator"); |
| |
| return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence); |
| } |
| |
| /// definition ::= 'def' prototype expression |
| static FunctionAST *ParseDefinition() { |
| getNextToken(); // eat def. |
| PrototypeAST *Proto = ParsePrototype(); |
| if (Proto == 0) return 0; |
| |
| if (ExprAST *E = ParseExpression()) |
| return new FunctionAST(Proto, E); |
| return 0; |
| } |
| |
| /// toplevelexpr ::= expression |
| static FunctionAST *ParseTopLevelExpr() { |
| if (ExprAST *E = ParseExpression()) { |
| // Make an anonymous proto. |
| PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); |
| return new FunctionAST(Proto, E); |
| } |
| return 0; |
| } |
| |
| /// external ::= 'extern' prototype |
| static PrototypeAST *ParseExtern() { |
| getNextToken(); // eat extern. |
| return ParsePrototype(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Quick and dirty hack |
| //===----------------------------------------------------------------------===// |
| |
| // FIXME: Obviously we can do better than this |
| std::string GenerateUniqueName(const char *root) |
| { |
| static int i = 0; |
| char s[16]; |
| sprintf(s, "%s%d", root, i++); |
| std::string S = s; |
| return S; |
| } |
| |
| std::string MakeLegalFunctionName(std::string Name) |
| { |
| std::string NewName; |
| if (!Name.length()) |
| return GenerateUniqueName("anon_func_"); |
| |
| // Start with what we have |
| NewName = Name; |
| |
| // Look for a numberic first character |
| if (NewName.find_first_of("0123456789") == 0) { |
| NewName.insert(0, 1, 'n'); |
| } |
| |
| // Replace illegal characters with their ASCII equivalent |
| std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"; |
| size_t pos; |
| while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) { |
| char old_c = NewName.at(pos); |
| char new_str[16]; |
| sprintf(new_str, "%d", (int)old_c); |
| NewName = NewName.replace(pos, 1, new_str); |
| } |
| |
| return NewName; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // MCJIT object cache class |
| //===----------------------------------------------------------------------===// |
| |
| class MCJITObjectCache : public ObjectCache { |
| public: |
| MCJITObjectCache() { |
| // Set IR cache directory |
| sys::fs::current_path(CacheDir); |
| sys::path::append(CacheDir, "toy_object_cache"); |
| } |
| |
| virtual ~MCJITObjectCache() { |
| } |
| |
| virtual void notifyObjectCompiled(const Module *M, const MemoryBuffer *Obj) { |
| // Get the ModuleID |
| const std::string ModuleID = M->getModuleIdentifier(); |
| |
| // If we've flagged this as an IR file, cache it |
| if (0 == ModuleID.compare(0, 3, "IR:")) { |
| std::string IRFileName = ModuleID.substr(3); |
| SmallString<128>IRCacheFile = CacheDir; |
| sys::path::append(IRCacheFile, IRFileName); |
| if (!sys::fs::exists(CacheDir.str()) && sys::fs::create_directory(CacheDir.str())) { |
| fprintf(stderr, "Unable to create cache directory\n"); |
| return; |
| } |
| std::string ErrStr; |
| raw_fd_ostream IRObjectFile(IRCacheFile.c_str(), ErrStr, raw_fd_ostream::F_Binary); |
| IRObjectFile << Obj->getBuffer(); |
| } |
| } |
| |
| // MCJIT will call this function before compiling any module |
| // MCJIT takes ownership of both the MemoryBuffer object and the memory |
| // to which it refers. |
| virtual MemoryBuffer* getObject(const Module* M) { |
| // Get the ModuleID |
| const std::string ModuleID = M->getModuleIdentifier(); |
| |
| // If we've flagged this as an IR file, cache it |
| if (0 == ModuleID.compare(0, 3, "IR:")) { |
| std::string IRFileName = ModuleID.substr(3); |
| SmallString<128> IRCacheFile = CacheDir; |
| sys::path::append(IRCacheFile, IRFileName); |
| if (!sys::fs::exists(IRCacheFile.str())) { |
| // This file isn't in our cache |
| return NULL; |
| } |
| std::unique_ptr<MemoryBuffer> IRObjectBuffer; |
