| //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the SelectionDAG::Legalize method. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/CodeGen/ISDOpcodes.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/RuntimeLibcalls.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/TargetFrameLowering.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MachineValueType.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <tuple> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "legalizedag" |
| |
| namespace { |
| |
| /// Keeps track of state when getting the sign of a floating-point value as an |
| /// integer. |
| struct FloatSignAsInt { |
| EVT FloatVT; |
| SDValue Chain; |
| SDValue FloatPtr; |
| SDValue IntPtr; |
| MachinePointerInfo IntPointerInfo; |
| MachinePointerInfo FloatPointerInfo; |
| SDValue IntValue; |
| APInt SignMask; |
| uint8_t SignBit; |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| /// This takes an arbitrary SelectionDAG as input and |
| /// hacks on it until the target machine can handle it. This involves |
| /// eliminating value sizes the machine cannot handle (promoting small sizes to |
| /// large sizes or splitting up large values into small values) as well as |
| /// eliminating operations the machine cannot handle. |
| /// |
| /// This code also does a small amount of optimization and recognition of idioms |
| /// as part of its processing. For example, if a target does not support a |
| /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this |
| /// will attempt merge setcc and brc instructions into brcc's. |
| class SelectionDAGLegalize { |
| const TargetMachine &TM; |
| const TargetLowering &TLI; |
| SelectionDAG &DAG; |
| |
| /// The set of nodes which have already been legalized. We hold a |
| /// reference to it in order to update as necessary on node deletion. |
| SmallPtrSetImpl<SDNode *> &LegalizedNodes; |
| |
| /// A set of all the nodes updated during legalization. |
| SmallSetVector<SDNode *, 16> *UpdatedNodes; |
| |
| EVT getSetCCResultType(EVT VT) const { |
| return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); |
| } |
| |
| // Libcall insertion helpers. |
| |
| public: |
| SelectionDAGLegalize(SelectionDAG &DAG, |
| SmallPtrSetImpl<SDNode *> &LegalizedNodes, |
| SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) |
| : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), |
| LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} |
| |
| /// Legalizes the given operation. |
| void LegalizeOp(SDNode *Node); |
| |
| private: |
| SDValue OptimizeFloatStore(StoreSDNode *ST); |
| |
| void LegalizeLoadOps(SDNode *Node); |
| void LegalizeStoreOps(SDNode *Node); |
| |
| /// Some targets cannot handle a variable |
| /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it |
| /// is necessary to spill the vector being inserted into to memory, perform |
| /// the insert there, and then read the result back. |
| SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, |
| const SDLoc &dl); |
| SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, |
| const SDLoc &dl); |
| |
| /// Return a vector shuffle operation which |
| /// performs the same shuffe in terms of order or result bytes, but on a type |
| /// whose vector element type is narrower than the original shuffle type. |
| /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> |
| SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, |
| SDValue N1, SDValue N2, |
| ArrayRef<int> Mask) const; |
| |
| bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, |
| bool &NeedInvert, const SDLoc &dl); |
| |
| SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); |
| SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops, |
| unsigned NumOps, bool isSigned, const SDLoc &dl); |
| |
| std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC, |
| SDNode *Node, bool isSigned); |
| SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, |
| RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, |
| RTLIB::Libcall Call_F128, |
| RTLIB::Libcall Call_PPCF128); |
| SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, |
| RTLIB::Libcall Call_I8, |
| RTLIB::Libcall Call_I16, |
| RTLIB::Libcall Call_I32, |
| RTLIB::Libcall Call_I64, |
| RTLIB::Libcall Call_I128); |
| void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); |
| |
| SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, |
| const SDLoc &dl); |
| SDValue ExpandBUILD_VECTOR(SDNode *Node); |
| SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); |
| void ExpandDYNAMIC_STACKALLOC(SDNode *Node, |
| SmallVectorImpl<SDValue> &Results); |
| void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, |
| SDValue Value) const; |
| SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, |
| SDValue NewIntValue) const; |
| SDValue ExpandFCOPYSIGN(SDNode *Node) const; |
| SDValue ExpandFABS(SDNode *Node) const; |
| SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0, EVT DestVT, |
| const SDLoc &dl); |
| SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, |
| const SDLoc &dl); |
| SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, |
| const SDLoc &dl); |
| |
| SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl); |
| SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl); |
| SDValue ExpandBitCount(unsigned Opc, SDValue Op, const SDLoc &dl); |
| |
| SDValue ExpandExtractFromVectorThroughStack(SDValue Op); |
| SDValue ExpandInsertToVectorThroughStack(SDValue Op); |
| SDValue ExpandVectorBuildThroughStack(SDNode* Node); |
| |
| SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); |
| SDValue ExpandConstant(ConstantSDNode *CP); |
| |
| // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall |
| bool ExpandNode(SDNode *Node); |
| void ConvertNodeToLibcall(SDNode *Node); |
| void PromoteNode(SDNode *Node); |
| |
| public: |
| // Node replacement helpers |
| |
| void ReplacedNode(SDNode *N) { |
| LegalizedNodes.erase(N); |
| if (UpdatedNodes) |
| UpdatedNodes->insert(N); |
| } |
| |
| void ReplaceNode(SDNode *Old, SDNode *New) { |
| LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); |
| dbgs() << " with: "; New->dump(&DAG)); |
| |
| assert(Old->getNumValues() == New->getNumValues() && |
| "Replacing one node with another that produces a different number " |
| "of values!"); |
| DAG.ReplaceAllUsesWith(Old, New); |
| if (UpdatedNodes) |
| UpdatedNodes->insert(New); |
| ReplacedNode(Old); |
| } |
| |
| void ReplaceNode(SDValue Old, SDValue New) { |
| LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); |
| dbgs() << " with: "; New->dump(&DAG)); |
| |
| DAG.ReplaceAllUsesWith(Old, New); |
| if (UpdatedNodes) |
| UpdatedNodes->insert(New.getNode()); |
| ReplacedNode(Old.getNode()); |
| } |
| |
| void ReplaceNode(SDNode *Old, const SDValue *New) { |
| LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); |
| |
| DAG.ReplaceAllUsesWith(Old, New); |
| for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { |
| LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); |
| New[i]->dump(&DAG)); |
| if (UpdatedNodes) |
| UpdatedNodes->insert(New[i].getNode()); |
| } |
| ReplacedNode(Old); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Return a vector shuffle operation which |
| /// performs the same shuffe in terms of order or result bytes, but on a type |
| /// whose vector element type is narrower than the original shuffle type. |
| /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> |
| SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( |
| EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, |
| ArrayRef<int> Mask) const { |
| unsigned NumMaskElts = VT.getVectorNumElements(); |
| unsigned NumDestElts = NVT.getVectorNumElements(); |
| unsigned NumEltsGrowth = NumDestElts / NumMaskElts; |
| |
| assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); |
| |
| if (NumEltsGrowth == 1) |
| return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); |
| |
| SmallVector<int, 8> NewMask; |
| for (unsigned i = 0; i != NumMaskElts; ++i) { |
| int Idx = Mask[i]; |
| for (unsigned j = 0; j != NumEltsGrowth; ++j) { |
| if (Idx < 0) |
| NewMask.push_back(-1); |
| else |
| NewMask.push_back(Idx * NumEltsGrowth + j); |
| } |
| } |
| assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); |
| assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); |
| return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); |
| } |
| |
| /// Expands the ConstantFP node to an integer constant or |
| /// a load from the constant pool. |
| SDValue |
| SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { |
| bool Extend = false; |
| SDLoc dl(CFP); |
| |
| // If a FP immediate is precise when represented as a float and if the |
| // target can do an extending load from float to double, we put it into |
| // the constant pool as a float, even if it's is statically typed as a |
| // double. This shrinks FP constants and canonicalizes them for targets where |
| // an FP extending load is the same cost as a normal load (such as on the x87 |
| // fp stack or PPC FP unit). |
| EVT VT = CFP->getValueType(0); |
| ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); |
| if (!UseCP) { |
| assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); |
| return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, |
| (VT == MVT::f64) ? MVT::i64 : MVT::i32); |
| } |
| |
| APFloat APF = CFP->getValueAPF(); |
| EVT OrigVT = VT; |
| EVT SVT = VT; |
| |
| // We don't want to shrink SNaNs. Converting the SNaN back to its real type |
| // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). |
| if (!APF.isSignaling()) { |
| while (SVT != MVT::f32 && SVT != MVT::f16) { |
| SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); |
| if (ConstantFPSDNode::isValueValidForType(SVT, APF) && |
| // Only do this if the target has a native EXTLOAD instruction from |
| // smaller type. |
| TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && |
| TLI.ShouldShrinkFPConstant(OrigVT)) { |
| Type *SType = SVT.getTypeForEVT(*DAG.getContext()); |
| LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); |
| VT = SVT; |
| Extend = true; |
| } |
| } |
| } |
| |
| SDValue CPIdx = |
| DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); |
| unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); |
| if (Extend) { |
| SDValue Result = DAG.getExtLoad( |
| ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, |
| Alignment); |
| return Result; |
| } |
| SDValue Result = DAG.getLoad( |
| OrigVT, dl, DAG.getEntryNode(), CPIdx, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); |
| return Result; |
| } |
| |
| /// Expands the Constant node to a load from the constant pool. |
| SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { |
| SDLoc dl(CP); |
| EVT VT = CP->getValueType(0); |
| SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), |
| TLI.getPointerTy(DAG.getDataLayout())); |
| unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); |
| SDValue Result = DAG.getLoad( |
| VT, dl, DAG.getEntryNode(), CPIdx, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); |
| return Result; |
| } |
| |
| /// Some target cannot handle a variable insertion index for the |
| /// INSERT_VECTOR_ELT instruction. In this case, it |
| /// is necessary to spill the vector being inserted into to memory, perform |
| /// the insert there, and then read the result back. |
| SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, |
| SDValue Val, |
| SDValue Idx, |
| const SDLoc &dl) { |
| SDValue Tmp1 = Vec; |
| SDValue Tmp2 = Val; |
| SDValue Tmp3 = Idx; |
| |
| // If the target doesn't support this, we have to spill the input vector |
| // to a temporary stack slot, update the element, then reload it. This is |
| // badness. We could also load the value into a vector register (either |
| // with a "move to register" or "extload into register" instruction, then |
| // permute it into place, if the idx is a constant and if the idx is |
| // supported by the target. |
| EVT VT = Tmp1.getValueType(); |
| EVT EltVT = VT.getVectorElementType(); |
| SDValue StackPtr = DAG.CreateStackTemporary(VT); |
| |
| int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); |
| |
| // Store the vector. |
| SDValue Ch = DAG.getStore( |
| DAG.getEntryNode(), dl, Tmp1, StackPtr, |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); |
| |
| SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); |
| |
| // Store the scalar value. |
| Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT); |
| // Load the updated vector. |
| return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( |
| DAG.getMachineFunction(), SPFI)); |
| } |
| |
| SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, |
| SDValue Idx, |
| const SDLoc &dl) { |
| if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { |
| // SCALAR_TO_VECTOR requires that the type of the value being inserted |
| // match the element type of the vector being created, except for |
| // integers in which case the inserted value can be over width. |
| EVT EltVT = Vec.getValueType().getVectorElementType(); |
| if (Val.getValueType() == EltVT || |
| (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { |
| SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, |
| Vec.getValueType(), Val); |
| |
| unsigned NumElts = Vec.getValueType().getVectorNumElements(); |
| // We generate a shuffle of InVec and ScVec, so the shuffle mask |
| // should be 0,1,2,3,4,5... with the appropriate element replaced with |
| // elt 0 of the RHS. |
| SmallVector<int, 8> ShufOps; |
| for (unsigned i = 0; i != NumElts; ++i) |
| ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); |
| |
| return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); |
| } |
| } |
| return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); |
| } |
| |
| SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { |
| LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); |
| // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' |
| // FIXME: We shouldn't do this for TargetConstantFP's. |
| // FIXME: move this to the DAG Combiner! Note that we can't regress due |
| // to phase ordering between legalized code and the dag combiner. This |
| // probably means that we need to integrate dag combiner and legalizer |
| // together. |
| // We generally can't do this one for long doubles. |
| SDValue Chain = ST->getChain(); |
| SDValue Ptr = ST->getBasePtr(); |
| unsigned Alignment = ST->getAlignment(); |
| MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); |
| AAMDNodes AAInfo = ST->getAAInfo(); |
| SDLoc dl(ST); |
| if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { |
| if (CFP->getValueType(0) == MVT::f32 && |
| TLI.isTypeLegal(MVT::i32)) { |
| SDValue Con = DAG.getConstant(CFP->getValueAPF(). |
| bitcastToAPInt().zextOrTrunc(32), |
| SDLoc(CFP), MVT::i32); |
| return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), Alignment, |
| MMOFlags, AAInfo); |
| } |
| |
| if (CFP->getValueType(0) == MVT::f64) { |
| // If this target supports 64-bit registers, do a single 64-bit store. |
| if (TLI.isTypeLegal(MVT::i64)) { |
| SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). |
| zextOrTrunc(64), SDLoc(CFP), MVT::i64); |
| return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), |
| Alignment, MMOFlags, AAInfo); |
| } |
| |
| if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { |
| // Otherwise, if the target supports 32-bit registers, use 2 32-bit |
| // stores. If the target supports neither 32- nor 64-bits, this |
| // xform is certainly not worth it. |
| const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); |
| SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); |
| SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); |
| if (DAG.getDataLayout().isBigEndian()) |
| std::swap(Lo, Hi); |
| |
| Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), Alignment, |
| MMOFlags, AAInfo); |
| Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, |
| DAG.getConstant(4, dl, Ptr.getValueType())); |
| Hi = DAG.getStore(Chain, dl, Hi, Ptr, |
| ST->getPointerInfo().getWithOffset(4), |
| MinAlign(Alignment, 4U), MMOFlags, AAInfo); |
| |
| return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); |
| } |
| } |
| } |
| return SDValue(nullptr, 0); |
| } |
| |
| void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { |
| StoreSDNode *ST = cast<StoreSDNode>(Node); |
| SDValue Chain = ST->getChain(); |
| SDValue Ptr = ST->getBasePtr(); |
| SDLoc dl(Node); |
| |
| unsigned Alignment = ST->getAlignment(); |
| MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); |
| AAMDNodes AAInfo = ST->getAAInfo(); |
| |
| if (!ST->isTruncatingStore()) { |
| LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); |
| if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { |
| ReplaceNode(ST, OptStore); |
| return; |
| } |
| |
| SDValue Value = ST->getValue(); |
| MVT VT = Value.getSimpleValueType(); |
| switch (TLI.getOperationAction(ISD::STORE, VT)) { |
| default: llvm_unreachable("This action is not supported yet!"); |
| case TargetLowering::Legal: { |
| // If this is an unaligned store and the target doesn't support it, |
| // expand it. |
| EVT MemVT = ST->getMemoryVT(); |
| unsigned AS = ST->getAddressSpace(); |
| unsigned Align = ST->getAlignment(); |
| const DataLayout &DL = DAG.getDataLayout(); |
| if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { |
| LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); |
| SDValue Result = TLI.expandUnalignedStore(ST, DAG); |
| ReplaceNode(SDValue(ST, 0), Result); |
| } else |
| LLVM_DEBUG(dbgs() << "Legal store\n"); |
| break; |
| } |
| case TargetLowering::Custom: { |
| LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); |
| SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); |
| if (Res && Res != SDValue(Node, 0)) |
| ReplaceNode(SDValue(Node, 0), Res); |
| return; |
| } |
| case TargetLowering::Promote: { |
| MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); |
| assert(NVT.getSizeInBits() == VT.getSizeInBits() && |
| "Can only promote stores to same size type"); |
| Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); |
| SDValue Result = |
| DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), |
| Alignment, MMOFlags, AAInfo); |
| ReplaceNode(SDValue(Node, 0), Result); |
| break; |
| } |
| } |
| return; |
| } |
| |
| LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); |
| SDValue Value = ST->getValue(); |
| EVT StVT = ST->getMemoryVT(); |
| unsigned StWidth = StVT.getSizeInBits(); |
| auto &DL = DAG.getDataLayout(); |
| |
| if (StWidth != StVT.getStoreSizeInBits()) { |
| // Promote to a byte-sized store with upper bits zero if not |
| // storing an integral number of bytes. For example, promote |
| // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) |
| EVT NVT = EVT::getIntegerVT(*DAG.getContext(), |
| StVT.getStoreSizeInBits()); |
| Value = DAG.getZeroExtendInReg(Value, dl, StVT); |
| SDValue Result = |
| DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, |
| Alignment, MMOFlags, AAInfo); |
| ReplaceNode(SDValue(Node, 0), Result); |
| } else if (StWidth & (StWidth - 1)) { |
| // If not storing a power-of-2 number of bits, expand as two stores. |
| assert(!StVT.isVector() && "Unsupported truncstore!"); |
| unsigned RoundWidth = 1 << Log2_32(StWidth); |
| assert(RoundWidth < StWidth); |
| unsigned ExtraWidth = StWidth - RoundWidth; |
| assert(ExtraWidth < RoundWidth); |
| assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && |
| "Store size not an integral number of bytes!"); |
| EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); |
| EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); |
| SDValue Lo, Hi; |
| unsigned IncrementSize; |
| |
| if (DL.isLittleEndian()) { |
| // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) |
| // Store the bottom RoundWidth bits. |
| Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), |
| RoundVT, Alignment, MMOFlags, AAInfo); |
| |
| // Store the remaining ExtraWidth bits. |
| IncrementSize = RoundWidth / 8; |
| Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, |
| DAG.getConstant(IncrementSize, dl, |
| Ptr.getValueType())); |
| Hi = DAG.getNode( |
| ISD::SRL, dl, Value.getValueType(), Value, |
| DAG.getConstant(RoundWidth, dl, |
| TLI.getShiftAmountTy(Value.getValueType(), DL))); |
| Hi = DAG.getTruncStore( |
| Chain, dl, Hi, Ptr, |
| ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, |
| MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); |
| } else { |
| // Big endian - avoid unaligned stores. |
| // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X |
| // Store the top RoundWidth bits. |
| Hi = DAG.getNode( |
| ISD::SRL, dl, Value.getValueType(), Value, |
| DAG.getConstant(ExtraWidth, dl, |
| TLI.getShiftAmountTy(Value.getValueType(), DL))); |
| Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), |
| RoundVT, Alignment, MMOFlags, AAInfo); |
| |
| // Store the remaining ExtraWidth bits. |
| IncrementSize = RoundWidth / 8; |
| Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, |
| DAG.getConstant(IncrementSize, dl, |
| Ptr.getValueType())); |
| Lo = DAG.getTruncStore( |
| Chain, dl, Value, Ptr, |
| ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, |
| MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); |
| } |
| |
| // The order of the stores doesn't matter. |
| SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); |
| ReplaceNode(SDValue(Node, 0), Result); |
| } else { |
| switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { |
| default: llvm_unreachable("This action is not supported yet!"); |
| case TargetLowering::Legal: { |
| EVT MemVT = ST->getMemoryVT(); |
| unsigned AS = ST->getAddressSpace(); |
| unsigned Align = ST->getAlignment(); |
