| // |
| // Copyright (c) 2002-2011 The ANGLE Project Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| // |
| |
| #include "compiler/OutputHLSL.h" |
| |
| #include "compiler/debug.h" |
| #include "compiler/InfoSink.h" |
| #include "compiler/UnfoldSelect.h" |
| #include "compiler/SearchSymbol.h" |
| |
| #include <stdio.h> |
| #include <algorithm> |
| |
| namespace sh |
| { |
| // Integer to TString conversion |
| TString str(int i) |
| { |
| char buffer[20]; |
| sprintf(buffer, "%d", i); |
| return buffer; |
| } |
| |
| OutputHLSL::OutputHLSL(TParseContext &context) : TIntermTraverser(true, true, true), mContext(context) |
| { |
| mUnfoldSelect = new UnfoldSelect(context, this); |
| mInsideFunction = false; |
| |
| mUsesTexture2D = false; |
| mUsesTexture2D_bias = false; |
| mUsesTexture2DProj = false; |
| mUsesTexture2DProj_bias = false; |
| mUsesTexture2DProjLod = false; |
| mUsesTexture2DLod = false; |
| mUsesTextureCube = false; |
| mUsesTextureCube_bias = false; |
| mUsesTextureCubeLod = false; |
| mUsesDepthRange = false; |
| mUsesFragCoord = false; |
| mUsesPointCoord = false; |
| mUsesFrontFacing = false; |
| mUsesPointSize = false; |
| mUsesXor = false; |
| mUsesMod1 = false; |
| mUsesMod2 = false; |
| mUsesMod3 = false; |
| mUsesMod4 = false; |
| mUsesFaceforward1 = false; |
| mUsesFaceforward2 = false; |
| mUsesFaceforward3 = false; |
| mUsesFaceforward4 = false; |
| mUsesEqualMat2 = false; |
| mUsesEqualMat3 = false; |
| mUsesEqualMat4 = false; |
| mUsesEqualVec2 = false; |
| mUsesEqualVec3 = false; |
| mUsesEqualVec4 = false; |
| mUsesEqualIVec2 = false; |
| mUsesEqualIVec3 = false; |
| mUsesEqualIVec4 = false; |
| mUsesEqualBVec2 = false; |
| mUsesEqualBVec3 = false; |
| mUsesEqualBVec4 = false; |
| mUsesAtan2 = false; |
| |
| mScopeDepth = 0; |
| |
| mUniqueIndex = 0; |
| } |
| |
| OutputHLSL::~OutputHLSL() |
| { |
| delete mUnfoldSelect; |
| } |
| |
| void OutputHLSL::output() |
| { |
| mContext.treeRoot->traverse(this); // Output the body first to determine what has to go in the header |
| header(); |
| |
| mContext.infoSink.obj << mHeader.c_str(); |
| mContext.infoSink.obj << mBody.c_str(); |
| } |
| |
| TInfoSinkBase &OutputHLSL::getBodyStream() |
| { |
| return mBody; |
| } |
| |
| int OutputHLSL::vectorSize(const TType &type) const |
| { |
| int elementSize = type.isMatrix() ? type.getNominalSize() : 1; |
| int arraySize = type.isArray() ? type.getArraySize() : 1; |
| |
| return elementSize * arraySize; |
| } |
| |
| void OutputHLSL::header() |
| { |
| ShShaderType shaderType = mContext.shaderType; |
| TInfoSinkBase &out = mHeader; |
| |
| for (StructDeclarations::iterator structDeclaration = mStructDeclarations.begin(); structDeclaration != mStructDeclarations.end(); structDeclaration++) |
| { |
| out << *structDeclaration; |
| } |
| |
| for (Constructors::iterator constructor = mConstructors.begin(); constructor != mConstructors.end(); constructor++) |
| { |
| out << *constructor; |
| } |
| |
| if (shaderType == SH_FRAGMENT_SHADER) |
| { |
| TString uniforms; |
| TString varyings; |
| |
| TSymbolTableLevel *symbols = mContext.symbolTable.getGlobalLevel(); |
| int semanticIndex = 0; |
| |
| for (TSymbolTableLevel::const_iterator namedSymbol = symbols->begin(); namedSymbol != symbols->end(); namedSymbol++) |
| { |
| const TSymbol *symbol = (*namedSymbol).second; |
| const TString &name = symbol->getName(); |
| |
| if (symbol->isVariable()) |
| { |
| const TVariable *variable = static_cast<const TVariable*>(symbol); |
| const TType &type = variable->getType(); |
| TQualifier qualifier = type.getQualifier(); |
| |
| if (qualifier == EvqUniform) |
| { |
| if (mReferencedUniforms.find(name.c_str()) != mReferencedUniforms.end()) |
| { |
| uniforms += "uniform " + typeString(type) + " " + decorateUniform(name, type.isArray()) + arrayString(type) + ";\n"; |
| } |
| } |
| else if (qualifier == EvqVaryingIn || qualifier == EvqInvariantVaryingIn) |
| { |