| MemoryBuffer::getFile(IRCacheFile.c_str(), IRObjectBuffer, -1, false); |
| // MCJIT will want to write into this buffer, and we don't want that |
| // because the file has probably just been mmapped. Instead we make |
| // a copy. The filed-based buffer will be released when it goes |
| // out of scope. |
| return MemoryBuffer::getMemBufferCopy(IRObjectBuffer->getBuffer()); |
| } |
| |
| return NULL; |
| } |
| |
| private: |
| SmallString<128> CacheDir; |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // IR input file handler |
| //===----------------------------------------------------------------------===// |
| |
| Module* parseInputIR(std::string InputFile, LLVMContext &Context) { |
| SMDiagnostic Err; |
| Module *M = ParseIRFile(InputFile, Err, Context); |
| if (!M) { |
| Err.print("IR parsing failed: ", errs()); |
| return NULL; |
| } |
| |
| char ModID[256]; |
| sprintf(ModID, "IR:%s", InputFile.c_str()); |
| M->setModuleIdentifier(ModID); |
| return M; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Helper class for execution engine abstraction |
| //===----------------------------------------------------------------------===// |
| |
| class BaseHelper |
| { |
| public: |
| BaseHelper() {} |
| virtual ~BaseHelper() {} |
| |
| virtual Function *getFunction(const std::string FnName) = 0; |
| virtual Module *getModuleForNewFunction() = 0; |
| virtual void *getPointerToFunction(Function* F) = 0; |
| virtual void *getPointerToNamedFunction(const std::string &Name) = 0; |
| virtual void closeCurrentModule() = 0; |
| virtual void runFPM(Function &F) = 0; |
| virtual void dump(); |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // MCJIT helper class |
| //===----------------------------------------------------------------------===// |
| |
| class MCJITHelper : public BaseHelper |
| { |
| public: |
| MCJITHelper(LLVMContext& C) : Context(C), CurrentModule(NULL) { |
| if (!InputIR.empty()) { |
| Module *M = parseInputIR(InputIR, Context); |
| Modules.push_back(M); |
| if (!EnableLazyCompilation) |
| compileModule(M); |
| } |
| } |
| ~MCJITHelper(); |
| |
| Function *getFunction(const std::string FnName); |
| Module *getModuleForNewFunction(); |
| void *getPointerToFunction(Function* F); |
| void *getPointerToNamedFunction(const std::string &Name); |
| void closeCurrentModule(); |
| virtual void runFPM(Function &F) {} // Not needed, see compileModule |
| void dump(); |
| |
| protected: |
| ExecutionEngine *compileModule(Module *M); |
| |
| private: |
| typedef std::vector<Module*> ModuleVector; |
| |
| MCJITObjectCache OurObjectCache; |
| |
| LLVMContext &Context; |
| ModuleVector Modules; |
| |
| std::map<Module *, ExecutionEngine *> EngineMap; |
| |
| Module *CurrentModule; |
| }; |
| |
| class HelpingMemoryManager : public SectionMemoryManager |
| { |
| HelpingMemoryManager(const HelpingMemoryManager&) = delete; |
| void operator=(const HelpingMemoryManager&) = delete; |
| |
| public: |
| HelpingMemoryManager(MCJITHelper *Helper) : MasterHelper(Helper) {} |
| virtual ~HelpingMemoryManager() {} |
| |
| /// This method returns the address of the specified function. |
| /// Our implementation will attempt to find functions in other |
| /// modules associated with the MCJITHelper to cross link functions |
| /// from one generated module to another. |
| /// |
| /// If \p AbortOnFailure is false and no function with the given name is |
| /// found, this function returns a null pointer. Otherwise, it prints a |
| /// message to stderr and aborts. |
| virtual void *getPointerToNamedFunction(const std::string &Name, |
| bool AbortOnFailure = true); |
| private: |
| MCJITHelper *MasterHelper; |
| }; |
| |
| void *HelpingMemoryManager::getPointerToNamedFunction(const std::string &Name, |
| bool AbortOnFailure) |
| { |