| // If this is an unaligned store and the target doesn't support it, |
| // expand it. |
| if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { |
| SDValue Result = TLI.expandUnalignedStore(ST, DAG); |
| ReplaceNode(SDValue(ST, 0), Result); |
| } |
| break; |
| } |
| case TargetLowering::Custom: { |
| SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); |
| if (Res && Res != SDValue(Node, 0)) |
| ReplaceNode(SDValue(Node, 0), Res); |
| return; |
| } |
| case TargetLowering::Expand: |
| assert(!StVT.isVector() && |
| "Vector Stores are handled in LegalizeVectorOps"); |
| |
| SDValue Result; |
| |
| // TRUNCSTORE:i16 i32 -> STORE i16 |
| if (TLI.isTypeLegal(StVT)) { |
| Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); |
| Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), |
| Alignment, MMOFlags, AAInfo); |
| } else { |
| // The in-memory type isn't legal. Truncate to the type it would promote |
| // to, and then do a truncstore. |
| Value = DAG.getNode(ISD::TRUNCATE, dl, |
| TLI.getTypeToTransformTo(*DAG.getContext(), StVT), |
| Value); |
| Result = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), |
| StVT, Alignment, MMOFlags, AAInfo); |
| } |
| |
| ReplaceNode(SDValue(Node, 0), Result); |
| break; |
| } |
| } |
| } |
| |
| void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { |
| LoadSDNode *LD = cast<LoadSDNode>(Node); |
| SDValue Chain = LD->getChain(); // The chain. |
| SDValue Ptr = LD->getBasePtr(); // The base pointer. |
| SDValue Value; // The value returned by the load op. |
| SDLoc dl(Node); |
| |
| ISD::LoadExtType ExtType = LD->getExtensionType(); |
| if (ExtType == ISD::NON_EXTLOAD) { |
| LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); |
| MVT VT = Node->getSimpleValueType(0); |
| SDValue RVal = SDValue(Node, 0); |
| SDValue RChain = SDValue(Node, 1); |
| |
| switch (TLI.getOperationAction(Node->getOpcode(), VT)) { |
| default: llvm_unreachable("This action is not supported yet!"); |
| case TargetLowering::Legal: { |
| EVT MemVT = LD->getMemoryVT(); |
| unsigned AS = LD->getAddressSpace(); |
| unsigned Align = LD->getAlignment(); |
| const DataLayout &DL = DAG.getDataLayout(); |
| // If this is an unaligned load and the target doesn't support it, |
| // expand it. |
| if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { |
| std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); |
| } |
| break; |
| } |
| case TargetLowering::Custom: |
| if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { |
| RVal = Res; |
| RChain = Res.getValue(1); |
| } |
| break; |
| |
| case TargetLowering::Promote: { |
| MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); |
| assert(NVT.getSizeInBits() == VT.getSizeInBits() && |
| "Can only promote loads to same size type"); |
| |
| SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); |
| RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); |
| RChain = Res.getValue(1); |
| break; |
| } |
| } |
| if (RChain.getNode() != Node) { |
| assert(RVal.getNode() != Node && "Load must be completely replaced"); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); |
| if (UpdatedNodes) { |
| UpdatedNodes->insert(RVal.getNode()); |
| UpdatedNodes->insert(RChain.getNode()); |
| } |
| ReplacedNode(Node); |
| } |
| return; |
| } |
| |
| LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); |
| EVT SrcVT = LD->getMemoryVT(); |
| unsigned SrcWidth = SrcVT.getSizeInBits(); |
| unsigned Alignment = LD->getAlignment(); |
| MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); |
| AAMDNodes AAInfo = LD->getAAInfo(); |
| |
| if (SrcWidth != SrcVT.getStoreSizeInBits() && |
| // Some targets pretend to have an i1 loading operation, and actually |
| // load an i8. This trick is correct for ZEXTLOAD because the top 7 |
| // bits are guaranteed to be zero; it helps the optimizers understand |
| // that these bits are zero. It is also useful for EXTLOAD, since it |
| // tells the optimizers that those bits are undefined. It would be |
| // nice to have an effective generic way of getting these benefits... |
| // Until such a way is found, don't insist on promoting i1 here. |
| (SrcVT != MVT::i1 || |
| TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == |
| TargetLowering::Promote)) { |
| // Promote to a byte-sized load if not loading an integral number of |
| // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. |
| unsigned NewWidth = SrcVT.getStoreSizeInBits(); |
| EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); |
| SDValue Ch; |
| |
| // The extra bits are guaranteed to be zero, since we stored them that |
| // way. A zext load from NVT thus automatically gives zext from SrcVT. |
| |
| ISD::LoadExtType NewExtType = |
| ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; |
| |
| SDValue Result = |
| DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), Chain, Ptr, |
| LD->getPointerInfo(), NVT, Alignment, MMOFlags, AAInfo); |
| |
| Ch = Result.getValue(1); // The chain. |
| |
| if (ExtType == ISD::SEXTLOAD) |
| // Having the top bits zero doesn't help when sign extending. |
| Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, |
| Result.getValueType(), |
| Result, DAG.getValueType(SrcVT)); |
| else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) |
| // All the top bits are guaranteed to be zero - inform the optimizers. |
| Result = DAG.getNode(ISD::AssertZext, dl, |
| Result.getValueType(), Result, |
| DAG.getValueType(SrcVT)); |
| |
| Value = Result; |
| Chain = Ch; |
| } else if (SrcWidth & (SrcWidth - 1)) { |
| // If not loading a power-of-2 number of bits, expand as two loads. |
| assert(!SrcVT.isVector() && "Unsupported extload!"); |
| unsigned RoundWidth = 1 << Log2_32(SrcWidth); |
| assert(RoundWidth < SrcWidth); |
| unsigned ExtraWidth = SrcWidth - RoundWidth; |
| assert(ExtraWidth < RoundWidth); |
| assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && |
| "Load size not an integral number of bytes!"); |
| EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); |
| EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); |
| SDValue Lo, Hi, Ch; |
| unsigned IncrementSize; |
| auto &DL = DAG.getDataLayout(); |
| |
| if (DL.isLittleEndian()) { |
| // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) |
| // Load the bottom RoundWidth bits. |
| Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, |
| LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, |
| AAInfo); |
| |
| // Load the remaining ExtraWidth bits. |
| IncrementSize = RoundWidth / 8; |
| Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, |
| DAG.getConstant(IncrementSize, dl, |
| Ptr.getValueType())); |
| Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, |
| LD->getPointerInfo().getWithOffset(IncrementSize), |
| ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, |
| AAInfo); |
| |
| // Build a factor node to remember that this load is independent of |
| // the other one. |
| Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), |
| Hi.getValue(1)); |
| |
| // Move the top bits to the right place. |
| Hi = DAG.getNode( |
| ISD::SHL, dl, Hi.getValueType(), Hi, |
| DAG.getConstant(RoundWidth, dl, |
| TLI.getShiftAmountTy(Hi.getValueType(), DL))); |
| |
| // Join the hi and lo parts. |
| Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); |
| } else { |
| // Big endian - avoid unaligned loads. |
| // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 |
| // Load the top RoundWidth bits. |
| Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, |
| LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, |
| AAInfo); |
| |
| // Load the remaining ExtraWidth bits. |
| IncrementSize = RoundWidth / 8; |
| Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, |
| DAG.getConstant(IncrementSize, dl, |
| Ptr.getValueType())); |
| Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, |
| LD->getPointerInfo().getWithOffset(IncrementSize), |
| ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, |
| AAInfo); |
| |
| // Build a factor node to remember that this load is independent of |
| // the other one. |
| Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), |
| Hi.getValue(1)); |
| |
| // Move the top bits to the right place. |
| Hi = DAG.getNode( |
| ISD::SHL, dl, Hi.getValueType(), Hi, |
| DAG.getConstant(ExtraWidth, dl, |
| TLI.getShiftAmountTy(Hi.getValueType(), DL))); |
| |
| // Join the hi and lo parts. |
| Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); |
| } |
| |
| Chain = Ch; |
| } else { |
| bool isCustom = false; |
| switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), |
| SrcVT.getSimpleVT())) { |
| default: llvm_unreachable("This action is not supported yet!"); |
| case TargetLowering::Custom: |
| isCustom = true; |
| LLVM_FALLTHROUGH; |
| case TargetLowering::Legal: |
| Value = SDValue(Node, 0); |
| Chain = SDValue(Node, 1); |
| |
| if (isCustom) { |
| if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { |
| Value = Res; |
| Chain = Res.getValue(1); |
| } |
| } else { |
| // If this is an unaligned load and the target doesn't support it, |
| // expand it. |
| EVT MemVT = LD->getMemoryVT(); |
| unsigned AS = LD->getAddressSpace(); |
| unsigned Align = LD->getAlignment(); |
| const DataLayout &DL = DAG.getDataLayout(); |
| if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { |
| std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); |
| } |
| } |
| break; |
| |
| case TargetLowering::Expand: { |
| EVT DestVT = Node->getValueType(0); |
| if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { |
| // If the source type is not legal, see if there is a legal extload to |
| // an intermediate type that we can then extend further. |
| EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); |
| if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? |
| TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { |
| // If we are loading a legal type, this is a non-extload followed by a |
| // full extend. |
| ISD::LoadExtType MidExtType = |
| (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; |
| |
| SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, |
| SrcVT, LD->getMemOperand()); |
| unsigned ExtendOp = |
| ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); |
| Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); |
| Chain = Load.getValue(1); |
| break; |
| } |
| |
| // Handle the special case of fp16 extloads. EXTLOAD doesn't have the |
| // normal undefined upper bits behavior to allow using an in-reg extend |
| // with the illegal FP type, so load as an integer and do the |
| // from-integer conversion. |
| if (SrcVT.getScalarType() == MVT::f16) { |
| EVT ISrcVT = SrcVT.changeTypeToInteger(); |
| EVT IDestVT = DestVT.changeTypeToInteger(); |
| EVT LoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); |
| |
| SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, LoadVT, |
| Chain, Ptr, ISrcVT, |
| LD->getMemOperand()); |
| Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); |
| Chain = Result.getValue(1); |
| break; |
| } |
| } |
| |
| assert(!SrcVT.isVector() && |
| "Vector Loads are handled in LegalizeVectorOps"); |
| |
| // FIXME: This does not work for vectors on most targets. Sign- |
| // and zero-extend operations are currently folded into extending |
| // loads, whether they are legal or not, and then we end up here |
| // without any support for legalizing them. |
| assert(ExtType != ISD::EXTLOAD && |
| "EXTLOAD should always be supported!"); |
| // Turn the unsupported load into an EXTLOAD followed by an |
| // explicit zero/sign extend inreg. |
| SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, |
| Node->getValueType(0), |
| Chain, Ptr, SrcVT, |
| LD->getMemOperand()); |
| SDValue ValRes; |
| if (ExtType == ISD::SEXTLOAD) |
| ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, |
| Result.getValueType(), |
| Result, DAG.getValueType(SrcVT)); |
| else |
| ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); |
| Value = ValRes; |
| Chain = Result.getValue(1); |
| break; |
| } |
| } |
| } |
| |
| // Since loads produce two values, make sure to remember that we legalized |
| // both of them. |
| if (Chain.getNode() != Node) { |
| assert(Value.getNode() != Node && "Load must be completely replaced"); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); |
| if (UpdatedNodes) { |
| UpdatedNodes->insert(Value.getNode()); |
| UpdatedNodes->insert(Chain.getNode()); |
| } |
| ReplacedNode(Node); |
| } |
| } |
| |
| /// Return a legal replacement for the given operation, with all legal operands. |
| void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { |
| LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); |
| |
| // Allow illegal target nodes and illegal registers. |
| if (Node->getOpcode() == ISD::TargetConstant || |
| Node->getOpcode() == ISD::Register) |
| return; |
| |
| #ifndef NDEBUG |
| for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) |
| assert((TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == |
| TargetLowering::TypeLegal || |
| TLI.isTypeLegal(Node->getValueType(i))) && |
| "Unexpected illegal type!"); |
| |
| for (const SDValue &Op : Node->op_values()) |
| assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == |
| TargetLowering::TypeLegal || |
| TLI.isTypeLegal(Op.getValueType()) || |
| Op.getOpcode() == ISD::TargetConstant || |
| Op.getOpcode() == ISD::Register) && |
| "Unexpected illegal type!"); |
| #endif |
| |
| // Figure out the correct action; the way to query this varies by opcode |
| TargetLowering::LegalizeAction Action = TargetLowering::Legal; |
| bool SimpleFinishLegalizing = true; |
| switch (Node->getOpcode()) { |
| case ISD::INTRINSIC_W_CHAIN: |
| case ISD::INTRINSIC_WO_CHAIN: |
| case ISD::INTRINSIC_VOID: |
| case ISD::STACKSAVE: |
| Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); |
| break; |
| case ISD::GET_DYNAMIC_AREA_OFFSET: |
| Action = TLI.getOperationAction(Node->getOpcode(), |
| Node->getValueType(0)); |
| break; |
| case ISD::VAARG: |
| Action = TLI.getOperationAction(Node->getOpcode(), |
| Node->getValueType(0)); |
| if (Action != TargetLowering::Promote) |
| Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); |
| break; |
| case ISD::FP_TO_FP16: |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: |
| case ISD::EXTRACT_VECTOR_ELT: |
| Action = TLI.getOperationAction(Node->getOpcode(), |
| Node->getOperand(0).getValueType()); |
| break; |
| case ISD::FP_ROUND_INREG: |
| case ISD::SIGN_EXTEND_INREG: { |
| EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); |
| Action = TLI.getOperationAction(Node->getOpcode(), InnerType); |
| break; |
| } |
| case ISD::ATOMIC_STORE: |
| Action = TLI.getOperationAction(Node->getOpcode(), |
| Node->getOperand(2).getValueType()); |
| break; |
| case ISD::SELECT_CC: |
| case ISD::SETCC: |
| case ISD::BR_CC: { |
| unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : |
| Node->getOpcode() == ISD::SETCC ? 2 : 1; |
| unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0; |
| MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); |
| ISD::CondCode CCCode = |
| cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); |
| Action = TLI.getCondCodeAction(CCCode, OpVT); |
| if (Action == TargetLowering::Legal) { |
| if (Node->getOpcode() == ISD::SELECT_CC) |
| Action = TLI.getOperationAction(Node->getOpcode(), |
| Node->getValueType(0)); |
| else |
| Action = TLI.getOperationAction(Node->getOpcode(), OpVT); |
| } |
| break; |
| } |
| case ISD::LOAD: |
| case ISD::STORE: |
| // FIXME: Model these properly. LOAD and STORE are complicated, and |
| // STORE expects the unlegalized operand in some cases. |
| SimpleFinishLegalizing = false; |
| break; |
| case ISD::CALLSEQ_START: |
| case ISD::CALLSEQ_END: |
| // FIXME: This shouldn't be necessary. These nodes have special properties |
| // dealing with the recursive nature of legalization. Removing this |
| // special case should be done as part of making LegalizeDAG non-recursive. |
| SimpleFinishLegalizing = false; |
| break; |
| case ISD::EXTRACT_ELEMENT: |
| case ISD::FLT_ROUNDS_: |
| case ISD::MERGE_VALUES: |
| case ISD::EH_RETURN: |
| case ISD::FRAME_TO_ARGS_OFFSET: |
| case ISD::EH_DWARF_CFA: |
| case ISD::EH_SJLJ_SETJMP: |
| case ISD::EH_SJLJ_LONGJMP: |
| case ISD::EH_SJLJ_SETUP_DISPATCH: |
| // These operations lie about being legal: when they claim to be legal, |
| // they should actually be expanded. |
| Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); |
| if (Action == TargetLowering::Legal) |
| Action = TargetLowering::Expand; |
| break; |
| case ISD::INIT_TRAMPOLINE: |
| case ISD::ADJUST_TRAMPOLINE: |
| case ISD::FRAMEADDR: |
| case ISD::RETURNADDR: |
| case ISD::ADDROFRETURNADDR: |
| // These operations lie about being legal: when they claim to be legal, |
| // they should actually be custom-lowered. |
| Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); |
| if (Action == TargetLowering::Legal) |
| Action = TargetLowering::Custom; |
| break; |
| case ISD::READCYCLECOUNTER: |
| // READCYCLECOUNTER returns an i64, even if type legalization might have |
| // expanded that to several smaller types. |
| Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); |
| break; |
| case ISD::READ_REGISTER: |
| case ISD::WRITE_REGISTER: |
| // Named register is legal in the DAG, but blocked by register name |
| // selection if not implemented by target (to chose the correct register) |
| // They'll be converted to Copy(To/From)Reg. |
| Action = TargetLowering::Legal; |
| break; |
| case ISD::DEBUGTRAP: |
| Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); |
| if (Action == TargetLowering::Expand) { |
| // replace ISD::DEBUGTRAP with ISD::TRAP |
| SDValue NewVal; |
| NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), |
| Node->getOperand(0)); |
| ReplaceNode(Node, NewVal.getNode()); |
| LegalizeOp(NewVal.getNode()); |
| return; |
| } |
| break; |
| case ISD::STRICT_FADD: |
| case ISD::STRICT_FSUB: |
| case ISD::STRICT_FMUL: |
| case ISD::STRICT_FDIV: |
| case ISD::STRICT_FSQRT: |
| case ISD::STRICT_FMA: |
| case ISD::STRICT_FPOW: |
| case ISD::STRICT_FPOWI: |
| case ISD::STRICT_FSIN: |
| case ISD::STRICT_FCOS: |
| case ISD::STRICT_FEXP: |
| case ISD::STRICT_FEXP2: |
| case ISD::STRICT_FLOG: |
| case ISD::STRICT_FLOG10: |
| case ISD::STRICT_FLOG2: |
| case ISD::STRICT_FRINT: |
| case ISD::STRICT_FNEARBYINT: |
| // These pseudo-ops get legalized as if they were their non-strict |
| // equivalent. For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT |
| // is also legal, but if ISD::FSQRT requires expansion then so does |
| // ISD::STRICT_FSQRT. |
| Action = TLI.getStrictFPOperationAction(Node->getOpcode(), |
| Node->getValueType(0)); |
| break; |
| default: |
| if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { |
| Action = TargetLowering::Legal; |
| } else { |
| Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); |
| } |
| break; |
| } |
| |
| if (SimpleFinishLegalizing) { |
| SDNode *NewNode = Node; |
| switch (Node->getOpcode()) { |
| default: break; |
| case ISD::SHL: |
| case ISD::SRL: |
| case ISD::SRA: |
| case ISD::ROTL: |
| case ISD::ROTR: { |
| // Legalizing shifts/rotates requires adjusting the shift amount |
| // to the appropriate width. |
| SDValue Op0 = Node->getOperand(0); |
| SDValue Op1 = Node->getOperand(1); |
| if (!Op1.getValueType().isVector()) { |
| SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); |
| // The getShiftAmountOperand() may create a new operand node or |
| // return the existing one. If new operand is created we need |
| // to update the parent node. |
| // Do not try to legalize SAO here! It will be automatically legalized |
| // in the next round. |
| if (SAO != Op1) |
| NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); |
| } |
| } |
| break; |
| case ISD::SRL_PARTS: |
| case ISD::SRA_PARTS: |
| case ISD::SHL_PARTS: { |
| // Legalizing shifts/rotates requires adjusting the shift amount |
| // to the appropriate width. |
| SDValue Op0 = Node->getOperand(0); |
| SDValue Op1 = Node->getOperand(1); |
| SDValue Op2 = Node->getOperand(2); |
| if (!Op2.getValueType().isVector()) { |
| SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); |
| // The getShiftAmountOperand() may create a new operand node or |
| // return the existing one. If new operand is created we need |
| // to update the parent node. |
| if (SAO != Op2) |
| NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); |
| } |
| break; |
| } |
| } |
| |
| if (NewNode != Node) { |
| ReplaceNode(Node, NewNode); |
| Node = NewNode; |
| } |
| switch (Action) { |
| case TargetLowering::Legal: |
| LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); |
| return; |
| case TargetLowering::Custom: |
| LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); |
| // FIXME: The handling for custom lowering with multiple results is |
| // a complete mess. |
| if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { |
| if (!(Res.getNode() != Node || Res.getResNo() != 0)) |
| return; |
| |
| if (Node->getNumValues() == 1) { |
| LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); |
| // We can just directly replace this node with the lowered value. |
| ReplaceNode(SDValue(Node, 0), Res); |
| return; |
| } |
| |
| SmallVector<SDValue, 8> ResultVals; |
| for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) |
| ResultVals.push_back(Res.getValue(i)); |
| LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); |
| ReplaceNode(Node, ResultVals.data()); |
| return; |
| } |
| LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); |
| LLVM_FALLTHROUGH; |
| case TargetLowering::Expand: |
| if (ExpandNode(Node)) |
| return; |
| LLVM_FALLTHROUGH; |
| case TargetLowering::LibCall: |
| ConvertNodeToLibcall(Node); |
| return; |