| if (mReferencedVaryings.find(name.c_str()) != mReferencedVaryings.end()) |
| { |
| // Program linking depends on this exact format |
| varyings += "static " + typeString(type) + " " + decorate(name) + arrayString(type) + " = " + initializer(type) + ";\n"; |
| |
| semanticIndex += type.isArray() ? type.getArraySize() : 1; |
| } |
| } |
| else if (qualifier == EvqGlobal || qualifier == EvqTemporary) |
| { |
| // Globals are declared and intialized as an aggregate node |
| } |
| else if (qualifier == EvqConst) |
| { |
| // Constants are repeated as literals where used |
| } |
| else UNREACHABLE(); |
| } |
| } |
| |
| out << "// Varyings\n"; |
| out << varyings; |
| out << "\n" |
| "static float4 gl_Color[1] = {float4(0, 0, 0, 0)};\n"; |
| |
| if (mUsesFragCoord) |
| { |
| out << "static float4 gl_FragCoord = float4(0, 0, 0, 0);\n"; |
| } |
| |
| if (mUsesPointCoord) |
| { |
| out << "static float2 gl_PointCoord = float2(0.5, 0.5);\n"; |
| } |
| |
| if (mUsesFrontFacing) |
| { |
| out << "static bool gl_FrontFacing = false;\n"; |
| } |
| |
| out << "\n"; |
| |
| if (mUsesFragCoord) |
| { |
| out << "uniform float4 dx_Viewport;\n" |
| "uniform float2 dx_Depth;\n"; |
| } |
| |
| if (mUsesFrontFacing) |
| { |
| out << "uniform bool dx_PointsOrLines;\n" |
| "uniform bool dx_FrontCCW;\n"; |
| } |
| |
| out << "\n"; |
| out << uniforms; |
| out << "\n"; |
| |
| // The texture fetch functions "flip" the Y coordinate in one way or another. This is because textures are stored |
| // according to the OpenGL convention, i.e. (0, 0) is "bottom left", rather than the D3D convention where (0, 0) |
| // is "top left". Since the HLSL texture fetch functions expect textures to be stored according to the D3D |
| // convention, the Y coordinate passed to these functions is adjusted to compensate. |
| // |
| // The simplest case is texture2D where the mapping is Y -> 1-Y, which maps [0, 1] -> [1, 0]. |
| // |
| // The texture2DProj functions are more complicated because the projection divides by either Z or W. For the vec3 |
| // case, the mapping is Y -> Z-Y or Y/Z -> 1-Y/Z, which again maps [0, 1] -> [1, 0]. |
| // |
| // For cube textures the mapping is Y -> -Y, which maps [-1, 1] -> [1, -1]. This is not sufficient on its own for the |
| // +Y and -Y faces, which are now on the "wrong sides" of the cube. This is compensated for by exchanging the |
| // +Y and -Y faces everywhere else throughout the code. |
| |
| if (mUsesTexture2D) |
| { |
| out << "float4 gl_texture2D(sampler2D s, float2 t)\n" |
| "{\n" |
| " return tex2D(s, float2(t.x, 1 - t.y));\n" |
| "}\n" |
| "\n"; |
| } |
| |
| if (mUsesTexture2D_bias) |
| { |
| out << "float4 gl_texture2D(sampler2D s, float2 t, float bias)\n" |
| "{\n" |
| " return tex2Dbias(s, float4(t.x, 1 - t.y, 0, bias));\n" |
| "}\n" |
| "\n"; |
| } |
| |
| if (mUsesTexture2DProj) |
| { |
| out << "float4 gl_texture2DProj(sampler2D s, float3 t)\n" |
| "{\n" |
| " return tex2Dproj(s, float4(t.x, t.z - t.y, 0, t.z));\n" |
| "}\n" |
| "\n" |
| "float4 gl_texture2DProj(sampler2D s, float4 t)\n" |
| "{\n" |
| " return tex2Dproj(s, float4(t.x, t.w - t.y, t.z, t.w));\n" |
| "}\n" |
| "\n"; |
| } |
| |
| if (mUsesTexture2DProj_bias) |
| { |
| out << "float4 gl_texture2DProj(sampler2D s, float3 t, float bias)\n" |
| "{\n" |
| " return tex2Dbias(s, float4(t.x / t.z, 1 - (t.y / t.z), 0, bias));\n" |
| "}\n" |
| "\n" |
| "float4 gl_texture2DProj(sampler2D s, float4 t, float bias)\n" |
| "{\n" |
| " return tex2Dbias(s, float4(t.x / t.w, 1 - (t.y / t.w), 0, bias));\n" |
| "}\n" |
| "\n"; |
| } |
| |
| if (mUsesTextureCube) |
| { |
| out << "float4 gl_textureCube(samplerCUBE s, float3 t)\n" |
| "{\n" |
| " return texCUBE(s, float3(t.x, -t.y, t.z));\n" |
| "}\n" |
| "\n"; |
| } |
| |
| if (mUsesTextureCube_bias) |
| { |
| out << "float4 gl_textureCube(samplerCUBE s, float3 t, float bias)\n" |
| "{\n" |
| " return texCUBEbias(s, float4(t.x, -t.y, t.z, bias));\n" |
| "}\n" |
| "\n"; |
| } |