| // Try the standard symbol resolution first, but ask it not to abort. |
| void *pfn = RTDyldMemoryManager::getPointerToNamedFunction(Name, false); |
| if (pfn) |
| return pfn; |
| |
| pfn = MasterHelper->getPointerToNamedFunction(Name); |
| if (!pfn && AbortOnFailure) |
| report_fatal_error("Program used external function '" + Name + |
| "' which could not be resolved!"); |
| return pfn; |
| } |
| |
| MCJITHelper::~MCJITHelper() |
| { |
| // Walk the vector of modules. |
| ModuleVector::iterator it, end; |
| for (it = Modules.begin(), end = Modules.end(); |
| it != end; ++it) { |
| // See if we have an execution engine for this module. |
| std::map<Module*, ExecutionEngine*>::iterator mapIt = EngineMap.find(*it); |
| // If we have an EE, the EE owns the module so just delete the EE. |
| if (mapIt != EngineMap.end()) { |
| delete mapIt->second; |
| } else { |
| // Otherwise, we still own the module. Delete it now. |
| delete *it; |
| } |
| } |
| } |
| |
| Function *MCJITHelper::getFunction(const std::string FnName) { |
| ModuleVector::iterator begin = Modules.begin(); |
| ModuleVector::iterator end = Modules.end(); |
| ModuleVector::iterator it; |
| for (it = begin; it != end; ++it) { |
| Function *F = (*it)->getFunction(FnName); |
| if (F) { |
| if (*it == CurrentModule) |
| return F; |
| |
| assert(CurrentModule != NULL); |
| |
| // This function is in a module that has already been JITed. |
| // We just need a prototype for external linkage. |
| Function *PF = CurrentModule->getFunction(FnName); |
| if (PF && !PF->empty()) { |
| ErrorF("redefinition of function across modules"); |
| return 0; |
| } |
| |
| // If we don't have a prototype yet, create one. |
| if (!PF) |
| PF = Function::Create(F->getFunctionType(), |
| Function::ExternalLinkage, |
| FnName, |
| CurrentModule); |
| return PF; |
| } |
| } |
| return NULL; |
| } |
| |
| Module *MCJITHelper::getModuleForNewFunction() { |
| // If we have a Module that hasn't been JITed, use that. |
| if (CurrentModule) |
| return CurrentModule; |
| |
| // Otherwise create a new Module. |
| std::string ModName = GenerateUniqueName("mcjit_module_"); |
| Module *M = new Module(ModName, Context); |
| Modules.push_back(M); |
| CurrentModule = M; |
| |
| return M; |
| } |
| |
| ExecutionEngine *MCJITHelper::compileModule(Module *M) { |
| assert(EngineMap.find(M) == EngineMap.end()); |
| |
| if (M == CurrentModule) |
| closeCurrentModule(); |
| |
| std::string ErrStr; |
| ExecutionEngine *EE = EngineBuilder(M) |
| .setErrorStr(&ErrStr) |
| .setMCJITMemoryManager(new HelpingMemoryManager(this)) |
| .create(); |
| if (!EE) { |
| fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str()); |
| exit(1); |
| } |
| |
| if (UseObjectCache) |
| EE->setObjectCache(&OurObjectCache); |
| // Get the ModuleID so we can identify IR input files |
| const std::string ModuleID = M->getModuleIdentifier(); |
| |
| // If we've flagged this as an IR file, it doesn't need function passes run. |
| if (0 != ModuleID.compare(0, 3, "IR:")) { |
| FunctionPassManager *FPM = 0; |
| |
| // Create a FPM for this module |
| FPM = new FunctionPassManager(M); |
| |
| // Set up the optimizer pipeline. Start with registering info about how the |
| // target lays out data structures. |
| FPM->add(new DataLayout(*EE->getDataLayout())); |
| // Provide basic AliasAnalysis support for GVN. |
| FPM->add(createBasicAliasAnalysisPass()); |
| // Promote allocas to registers. |
| FPM->add(createPromoteMemoryToRegisterPass()); |
| // Do simple "peephole" optimizations and bit-twiddling optzns. |
| FPM->add(createInstructionCombiningPass()); |
| // Reassociate expressions. |
| FPM->add(createReassociatePass()); |
| // Eliminate Common SubExpressions. |
| FPM->add(createGVNPass()); |
| // Simplify the control flow graph (deleting unreachable blocks, etc). |
| FPM->add(createCFGSimplificationPass()); |