| case TargetLowering::Promote: |
| PromoteNode(Node); |
| return; |
| } |
| } |
| |
| switch (Node->getOpcode()) { |
| default: |
| #ifndef NDEBUG |
| dbgs() << "NODE: "; |
| Node->dump( &DAG); |
| dbgs() << "\n"; |
| #endif |
| llvm_unreachable("Do not know how to legalize this operator!"); |
| |
| case ISD::CALLSEQ_START: |
| case ISD::CALLSEQ_END: |
| break; |
| case ISD::LOAD: |
| return LegalizeLoadOps(Node); |
| case ISD::STORE: |
| return LegalizeStoreOps(Node); |
| } |
| } |
| |
| SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { |
| SDValue Vec = Op.getOperand(0); |
| SDValue Idx = Op.getOperand(1); |
| SDLoc dl(Op); |
| |
| // Before we generate a new store to a temporary stack slot, see if there is |
| // already one that we can use. There often is because when we scalarize |
| // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole |
| // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in |
| // the vector. If all are expanded here, we don't want one store per vector |
| // element. |
| |
| // Caches for hasPredecessorHelper |
| SmallPtrSet<const SDNode *, 32> Visited; |
| SmallVector<const SDNode *, 16> Worklist; |
| Worklist.push_back(Idx.getNode()); |
| SDValue StackPtr, Ch; |
| for (SDNode::use_iterator UI = Vec.getNode()->use_begin(), |
| UE = Vec.getNode()->use_end(); UI != UE; ++UI) { |
| SDNode *User = *UI; |
| if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { |
| if (ST->isIndexed() || ST->isTruncatingStore() || |
| ST->getValue() != Vec) |
| continue; |
| |
| // Make sure that nothing else could have stored into the destination of |
| // this store. |
| if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) |
| continue; |
| |
| // If the index is dependent on the store we will introduce a cycle when |
| // creating the load (the load uses the index, and by replacing the chain |
| // we will make the index dependent on the load). Also, the store might be |
| // dependent on the extractelement and introduce a cycle when creating |
| // the load. |
| if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || |
| ST->hasPredecessor(Op.getNode())) |
| continue; |
| |
| StackPtr = ST->getBasePtr(); |
| Ch = SDValue(ST, 0); |
| break; |
| } |
| } |
| |
| EVT VecVT = Vec.getValueType(); |
| |
| if (!Ch.getNode()) { |
| // Store the value to a temporary stack slot, then LOAD the returned part. |
| StackPtr = DAG.CreateStackTemporary(VecVT); |
| Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, |
| MachinePointerInfo()); |
| } |
| |
| StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); |
| |
| SDValue NewLoad; |
| |
| if (Op.getValueType().isVector()) |
| NewLoad = |
| DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo()); |
| else |
| NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, |
| MachinePointerInfo(), |
| VecVT.getVectorElementType()); |
| |
| // Replace the chain going out of the store, by the one out of the load. |
| DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); |
| |
| // We introduced a cycle though, so update the loads operands, making sure |
| // to use the original store's chain as an incoming chain. |
| SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), |
| NewLoad->op_end()); |
| NewLoadOperands[0] = Ch; |
| NewLoad = |
| SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); |
| return NewLoad; |
| } |
| |
| SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { |
| assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); |
| |
| SDValue Vec = Op.getOperand(0); |
| SDValue Part = Op.getOperand(1); |
| SDValue Idx = Op.getOperand(2); |
| SDLoc dl(Op); |
| |
| // Store the value to a temporary stack slot, then LOAD the returned part. |
| EVT VecVT = Vec.getValueType(); |
| SDValue StackPtr = DAG.CreateStackTemporary(VecVT); |
| int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); |
| MachinePointerInfo PtrInfo = |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); |
| |
| // First store the whole vector. |
| SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); |
| |
| // Then store the inserted part. |
| SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); |
| |
| // Store the subvector. |
| Ch = DAG.getStore(Ch, dl, Part, SubStackPtr, MachinePointerInfo()); |
| |
| // Finally, load the updated vector. |
| return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); |
| } |
| |
| SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { |
| // We can't handle this case efficiently. Allocate a sufficiently |
| // aligned object on the stack, store each element into it, then load |
| // the result as a vector. |
| // Create the stack frame object. |
| EVT VT = Node->getValueType(0); |
| EVT EltVT = VT.getVectorElementType(); |
| SDLoc dl(Node); |
| SDValue FIPtr = DAG.CreateStackTemporary(VT); |
| int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); |
| MachinePointerInfo PtrInfo = |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); |
| |
| // Emit a store of each element to the stack slot. |
| SmallVector<SDValue, 8> Stores; |
| unsigned TypeByteSize = EltVT.getSizeInBits() / 8; |
| // Store (in the right endianness) the elements to memory. |
| for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { |
| // Ignore undef elements. |
| if (Node->getOperand(i).isUndef()) continue; |
| |
| unsigned Offset = TypeByteSize*i; |
| |
| SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType()); |
| Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); |
| |
| // If the destination vector element type is narrower than the source |
| // element type, only store the bits necessary. |
| if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { |
| Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, |
| Node->getOperand(i), Idx, |
| PtrInfo.getWithOffset(Offset), EltVT)); |
| } else |
| Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), |
| Idx, PtrInfo.getWithOffset(Offset))); |
| } |
| |
| SDValue StoreChain; |
| if (!Stores.empty()) // Not all undef elements? |
| StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); |
| else |
| StoreChain = DAG.getEntryNode(); |
| |
| // Result is a load from the stack slot. |
| return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); |
| } |
| |
| /// Bitcast a floating-point value to an integer value. Only bitcast the part |
| /// containing the sign bit if the target has no integer value capable of |
| /// holding all bits of the floating-point value. |
| void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, |
| const SDLoc &DL, |
| SDValue Value) const { |
| EVT FloatVT = Value.getValueType(); |
| unsigned NumBits = FloatVT.getSizeInBits(); |
| State.FloatVT = FloatVT; |
| EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); |
| // Convert to an integer of the same size. |
| if (TLI.isTypeLegal(IVT)) { |
| State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); |
| State.SignMask = APInt::getSignMask(NumBits); |
| State.SignBit = NumBits - 1; |
| return; |
| } |
| |
| auto &DataLayout = DAG.getDataLayout(); |
| // Store the float to memory, then load the sign part out as an integer. |
| MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); |
| // First create a temporary that is aligned for both the load and store. |
| SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); |
| int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); |
| // Then store the float to it. |
| State.FloatPtr = StackPtr; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); |
| State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, |
| State.FloatPointerInfo); |
| |
| SDValue IntPtr; |
| if (DataLayout.isBigEndian()) { |
| assert(FloatVT.isByteSized() && "Unsupported floating point type!"); |
| // Load out a legal integer with the same sign bit as the float. |
| IntPtr = StackPtr; |
| State.IntPointerInfo = State.FloatPointerInfo; |
| } else { |
| // Advance the pointer so that the loaded byte will contain the sign bit. |
| unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1; |
| IntPtr = DAG.getNode(ISD::ADD, DL, StackPtr.getValueType(), StackPtr, |
| DAG.getConstant(ByteOffset, DL, StackPtr.getValueType())); |
| State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, |
| ByteOffset); |
| } |
| |
| State.IntPtr = IntPtr; |
| State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, |
| State.IntPointerInfo, MVT::i8); |
| State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7); |
| State.SignBit = 7; |
| } |
| |
| /// Replace the integer value produced by getSignAsIntValue() with a new value |
| /// and cast the result back to a floating-point type. |
| SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, |
| const SDLoc &DL, |
| SDValue NewIntValue) const { |
| if (!State.Chain) |
| return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); |
| |
| // Override the part containing the sign bit in the value stored on the stack. |
| SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, |
| State.IntPointerInfo, MVT::i8); |
| return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, |
| State.FloatPointerInfo); |
| } |
| |
| SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { |
| SDLoc DL(Node); |
| SDValue Mag = Node->getOperand(0); |
| SDValue Sign = Node->getOperand(1); |
| |
| // Get sign bit into an integer value. |
| FloatSignAsInt SignAsInt; |
| getSignAsIntValue(SignAsInt, DL, Sign); |
| |
| EVT IntVT = SignAsInt.IntValue.getValueType(); |
| SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); |
| SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, |
| SignMask); |
| |
| // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) |
| EVT FloatVT = Mag.getValueType(); |
| if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && |
| TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { |
| SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); |
| SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); |
| SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, |
| DAG.getConstant(0, DL, IntVT), ISD::SETNE); |
| return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); |
| } |
| |
| // Transform Mag value to integer, and clear the sign bit. |
| FloatSignAsInt MagAsInt; |
| getSignAsIntValue(MagAsInt, DL, Mag); |
| EVT MagVT = MagAsInt.IntValue.getValueType(); |
| SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); |
| SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, |
| ClearSignMask); |
| |
| // Get the signbit at the right position for MagAsInt. |
| int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; |
| EVT ShiftVT = IntVT; |
| if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) { |
| SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); |
| ShiftVT = MagVT; |
| } |
| if (ShiftAmount > 0) { |
| SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); |
| SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); |
| } else if (ShiftAmount < 0) { |
| SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); |
| SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); |
| } |
| if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) { |
| SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); |
| } |
| |
| // Store the part with the modified sign and convert back to float. |
| SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); |
| return modifySignAsInt(MagAsInt, DL, CopiedSign); |
| } |
| |
| SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { |
| SDLoc DL(Node); |
| SDValue Value = Node->getOperand(0); |
| |
| // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. |
| EVT FloatVT = Value.getValueType(); |
| if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { |
| SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); |
| return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); |
| } |
| |
| // Transform value to integer, clear the sign bit and transform back. |
| FloatSignAsInt ValueAsInt; |
| getSignAsIntValue(ValueAsInt, DL, Value); |
| EVT IntVT = ValueAsInt.IntValue.getValueType(); |
| SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); |
| SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, |
| ClearSignMask); |
| return modifySignAsInt(ValueAsInt, DL, ClearedSign); |
| } |
| |
| void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, |
| SmallVectorImpl<SDValue> &Results) { |
| unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); |
| assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" |
| " not tell us which reg is the stack pointer!"); |
| SDLoc dl(Node); |
| EVT VT = Node->getValueType(0); |
| SDValue Tmp1 = SDValue(Node, 0); |
| SDValue Tmp2 = SDValue(Node, 1); |
| SDValue Tmp3 = Node->getOperand(2); |
| SDValue Chain = Tmp1.getOperand(0); |
| |
| // Chain the dynamic stack allocation so that it doesn't modify the stack |
| // pointer when other instructions are using the stack. |
| Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); |
| |
| SDValue Size = Tmp2.getOperand(1); |
| SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); |
| Chain = SP.getValue(1); |
| unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); |
| unsigned StackAlign = |
| DAG.getSubtarget().getFrameLowering()->getStackAlignment(); |
| Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value |
| if (Align > StackAlign) |
| Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, |
| DAG.getConstant(-(uint64_t)Align, dl, VT)); |
| Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain |
| |
| Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), |
| DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); |
| |
| Results.push_back(Tmp1); |
| Results.push_back(Tmp2); |
| } |
| |
| /// Legalize a SETCC with given LHS and RHS and condition code CC on the current |
| /// target. |
| /// |
| /// If the SETCC has been legalized using AND / OR, then the legalized node |
| /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert |
| /// will be set to false. |
| /// |
| /// If the SETCC has been legalized by using getSetCCSwappedOperands(), |
| /// then the values of LHS and RHS will be swapped, CC will be set to the |
| /// new condition, and NeedInvert will be set to false. |
| /// |
| /// If the SETCC has been legalized using the inverse condcode, then LHS and |
| /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert |
| /// will be set to true. The caller must invert the result of the SETCC with |
| /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect |
| /// of a true/false result. |
| /// |
| /// \returns true if the SetCC has been legalized, false if it hasn't. |
| bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, SDValue &LHS, |
| SDValue &RHS, SDValue &CC, |
| bool &NeedInvert, |
| const SDLoc &dl) { |
| MVT OpVT = LHS.getSimpleValueType(); |
| ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); |
| NeedInvert = false; |
| bool NeedSwap = false; |
| switch (TLI.getCondCodeAction(CCCode, OpVT)) { |
| default: llvm_unreachable("Unknown condition code action!"); |
| case TargetLowering::Legal: |
| // Nothing to do. |
| break; |
| case TargetLowering::Expand: { |
| ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); |
| if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { |
| std::swap(LHS, RHS); |
| CC = DAG.getCondCode(InvCC); |
| return true; |
| } |
| // Swapping operands didn't work. Try inverting the condition. |
| InvCC = getSetCCInverse(CCCode, OpVT.isInteger()); |
| if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { |
| // If inverting the condition is not enough, try swapping operands |
| // on top of it. |
| InvCC = ISD::getSetCCSwappedOperands(InvCC); |
| NeedSwap = true; |
| } |
| if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { |
| CC = DAG.getCondCode(InvCC); |
| NeedInvert = true; |
| if (NeedSwap) |
| std::swap(LHS, RHS); |
| return true; |
| } |
| |
| ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; |
| unsigned Opc = 0; |
| switch (CCCode) { |
| default: llvm_unreachable("Don't know how to expand this condition!"); |
| case ISD::SETO: |
| assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) |
| && "If SETO is expanded, SETOEQ must be legal!"); |
| CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break; |
| case ISD::SETUO: |
| assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT) |
| && "If SETUO is expanded, SETUNE must be legal!"); |
| CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break; |
| case ISD::SETOEQ: |
| case ISD::SETOGT: |
| case ISD::SETOGE: |
| case ISD::SETOLT: |
| case ISD::SETOLE: |
| case ISD::SETONE: |
| case ISD::SETUEQ: |
| case ISD::SETUNE: |
| case ISD::SETUGT: |
| case ISD::SETUGE: |
| case ISD::SETULT: |
| case ISD::SETULE: |
| // If we are floating point, assign and break, otherwise fall through. |
| if (!OpVT.isInteger()) { |
| // We can use the 4th bit to tell if we are the unordered |
| // or ordered version of the opcode. |
| CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; |
| Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; |
| CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); |
| break; |
| } |
| // Fallthrough if we are unsigned integer. |
| LLVM_FALLTHROUGH; |
| case ISD::SETLE: |
| case ISD::SETGT: |
| case ISD::SETGE: |
| case ISD::SETLT: |
| case ISD::SETNE: |
| case ISD::SETEQ: |
| // If all combinations of inverting the condition and swapping operands |
| // didn't work then we have no means to expand the condition. |
| llvm_unreachable("Don't know how to expand this condition!"); |
| } |
| |
| SDValue SetCC1, SetCC2; |
| if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { |
| // If we aren't the ordered or unorder operation, |
| // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). |
| SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); |
| SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); |
| } else { |
| // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) |
| SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1); |
| SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2); |
| } |
| LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); |
| RHS = SDValue(); |
| CC = SDValue(); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// Emit a store/load combination to the stack. This stores |
| /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does |
| /// a load from the stack slot to DestVT, extending it if needed. |
| /// The resultant code need not be legal. |
| SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, |
| EVT DestVT, const SDLoc &dl) { |
| // Create the stack frame object. |
| unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment( |
| SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); |
| SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); |
| |
| FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); |
| int SPFI = StackPtrFI->getIndex(); |
| MachinePointerInfo PtrInfo = |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); |
| |
| unsigned SrcSize = SrcOp.getValueSizeInBits(); |
| unsigned SlotSize = SlotVT.getSizeInBits(); |
| unsigned DestSize = DestVT.getSizeInBits(); |
| Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); |
| unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType); |
| |
| // Emit a store to the stack slot. Use a truncstore if the input value is |
| // later than DestVT. |
| SDValue Store; |
| |
| if (SrcSize > SlotSize) |
| Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, PtrInfo, |
| SlotVT, SrcAlign); |
| else { |
| assert(SrcSize == SlotSize && "Invalid store"); |
| Store = |
| DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, PtrInfo, SrcAlign); |
| } |
| |
| // Result is a load from the stack slot. |
| if (SlotSize == DestSize) |
| return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); |
| |
| assert(SlotSize < DestSize && "Unknown extension!"); |
| return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, |
| DestAlign); |
| } |
| |
| SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { |
| SDLoc dl(Node); |
| // Create a vector sized/aligned stack slot, store the value to element #0, |
| // then load the whole vector back out. |
| SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); |
| |
| FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); |
| int SPFI = StackPtrFI->getIndex(); |
| |
| SDValue Ch = DAG.getTruncStore( |
| DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), |
| Node->getValueType(0).getVectorElementType()); |
| return DAG.getLoad( |
| Node->getValueType(0), dl, Ch, StackPtr, |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); |
| } |
| |
| static bool |
| ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, |
| const TargetLowering &TLI, SDValue &Res) { |
| unsigned NumElems = Node->getNumOperands(); |
| SDLoc dl(Node); |
| EVT VT = Node->getValueType(0); |
| |
| // Try to group the scalars into pairs, shuffle the pairs together, then |
| // shuffle the pairs of pairs together, etc. until the vector has |
| // been built. This will work only if all of the necessary shuffle masks |
| // are legal. |
| |
| // We do this in two phases; first to check the legality of the shuffles, |
| // and next, assuming that all shuffles are legal, to create the new nodes. |
| for (int Phase = 0; Phase < 2; ++Phase) { |
| SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, |
| NewIntermedVals; |
| for (unsigned i = 0; i < NumElems; ++i) { |
| SDValue V = Node->getOperand(i); |
| if (V.isUndef()) |
| continue; |
| |
| SDValue Vec; |
| if (Phase) |
| Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); |
| IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); |
| } |
| |
| while (IntermedVals.size() > 2) { |
| NewIntermedVals.clear(); |
| for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { |
| // This vector and the next vector are shuffled together (simply to |
| // append the one to the other). |
| SmallVector<int, 16> ShuffleVec(NumElems, -1); |
| |
| SmallVector<int, 16> FinalIndices; |
| FinalIndices.reserve(IntermedVals[i].second.size() + |
| IntermedVals[i+1].second.size()); |
| |
| int k = 0; |
| for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; |
| ++j, ++k) { |
| ShuffleVec[k] = j; |
| FinalIndices.push_back(IntermedVals[i].second[j]); |
| } |
| for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; |
| ++j, ++k) { |
| ShuffleVec[k] = NumElems + j; |
| FinalIndices.push_back(IntermedVals[i+1].second[j]); |
| } |
| |
| SDValue Shuffle; |
| if (Phase) |
| Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, |
| IntermedVals[i+1].first, |
| ShuffleVec); |
| else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) |
| return false; |
| NewIntermedVals.push_back( |
| std::make_pair(Shuffle, std::move(FinalIndices))); |
| } |
| |
| // If we had an odd number of defined values, then append the last |
| // element to the array of new vectors. |
| if ((IntermedVals.size() & 1) != 0) |
| NewIntermedVals.push_back(IntermedVals.back()); |
| |
| IntermedVals.swap(NewIntermedVals); |
| } |
| |
| assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && |
| "Invalid number of intermediate vectors"); |
| SDValue Vec1 = IntermedVals[0].first; |
| SDValue Vec2; |
| if (IntermedVals.size() > 1) |
| Vec2 = IntermedVals[1].first; |
| else if (Phase) |
| Vec2 = DAG.getUNDEF(VT); |
| |
| SmallVector<int, 16> ShuffleVec(NumElems, -1); |
| for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) |
| ShuffleVec[IntermedVals[0].second[i]] = i; |
| for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) |
| ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; |
| |
| if (Phase) |
| Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); |
| else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// Expand a BUILD_VECTOR node on targets that don't |
| /// support the operation, but do support the resultant vector type. |
| SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { |
| unsigned NumElems = Node->getNumOperands(); |
| SDValue Value1, Value2; |
| SDLoc dl(Node); |
| EVT VT = Node->getValueType(0); |
| EVT OpVT = Node->getOperand(0).getValueType(); |
| EVT EltVT = VT.getVectorElementType(); |
| |
| // If the only non-undef value is the low element, turn this into a |
| // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. |
| bool isOnlyLowElement = true; |
| bool MoreThanTwoValues = false; |
| bool isConstant = true; |
| for (unsigned i = 0; i < NumElems; ++i) { |
| SDValue V = Node->getOperand(i); |
| if (V.isUndef()) |
| continue; |
| if (i > 0) |
| isOnlyLowElement = false; |
| if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) |
| isConstant = false; |
| |
| if (!Value1.getNode()) { |
| Value1 = V; |
| } else if (!Value2.getNode()) { |
| if (V != Value1) |
| Value2 = V; |
| } else if (V != Value1 && V != Value2) { |
| MoreThanTwoValues = true; |
| } |
| } |
| |
| if (!Value1.getNode()) |
| return DAG.getUNDEF(VT); |
| |
| if (isOnlyLowElement) |
| return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); |
| |
| // If all elements are constants, create a load from the constant pool. |
| if (isConstant) { |
| SmallVector<Constant*, 16> CV; |
| for (unsigned i = 0, e = NumElems; i != e; ++i) { |
| if (ConstantFPSDNode *V = |
| dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { |
| CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); |
| } else if (ConstantSDNode *V = |
| dyn_cast<ConstantSDNode>(Node->getOperand(i))) { |
| if (OpVT==EltVT) |
| CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); |
| else { |
| // If OpVT and EltVT don't match, EltVT is not legal and the |
| // element values have been promoted/truncated earlier. Undo this; |
| // we don't want a v16i8 to become a v16i32 for example. |
| const ConstantInt *CI = V->getConstantIntValue(); |
| CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), |
| CI->getZExtValue())); |
| } |
| } else { |
| assert(Node->getOperand(i).isUndef()); |
| Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); |
| CV.push_back(UndefValue::get(OpNTy)); |
| } |
| } |
| Constant *CP = ConstantVector::get(CV); |
| SDValue CPIdx = |
| DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); |
| unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); |
| return DAG.getLoad( |
| VT, dl, DAG.getEntryNode(), CPIdx, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), |
| Alignment); |
| } |
| |
| SmallSet<SDValue, 16> DefinedValues; |
| for (unsigned i = 0; i < NumElems; ++i) { |
| if (Node->getOperand(i).isUndef()) |
| continue; |
| DefinedValues.insert(Node->getOperand(i)); |
| } |
| |
| if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { |
| if (!MoreThanTwoValues) { |
| SmallVector<int, 8> ShuffleVec(NumElems, -1); |
| for (unsigned i = 0; i < NumElems; ++i) { |
| SDValue V = Node->getOperand(i); |
| if (V.isUndef()) |
| continue; |
| ShuffleVec[i] = V == Value1 ? 0 : NumElems; |
| } |
| if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { |
| // Get the splatted value into the low element of a vector register. |
| SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); |
| SDValue Vec2; |
| if (Value2.getNode()) |
| Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); |
| else |
| Vec2 = DAG.getUNDEF(VT); |
| |
| // Return shuffle(LowValVec, undef, <0,0,0,0>) |
| return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); |
| } |
| } else { |
| SDValue Res; |
| if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) |
| return Res; |
| } |
| } |
| |
| // Otherwise, we can't handle this case efficiently. |
| return ExpandVectorBuildThroughStack(Node); |
| } |
| |
| // Expand a node into a call to a libcall. If the result value |
| // does not fit into a register, return the lo part and set the hi part to the |
| // by-reg argument. If it does fit into a single register, return the result |
| // and leave the Hi part unset. |
| SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, |
| bool isSigned) { |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| for (const SDValue &Op : Node->op_values()) { |
| EVT ArgVT = Op.getValueType(); |
| Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); |
| Entry.Node = Op; |
| Entry.Ty = ArgTy; |
| Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); |
| Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); |
| Args.push_back(Entry); |
| } |
| SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), |
| TLI.getPointerTy(DAG.getDataLayout())); |
| |
| EVT RetVT = Node->getValueType(0); |
| Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); |
| |
| // By default, the input chain to this libcall is the entry node of the |
| // function. If the libcall is going to be emitted as a tail call then |
| // TLI.isUsedByReturnOnly will change it to the right chain if the return |
| // node which is being folded has a non-entry input chain. |
| SDValue InChain = DAG.getEntryNode(); |
| |
| // isTailCall may be true since the callee does not reference caller stack |
| // frame. Check if it's in the right position and that the return types match. |
| SDValue TCChain = InChain; |
| const Function &F = DAG.getMachineFunction().getFunction(); |
| bool isTailCall = |
| TLI.isInTailCallPosition(DAG, Node, TCChain) && |
| (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); |
| if (isTailCall) |
| InChain = TCChain; |
| |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); |
| CLI.setDebugLoc(SDLoc(Node)) |
| .setChain(InChain) |
| .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, |
| std::move(Args)) |
| .setTailCall(isTailCall) |
| .setSExtResult(signExtend) |
| .setZExtResult(!signExtend) |
| .setIsPostTypeLegalization(true); |
| |
| std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); |
| |
| if (!CallInfo.second.getNode()) { |
| LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump()); |
| // It's a tailcall, return the chain (which is the DAG root). |
| return DAG.getRoot(); |
| } |
| |
| LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump()); |
| return CallInfo.first; |
| } |
| |
| /// Generate a libcall taking the given operands as arguments |
| /// and returning a result of type RetVT. |
| SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, |
| const SDValue *Ops, unsigned NumOps, |
| bool isSigned, const SDLoc &dl) { |
| TargetLowering::ArgListTy Args; |
| Args.reserve(NumOps); |
| |
| TargetLowering::ArgListEntry Entry; |
| for (unsigned i = 0; i != NumOps; ++i) { |
| Entry.Node = Ops[i]; |
| Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); |
| Entry.IsSExt = isSigned; |
| Entry.IsZExt = !isSigned; |
| Args.push_back(Entry); |
| } |
| SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), |
| TLI.getPointerTy(DAG.getDataLayout())); |
| |
| Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); |
| |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| CLI.setDebugLoc(dl) |
| .setChain(DAG.getEntryNode()) |
| .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, |
| std::move(Args)) |
| .setSExtResult(isSigned) |
| .setZExtResult(!isSigned) |
| .setIsPostTypeLegalization(true); |
| |
| std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI); |
| |
| return CallInfo.first; |
| } |
| |
| // Expand a node into a call to a libcall. Similar to |
| // ExpandLibCall except that the first operand is the in-chain. |
| std::pair<SDValue, SDValue> |
| SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC, |
| SDNode *Node, |
| bool isSigned) { |
| SDValue InChain = Node->getOperand(0); |
| |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) { |
| EVT ArgVT = Node->getOperand(i).getValueType(); |
| Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); |
| Entry.Node = Node->getOperand(i); |
| Entry.Ty = ArgTy; |
| Entry.IsSExt = isSigned; |
| Entry.IsZExt = !isSigned; |
| Args.push_back(Entry); |
| } |
| SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), |
| TLI.getPointerTy(DAG.getDataLayout())); |
| |
| Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); |
| |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| CLI.setDebugLoc(SDLoc(Node)) |
| .setChain(InChain) |
| .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, |
| std::move(Args)) |
| .setSExtResult(isSigned) |
| .setZExtResult(!isSigned); |
| |
| std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); |
| |
| return CallInfo; |
| } |
| |
| SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, |
| RTLIB::Libcall Call_F32, |
| RTLIB::Libcall Call_F64, |
| RTLIB::Libcall Call_F80, |
| RTLIB::Libcall Call_F128, |
| RTLIB::Libcall Call_PPCF128) { |
| if (Node->isStrictFPOpcode()) |
| Node = DAG.mutateStrictFPToFP(Node); |
| |
| RTLIB::Libcall LC; |
| switch (Node->getSimpleValueType(0).SimpleTy) { |
| default: llvm_unreachable("Unexpected request for libcall!"); |
| case MVT::f32: LC = Call_F32; break; |
| case MVT::f64: LC = Call_F64; break; |
| case MVT::f80: LC = Call_F80; break; |
| case MVT::f128: LC = Call_F128; break; |
| case MVT::ppcf128: LC = Call_PPCF128; break; |
| } |
| return ExpandLibCall(LC, Node, false); |
| } |
| |
| SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, |
| RTLIB::Libcall Call_I8, |
| RTLIB::Libcall Call_I16, |
| RTLIB::Libcall Call_I32, |
| RTLIB::Libcall Call_I64, |
| RTLIB::Libcall Call_I128) { |
| RTLIB::Libcall LC; |
| switch (Node->getSimpleValueType(0).SimpleTy) { |
| default: llvm_unreachable("Unexpected request for libcall!"); |
| case MVT::i8: LC = Call_I8; break; |
| case MVT::i16: LC = Call_I16; break; |
| case MVT::i32: LC = Call_I32; break; |
| case MVT::i64: LC = Call_I64; break; |
| case MVT::i128: LC = Call_I128; break; |
| } |
| return ExpandLibCall(LC, Node, isSigned); |
| } |
| |
| /// Issue libcalls to __{u}divmod to compute div / rem pairs. |
| void |
| SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, |
| SmallVectorImpl<SDValue> &Results) { |
| unsigned Opcode = Node->getOpcode(); |
| bool isSigned = Opcode == ISD::SDIVREM; |
| |
| RTLIB::Libcall LC; |
| switch (Node->getSimpleValueType(0).SimpleTy) { |
| default: llvm_unreachable("Unexpected request for libcall!"); |
| case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; |
| case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; |
| case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; |
| case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; |
| case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; |
| } |
| |
| // The input chain to this libcall is the entry node of the function. |
| // Legalizing the call will automatically add the previous call to the |
| // dependence. |
| SDValue InChain = DAG.getEntryNode(); |
| |
| EVT RetVT = Node->getValueType(0); |
| Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); |
| |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| for (const SDValue &Op : Node->op_values()) { |
| EVT ArgVT = Op.getValueType(); |
| Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); |
| Entry.Node = Op; |
| Entry.Ty = ArgTy; |
| Entry.IsSExt = isSigned; |
| Entry.IsZExt = !isSigned; |
| Args.push_back(Entry); |
| } |
| |
| // Also pass the return address of the remainder. |
| SDValue FIPtr = DAG.CreateStackTemporary(RetVT); |
| Entry.Node = FIPtr; |
| Entry.Ty = RetTy->getPointerTo(); |
| Entry.IsSExt = isSigned; |
| Entry.IsZExt = !isSigned; |
| Args.push_back(Entry); |
| |
| SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), |
| TLI.getPointerTy(DAG.getDataLayout())); |
| |
| SDLoc dl(Node); |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| CLI.setDebugLoc(dl) |
| .setChain(InChain) |
| .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, |
| std::move(Args)) |
| .setSExtResult(isSigned) |
| .setZExtResult(!isSigned); |
| |
| std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); |
| |
| // Remainder is loaded back from the stack frame. |
| SDValue Rem = |
| DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); |
| Results.push_back(CallInfo.first); |
| Results.push_back(Rem); |
| } |
| |
| /// Return true if sincos libcall is available. |
| static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { |
| RTLIB::Libcall LC; |
| switch (Node->getSimpleValueType(0).SimpleTy) { |
| default: llvm_unreachable("Unexpected request for libcall!"); |
| case MVT::f32: LC = RTLIB::SINCOS_F32; break; |
| case MVT::f64: LC = RTLIB::SINCOS_F64; break; |
| case MVT::f80: LC = RTLIB::SINCOS_F80; break; |
| case MVT::f128: LC = RTLIB::SINCOS_F128; break; |
| case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; |
| } |
| return TLI.getLibcallName(LC) != nullptr; |
| } |
| |
| /// Only issue sincos libcall if both sin and cos are needed. |
| static bool useSinCos(SDNode *Node) { |
| unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN |
| ? ISD::FCOS : ISD::FSIN; |
| |
| SDValue Op0 = Node->getOperand(0); |
| for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), |
| UE = Op0.getNode()->use_end(); UI != UE; ++UI) { |
| SDNode *User = *UI; |
| if (User == Node) |
| continue; |
| // The other user might have been turned into sincos already. |
| if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) |
| return true; |
| } |
| return false; |
| } |
| |
| /// Issue libcalls to sincos to compute sin / cos pairs. |
| void |
| SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, |
| SmallVectorImpl<SDValue> &Results) { |
| RTLIB::Libcall LC; |
| switch (Node->getSimpleValueType(0).SimpleTy) { |
| default: llvm_unreachable("Unexpected request for libcall!"); |
| case MVT::f32: LC = RTLIB::SINCOS_F32; break; |
| case MVT::f64: LC = RTLIB::SINCOS_F64; break; |
| case MVT::f80: LC = RTLIB::SINCOS_F80; break; |
| case MVT::f128: LC = RTLIB::SINCOS_F128; break; |
| case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; |
| } |
| |
| // The input chain to this libcall is the entry node of the function. |
| // Legalizing the call will automatically add the previous call to the |
| // dependence. |
| SDValue InChain = DAG.getEntryNode(); |
| |
| EVT RetVT = Node->getValueType(0); |
| Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); |
| |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| |
| // Pass the argument. |
| Entry.Node = Node->getOperand(0); |
| Entry.Ty = RetTy; |
| Entry.IsSExt = false; |
| Entry.IsZExt = false; |
| Args.push_back(Entry); |
| |
| // Pass the return address of sin. |
| SDValue SinPtr = DAG.CreateStackTemporary(RetVT); |
| Entry.Node = SinPtr; |
| Entry.Ty = RetTy->getPointerTo(); |
| Entry.IsSExt = false; |
| Entry.IsZExt = false; |
| Args.push_back(Entry); |
| |
| // Also pass the return address of the cos. |
| SDValue CosPtr = DAG.CreateStackTemporary(RetVT); |
| Entry.Node = CosPtr; |
| Entry.Ty = RetTy->getPointerTo(); |
| Entry.IsSExt = false; |
| Entry.IsZExt = false; |
| Args.push_back(Entry); |
| |
| SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), |
| TLI.getPointerTy(DAG.getDataLayout())); |
| |
| SDLoc dl(Node); |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( |
| TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, |
| std::move(Args)); |
| |
| std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); |
| |
| Results.push_back( |
| DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); |
| Results.push_back( |
| DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); |
| } |
| |
| /// This function is responsible for legalizing a |
| /// INT_TO_FP operation of the specified operand when the target requests that |
| /// we expand it. At this point, we know that the result and operand types are |
| /// legal for the target. |
| SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0, |
| EVT DestVT, |
| const SDLoc &dl) { |
| // TODO: Should any fast-math-flags be set for the created nodes? |
| LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); |
| if (Op0.getValueType() == MVT::i32 && TLI.isTypeLegal(MVT::f64)) { |
| LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " |
| "expansion\n"); |
| |
| // Get the stack frame index of a 8 byte buffer. |
| SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); |
| |
| // word offset constant for Hi/Lo address computation |
| SDValue WordOff = DAG.getConstant(sizeof(int), dl, |
| StackSlot.getValueType()); |
| // set up Hi and Lo (into buffer) address based on endian |
| SDValue Hi = StackSlot; |
| SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(), |
| StackSlot, WordOff); |
| if (DAG.getDataLayout().isLittleEndian()) |
| std::swap(Hi, Lo); |
| |
| // if signed map to unsigned space |
| SDValue Op0Mapped; |
| if (isSigned) { |
| // constant used to invert sign bit (signed to unsigned mapping) |
| SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32); |
| Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); |
| } else { |
| Op0Mapped = Op0; |
| } |
| // store the lo of the constructed double - based on integer input |
| SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op0Mapped, Lo, |
| MachinePointerInfo()); |
| // initial hi portion of constructed double |
| SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32); |
| // store the hi of the constructed double - biased exponent |
| SDValue Store2 = |
| DAG.getStore(Store1, dl, InitialHi, Hi, MachinePointerInfo()); |
| // load the constructed double |
| SDValue Load = |
| DAG.getLoad(MVT::f64, dl, Store2, StackSlot, MachinePointerInfo()); |
| // FP constant to bias correct the final result |
| SDValue Bias = DAG.getConstantFP(isSigned ? |
| BitsToDouble(0x4330000080000000ULL) : |
| BitsToDouble(0x4330000000000000ULL), |
| dl, MVT::f64); |
| // subtract the bias |
| SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); |
| // final result |
| SDValue Result; |
| // handle final rounding |
| if (DestVT == MVT::f64) { |
| // do nothing |
| Result = Sub; |
| } else if (DestVT.bitsLT(MVT::f64)) { |
| Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, |
| DAG.getIntPtrConstant(0, dl)); |
| } else if (DestVT.bitsGT(MVT::f64)) { |
| Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); |
| } |
| return Result; |
| } |
| assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); |
| // Code below here assumes !isSigned without checking again. |
| |
| // Implementation of unsigned i64 to f64 following the algorithm in |
| // __floatundidf in compiler_rt. This implementation has the advantage |
| // of performing rounding correctly, both in the default rounding mode |
| // and in all alternate rounding modes. |
| // TODO: Generalize this for use with other types. |
| if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) { |
| LLVM_DEBUG(dbgs() << "Converting unsigned i64 to f64\n"); |
| SDValue TwoP52 = |
| DAG.getConstant(UINT64_C(0x4330000000000000), dl, MVT::i64); |
| SDValue TwoP84PlusTwoP52 = |
| DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), dl, |
| MVT::f64); |
| SDValue TwoP84 = |
| DAG.getConstant(UINT64_C(0x4530000000000000), dl, MVT::i64); |
| |
| SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32); |
| SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, |
| DAG.getConstant(32, dl, MVT::i64)); |
| SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52); |
| SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84); |
| SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr); |
| SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr); |
| SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt, |
| TwoP84PlusTwoP52); |
| return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub); |
| } |
| |
| // TODO: Generalize this for use with other types. |
| if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) { |
| LLVM_DEBUG(dbgs() << "Converting unsigned i64 to f32\n"); |