| |
| FPM->doInitialization(); |
| |
| // For each function in the module |
| Module::iterator it; |
| Module::iterator end = M->end(); |
| for (it = M->begin(); it != end; ++it) { |
| // Run the FPM on this function |
| FPM->run(*it); |
| } |
| |
| delete FPM; |
| } |
| |
| EE->finalizeObject(); |
| |
| // Store this engine |
| EngineMap[M] = EE; |
| |
| return EE; |
| } |
| |
| void *MCJITHelper::getPointerToFunction(Function* F) { |
| // Look for this function in an existing module |
| ModuleVector::iterator begin = Modules.begin(); |
| ModuleVector::iterator end = Modules.end(); |
| ModuleVector::iterator it; |
| std::string FnName = F->getName(); |
| for (it = begin; it != end; ++it) { |
| Function *MF = (*it)->getFunction(FnName); |
| if (MF == F) { |
| std::map<Module*, ExecutionEngine*>::iterator eeIt = EngineMap.find(*it); |
| if (eeIt != EngineMap.end()) { |
| void *P = eeIt->second->getPointerToFunction(F); |
| if (P) |
| return P; |
| } else { |
| ExecutionEngine *EE = compileModule(*it); |
| void *P = EE->getPointerToFunction(F); |
| if (P) |
| return P; |
| } |
| } |
| } |
| return NULL; |
| } |
| |
| void MCJITHelper::closeCurrentModule() { |
| // If we have an open module (and we should), pack it up |
| if (CurrentModule) { |
| CurrentModule = NULL; |
| } |
| } |
| |
| void *MCJITHelper::getPointerToNamedFunction(const std::string &Name) |
| { |
| // Look for the functions in our modules, compiling only as necessary |
| ModuleVector::iterator begin = Modules.begin(); |
| ModuleVector::iterator end = Modules.end(); |
| ModuleVector::iterator it; |
| for (it = begin; it != end; ++it) { |
| Function *F = (*it)->getFunction(Name); |
| if (F && !F->empty()) { |
| std::map<Module*, ExecutionEngine*>::iterator eeIt = EngineMap.find(*it); |
| if (eeIt != EngineMap.end()) { |
| void *P = eeIt->second->getPointerToFunction(F); |
| if (P) |
| return P; |
| } else { |
| ExecutionEngine *EE = compileModule(*it); |
| void *P = EE->getPointerToFunction(F); |
| if (P) |
| return P; |
| } |
| } |
| } |
| return NULL; |
| } |
| |
| void MCJITHelper::dump() |
| { |
| ModuleVector::iterator begin = Modules.begin(); |
| ModuleVector::iterator end = Modules.end(); |
| ModuleVector::iterator it; |
| for (it = begin; it != end; ++it) |
| (*it)->dump(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Code Generation |
| //===----------------------------------------------------------------------===// |
| |
| static BaseHelper *TheHelper; |
| static LLVMContext TheContext; |
| static IRBuilder<> Builder(TheContext); |
| static std::map<std::string, AllocaInst*> NamedValues; |
| |
| Value *ErrorV(const char *Str) { Error(Str); return 0; } |
| |
| /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of |
| /// the function. This is used for mutable variables etc. |
| static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction, |
| const std::string &VarName) { |
| IRBuilder<> TmpB(&TheFunction->getEntryBlock(), |
| TheFunction->getEntryBlock().begin()); |
| return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), 0, VarName.c_str()); |
| } |
| |
| Value *NumberExprAST::Codegen() { |
| return ConstantFP::get(TheContext, APFloat(Val)); |
| } |
| |
| Value *VariableExprAST::Codegen() { |
| // Look this variable up in the function. |
| Value *V = NamedValues[Name]; |
| if (V == 0) return ErrorV("Unknown variable name"); |
| |
| // Load the value. |
| return Builder.CreateLoad(V, Name.c_str()); |
| } |
| |
| Value *UnaryExprAST::Codegen() { |
| Value *OperandV = Operand->Codegen(); |
| if (OperandV == 0) return 0; |
| Function *F; |
| F = TheHelper->getFunction( |
| MakeLegalFunctionName(std::string("unary") + Opcode)); |
| if (F == 0) |
| return ErrorV("Unknown unary operator"); |
| |
| return Builder.CreateCall(F, OperandV, "unop"); |
| } |
| |
| Value *BinaryExprAST::Codegen() { |
| // Special case '=' because we don't want to emit the LHS as an expression. |
| if (Op == '=') { |
| // Assignment requires the LHS to be an identifier. |
| // This assume we're building without RTTI because LLVM builds that way by |
| // default. If you build LLVM with RTTI this can be changed to a |
| // dynamic_cast for automatic error checking. |
| VariableExprAST *LHSE = static_cast<VariableExprAST*>(LHS); |
| if (!LHSE) |
| return ErrorV("destination of '=' must be a variable"); |
| // Codegen the RHS. |
| Value *Val = RHS->Codegen(); |
| if (Val == 0) return 0; |
| |
| // Look up the name. |
| Value *Variable = NamedValues[LHSE->getName()]; |
| if (Variable == 0) return ErrorV("Unknown variable name"); |
| |
| Builder.CreateStore(Val, Variable); |
| return Val; |
| } |
| |
| Value *L = LHS->Codegen(); |
| Value *R = RHS->Codegen(); |
| if (L == 0 || R == 0) return 0; |
| |
| switch (Op) { |
| case '+': return Builder.CreateFAdd(L, R, "addtmp"); |
| case '-': return Builder.CreateFSub(L, R, "subtmp"); |
| case '*': return Builder.CreateFMul(L, R, "multmp"); |
| case '/': return Builder.CreateFDiv(L, R, "divtmp"); |
| case '<': |
| L = Builder.CreateFCmpULT(L, R, "cmptmp"); |
| // Convert bool 0/1 to double 0.0 or 1.0 |
| return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp"); |
| default: break; |
| } |
| |
| // If it wasn't a builtin binary operator, it must be a user defined one. Emit |
| // a call to it. |
| Function *F; |
| F = TheHelper->getFunction(MakeLegalFunctionName(std::string("binary")+Op)); |
| assert(F && "binary operator not found!"); |
| |
| Value *Ops[] = { L, R }; |
| return Builder.CreateCall(F, Ops, "binop"); |
| } |
| |
| Value *CallExprAST::Codegen() { |
| // Look up the name in the global module table. |
| Function *CalleeF = TheHelper->getFunction(Callee); |
| if (CalleeF == 0) { |
| char error_str[64]; |
| sprintf(error_str, "Unknown function referenced %s", Callee.c_str()); |
| return ErrorV(error_str); |
| } |
| |
| // If argument mismatch error. |
| if (CalleeF->arg_size() != Args.size()) |
| return ErrorV("Incorrect # arguments passed"); |
| |
| std::vector<Value*> ArgsV; |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| ArgsV.push_back(Args[i]->Codegen()); |
| if (ArgsV.back() == 0) return 0; |
| } |
| |
| return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); |
| } |
| |
| Value *IfExprAST::Codegen() { |
| Value *CondV = Cond->Codegen(); |
| if (CondV == 0) return 0; |
| |
| // Convert condition to a bool by comparing equal to 0.0. |
| CondV = Builder.CreateFCmpONE( |
| CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond"); |
| |
| Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| |
| // Create blocks for the then and else cases. Insert the 'then' block at the |
| // end of the function. |
| BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction); |
| BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else"); |
| BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont"); |
| |
| Builder.CreateCondBr(CondV, ThenBB, ElseBB); |
| |
| // Emit then value. |
| Builder.SetInsertPoint(ThenBB); |
| |
| Value *ThenV = Then->Codegen(); |
| if (ThenV == 0) return 0; |
| |
| Builder.CreateBr(MergeBB); |
| // Codegen of 'Then' can change the current block, update ThenBB for the PHI. |
| ThenBB = Builder.GetInsertBlock(); |
| |
| // Emit else block. |
| TheFunction->getBasicBlockList().push_back(ElseBB); |
| Builder.SetInsertPoint(ElseBB); |
| |
| Value *ElseV = Else->Codegen(); |
| if (ElseV == 0) return 0; |
| |
| Builder.CreateBr(MergeBB); |
| // Codegen of 'Else' can change the current block, update ElseBB for the PHI. |
| ElseBB = Builder.GetInsertBlock(); |
| |
| // Emit merge block. |
| TheFunction->getBasicBlockList().push_back(MergeBB); |