| // For unsigned conversions, convert them to signed conversions using the |
| // algorithm from the x86_64 __floatundidf in compiler_rt. |
| if (!isSigned) { |
| SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0); |
| |
| SDValue ShiftConst = DAG.getConstant( |
| 1, dl, TLI.getShiftAmountTy(Op0.getValueType(), DAG.getDataLayout())); |
| SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst); |
| SDValue AndConst = DAG.getConstant(1, dl, MVT::i64); |
| SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst); |
| SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr); |
| |
| SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or); |
| SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt); |
| |
| // TODO: This really should be implemented using a branch rather than a |
| // select. We happen to get lucky and machinesink does the right |
| // thing most of the time. This would be a good candidate for a |
| //pseudo-op, or, even better, for whole-function isel. |
| SDValue SignBitTest = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), |
| Op0, DAG.getConstant(0, dl, MVT::i64), ISD::SETLT); |
| return DAG.getSelect(dl, MVT::f32, SignBitTest, Slow, Fast); |
| } |
| |
| // Otherwise, implement the fully general conversion. |
| |
| SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, |
| DAG.getConstant(UINT64_C(0xfffffffffffff800), dl, MVT::i64)); |
| SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, |
| DAG.getConstant(UINT64_C(0x800), dl, MVT::i64)); |
| SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, |
| DAG.getConstant(UINT64_C(0x7ff), dl, MVT::i64)); |
| SDValue Ne = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), And2, |
| DAG.getConstant(UINT64_C(0), dl, MVT::i64), |
| ISD::SETNE); |
| SDValue Sel = DAG.getSelect(dl, MVT::i64, Ne, Or, Op0); |
| SDValue Ge = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), Op0, |
| DAG.getConstant(UINT64_C(0x0020000000000000), dl, |
| MVT::i64), |
| ISD::SETUGE); |
| SDValue Sel2 = DAG.getSelect(dl, MVT::i64, Ge, Sel, Op0); |
| EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType(), DAG.getDataLayout()); |
| |
| SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2, |
| DAG.getConstant(32, dl, SHVT)); |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh); |
| SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc); |
| SDValue TwoP32 = |
| DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), dl, |
| MVT::f64); |
| SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt); |
| SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2); |
| SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo); |
| SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2); |
| return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd, |
| DAG.getIntPtrConstant(0, dl)); |
| } |
| |
| SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); |
| |
| SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(Op0.getValueType()), |
| Op0, |
| DAG.getConstant(0, dl, Op0.getValueType()), |
| ISD::SETLT); |
| SDValue Zero = DAG.getIntPtrConstant(0, dl), |
| Four = DAG.getIntPtrConstant(4, dl); |
| SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), |
| SignSet, Four, Zero); |
| |
| // If the sign bit of the integer is set, the large number will be treated |
| // as a negative number. To counteract this, the dynamic code adds an |
| // offset depending on the data type. |
| uint64_t FF; |
| switch (Op0.getSimpleValueType().SimpleTy) { |
| default: llvm_unreachable("Unsupported integer type!"); |
| case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) |
| case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) |
| case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) |
| case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) |
| } |
| if (DAG.getDataLayout().isLittleEndian()) |
| FF <<= 32; |
| Constant *FudgeFactor = ConstantInt::get( |
| Type::getInt64Ty(*DAG.getContext()), FF); |
| |
| SDValue CPIdx = |
| DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); |
| unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); |
| CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); |
| Alignment = std::min(Alignment, 4u); |
| SDValue FudgeInReg; |
| if (DestVT == MVT::f32) |
| FudgeInReg = DAG.getLoad( |
| MVT::f32, dl, DAG.getEntryNode(), CPIdx, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), |
| Alignment); |
| else { |
| SDValue Load = DAG.getExtLoad( |
| ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, |
| Alignment); |
| HandleSDNode Handle(Load); |
| LegalizeOp(Load.getNode()); |
| FudgeInReg = Handle.getValue(); |
| } |
| |
| return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); |
| } |
| |
| /// This function is responsible for legalizing a |
| /// *INT_TO_FP operation of the specified operand when the target requests that |
| /// we promote it. At this point, we know that the result and operand types are |
| /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP |
| /// operation that takes a larger input. |
| SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, |
| bool isSigned, |
| const SDLoc &dl) { |
| // First step, figure out the appropriate *INT_TO_FP operation to use. |
| EVT NewInTy = LegalOp.getValueType(); |
| |
| unsigned OpToUse = 0; |
| |
| // Scan for the appropriate larger type to use. |
| while (true) { |
| NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); |
| assert(NewInTy.isInteger() && "Ran out of possibilities!"); |
| |
| // If the target supports SINT_TO_FP of this type, use it. |
| if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) { |
| OpToUse = ISD::SINT_TO_FP; |
| break; |
| } |
| if (isSigned) continue; |
| |
| // If the target supports UINT_TO_FP of this type, use it. |
| if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) { |
| OpToUse = ISD::UINT_TO_FP; |
| break; |
| } |
| |
| // Otherwise, try a larger type. |
| } |
| |
| // Okay, we found the operation and type to use. Zero extend our input to the |
| // desired type then run the operation on it. |
| return DAG.getNode(OpToUse, dl, DestVT, |
| DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, |
| dl, NewInTy, LegalOp)); |
| } |
| |
| /// This function is responsible for legalizing a |
| /// FP_TO_*INT operation of the specified operand when the target requests that |
| /// we promote it. At this point, we know that the result and operand types are |
| /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT |
| /// operation that returns a larger result. |
| SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, |
| bool isSigned, |
| const SDLoc &dl) { |
| // First step, figure out the appropriate FP_TO*INT operation to use. |
| EVT NewOutTy = DestVT; |
| |
| unsigned OpToUse = 0; |
| |
| // Scan for the appropriate larger type to use. |
| while (true) { |
| NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); |
| assert(NewOutTy.isInteger() && "Ran out of possibilities!"); |
| |
| // A larger signed type can hold all unsigned values of the requested type, |
| // so using FP_TO_SINT is valid |
| if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) { |
| OpToUse = ISD::FP_TO_SINT; |
| break; |
| } |
| |
| // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. |
| if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) { |
| OpToUse = ISD::FP_TO_UINT; |
| break; |
| } |
| |
| // Otherwise, try a larger type. |
| } |
| |
| // Okay, we found the operation and type to use. |
| SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); |
| |
| // Truncate the result of the extended FP_TO_*INT operation to the desired |
| // size. |
| return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); |
| } |
| |
| /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts. |
| SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) { |
| EVT VT = Op.getValueType(); |
| EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); |
| unsigned Sz = VT.getScalarSizeInBits(); |
| |
| SDValue Tmp, Tmp2, Tmp3; |
| |
| // If we can, perform BSWAP first and then the mask+swap the i4, then i2 |
| // and finally the i1 pairs. |
| // TODO: We can easily support i4/i2 legal types if any target ever does. |
| if (Sz >= 8 && isPowerOf2_32(Sz)) { |
| // Create the masks - repeating the pattern every byte. |
| APInt MaskHi4(Sz, 0), MaskHi2(Sz, 0), MaskHi1(Sz, 0); |
| APInt MaskLo4(Sz, 0), MaskLo2(Sz, 0), MaskLo1(Sz, 0); |
| for (unsigned J = 0; J != Sz; J += 8) { |
| MaskHi4 = MaskHi4 | (0xF0ull << J); |
| MaskLo4 = MaskLo4 | (0x0Full << J); |
| MaskHi2 = MaskHi2 | (0xCCull << J); |
| MaskLo2 = MaskLo2 | (0x33ull << J); |
| MaskHi1 = MaskHi1 | (0xAAull << J); |
| MaskLo1 = MaskLo1 | (0x55ull << J); |
| } |
| |
| // BSWAP if the type is wider than a single byte. |
| Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); |
| |
| // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4) |
| Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT)); |
| Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT)); |
| Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, VT)); |
| Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, VT)); |
| Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); |
| |
| // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2) |
| Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT)); |
| Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT)); |
| Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, VT)); |
| Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, VT)); |
| Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); |
| |
| // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1) |
| Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT)); |
| Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT)); |
| Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, VT)); |
| Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, VT)); |
| Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); |
| return Tmp; |
| } |
| |
| Tmp = DAG.getConstant(0, dl, VT); |
| for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { |
| if (I < J) |
| Tmp2 = |
| DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); |
| else |
| Tmp2 = |
| DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); |
| |
| APInt Shift(Sz, 1); |
| Shift <<= J; |
| Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); |
| Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); |
| } |
| |
| return Tmp; |
| } |
| |
| /// Open code the operations for BSWAP of the specified operation. |
| SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) { |
| EVT VT = Op.getValueType(); |
| EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); |
| SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; |
| switch (VT.getSimpleVT().getScalarType().SimpleTy) { |
| default: llvm_unreachable("Unhandled Expand type in BSWAP!"); |
| case MVT::i16: |
| Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); |
| Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); |
| return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); |
| case MVT::i32: |
| Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); |
| Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); |
| Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); |
| Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); |
| Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, |
| DAG.getConstant(0xFF0000, dl, VT)); |
| Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); |
| Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); |
| Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); |
| return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); |
| case MVT::i64: |
| Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); |
| Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); |
| Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); |
| Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); |
| Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); |
| Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); |
| Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); |
| Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); |
| Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, |
| DAG.getConstant(255ULL<<48, dl, VT)); |
| Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, |
| DAG.getConstant(255ULL<<40, dl, VT)); |
| Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, |
| DAG.getConstant(255ULL<<32, dl, VT)); |
| Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, |
| DAG.getConstant(255ULL<<24, dl, VT)); |
| Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, |
| DAG.getConstant(255ULL<<16, dl, VT)); |
| Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, |
| DAG.getConstant(255ULL<<8 , dl, VT)); |
| Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); |
| Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); |
| Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); |
| Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); |
| Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); |
| Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); |
| return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); |
| } |
| } |
| |
| /// Expand the specified bitcount instruction into operations. |
| SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op, |
| const SDLoc &dl) { |
| switch (Opc) { |
| default: llvm_unreachable("Cannot expand this yet!"); |
| case ISD::CTPOP: { |
| EVT VT = Op.getValueType(); |
| EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); |
| unsigned Len = VT.getSizeInBits(); |
| |
| assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 && |
| "CTPOP not implemented for this type."); |
| |
| // This is the "best" algorithm from |
| // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel |
| |
| SDValue Mask55 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), |
| dl, VT); |
| SDValue Mask33 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), |
| dl, VT); |
| SDValue Mask0F = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), |
| dl, VT); |
| SDValue Mask01 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), |
| dl, VT); |
| |
| // v = v - ((v >> 1) & 0x55555555...) |
| Op = DAG.getNode(ISD::SUB, dl, VT, Op, |
| DAG.getNode(ISD::AND, dl, VT, |
| DAG.getNode(ISD::SRL, dl, VT, Op, |
| DAG.getConstant(1, dl, ShVT)), |
| Mask55)); |
| // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) |
| Op = DAG.getNode(ISD::ADD, dl, VT, |
| DAG.getNode(ISD::AND, dl, VT, Op, Mask33), |
| DAG.getNode(ISD::AND, dl, VT, |
| DAG.getNode(ISD::SRL, dl, VT, Op, |
| DAG.getConstant(2, dl, ShVT)), |
| Mask33)); |
| // v = (v + (v >> 4)) & 0x0F0F0F0F... |
| Op = DAG.getNode(ISD::AND, dl, VT, |
| DAG.getNode(ISD::ADD, dl, VT, Op, |
| DAG.getNode(ISD::SRL, dl, VT, Op, |
| DAG.getConstant(4, dl, ShVT))), |
| Mask0F); |
| // v = (v * 0x01010101...) >> (Len - 8) |
| Op = DAG.getNode(ISD::SRL, dl, VT, |
| DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), |
| DAG.getConstant(Len - 8, dl, ShVT)); |
| |
| return Op; |
| } |
| case ISD::CTLZ_ZERO_UNDEF: |
| // This trivially expands to CTLZ. |
| return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op); |
| case ISD::CTLZ: { |
| EVT VT = Op.getValueType(); |
| unsigned Len = VT.getSizeInBits(); |
| |
| if (TLI.isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { |
| EVT SetCCVT = getSetCCResultType(VT); |
| SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); |
| SDValue Zero = DAG.getConstant(0, dl, VT); |
| SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); |
| return DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, |
| DAG.getConstant(Len, dl, VT), CTLZ); |
| } |
| |
| // for now, we do this: |
| // x = x | (x >> 1); |
| // x = x | (x >> 2); |
| // ... |
| // x = x | (x >>16); |
| // x = x | (x >>32); // for 64-bit input |
| // return popcount(~x); |
| // |
| // Ref: "Hacker's Delight" by Henry Warren |
| EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); |
| for (unsigned i = 0; (1U << i) <= (Len / 2); ++i) { |
| SDValue Tmp3 = DAG.getConstant(1ULL << i, dl, ShVT); |
| Op = DAG.getNode(ISD::OR, dl, VT, Op, |
| DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3)); |
| } |
| Op = DAG.getNOT(dl, Op, VT); |
| return DAG.getNode(ISD::CTPOP, dl, VT, Op); |
| } |
| case ISD::CTTZ_ZERO_UNDEF: |
| // This trivially expands to CTTZ. |
| return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op); |
| case ISD::CTTZ: { |
| EVT VT = Op.getValueType(); |
| unsigned Len = VT.getSizeInBits(); |
| |
| if (TLI.isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { |
| EVT SetCCVT = getSetCCResultType(VT); |
| SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); |
| SDValue Zero = DAG.getConstant(0, dl, VT); |
| SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); |
| return DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, |
| DAG.getConstant(Len, dl, VT), CTTZ); |
| } |
| |
| // for now, we use: { return popcount(~x & (x - 1)); } |
| // unless the target has ctlz but not ctpop, in which case we use: |
| // { return 32 - nlz(~x & (x-1)); } |
| // Ref: "Hacker's Delight" by Henry Warren |
| SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT, |
| DAG.getNOT(dl, Op, VT), |
| DAG.getNode(ISD::SUB, dl, VT, Op, |
| DAG.getConstant(1, dl, VT))); |
| // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. |
| if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && |
| TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) |
| return DAG.getNode(ISD::SUB, dl, VT, |
| DAG.getConstant(VT.getSizeInBits(), dl, VT), |
| DAG.getNode(ISD::CTLZ, dl, VT, Tmp3)); |
| return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3); |
| } |
| } |
| } |
| |
| bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { |
| LLVM_DEBUG(dbgs() << "Trying to expand node\n"); |
| SmallVector<SDValue, 8> Results; |
| SDLoc dl(Node); |
| SDValue Tmp1, Tmp2, Tmp3, Tmp4; |
| bool NeedInvert; |
| switch (Node->getOpcode()) { |
| case ISD::CTPOP: |
| case ISD::CTLZ: |
| case ISD::CTLZ_ZERO_UNDEF: |
| case ISD::CTTZ: |
| case ISD::CTTZ_ZERO_UNDEF: |
| Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl); |
| Results.push_back(Tmp1); |
| break; |
| case ISD::BITREVERSE: |
| Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl)); |
| break; |
| case ISD::BSWAP: |
| Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); |
| break; |
| case ISD::FRAMEADDR: |
| case ISD::RETURNADDR: |
| case ISD::FRAME_TO_ARGS_OFFSET: |
| Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); |
| break; |
| case ISD::EH_DWARF_CFA: { |
| SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, |
| TLI.getPointerTy(DAG.getDataLayout())); |
| SDValue Offset = DAG.getNode(ISD::ADD, dl, |
| CfaArg.getValueType(), |
| DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, |
| CfaArg.getValueType()), |
| CfaArg); |
| SDValue FA = DAG.getNode( |
| ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), |
| DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); |
| Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), |
| FA, Offset)); |
| break; |
| } |
| case ISD::FLT_ROUNDS_: |
| Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); |
| break; |
| case ISD::EH_RETURN: |
| case ISD::EH_LABEL: |
| case ISD::PREFETCH: |
| case ISD::VAEND: |
| case ISD::EH_SJLJ_LONGJMP: |
| // If the target didn't expand these, there's nothing to do, so just |
| // preserve the chain and be done. |
| Results.push_back(Node->getOperand(0)); |
| break; |
| case ISD::READCYCLECOUNTER: |
| // If the target didn't expand this, just return 'zero' and preserve the |
| // chain. |
| Results.append(Node->getNumValues() - 1, |
| DAG.getConstant(0, dl, Node->getValueType(0))); |
| Results.push_back(Node->getOperand(0)); |
| break; |
| case ISD::EH_SJLJ_SETJMP: |
| // If the target didn't expand this, just return 'zero' and preserve the |
| // chain. |
| Results.push_back(DAG.getConstant(0, dl, MVT::i32)); |
| Results.push_back(Node->getOperand(0)); |
| break; |
| case ISD::ATOMIC_LOAD: { |
| // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. |
| SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); |
| SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); |
| SDValue Swap = DAG.getAtomicCmpSwap( |
| ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, |
| Node->getOperand(0), Node->getOperand(1), Zero, Zero, |
| cast<AtomicSDNode>(Node)->getMemOperand()); |
| Results.push_back(Swap.getValue(0)); |
| Results.push_back(Swap.getValue(1)); |
| break; |
| } |
| case ISD::ATOMIC_STORE: { |
| // There is no libcall for atomic store; fake it with ATOMIC_SWAP. |
| SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, |
| cast<AtomicSDNode>(Node)->getMemoryVT(), |
| Node->getOperand(0), |
| Node->getOperand(1), Node->getOperand(2), |
| cast<AtomicSDNode>(Node)->getMemOperand()); |
| Results.push_back(Swap.getValue(1)); |
| break; |
| } |
| case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { |
| // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and |
| // splits out the success value as a comparison. Expanding the resulting |
| // ATOMIC_CMP_SWAP will produce a libcall. |
| SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); |
| SDValue Res = DAG.getAtomicCmpSwap( |
| ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, |
| Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), |
| Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); |
| |
| SDValue ExtRes = Res; |
| SDValue LHS = Res; |
| SDValue RHS = Node->getOperand(1); |
| |
| EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); |
| EVT OuterType = Node->getValueType(0); |
| switch (TLI.getExtendForAtomicOps()) { |
| case ISD::SIGN_EXTEND: |
| LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, |