| Builder.SetInsertPoint(MergeBB); |
| PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp"); |
| |
| PN->addIncoming(ThenV, ThenBB); |
| PN->addIncoming(ElseV, ElseBB); |
| return PN; |
| } |
| |
| Value *ForExprAST::Codegen() { |
| // Output this as: |
| // var = alloca double |
| // ... |
| // start = startexpr |
| // store start -> var |
| // goto loop |
| // loop: |
| // ... |
| // bodyexpr |
| // ... |
| // loopend: |
| // step = stepexpr |
| // endcond = endexpr |
| // |
| // curvar = load var |
| // nextvar = curvar + step |
| // store nextvar -> var |
| // br endcond, loop, endloop |
| // outloop: |
| |
| Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| |
| // Create an alloca for the variable in the entry block. |
| AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); |
| |
| // Emit the start code first, without 'variable' in scope. |
| Value *StartVal = Start->Codegen(); |
| if (StartVal == 0) return 0; |
| |
| // Store the value into the alloca. |
| Builder.CreateStore(StartVal, Alloca); |
| |
| // Make the new basic block for the loop header, inserting after current |
| // block. |
| BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction); |
| |
| // Insert an explicit fall through from the current block to the LoopBB. |
| Builder.CreateBr(LoopBB); |
| |
| // Start insertion in LoopBB. |
| Builder.SetInsertPoint(LoopBB); |
| |
| // Within the loop, the variable is defined equal to the PHI node. If it |
| // shadows an existing variable, we have to restore it, so save it now. |
| AllocaInst *OldVal = NamedValues[VarName]; |
| NamedValues[VarName] = Alloca; |
| |
| // Emit the body of the loop. This, like any other expr, can change the |
| // current BB. Note that we ignore the value computed by the body, but don't |
| // allow an error. |
| if (Body->Codegen() == 0) |
| return 0; |
| |
| // Emit the step value. |
| Value *StepVal; |
| if (Step) { |
| StepVal = Step->Codegen(); |
| if (StepVal == 0) return 0; |
| } else { |
| // If not specified, use 1.0. |
| StepVal = ConstantFP::get(TheContext, APFloat(1.0)); |
| } |
| |
| // Compute the end condition. |
| Value *EndCond = End->Codegen(); |
| if (EndCond == 0) return EndCond; |
| |
| // Reload, increment, and restore the alloca. This handles the case where |
| // the body of the loop mutates the variable. |
| Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str()); |
| Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar"); |
| Builder.CreateStore(NextVar, Alloca); |
| |
| // Convert condition to a bool by comparing equal to 0.0. |
| EndCond = Builder.CreateFCmpONE( |
| EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond"); |
| |
| // Create the "after loop" block and insert it. |
| BasicBlock *AfterBB = |
| BasicBlock::Create(TheContext, "afterloop", TheFunction); |
| |
| // Insert the conditional branch into the end of LoopEndBB. |
| Builder.CreateCondBr(EndCond, LoopBB, AfterBB); |
| |
| // Any new code will be inserted in AfterBB. |
| Builder.SetInsertPoint(AfterBB); |
| |
| // Restore the unshadowed variable. |
| if (OldVal) |
| NamedValues[VarName] = OldVal; |
| else |
| NamedValues.erase(VarName); |
| |
| |
| // for expr always returns 0.0. |
| return Constant::getNullValue(Type::getDoubleTy(TheContext)); |
| } |
| |
| Value *VarExprAST::Codegen() { |
| std::vector<AllocaInst *> OldBindings; |
| |
| Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| |
| // Register all variables and emit their initializer. |
| for (unsigned i = 0, e = VarNames.size(); i != e; ++i) { |
| const std::string &VarName = VarNames[i].first; |
| ExprAST *Init = VarNames[i].second; |
| |
| // Emit the initializer before adding the variable to scope, this prevents |
| // the initializer from referencing the variable itself, and permits stuff |
| // like this: |
| // var a = 1 in |
| // var a = a in ... # refers to outer 'a'. |
| Value *InitVal; |
| if (Init) { |
| InitVal = Init->Codegen(); |
| if (InitVal == 0) return 0; |
| } else { // If not specified, use 0.0. |
| InitVal = ConstantFP::get(TheContext, APFloat(0.0)); |
| } |
| |
| AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); |
| Builder.CreateStore(InitVal, Alloca); |
| |
| // Remember the old variable binding so that we can restore the binding when |
| // we unrecurse. |
| OldBindings.push_back(NamedValues[VarName]); |
| |
| // Remember this binding. |
| NamedValues[VarName] = Alloca; |
| } |
| |
| // Codegen the body, now that all vars are in scope. |
| Value *BodyVal = Body->Codegen(); |
| if (BodyVal == 0) return 0; |
| |
| // Pop all our variables from scope. |
| for (unsigned i = 0, e = VarNames.size(); i != e; ++i) |
| NamedValues[VarNames[i].first] = OldBindings[i]; |
| |
| // Return the body computation. |
| return BodyVal; |
| } |
| |
| Function *PrototypeAST::Codegen() { |
| // Make the function type: double(double,double) etc. |
| std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext)); |
| FunctionType *FT = |
| FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false); |
| |
| std::string FnName; |
| FnName = MakeLegalFunctionName(Name); |
| |
| Module* M = TheHelper->getModuleForNewFunction(); |
| Function *F = Function::Create(FT, Function::ExternalLinkage, FnName, M); |
| |
| // FIXME: Implement duplicate function detection. |
| // The check below will only work if the duplicate is in the open module. |
| // If F conflicted, there was already something named 'Name'. If it has a |
| // body, don't allow redefinition or reextern. |
| if (F->getName() != FnName) { |
| // Delete the one we just made and get the existing one. |
| F->eraseFromParent(); |
| F = M->getFunction(FnName); |
| // If F already has a body, reject this. |
| if (!F->empty()) { |
| ErrorF("redefinition of function"); |
| return 0; |
| } |
| // If F took a different number of args, reject. |
| if (F->arg_size() != Args.size()) { |
| ErrorF("redefinition of function with different # args"); |
| return 0; |
| } |
| } |
| |
| // Set names for all arguments. |
| unsigned Idx = 0; |
| for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); |
| ++AI, ++Idx) |
| AI->setName(Args[Idx]); |
| |
| return F; |
| } |
| |
| /// CreateArgumentAllocas - Create an alloca for each argument and register the |
| /// argument in the symbol table so that references to it will succeed. |
| void PrototypeAST::CreateArgumentAllocas(Function *F) { |
| Function::arg_iterator AI = F->arg_begin(); |
| for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) { |
| // Create an alloca for this variable. |
| AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]); |
| |
| // Store the initial value into the alloca. |
| Builder.CreateStore(AI, Alloca); |
| |
| // Add arguments to variable symbol table. |
| NamedValues[Args[Idx]] = Alloca; |
| } |
| } |
| |
| Function *FunctionAST::Codegen() { |
| NamedValues.clear(); |
| |
| Function *TheFunction = Proto->Codegen(); |
| if (TheFunction == 0) |
| return 0; |
| |
| // If this is an operator, install it. |
| if (Proto->isBinaryOp()) |
| BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence(); |
| |
| // Create a new basic block to start insertion into. |
| BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction); |
| Builder.SetInsertPoint(BB); |
| |
| // Add all arguments to the symbol table and create their allocas. |
| Proto->CreateArgumentAllocas(TheFunction); |
| |
| if (Value *RetVal = Body->Codegen()) { |
| // Finish off the function. |
| Builder.CreateRet(RetVal); |
| |
| // Validate the generated code, checking for consistency. |
| verifyFunction(*TheFunction); |
| |
| return TheFunction; |
| } |
| |
| // Error reading body, remove function. |