| DAG.getValueType(AtomicType)); |
| RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, |
| Node->getOperand(2), DAG.getValueType(AtomicType)); |
| ExtRes = LHS; |
| break; |
| case ISD::ZERO_EXTEND: |
| LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, |
| DAG.getValueType(AtomicType)); |
| RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); |
| ExtRes = LHS; |
| break; |
| case ISD::ANY_EXTEND: |
| LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); |
| RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); |
| break; |
| default: |
| llvm_unreachable("Invalid atomic op extension"); |
| } |
| |
| SDValue Success = |
| DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); |
| |
| Results.push_back(ExtRes.getValue(0)); |
| Results.push_back(Success); |
| Results.push_back(Res.getValue(1)); |
| break; |
| } |
| case ISD::DYNAMIC_STACKALLOC: |
| ExpandDYNAMIC_STACKALLOC(Node, Results); |
| break; |
| case ISD::MERGE_VALUES: |
| for (unsigned i = 0; i < Node->getNumValues(); i++) |
| Results.push_back(Node->getOperand(i)); |
| break; |
| case ISD::UNDEF: { |
| EVT VT = Node->getValueType(0); |
| if (VT.isInteger()) |
| Results.push_back(DAG.getConstant(0, dl, VT)); |
| else { |
| assert(VT.isFloatingPoint() && "Unknown value type!"); |
| Results.push_back(DAG.getConstantFP(0, dl, VT)); |
| } |
| break; |
| } |
| case ISD::FP_ROUND: |
| case ISD::BITCAST: |
| Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), |
| Node->getValueType(0), dl); |
| Results.push_back(Tmp1); |
| break; |
| case ISD::FP_EXTEND: |
| Tmp1 = EmitStackConvert(Node->getOperand(0), |
| Node->getOperand(0).getValueType(), |
| Node->getValueType(0), dl); |
| Results.push_back(Tmp1); |
| break; |
| case ISD::SIGN_EXTEND_INREG: { |
| EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); |
| EVT VT = Node->getValueType(0); |
| |
| // An in-register sign-extend of a boolean is a negation: |
| // 'true' (1) sign-extended is -1. |
| // 'false' (0) sign-extended is 0. |
| // However, we must mask the high bits of the source operand because the |
| // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. |
| |
| // TODO: Do this for vectors too? |
| if (ExtraVT.getSizeInBits() == 1) { |
| SDValue One = DAG.getConstant(1, dl, VT); |
| SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); |
| SDValue Zero = DAG.getConstant(0, dl, VT); |
| SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); |
| Results.push_back(Neg); |
| break; |
| } |
| |
| // NOTE: we could fall back on load/store here too for targets without |
| // SRA. However, it is doubtful that any exist. |
| EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); |
| unsigned BitsDiff = VT.getScalarSizeInBits() - |
| ExtraVT.getScalarSizeInBits(); |
| SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); |
| Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), |
| Node->getOperand(0), ShiftCst); |
| Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); |
| Results.push_back(Tmp1); |
| break; |
| } |
| case ISD::FP_ROUND_INREG: { |
| // The only way we can lower this is to turn it into a TRUNCSTORE, |
| // EXTLOAD pair, targeting a temporary location (a stack slot). |
| |
| // NOTE: there is a choice here between constantly creating new stack |
| // slots and always reusing the same one. We currently always create |
| // new ones, as reuse may inhibit scheduling. |
| EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); |
| Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT, |
| Node->getValueType(0), dl); |
| Results.push_back(Tmp1); |
| break; |
| } |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: |
| Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP, |
| Node->getOperand(0), Node->getValueType(0), dl); |
| Results.push_back(Tmp1); |
| break; |
| case ISD::FP_TO_SINT: |
| if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) |
| Results.push_back(Tmp1); |
| break; |
| case ISD::FP_TO_UINT: { |
| SDValue True, False; |
| EVT VT = Node->getOperand(0).getValueType(); |
| EVT NVT = Node->getValueType(0); |
| APFloat apf(DAG.EVTToAPFloatSemantics(VT), |
| APInt::getNullValue(VT.getSizeInBits())); |
| APInt x = APInt::getSignMask(NVT.getSizeInBits()); |
| (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); |
| Tmp1 = DAG.getConstantFP(apf, dl, VT); |
| Tmp2 = DAG.getSetCC(dl, getSetCCResultType(VT), |
| Node->getOperand(0), |
| Tmp1, ISD::SETLT); |
| True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0)); |
| // TODO: Should any fast-math-flags be set for the FSUB? |
| False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, |
| DAG.getNode(ISD::FSUB, dl, VT, |
| Node->getOperand(0), Tmp1)); |
| False = DAG.getNode(ISD::XOR, dl, NVT, False, |
| DAG.getConstant(x, dl, NVT)); |
| Tmp1 = DAG.getSelect(dl, NVT, Tmp2, True, False); |
| Results.push_back(Tmp1); |
| break; |
| } |
| case ISD::VAARG: |
| Results.push_back(DAG.expandVAArg(Node)); |
| Results.push_back(Results[0].getValue(1)); |
| break; |
| case ISD::VACOPY: |
| Results.push_back(DAG.expandVACopy(Node)); |
| break; |
| case ISD::EXTRACT_VECTOR_ELT: |
| if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) |
| // This must be an access of the only element. Return it. |
| Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), |
| Node->getOperand(0)); |
| else |
| Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); |
| Results.push_back(Tmp1); |
| break; |
| case ISD::EXTRACT_SUBVECTOR: |
| Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); |
| break; |
| case ISD::INSERT_SUBVECTOR: |
| Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); |
| break; |
| case ISD::CONCAT_VECTORS: |
| Results.push_back(ExpandVectorBuildThroughStack(Node)); |
| break; |
| case ISD::SCALAR_TO_VECTOR: |
| Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); |
| break; |
| case ISD::INSERT_VECTOR_ELT: |
| Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), |
| Node->getOperand(1), |
| Node->getOperand(2), dl)); |
| break; |
| case ISD::VECTOR_SHUFFLE: { |
| SmallVector<int, 32> NewMask; |
| ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); |
| |
| EVT VT = Node->getValueType(0); |
| EVT EltVT = VT.getVectorElementType(); |
| SDValue Op0 = Node->getOperand(0); |
| SDValue Op1 = Node->getOperand(1); |
| if (!TLI.isTypeLegal(EltVT)) { |
| EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); |
| |
| // BUILD_VECTOR operands are allowed to be wider than the element type. |
| // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept |
| // it. |
| if (NewEltVT.bitsLT(EltVT)) { |
| // Convert shuffle node. |
| // If original node was v4i64 and the new EltVT is i32, |
| // cast operands to v8i32 and re-build the mask. |
| |
| // Calculate new VT, the size of the new VT should be equal to original. |
| EVT NewVT = |
| EVT::getVectorVT(*DAG.getContext(), NewEltVT, |
| VT.getSizeInBits() / NewEltVT.getSizeInBits()); |
| assert(NewVT.bitsEq(VT)); |
| |
| // cast operands to new VT |
| Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); |
| Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); |
| |
| // Convert the shuffle mask |
| unsigned int factor = |
| NewVT.getVectorNumElements()/VT.getVectorNumElements(); |
| |
| // EltVT gets smaller |
| assert(factor > 0); |
| |
| for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { |
| if (Mask[i] < 0) { |
| for (unsigned fi = 0; fi < factor; ++fi) |
| NewMask.push_back(Mask[i]); |
| } |
| else { |
| for (unsigned fi = 0; fi < factor; ++fi) |
| NewMask.push_back(Mask[i]*factor+fi); |
| } |
| } |
| Mask = NewMask; |
| VT = NewVT; |
| } |
| EltVT = NewEltVT; |
| } |
| unsigned NumElems = VT.getVectorNumElements(); |
| SmallVector<SDValue, 16> Ops; |
| for (unsigned i = 0; i != NumElems; ++i) { |
| if (Mask[i] < 0) { |
| Ops.push_back(DAG.getUNDEF(EltVT)); |
| continue; |
| } |
| unsigned Idx = Mask[i]; |
| if (Idx < NumElems) |
| Ops.push_back(DAG.getNode( |
| ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, |
| DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())))); |
| else |
| Ops.push_back(DAG.getNode( |
| ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, |
| DAG.getConstant(Idx - NumElems, dl, |
| TLI.getVectorIdxTy(DAG.getDataLayout())))); |
| } |
| |
| Tmp1 = DAG.getBuildVector(VT, dl, Ops); |
| // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. |
| Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); |
| Results.push_back(Tmp1); |
| break; |
| } |
| case ISD::EXTRACT_ELEMENT: { |
| EVT OpTy = Node->getOperand(0).getValueType(); |
| if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { |
| // 1 -> Hi |
| Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), |
| DAG.getConstant(OpTy.getSizeInBits() / 2, dl, |
| TLI.getShiftAmountTy( |
| Node->getOperand(0).getValueType(), |
| DAG.getDataLayout()))); |
| Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); |
| } else { |
| // 0 -> Lo |
| Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), |
| Node->getOperand(0)); |
| } |
| Results.push_back(Tmp1); |
| break; |
| } |
| case ISD::STACKSAVE: |
| // Expand to CopyFromReg if the target set |
| // StackPointerRegisterToSaveRestore. |
| if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { |
| Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, |
| Node->getValueType(0))); |
| Results.push_back(Results[0].getValue(1)); |
| } else { |
| Results.push_back(DAG.getUNDEF(Node->getValueType(0))); |
| Results.push_back(Node->getOperand(0)); |
| } |
| break; |
| case ISD::STACKRESTORE: |
| // Expand to CopyToReg if the target set |
| // StackPointerRegisterToSaveRestore. |
| if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { |
| Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, |
| Node->getOperand(1))); |
| } else { |
| Results.push_back(Node->getOperand(0)); |
| } |
| break; |
| case ISD::GET_DYNAMIC_AREA_OFFSET: |
| Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); |
| Results.push_back(Results[0].getValue(0)); |
| break; |
| case ISD::FCOPYSIGN: |
| Results.push_back(ExpandFCOPYSIGN(Node)); |
| break; |
| case ISD::FNEG: |
| // Expand Y = FNEG(X) -> Y = SUB -0.0, X |
| Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0)); |
| // TODO: If FNEG has fast-math-flags, propagate them to the FSUB. |
| Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, |
| Node->getOperand(0)); |
| Results.push_back(Tmp1); |
| break; |
| case ISD::FABS: |
| Results.push_back(ExpandFABS(Node)); |
| break; |
| case ISD::SMIN: |
| case ISD::SMAX: |
| case ISD::UMIN: |
| case ISD::UMAX: { |
| // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B |
| ISD::CondCode Pred; |
| switch (Node->getOpcode()) { |
| default: llvm_unreachable("How did we get here?"); |
| case ISD::SMAX: Pred = ISD::SETGT; break; |
| case ISD::SMIN: Pred = ISD::SETLT; break; |
| case ISD::UMAX: Pred = ISD::SETUGT; break; |
| case ISD::UMIN: Pred = ISD::SETULT; break; |
| } |
| Tmp1 = Node->getOperand(0); |
| Tmp2 = Node->getOperand(1); |
| Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); |
| Results.push_back(Tmp1); |
| break; |
| } |
| |
| case ISD::FSIN: |
| case ISD::FCOS: { |
| EVT VT = Node->getValueType(0); |
| // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / |
| // fcos which share the same operand and both are used. |
| if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || |
| isSinCosLibcallAvailable(Node, TLI)) |
| && useSinCos(Node)) { |
| SDVTList VTs = DAG.getVTList(VT, VT); |
| Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); |
| if (Node->getOpcode() == ISD::FCOS) |
| Tmp1 = Tmp1.getValue(1); |
| Results.push_back(Tmp1); |
| } |
| break; |
| } |
| case ISD::FMAD: |
| llvm_unreachable("Illegal fmad should never be formed"); |
| |
| case ISD::FP16_TO_FP: |
| if (Node->getValueType(0) != MVT::f32) { |
| // We can extend to types bigger than f32 in two steps without changing |
| // the result. Since "f16 -> f32" is much more commonly available, give |
| // CodeGen the option of emitting that before resorting to a libcall. |
| SDValue Res = |
| DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); |
| Results.push_back( |
| DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); |
| } |
| break; |
| case ISD::FP_TO_FP16: |
| LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); |
| if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { |
| SDValue Op = Node->getOperand(0); |
| MVT SVT = Op.getSimpleValueType(); |
| if ((SVT == MVT::f64 || SVT == MVT::f80) && |
| TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { |
| // Under fastmath, we can expand this node into a fround followed by |
| // a float-half conversion. |
| SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, |
| DAG.getIntPtrConstant(0, dl)); |
| Results.push_back( |
| DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); |
| } |
| } |
| break; |
| case ISD::ConstantFP: { |
| ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); |
| // Check to see if this FP immediate is already legal. |
| // If this is a legal constant, turn it into a TargetConstantFP node. |
| if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0))) |
| Results.push_back(ExpandConstantFP(CFP, true)); |
| break; |
| } |
| case ISD::Constant: { |
| ConstantSDNode *CP = cast<ConstantSDNode>(Node); |
| Results.push_back(ExpandConstant(CP)); |
| break; |
| } |
| case ISD::FSUB: { |
| EVT VT = Node->getValueType(0); |
| if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && |
| TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { |
| const SDNodeFlags Flags = Node->getFlags(); |
| Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); |
| Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); |
| Results.push_back(Tmp1); |
| } |
| break; |
| } |
| case ISD::SUB: { |
| EVT VT = Node->getValueType(0); |
| assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && |
| TLI.isOperationLegalOrCustom(ISD::XOR, VT) && |
| "Don't know how to expand this subtraction!"); |
| Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), |
| DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, |
| VT)); |
| Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); |
| Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); |
| break; |
| } |
| case ISD::UREM: |
| case ISD::SREM: { |
| EVT VT = Node->getValueType(0); |
| bool isSigned = Node->getOpcode() == ISD::SREM; |
| unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; |
| unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; |
| Tmp2 = Node->getOperand(0); |
| Tmp3 = Node->getOperand(1); |
| if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { |
| SDVTList VTs = DAG.getVTList(VT, VT); |
| Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); |
| Results.push_back(Tmp1); |
| } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { |
| // X % Y -> X-X/Y*Y |
| Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); |
| Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); |
| Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); |
| Results.push_back(Tmp1); |
| } |
| break; |
| } |
| case ISD::UDIV: |
| case ISD::SDIV: { |
| bool isSigned = Node->getOpcode() == ISD::SDIV; |
| unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; |
| EVT VT = Node->getValueType(0); |
| if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { |
| SDVTList VTs = DAG.getVTList(VT, VT); |
| Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), |
| Node->getOperand(1)); |
| Results.push_back(Tmp1); |
| } |
| break; |
| } |
| case ISD::MULHU: |
| case ISD::MULHS: { |
| unsigned ExpandOpcode = |
| Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; |
| EVT VT = Node->getValueType(0); |
| SDVTList VTs = DAG.getVTList(VT, VT); |
| |
| Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), |
| Node->getOperand(1)); |
| Results.push_back(Tmp1.getValue(1)); |
| break; |
| } |
| case ISD::UMUL_LOHI: |
| case ISD::SMUL_LOHI: { |
| SDValue LHS = Node->getOperand(0); |
| SDValue RHS = Node->getOperand(1); |
| MVT VT = LHS.getSimpleValueType(); |
| unsigned MULHOpcode = |
| Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; |
| |
| if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { |
| Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); |
| Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); |
| break; |
| } |
| |
| SmallVector<SDValue, 4> Halves; |
| EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); |
| assert(TLI.isTypeLegal(HalfType)); |
| if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, Node, LHS, RHS, Halves, |
| HalfType, DAG, |
| TargetLowering::MulExpansionKind::Always)) { |
| for (unsigned i = 0; i < 2; ++i) { |
| SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); |
| SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); |
| SDValue Shift = DAG.getConstant( |
| HalfType.getScalarSizeInBits(), dl, |
| TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); |
| Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); |
| Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); |
| } |
| break; |
| } |
| break; |
| } |
| case ISD::MUL: { |
| EVT VT = Node->getValueType(0); |
| SDVTList VTs = DAG.getVTList(VT, VT); |
| // See if multiply or divide can be lowered using two-result operations. |
| // We just need the low half of the multiply; try both the signed |
| // and unsigned forms. If the target supports both SMUL_LOHI and |
| // UMUL_LOHI, form a preference by checking which forms of plain |
| // MULH it supports. |
| bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); |
| bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); |
| bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); |
| bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); |
| unsigned OpToUse = 0; |
| if (HasSMUL_LOHI && !HasMULHS) { |
| OpToUse = ISD::SMUL_LOHI; |
| } else if (HasUMUL_LOHI && !HasMULHU) { |
| OpToUse = ISD::UMUL_LOHI; |
| } else if (HasSMUL_LOHI) { |
| OpToUse = ISD::SMUL_LOHI; |
| } else if (HasUMUL_LOHI) { |
| OpToUse = ISD::UMUL_LOHI; |
| } |
| if (OpToUse) { |
| Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), |
| Node->getOperand(1))); |
| break; |
| } |
| |
| SDValue Lo, Hi; |
| EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); |
| if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && |
| TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && |
| TLI.isOperationLegalOrCustom(ISD::SHL, VT) && |
| TLI.isOperationLegalOrCustom(ISD::OR, VT) && |
| TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, |
| TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { |
| Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); |
| Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); |
| SDValue Shift = |
| DAG.getConstant(HalfType.getSizeInBits(), dl, |
| TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); |
| Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); |
| Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); |
| } |
| break; |
| } |
| case ISD::SADDO: |
| case ISD::SSUBO: { |
| SDValue LHS = Node->getOperand(0); |
| SDValue RHS = Node->getOperand(1); |
| SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? |
| ISD::ADD : ISD::SUB, dl, LHS.getValueType(), |
| LHS, RHS); |
| Results.push_back(Sum); |
| EVT ResultType = Node->getValueType(1); |
| EVT OType = getSetCCResultType(Node->getValueType(0)); |
| |
| SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); |
| |
| // LHSSign -> LHS >= 0 |
| // RHSSign -> RHS >= 0 |
| // SumSign -> Sum >= 0 |
| // |
| // Add: |
| // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) |
| // Sub: |
| // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) |
| SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); |
| SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); |
| SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, |
| Node->getOpcode() == ISD::SADDO ? |
| ISD::SETEQ : ISD::SETNE); |
| |
| SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); |
| SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); |
| |
| SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); |
| Results.push_back(DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType)); |
| break; |
| } |
| case ISD::UADDO: |
| case ISD::USUBO: { |
| SDValue LHS = Node->getOperand(0); |
| SDValue RHS = Node->getOperand(1); |
| bool IsAdd = Node->getOpcode() == ISD::UADDO; |
| // If ADD/SUBCARRY is legal, use that instead. |
| unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; |
| if (TLI.isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { |
| SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); |
| SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), |
| { LHS, RHS, CarryIn }); |
| Results.push_back(SDValue(NodeCarry.getNode(), 0)); |
| Results.push_back(SDValue(NodeCarry.getNode(), 1)); |
| break; |
| } |
| |
| SDValue Sum = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, |
| LHS.getValueType(), LHS, RHS); |
| Results.push_back(Sum); |
| |
| EVT ResultType = Node->getValueType(1); |
| EVT SetCCType = getSetCCResultType(Node->getValueType(0)); |
| ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; |
| SDValue SetCC = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); |
| |
| Results.push_back(DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType)); |
| break; |
| } |
| case ISD::UMULO: |
| case ISD::SMULO: { |
| EVT VT = Node->getValueType(0); |
| EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); |
| SDValue LHS = Node->getOperand(0); |
| SDValue RHS = Node->getOperand(1); |
| SDValue BottomHalf; |
| SDValue TopHalf; |
| static const unsigned Ops[2][3] = |
| { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, |
| { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; |
| bool isSigned = Node->getOpcode() == ISD::SMULO; |
| if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) { |
| BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); |
| TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); |
| } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) { |
| BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, |
| RHS); |
| TopHalf = BottomHalf.getValue(1); |
| } else if (TLI.isTypeLegal(WideVT)) { |
| LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); |
| RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); |
| Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); |
| BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, |
| DAG.getIntPtrConstant(0, dl)); |
| TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, |
| DAG.getIntPtrConstant(1, dl)); |
| } else { |
| // We can fall back to a libcall with an illegal type for the MUL if we |
| // have a libcall big enough. |
| // Also, we can fall back to a division in some cases, but that's a big |
| // performance hit in the general case. |
| RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; |
| if (WideVT == MVT::i16) |
| LC = RTLIB::MUL_I16; |
| else if (WideVT == MVT::i32) |
| LC = RTLIB::MUL_I32; |
| else if (WideVT == MVT::i64) |
| LC = RTLIB::MUL_I64; |
| else if (WideVT == MVT::i128) |
| LC = RTLIB::MUL_I128; |
| assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); |
| |
| SDValue HiLHS; |
| SDValue HiRHS; |
| if (isSigned) { |
| // The high part is obtained by SRA'ing all but one of the bits of low |
| // part. |
| unsigned LoSize = VT.getSizeInBits(); |
| HiLHS = |
| DAG.getNode(ISD::SRA, dl, VT, LHS, |
| DAG.getConstant(LoSize - 1, dl, |
| TLI.getPointerTy(DAG.getDataLayout()))); |
| HiRHS = |
| DAG.getNode(ISD::SRA, dl, VT, RHS, |
| DAG.getConstant(LoSize - 1, dl, |
| TLI.getPointerTy(DAG.getDataLayout()))); |
| } else { |
| HiLHS = DAG.getConstant(0, dl, VT); |
| HiRHS = DAG.getConstant(0, dl, VT); |
| } |
| |
| // Here we're passing the 2 arguments explicitly as 4 arguments that are |
| // pre-lowered to the correct types. This all depends upon WideVT not |
| // being a legal type for the architecture and thus has to be split to |
| // two arguments. |
| SDValue Ret; |
| if(DAG.getDataLayout().isLittleEndian()) { |
| // Halves of WideVT are packed into registers in different order |
| // depending on platform endianness. This is usually handled by |
| // the C calling convention, but we can't defer to it in |
| // the legalizer. |
| SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; |
| Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl); |
| } else { |
| SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; |
| Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl); |
| } |
| assert(Ret.getOpcode() == ISD::MERGE_VALUES && |
| "Ret value is a collection of constituent nodes holding result."); |
| BottomHalf = Ret.getOperand(0); |
| TopHalf = Ret.getOperand(1); |
| } |
| |
| if (isSigned) { |
| Tmp1 = DAG.getConstant( |
| VT.getSizeInBits() - 1, dl, |
| TLI.getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); |
| Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1); |
| TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, Tmp1, |
| ISD::SETNE); |
| } else { |
| TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, |
| DAG.getConstant(0, dl, VT), ISD::SETNE); |
| } |
| |
| // Truncate the result if SetCC returns a larger type than needed. |
| EVT RType = Node->getValueType(1); |
| if (RType.getSizeInBits() < TopHalf.getValueSizeInBits()) |
| TopHalf = DAG.getNode(ISD::TRUNCATE, dl, RType, TopHalf); |
| |
| assert(RType.getSizeInBits() == TopHalf.getValueSizeInBits() && |
| "Unexpected result type for S/UMULO legalization"); |
| |
| Results.push_back(BottomHalf); |
| Results.push_back(TopHalf); |
| break; |
| } |
| case ISD::BUILD_PAIR: { |
| EVT PairTy = Node->getValueType(0); |
| Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); |
| Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); |
| Tmp2 = DAG.getNode( |
| ISD::SHL, dl, PairTy, Tmp2, |
| DAG.getConstant(PairTy.getSizeInBits() / 2, dl, |
| TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); |
| Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); |
| break; |
| } |
| case ISD::SELECT: |
| Tmp1 = Node->getOperand(0); |
| Tmp2 = Node->getOperand(1); |
| Tmp3 = Node->getOperand(2); |
| if (Tmp1.getOpcode() == ISD::SETCC) { |
| Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), |
| Tmp2, Tmp3, |
| cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); |
| } else { |
| Tmp1 = DAG.getSelectCC(dl, Tmp1, |
| DAG.getConstant(0, dl, Tmp1.getValueType()), |
| Tmp2, Tmp3, ISD::SETNE); |
| } |
| Results.push_back(Tmp1); |
| break; |
| case ISD::BR_JT: { |
| SDValue Chain = Node->getOperand(0); |
| SDValue Table = Node->getOperand(1); |
| SDValue Index = Node->getOperand(2); |
| |
| const DataLayout &TD = DAG.getDataLayout(); |
| EVT PTy = TLI.getPointerTy(TD); |
| |
| unsigned EntrySize = |
| DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); |
| |
| // For power-of-two jumptable entry sizes convert multiplication to a shift. |
| // This transformation needs to be done here since otherwise the MIPS |
| // backend will end up emitting a three instruction multiply sequence |
| // instead of a single shift and MSP430 will call a runtime function. |
| if (llvm::isPowerOf2_32(EntrySize)) |
| Index = DAG.getNode( |
| ISD::SHL, dl, Index.getValueType(), Index, |
| DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); |
| else |
| Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, |
| DAG.getConstant(EntrySize, dl, Index.getValueType())); |
| SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), |
| Index, Table); |
| |
| EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); |
| SDValue LD = DAG.getExtLoad( |
| ISD::SEXTLOAD, dl, PTy, Chain, Addr, |
| MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); |
| Addr = LD; |
| if (TLI.isJumpTableRelative()) { |
| // For PIC, the sequence is: |
| // BRIND(load(Jumptable + index) + RelocBase) |
| // RelocBase can be JumpTable, GOT or some sort of global base. |
| Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, |
| TLI.getPICJumpTableRelocBase(Table, DAG)); |
| } |
| |
| Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG); |
| Results.push_back(Tmp1); |
| break; |
| } |
| case ISD::BRCOND: |
| // Expand brcond's setcc into its constituent parts and create a BR_CC |
| // Node. |
| Tmp1 = Node->getOperand(0); |
| Tmp2 = Node->getOperand(1); |
| if (Tmp2.getOpcode() == ISD::SETCC) { |
| Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, |
| Tmp1, Tmp2.getOperand(2), |
| Tmp2.getOperand(0), Tmp2.getOperand(1), |
| Node->getOperand(2)); |
| } else { |
| // We test only the i1 bit. Skip the AND if UNDEF or another AND. |
| if (Tmp2.isUndef() || |
| (Tmp2.getOpcode() == ISD::AND && |
| isa<ConstantSDNode>(Tmp2.getOperand(1)) && |
| cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1)) |
| Tmp3 = Tmp2; |
| else |
| Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, |
| DAG.getConstant(1, dl, Tmp2.getValueType())); |
| Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, |
| DAG.getCondCode(ISD::SETNE), Tmp3, |
| DAG.getConstant(0, dl, Tmp3.getValueType()), |
| Node->getOperand(2)); |
| } |
| Results.push_back(Tmp1); |
| break; |
| case ISD::SETCC: { |
| Tmp1 = Node->getOperand(0); |
| Tmp2 = Node->getOperand(1); |
| Tmp3 = Node->getOperand(2); |
| bool Legalized = LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, |
| Tmp3, NeedInvert, dl); |
| |
| if (Legalized) { |
| // If we expanded the SETCC by swapping LHS and RHS, or by inverting the |
| // condition code, create a new SETCC node. |
| if (Tmp3.getNode()) |
| Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), |
| Tmp1, Tmp2, Tmp3); |
| |
| // If we expanded the SETCC by inverting the condition code, then wrap |
| // the existing SETCC in a NOT to restore the intended condition. |
| if (NeedInvert) |
| Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); |
| |
| Results.push_back(Tmp1); |
| break; |
| } |
| |
| // Otherwise, SETCC for the given comparison type must be completely |
| // illegal; expand it into a SELECT_CC. |
| EVT VT = Node->getValueType(0); |
| int TrueValue; |
| switch (TLI.getBooleanContents(Tmp1.getValueType())) { |
| case TargetLowering::ZeroOrOneBooleanContent: |
| case TargetLowering::UndefinedBooleanContent: |
| TrueValue = 1; |
| break; |
| case TargetLowering::ZeroOrNegativeOneBooleanContent: |
| TrueValue = -1; |
| break; |
| } |
| Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, |
| DAG.getConstant(TrueValue, dl, VT), |
| DAG.getConstant(0, dl, VT), |
| Tmp3); |
| Results.push_back(Tmp1); |
| break; |
| } |
| case ISD::SELECT_CC: { |
| Tmp1 = Node->getOperand(0); // LHS |
| Tmp2 = Node->getOperand(1); // RHS |
| Tmp3 = Node->getOperand(2); // True |
| Tmp4 = Node->getOperand(3); // False |
| EVT VT = Node->getValueType(0); |
| SDValue CC = Node->getOperand(4); |
| ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); |
| |
| if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { |
| // If the condition code is legal, then we need to expand this |
| // node using SETCC and SELECT. |
| EVT CmpVT = Tmp1.getValueType(); |
| assert(!TLI.isOperationExpand(ISD::SELECT, VT) && |
| "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " |
| "expanded."); |
| EVT CCVT = |
| TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT); |
| SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC); |
| Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); |
| break; |
| } |
| |
| // SELECT_CC is legal, so the condition code must not be. |
| bool Legalized = false; |
| // Try to legalize by inverting the condition. This is for targets that |
| // might support an ordered version of a condition, but not the unordered |
| // version (or vice versa). |
| ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, |
| Tmp1.getValueType().isInteger()); |
| if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { |
| // Use the new condition code and swap true and false |
| Legalized = true; |
| Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); |
| } else { |
| // If The inverse is not legal, then try to swap the arguments using |
| // the inverse condition code. |
| ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); |
| if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { |
| // The swapped inverse condition is legal, so swap true and false, |
| // lhs and rhs. |
| Legalized = true; |
| Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); |
| } |
| } |
| |
| if (!Legalized) { |
| Legalized = LegalizeSetCCCondCode( |
| getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, NeedInvert, |
| dl); |
| |
| assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); |
| |
| // If we expanded the SETCC by inverting the condition code, then swap |
| // the True/False operands to match. |
| if (NeedInvert) |
| std::swap(Tmp3, Tmp4); |
| |
| // If we expanded the SETCC by swapping LHS and RHS, or by inverting the |
| // condition code, create a new SELECT_CC node. |
| if (CC.getNode()) { |
| Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), |
| Tmp1, Tmp2, Tmp3, Tmp4, CC); |
| } else { |
| Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); |
| CC = DAG.getCondCode(ISD::SETNE); |
| Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, |
| Tmp2, Tmp3, Tmp4, CC); |
| } |
| } |
| Results.push_back(Tmp1); |
| break; |
| } |
| case ISD::BR_CC: { |
| Tmp1 = Node->getOperand(0); // Chain |
| Tmp2 = Node->getOperand(2); // LHS |
| Tmp3 = Node->getOperand(3); // RHS |
| Tmp4 = Node->getOperand(1); // CC |
| |
| bool Legalized = LegalizeSetCCCondCode(getSetCCResultType( |
| Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, NeedInvert, dl); |
| (void)Legalized; |
| assert(Legalized && "Can't legalize BR_CC with legal condition!"); |
| |
| // If we expanded the SETCC by inverting the condition code, then wrap |
| // the existing SETCC in a NOT to restore the intended condition. |
| if (NeedInvert) |
| Tmp4 = DAG.getNOT(dl, Tmp4, Tmp4->getValueType(0)); |
| |
| // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC |
| // node. |
| if (Tmp4.getNode()) { |
| Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, |
| Tmp4, Tmp2, Tmp3, Node->getOperand(4)); |
| } else { |
| Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); |
| Tmp4 = DAG.getCondCode(ISD::SETNE); |
| Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, |
| Tmp2, Tmp3, Node->getOperand(4)); |
| } |
| Results.push_back(Tmp1); |
| break; |
| } |
| case ISD::BUILD_VECTOR: |
| Results.push_back(ExpandBUILD_VECTOR(Node)); |
| break; |
| case ISD::SRA: |
| case ISD::SRL: |
| case ISD::SHL: { |
| // Scalarize vector SRA/SRL/SHL. |
| EVT VT = Node->getValueType(0); |
| assert(VT.isVector() && "Unable to legalize non-vector shift"); |
| assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); |
| unsigned NumElem = VT.getVectorNumElements(); |
| |
| SmallVector<SDValue, 8> Scalars; |
| for (unsigned Idx = 0; Idx < NumElem; Idx++) { |
| SDValue Ex = DAG.getNode( |
| ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(0), |
| DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); |
| SDValue Sh = DAG.getNode( |
| ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(1), |
| DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); |
| Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, |
| VT.getScalarType(), Ex, Sh)); |
| } |
| |
| SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); |
| ReplaceNode(SDValue(Node, 0), Result); |
| break; |
| } |
| case ISD::ROTL: |
| case ISD::ROTR: { |
| bool IsLeft = Node->getOpcode() == ISD::ROTL; |
| SDValue Op0 = Node->getOperand(0), Op1 = Node->getOperand(1); |
| EVT ResVT = Node->getValueType(0); |
| EVT OpVT = Op0.getValueType(); |
| assert(OpVT == ResVT && |
| "The result and the operand types of rotate should match"); |
| EVT ShVT = Op1.getValueType(); |
| SDValue Width = DAG.getConstant(OpVT.getScalarSizeInBits(), dl, ShVT); |
| |
| // If a rotate in the other direction is legal, use it. |
| unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; |
| if (TLI.isOperationLegal(RevRot, ResVT)) { |
| SDValue Sub = DAG.getNode(ISD::SUB, dl, ShVT, Width, Op1); |
| Results.push_back(DAG.getNode(RevRot, dl, ResVT, Op0, Sub)); |
| break; |
| } |
| |
| // Otherwise, |
| // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) |
| // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) |
| // |
| assert(isPowerOf2_32(OpVT.getScalarSizeInBits()) && |
| "Expecting the type bitwidth to be a power of 2"); |
| unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; |
| unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; |
| SDValue Width1 = DAG.getNode(ISD::SUB, dl, ShVT, |
| Width, DAG.getConstant(1, dl, ShVT)); |
| SDValue NegOp1 = DAG.getNode(ISD::SUB, dl, ShVT, Width, Op1); |
| SDValue And0 = DAG.getNode(ISD::AND, dl, ShVT, Op1, Width1); |
| SDValue And1 = DAG.getNode(ISD::AND, dl, ShVT, NegOp1, Width1); |
| |
| SDValue Or = DAG.getNode(ISD::OR, dl, ResVT, |
| DAG.getNode(ShOpc, dl, ResVT, Op0, And0), |
| DAG.getNode(HsOpc, dl, ResVT, Op0, And1)); |
| Results.push_back(Or); |
| break; |
| } |
| |
| case ISD::GLOBAL_OFFSET_TABLE: |
| case ISD::GlobalAddress: |
| case ISD::GlobalTLSAddress: |
| case ISD::ExternalSymbol: |
| case ISD::ConstantPool: |
| case ISD::JumpTable: |
| case ISD::INTRINSIC_W_CHAIN: |
| case ISD::INTRINSIC_WO_CHAIN: |
| case ISD::INTRINSIC_VOID: |
| // FIXME: Custom lowering for these operations shouldn't return null! |
| break; |
| } |
| |
| // Replace the original node with the legalized result. |
| if (Results.empty()) { |
| LLVM_DEBUG(dbgs() << "Cannot expand node\n"); |
| return false; |
| } |
| |
| LLVM_DEBUG(dbgs() << "Succesfully expanded node\n"); |
| ReplaceNode(Node, Results.data()); |
| return true; |
| } |
| |
| void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { |
| LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); |
| SmallVector<SDValue, 8> Results; |
| SDLoc dl(Node); |
| // FIXME: Check flags on the node to see if we can use a finite call. |
| bool CanUseFiniteLibCall = TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath; |
| unsigned Opc = Node->getOpcode(); |
| switch (Opc) { |
| case ISD::ATOMIC_FENCE: { |
| // If the target didn't lower this, lower it to '__sync_synchronize()' call |
| // FIXME: handle "fence singlethread" more efficiently. |
| TargetLowering::ArgListTy Args; |
| |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| CLI.setDebugLoc(dl) |
| .setChain(Node->getOperand(0)) |
| .setLibCallee( |
| CallingConv::C, Type::getVoidTy(*DAG.getContext()), |
| DAG.getExternalSymbol("__sync_synchronize", |
| TLI.getPointerTy(DAG.getDataLayout())), |
| std::move(Args)); |
| |
| std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); |
| |
| Results.push_back(CallResult.second); |
| break; |
| } |
| // By default, atomic intrinsics are marked Legal and lowered. Targets |
| // which don't support them directly, however, may want libcalls, in which |
| // case they mark them Expand, and we get here. |
| case ISD::ATOMIC_SWAP: |
| case ISD::ATOMIC_LOAD_ADD: |
| case ISD::ATOMIC_LOAD_SUB: |
| case ISD::ATOMIC_LOAD_AND: |
| case ISD::ATOMIC_LOAD_CLR: |
| case ISD::ATOMIC_LOAD_OR: |
| case ISD::ATOMIC_LOAD_XOR: |
| case ISD::ATOMIC_LOAD_NAND: |
| case ISD::ATOMIC_LOAD_MIN: |
| case ISD::ATOMIC_LOAD_MAX: |
| case ISD::ATOMIC_LOAD_UMIN: |
| case ISD::ATOMIC_LOAD_UMAX: |
| case ISD::ATOMIC_CMP_SWAP: { |
| MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); |
| RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT); |
| assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!"); |
| |
| std::pair<SDValue, SDValue> Tmp = ExpandChainLibCall(LC, Node, false); |
| Results.push_back(Tmp.first); |
| Results.push_back(Tmp.second); |
| break; |
| } |
| case ISD::TRAP: { |
| // If this operation is not supported, lower it to 'abort()' call |
| TargetLowering::ArgListTy Args; |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| CLI.setDebugLoc(dl) |
| .setChain(Node->getOperand(0)) |
| .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), |
| DAG.getExternalSymbol( |
| "abort", TLI.getPointerTy(DAG.getDataLayout())), |
| std::move(Args)); |
| std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); |
| |
| Results.push_back(CallResult.second); |
| break; |
| } |
| case ISD::FMINNUM: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, |
| RTLIB::FMIN_F80, RTLIB::FMIN_F128, |
| RTLIB::FMIN_PPCF128)); |
| break; |
| case ISD::FMAXNUM: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, |
| RTLIB::FMAX_F80, RTLIB::FMAX_F128, |
| RTLIB::FMAX_PPCF128)); |
| break; |
| case ISD::FSQRT: |
| case ISD::STRICT_FSQRT: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, |
| RTLIB::SQRT_F80, RTLIB::SQRT_F128, |
| RTLIB::SQRT_PPCF128)); |
| break; |
| case ISD::FSIN: |
| case ISD::STRICT_FSIN: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, |
| RTLIB::SIN_F80, RTLIB::SIN_F128, |
| RTLIB::SIN_PPCF128)); |
| break; |
| case ISD::FCOS: |
| case ISD::STRICT_FCOS: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, |
| RTLIB::COS_F80, RTLIB::COS_F128, |
| RTLIB::COS_PPCF128)); |
| break; |
| case ISD::FSINCOS: |
| // Expand into sincos libcall. |
| ExpandSinCosLibCall(Node, Results); |
| break; |
| case ISD::FLOG: |
| case ISD::STRICT_FLOG: |
| if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log_finite)) |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_FINITE_F32, |
| RTLIB::LOG_FINITE_F64, |
| RTLIB::LOG_FINITE_F80, |
| RTLIB::LOG_FINITE_F128, |
| RTLIB::LOG_FINITE_PPCF128)); |
| else |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, |
| RTLIB::LOG_F80, RTLIB::LOG_F128, |
| RTLIB::LOG_PPCF128)); |
| break; |
| case ISD::FLOG2: |
| case ISD::STRICT_FLOG2: |
| if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log2_finite)) |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_FINITE_F32, |
| RTLIB::LOG2_FINITE_F64, |
| RTLIB::LOG2_FINITE_F80, |
| RTLIB::LOG2_FINITE_F128, |
| RTLIB::LOG2_FINITE_PPCF128)); |
| else |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, |
| RTLIB::LOG2_F80, RTLIB::LOG2_F128, |
| RTLIB::LOG2_PPCF128)); |
| break; |
| case ISD::FLOG10: |
| case ISD::STRICT_FLOG10: |
| if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log10_finite)) |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_FINITE_F32, |
| RTLIB::LOG10_FINITE_F64, |
| RTLIB::LOG10_FINITE_F80, |
| RTLIB::LOG10_FINITE_F128, |
| RTLIB::LOG10_FINITE_PPCF128)); |
| else |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, |
| RTLIB::LOG10_F80, RTLIB::LOG10_F128, |
| RTLIB::LOG10_PPCF128)); |
| break; |
| case ISD::FEXP: |
| case ISD::STRICT_FEXP: |
| if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp_finite)) |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_FINITE_F32, |
| RTLIB::EXP_FINITE_F64, |
| RTLIB::EXP_FINITE_F80, |
| RTLIB::EXP_FINITE_F128, |
| RTLIB::EXP_FINITE_PPCF128)); |
| else |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, |
| RTLIB::EXP_F80, RTLIB::EXP_F128, |
| RTLIB::EXP_PPCF128)); |
| break; |
| case ISD::FEXP2: |
| case ISD::STRICT_FEXP2: |
| if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp2_finite)) |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_FINITE_F32, |
| RTLIB::EXP2_FINITE_F64, |
| RTLIB::EXP2_FINITE_F80, |
| RTLIB::EXP2_FINITE_F128, |
| RTLIB::EXP2_FINITE_PPCF128)); |
| else |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, |
| RTLIB::EXP2_F80, RTLIB::EXP2_F128, |
| RTLIB::EXP2_PPCF128)); |
| break; |
| case ISD::FTRUNC: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, |
| RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, |
| RTLIB::TRUNC_PPCF128)); |
| break; |
| case ISD::FFLOOR: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, |
| RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, |
| RTLIB::FLOOR_PPCF128)); |
| break; |
| case ISD::FCEIL: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, |
| RTLIB::CEIL_F80, RTLIB::CEIL_F128, |
| RTLIB::CEIL_PPCF128)); |
| break; |
| case ISD::FRINT: |
| case ISD::STRICT_FRINT: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, |
| RTLIB::RINT_F80, RTLIB::RINT_F128, |
| RTLIB::RINT_PPCF128)); |
| break; |
| case ISD::FNEARBYINT: |
| case ISD::STRICT_FNEARBYINT: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, |
| RTLIB::NEARBYINT_F64, |
| RTLIB::NEARBYINT_F80, |
| RTLIB::NEARBYINT_F128, |
| RTLIB::NEARBYINT_PPCF128)); |
| break; |
| case ISD::FROUND: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::ROUND_F32, |
| RTLIB::ROUND_F64, |
| RTLIB::ROUND_F80, |
| RTLIB::ROUND_F128, |
| RTLIB::ROUND_PPCF128)); |
| break; |
| case ISD::FPOWI: |
| case ISD::STRICT_FPOWI: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, |
| RTLIB::POWI_F80, RTLIB::POWI_F128, |
| RTLIB::POWI_PPCF128)); |
| break; |
| case ISD::FPOW: |
| case ISD::STRICT_FPOW: |
| if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_pow_finite)) |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_FINITE_F32, |
| RTLIB::POW_FINITE_F64, |
| RTLIB::POW_FINITE_F80, |
| RTLIB::POW_FINITE_F128, |
| RTLIB::POW_FINITE_PPCF128)); |
| else |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, |
| RTLIB::POW_F80, RTLIB::POW_F128, |
| RTLIB::POW_PPCF128)); |
| break; |
| case ISD::FDIV: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, |
| RTLIB::DIV_F80, RTLIB::DIV_F128, |
| RTLIB::DIV_PPCF128)); |
| break; |
| case ISD::FREM: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, |
| RTLIB::REM_F80, RTLIB::REM_F128, |
| RTLIB::REM_PPCF128)); |
| break; |
| case ISD::FMA: |
| case ISD::STRICT_FMA: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, |
| RTLIB::FMA_F80, RTLIB::FMA_F128, |
| RTLIB::FMA_PPCF128)); |
| break; |
| case ISD::FADD: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, |
| RTLIB::ADD_F80, RTLIB::ADD_F128, |
| RTLIB::ADD_PPCF128)); |
| break; |
| case ISD::FMUL: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, |
| RTLIB::MUL_F80, RTLIB::MUL_F128, |
| RTLIB::MUL_PPCF128)); |
| break; |
| case ISD::FP16_TO_FP: |
| if (Node->getValueType(0) == MVT::f32) { |
| Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); |
| } |
| break; |
| case ISD::FP_TO_FP16: { |
| RTLIB::Libcall LC = |
| RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); |
| assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); |
| Results.push_back(ExpandLibCall(LC, Node, false)); |
| break; |
| } |
| case ISD::FSUB: |
| Results.push_back(ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, |
| RTLIB::SUB_F80, RTLIB::SUB_F128, |
| RTLIB::SUB_PPCF128)); |
| break; |
| case ISD::SREM: |
| Results.push_back(ExpandIntLibCall(Node, true, |
| RTLIB::SREM_I8, |
| RTLIB::SREM_I16, RTLIB::SREM_I32, |
| RTLIB::SREM_I64, RTLIB::SREM_I128)); |
| break; |
| case ISD::UREM: |
| Results.push_back(ExpandIntLibCall(Node, false, |
| RTLIB::UREM_I8, |
| RTLIB::UREM_I16, RTLIB::UREM_I32, |
| RTLIB::UREM_I64, RTLIB::UREM_I128)); |
| break; |
| case ISD::SDIV: |
| Results.push_back(ExpandIntLibCall(Node, true, |
| RTLIB::SDIV_I8, |
| RTLIB::SDIV_I16, RTLIB::SDIV_I32, |
| RTLIB::SDIV_I64, RTLIB::SDIV_I128)); |
| break; |
| case ISD::UDIV: |
| Results.push_back(ExpandIntLibCall(Node, false, |
| RTLIB::UDIV_I8, |
| RTLIB::UDIV_I16, RTLIB::UDIV_I32, |
| RTLIB::UDIV_I64, RTLIB::UDIV_I128)); |
| break; |
| case ISD::SDIVREM: |
| case ISD::UDIVREM: |
| // Expand into divrem libcall |
| ExpandDivRemLibCall(Node, Results); |
| break; |
| case ISD::MUL: |
| Results.push_back(ExpandIntLibCall(Node, false, |
| RTLIB::MUL_I8, |
| RTLIB::MUL_I16, RTLIB::MUL_I32, |
| RTLIB::MUL_I64, RTLIB::MUL_I128)); |
| break; |
| } |
| |
| // Replace the original node with the legalized result. |
| if (!Results.empty()) { |
| LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); |
| ReplaceNode(Node, Results.data()); |
| } else |
| LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); |
| } |
| |
| // Determine the vector type to use in place of an original scalar element when |
| // promoting equally sized vectors. |
| static MVT getPromotedVectorElementType(const TargetLowering &TLI, |
| MVT EltVT, MVT NewEltVT) { |
| unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); |
| MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); |
| assert(TLI.isTypeLegal(MidVT) && "unexpected"); |
| return MidVT; |
| } |
| |
| void SelectionDAGLegalize::PromoteNode(SDNode *Node) { |
| LLVM_DEBUG(dbgs() << "Trying to promote node\n"); |
| SmallVector<SDValue, 8> Results; |
| MVT OVT = Node->getSimpleValueType(0); |
| if (Node->getOpcode() == ISD::UINT_TO_FP || |
| Node->getOpcode() == ISD::SINT_TO_FP || |
| Node->getOpcode() == ISD::SETCC || |
| Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || |
| Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { |
| OVT = Node->getOperand(0).getSimpleValueType(); |
| } |
| if (Node->getOpcode() == ISD::BR_CC) |
| OVT = Node->getOperand(2).getSimpleValueType(); |
| MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); |
| SDLoc dl(Node); |
| SDValue Tmp1, Tmp2, Tmp3; |
| switch (Node->getOpcode()) { |
| case ISD::CTTZ: |
| case ISD::CTTZ_ZERO_UNDEF: |
| case ISD::CTLZ: |
| case ISD::CTLZ_ZERO_UNDEF: |
| case ISD::CTPOP: |
| // Zero extend the argument. |
| Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); |
| if (Node->getOpcode() == ISD::CTTZ) { |
| // The count is the same in the promoted type except if the original |
| // value was zero. This can be handled by setting the bit just off |
| // the top of the original type. |
| auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), |
| OVT.getSizeInBits()); |
| Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, |
| DAG.getConstant(TopBit, dl, NVT)); |
| } |
| // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is |
| // already the correct result. |
| Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); |
| if (Node->getOpcode() == ISD::CTLZ || |
| Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { |
| // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) |
| Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, |
| DAG.getConstant(NVT.getSizeInBits() - |
| OVT.getSizeInBits(), dl, NVT)); |
| } |
| Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); |
| break; |
| case ISD::BITREVERSE: |
| case ISD::BSWAP: { |
| unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); |
| Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); |
| Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); |
| Tmp1 = DAG.getNode( |
| ISD::SRL, dl, NVT, Tmp1, |
| DAG.getConstant(DiffBits, dl, |
| TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); |
| |
| Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); |
| break; |
| } |
| case ISD::FP_TO_UINT: |
| case ISD::FP_TO_SINT: |
| Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0), |
| Node->getOpcode() == ISD::FP_TO_SINT, dl); |
| Results.push_back(Tmp1); |
| break; |
| case ISD::UINT_TO_FP: |
| case ISD::SINT_TO_FP: |
| Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0), |
| Node->getOpcode() == ISD::SINT_TO_FP, dl); |
| Results.push_back(Tmp1); |
| break; |
| case ISD::VAARG: { |
| SDValue Chain = Node->getOperand(0); // Get the chain. |
| SDValue Ptr = Node->getOperand(1); // Get the pointer. |
| |
| unsigned TruncOp; |
| if (OVT.isVector()) { |
| TruncOp = ISD::BITCAST; |
| } else { |
| assert(OVT.isInteger() |
| && "VAARG promotion is supported only for vectors or integer types"); |
| TruncOp = ISD::TRUNCATE; |
| } |
| |
| // Perform the larger operation, then convert back |
| Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), |
| Node->getConstantOperandVal(3)); |
| Chain = Tmp1.getValue(1); |
| |
| Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); |
| |
| // Modified the chain result - switch anything that used the old chain to |
| // use the new one. |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); |
| if (UpdatedNodes) { |
| UpdatedNodes->insert(Tmp2.getNode()); |
| UpdatedNodes->insert(Chain.getNode()); |
| } |
| ReplacedNode(Node); |
| break; |
| } |
| case ISD::MUL: |
| case ISD::SDIV: |
| case ISD::SREM: |
| case ISD::UDIV: |
| case ISD::UREM: |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: { |
| unsigned ExtOp, TruncOp; |
| if (OVT.isVector()) { |
| ExtOp = ISD::BITCAST; |
| TruncOp = ISD::BITCAST; |
| } else { |
| assert(OVT.isInteger() && "Cannot promote logic operation"); |
| |
| switch (Node->getOpcode()) { |
| default: |
| ExtOp = ISD::ANY_EXTEND; |
| break; |
| case ISD::SDIV: |
| case ISD::SREM: |
| ExtOp = ISD::SIGN_EXTEND; |
| break; |
| case ISD::UDIV: |
| case ISD::UREM: |
| ExtOp = ISD::ZERO_EXTEND; |
| break; |
| } |
| TruncOp = ISD::TRUNCATE; |
| } |
| // Promote each of the values to the new type. |
| Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); |
| Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); |
| // Perform the larger operation, then convert back |
| Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); |
| Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); |
| break; |
| } |
| case ISD::UMUL_LOHI: |
| case ISD::SMUL_LOHI: { |
| // Promote to a multiply in a wider integer type. |
| unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND |
| : ISD::SIGN_EXTEND; |
| Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); |
| Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); |
| Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); |
| |
| auto &DL = DAG.getDataLayout(); |
| unsigned OriginalSize = OVT.getScalarSizeInBits(); |
| Tmp2 = DAG.getNode( |
| ISD::SRL, dl, NVT, Tmp1, |
| DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); |
| Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); |
| Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); |
| break; |
| } |
| case ISD::SELECT: { |
| unsigned ExtOp, TruncOp; |
| if (Node->getValueType(0).isVector() || |
| Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { |
| ExtOp = ISD::BITCAST; |
| TruncOp = ISD::BITCAST; |
| } else if (Node->getValueType(0).isInteger()) { |
| ExtOp = ISD::ANY_EXTEND; |
| TruncOp = ISD::TRUNCATE; |
| } else { |
| ExtOp = ISD::FP_EXTEND; |
| TruncOp = ISD::FP_ROUND; |
| } |
| Tmp1 = Node->getOperand(0); |
| // Promote each of the values to the new type. |
| Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); |
| Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); |
| // Perform the larger operation, then round down. |
| Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); |
| if (TruncOp != ISD::FP_ROUND) |
| Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); |
| else |
| Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, |
| DAG.getIntPtrConstant(0, dl)); |
| Results.push_back(Tmp1); |
| break; |
| } |
| case ISD::VECTOR_SHUFFLE: { |
| ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); |
| |
| // Cast the two input vectors. |
| Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); |
| Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); |
| |
| // Convert the shuffle mask to the right # elements. |
| Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); |
| Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); |
| Results.push_back(Tmp1); |
| break; |
| } |
| case ISD::SETCC: { |
| unsigned ExtOp = ISD::FP_EXTEND; |
| if (NVT.isInteger()) { |
| ISD::CondCode CCCode = |
| cast<CondCodeSDNode>(Node->getOperand(2))->get(); |
| ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| } |
| Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); |
| Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); |
| Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), |
| Tmp1, Tmp2, Node->getOperand(2))); |
| break; |
| } |
| case ISD::BR_CC: { |
| unsigned ExtOp = ISD::FP_EXTEND; |
| if (NVT.isInteger()) { |
| ISD::CondCode CCCode = |
| cast<CondCodeSDNode>(Node->getOperand(1))->get(); |
| ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| } |
| Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); |
| Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); |
| Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), |
| Node->getOperand(0), Node->getOperand(1), |
| Tmp1, Tmp2, Node->getOperand(4))); |
| break; |
| } |
| case ISD::FADD: |
| case ISD::FSUB: |
| case ISD::FMUL: |
| case ISD::FDIV: |
| case ISD::FREM: |
| case ISD::FMINNUM: |
| case ISD::FMAXNUM: |
| case ISD::FPOW: |
| Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); |
| Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); |
| Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, |
| Node->getFlags()); |
| Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, |
| Tmp3, DAG.getIntPtrConstant(0, dl))); |
| break; |
| case ISD::FMA: |
| Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); |
| Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); |
| Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); |
| Results.push_back( |
| DAG.getNode(ISD::FP_ROUND, dl, OVT, |
| DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), |
| DAG.getIntPtrConstant(0, dl))); |
| break; |
| case ISD::FCOPYSIGN: |
| case ISD::FPOWI: { |
| Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); |
| Tmp2 = Node->getOperand(1); |
| Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); |
| |
| // fcopysign doesn't change anything but the sign bit, so |
| // (fp_round (fcopysign (fpext a), b)) |
| // is as precise as |
| // (fp_round (fpext a)) |
| // which is a no-op. Mark it as a TRUNCating FP_ROUND. |
| const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); |
| Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, |
| Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); |
| break; |
| } |
| case ISD::FFLOOR: |
| case ISD::FCEIL: |
| case ISD::FRINT: |
| case ISD::FNEARBYINT: |
| case ISD::FROUND: |
| case ISD::FTRUNC: |
| case ISD::FNEG: |
| case ISD::FSQRT: |
| case ISD::FSIN: |
| case ISD::FCOS: |
| case ISD::FLOG: |
| case ISD::FLOG2: |
| case ISD::FLOG10: |
| case ISD::FABS: |
| case ISD::FEXP: |
| case ISD::FEXP2: |
| Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); |
| Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); |
| Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, |
| Tmp2, DAG.getIntPtrConstant(0, dl))); |
| break; |
| case ISD::BUILD_VECTOR: { |
| MVT EltVT = OVT.getVectorElementType(); |
| MVT NewEltVT = NVT.getVectorElementType(); |
| |
| // Handle bitcasts to a different vector type with the same total bit size |
| // |
| // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 |
| // => |
| // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) |
| |
| assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && |
| "Invalid promote type for build_vector"); |
| assert(NewEltVT.bitsLT(EltVT) && "not handled"); |
| |
| MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); |
| |
| SmallVector<SDValue, 8> NewOps; |
| for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { |
| SDValue Op = Node->getOperand(I); |
| NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); |
| } |
| |
| SDLoc SL(Node); |
| SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); |
| SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); |
| Results.push_back(CvtVec); |
| break; |
| } |
| case ISD::EXTRACT_VECTOR_ELT: { |
| MVT EltVT = OVT.getVectorElementType(); |
| MVT NewEltVT = NVT.getVectorElementType(); |
| |
| // Handle bitcasts to a different vector type with the same total bit size. |
| // |
| // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 |
| // => |
| // v4i32:castx = bitcast x:v2i64 |
| // |
| // i64 = bitcast |
| // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), |
| // (i32 (extract_vector_elt castx, (2 * y + 1))) |
| // |
| |
| assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && |
| "Invalid promote type for extract_vector_elt"); |
| assert(NewEltVT.bitsLT(EltVT) && "not handled"); |
| |
| MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); |
| unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); |
| |
| SDValue Idx = Node->getOperand(1); |
| EVT IdxVT = Idx.getValueType(); |
| SDLoc SL(Node); |
| SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); |
| SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); |
| |
| SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); |
| |
| SmallVector<SDValue, 8> NewOps; |
| for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { |
| SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); |
| SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); |
| |
| SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, |
| CastVec, TmpIdx); |
| NewOps.push_back(Elt); |
| } |
| |
| SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); |
| Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); |
| break; |
| } |
| case ISD::INSERT_VECTOR_ELT: { |
| MVT EltVT = OVT.getVectorElementType(); |
| MVT NewEltVT = NVT.getVectorElementType(); |
| |
| // Handle bitcasts to a different vector type with the same total bit size |
| // |
| // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 |
| // => |
| // v4i32:castx = bitcast x:v2i64 |
| // v2i32:casty = bitcast y:i64 |
| // |
| // v2i64 = bitcast |
| // (v4i32 insert_vector_elt |
| // (v4i32 insert_vector_elt v4i32:castx, |
| // (extract_vector_elt casty, 0), 2 * z), |
| // (extract_vector_elt casty, 1), (2 * z + 1)) |
| |
| assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && |
| "Invalid promote type for insert_vector_elt"); |
| assert(NewEltVT.bitsLT(EltVT) && "not handled"); |
| |
| MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); |
| unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); |
| |
| SDValue Val = Node->getOperand(1); |
| SDValue Idx = Node->getOperand(2); |
| EVT IdxVT = Idx.getValueType(); |
| SDLoc SL(Node); |
| |
| SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); |
| SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); |
| |
| SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); |
| SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); |
| |
| SDValue NewVec = CastVec; |
| for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { |
| SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); |
| SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); |
| |
| SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, |
| CastVal, IdxOffset); |
| |
| NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, |
| NewVec, Elt, InEltIdx); |
| } |
| |
| Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); |
| break; |
| } |
| case ISD::SCALAR_TO_VECTOR: { |
| MVT EltVT = OVT.getVectorElementType(); |
| MVT NewEltVT = NVT.getVectorElementType(); |
| |
| // Handle bitcasts to different vector type with the same total bit size. |
| // |
| // e.g. v2i64 = scalar_to_vector x:i64 |
| // => |
| // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) |
| // |
| |
| MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); |
| SDValue Val = Node->getOperand(0); |
| SDLoc SL(Node); |
| |
| SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); |
| SDValue Undef = DAG.getUNDEF(MidVT); |
| |
| SmallVector<SDValue, 8> NewElts; |
| NewElts.push_back(CastVal); |
| for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) |
| NewElts.push_back(Undef); |
| |
| SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); |
| SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); |
| Results.push_back(CvtVec); |
| break; |
| } |
| } |
| |
| // Replace the original node with the legalized result. |
| if (!Results.empty()) { |
| LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); |
| ReplaceNode(Node, Results.data()); |
| } else |
| LLVM_DEBUG(dbgs() << "Could not promote node\n"); |
| } |
| |
| /// This is the entry point for the file. |
| void SelectionDAG::Legalize() { |
| AssignTopologicalOrder(); |
| |
| SmallPtrSet<SDNode *, 16> LegalizedNodes; |
| // Use a delete listener to remove nodes which were deleted during |
| // legalization from LegalizeNodes. This is needed to handle the situation |
| // where a new node is allocated by the object pool to the same address of a |
| // previously deleted node. |
| DAGNodeDeletedListener DeleteListener( |
| *this, |
| [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); |
| |
| SelectionDAGLegalize Legalizer(*this, LegalizedNodes); |
| |
| // Visit all the nodes. We start in topological order, so that we see |
| // nodes with their original operands intact. Legalization can produce |
| // new nodes which may themselves need to be legalized. Iterate until all |
| // nodes have been legalized. |
| while (true) { |
| bool AnyLegalized = false; |
| for (auto NI = allnodes_end(); NI != allnodes_begin();) { |
| --NI; |
| |
| SDNode *N = &*NI; |
| if (N->use_empty() && N != getRoot().getNode()) { |
| ++NI; |
| DeleteNode(N); |
| continue; |
| } |
| |
| if (LegalizedNodes.insert(N).second) { |
| AnyLegalized = true; |
| Legalizer.LegalizeOp(N); |
| |
| if (N->use_empty() && N != getRoot().getNode()) { |
| ++NI; |
| DeleteNode(N); |
| } |
| } |
| } |
| if (!AnyLegalized) |
| break; |
| |
| } |
| |
| // Remove dead nodes now. |
| RemoveDeadNodes(); |
| } |
| |
| bool SelectionDAG::LegalizeOp(SDNode *N, |
| SmallSetVector<SDNode *, 16> &UpdatedNodes) { |
| SmallPtrSet<SDNode *, 16> LegalizedNodes; |
| SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); |
| |
| // Directly insert the node in question, and legalize it. This will recurse |
| // as needed through operands. |
| LegalizedNodes.insert(N); |
| Legalizer.LegalizeOp(N); |
| |
| return LegalizedNodes.count(N); |
| } |