| TheFunction->eraseFromParent(); |
| |
| if (Proto->isBinaryOp()) |
| BinopPrecedence.erase(Proto->getOperatorName()); |
| return 0; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Top-Level parsing and JIT Driver |
| //===----------------------------------------------------------------------===// |
| |
| static void HandleDefinition() { |
| if (FunctionAST *F = ParseDefinition()) { |
| if (EnableLazyCompilation) |
| TheHelper->closeCurrentModule(); |
| Function *LF = F->Codegen(); |
| if (LF && VerboseOutput) { |
| fprintf(stderr, "Read function definition:"); |
| LF->print(errs()); |
| fprintf(stderr, "\n"); |
| } |
| } else { |
| // Skip token for error recovery. |
| getNextToken(); |
| } |
| } |
| |
| static void HandleExtern() { |
| if (PrototypeAST *P = ParseExtern()) { |
| Function *F = P->Codegen(); |
| if (F && VerboseOutput) { |
| fprintf(stderr, "Read extern: "); |
| F->print(errs()); |
| fprintf(stderr, "\n"); |
| } |
| } else { |
| // Skip token for error recovery. |
| getNextToken(); |
| } |
| } |
| |
| static void HandleTopLevelExpression() { |
| // Evaluate a top-level expression into an anonymous function. |
| if (FunctionAST *F = ParseTopLevelExpr()) { |
| if (Function *LF = F->Codegen()) { |
| // JIT the function, returning a function pointer. |
| void *FPtr = TheHelper->getPointerToFunction(LF); |
| // Cast it to the right type (takes no arguments, returns a double) so we |
| // can call it as a native function. |
| double (*FP)() = (double (*)())(intptr_t)FPtr; |
| double Result = FP(); |
| if (VerboseOutput) |
| fprintf(stderr, "Evaluated to %f\n", Result); |
| } |
| } else { |
| // Skip token for error recovery. |
| getNextToken(); |
| } |
| } |
| |
| /// top ::= definition | external | expression | ';' |
| static void MainLoop() { |
| while (1) { |
| if (!SuppressPrompts) |
| fprintf(stderr, "ready> "); |
| switch (CurTok) { |
| case tok_eof: return; |
| case ';': getNextToken(); break; // ignore top-level semicolons. |
| case tok_def: HandleDefinition(); break; |
| case tok_extern: HandleExtern(); break; |
| default: HandleTopLevelExpression(); break; |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // "Library" functions that can be "extern'd" from user code. |
| //===----------------------------------------------------------------------===// |
| |
| /// putchard - putchar that takes a double and returns 0. |
| extern "C" |
| double putchard(double X) { |
| putchar((char)X); |
| return 0; |
| } |
| |
| /// printd - printf that takes a double prints it as "%f\n", returning 0. |
| extern "C" |
| double printd(double X) { |
| printf("%f", X); |
| return 0; |
| } |
| |
| extern "C" |
| double printlf() { |
| printf("\n"); |
| return 0; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Main driver code. |
| //===----------------------------------------------------------------------===// |
| |
| int main(int argc, char **argv) { |
| InitializeNativeTarget(); |
| InitializeNativeTargetAsmPrinter(); |
| InitializeNativeTargetAsmParser(); |
| LLVMContext &Context = TheContext; |
| |
| cl::ParseCommandLineOptions(argc, argv, |
| "Kaleidoscope example program\n"); |
| |
| // Install standard binary operators. |
| // 1 is lowest precedence. |
| BinopPrecedence['='] = 2; |
| BinopPrecedence['<'] = 10; |
| BinopPrecedence['+'] = 20; |
| BinopPrecedence['-'] = 20; |
| BinopPrecedence['/'] = 40; |
| BinopPrecedence['*'] = 40; // highest. |
| |
| // Make the Helper, which holds all the code. |
| TheHelper = new MCJITHelper(Context); |
| |
| // Prime the first token. |
| if (!SuppressPrompts) |
| fprintf(stderr, "ready> "); |
| getNextToken(); |
| |
| // Run the main "interpreter loop" now. |
| MainLoop(); |
| |
| // Print out all of the generated code. |
| if (DumpModulesOnExit) |
| TheHelper->dump(); |
| |
| return 0; |
| } |