| } |
| else // Vertex shader |
| { |
| TString uniforms; |
| TString attributes; |
| TString varyings; |
| |
| TSymbolTableLevel *symbols = mContext.symbolTable.getGlobalLevel(); |
| |
| for (TSymbolTableLevel::const_iterator namedSymbol = symbols->begin(); namedSymbol != symbols->end(); namedSymbol++) |
| { |
| const TSymbol *symbol = (*namedSymbol).second; |
| const TString &name = symbol->getName(); |
| |
| if (symbol->isVariable()) |
| { |
| const TVariable *variable = static_cast<const TVariable*>(symbol); |
| const TType &type = variable->getType(); |
| TQualifier qualifier = type.getQualifier(); |
| |
| if (qualifier == EvqUniform) |
| { |
| if (mReferencedUniforms.find(name.c_str()) != mReferencedUniforms.end()) |
| { |
| uniforms += "uniform " + typeString(type) + " " + decorateUniform(name, type.isArray()) + arrayString(type) + ";\n"; |
| } |
| } |
| else if (qualifier == EvqAttribute) |
| { |
| if (mReferencedAttributes.find(name.c_str()) != mReferencedAttributes.end()) |
| { |
| attributes += "static " + typeString(type) + " " + decorate(name) + arrayString(type) + " = " + initializer(type) + ";\n"; |
| } |
| } |
| else if (qualifier == EvqVaryingOut || qualifier == EvqInvariantVaryingOut) |
| { |
| if (mReferencedVaryings.find(name.c_str()) != mReferencedVaryings.end()) |
| { |
| // Program linking depends on this exact format |
| varyings += "static " + typeString(type) + " " + decorate(name) + arrayString(type) + " = " + initializer(type) + ";\n"; |
| } |
| } |
| else if (qualifier == EvqGlobal || qualifier == EvqTemporary) |
| { |
| // Globals are declared and intialized as an aggregate node |
| } |
| else if (qualifier == EvqConst) |
| { |
| // Constants are repeated as literals where used |
| } |
| else UNREACHABLE(); |
| } |
| } |
| |
| out << "// Attributes\n"; |
| out << attributes; |
| out << "\n" |
| "static float4 gl_Position = float4(0, 0, 0, 0);\n"; |
| |
| if (mUsesPointSize) |
| { |
| out << "static float gl_PointSize = float(1);\n"; |
| } |
| |
| out << "\n" |
| "// Varyings\n"; |
| out << varyings; |
| out << "\n" |
| "uniform float2 dx_HalfPixelSize;\n" |
| "\n"; |
| out << uniforms; |
| out << "\n"; |
| |
| // The texture fetch functions "flip" the Y coordinate in one way or another. This is because textures are stored |
| // according to the OpenGL convention, i.e. (0, 0) is "bottom left", rather than the D3D convention where (0, 0) |
| // is "top left". Since the HLSL texture fetch functions expect textures to be stored according to the D3D |
| // convention, the Y coordinate passed to these functions is adjusted to compensate. |
| // |
| // The simplest case is texture2D where the mapping is Y -> 1-Y, which maps [0, 1] -> [1, 0]. |
| // |
| // The texture2DProj functions are more complicated because the projection divides by either Z or W. For the vec3 |
| // case, the mapping is Y -> Z-Y or Y/Z -> 1-Y/Z, which again maps [0, 1] -> [1, 0]. |
| // |
| // For cube textures the mapping is Y -> -Y, which maps [-1, 1] -> [1, -1]. This is not sufficient on its own for the |
| // +Y and -Y faces, which are now on the "wrong sides" of the cube. This is compensated for by exchanging the |
| // +Y and -Y faces everywhere else throughout the code. |
| |
| if (mUsesTexture2D) |
| { |
| out << "float4 gl_texture2D(sampler2D s, float2 t)\n" |
| "{\n" |
| " return tex2Dlod(s, float4(t.x, 1 - t.y, 0, 0));\n" |
| "}\n" |
| "\n"; |
| } |
| |
| if (mUsesTexture2DLod) |
| { |
| out << "float4 gl_texture2DLod(sampler2D s, float2 t, float lod)\n" |
| "{\n" |
| " return tex2Dlod(s, float4(t.x, 1 - t.y, 0, lod));\n" |
| "}\n" |
| "\n"; |
| } |
| |
| if (mUsesTexture2DProj) |
| { |
| out << "float4 gl_texture2DProj(sampler2D s, float3 t)\n" |
| "{\n" |
| " return tex2Dlod(s, float4(t.x / t.z, 1 - t.y / t.z, 0, 0));\n" |
| "}\n" |
| "\n" |
| "float4 gl_texture2DProj(sampler2D s, float4 t)\n" |
| "{\n" |
| " return tex2Dlod(s, float4(t.x / t.w, 1 - t.y / t.w, 0, 0));\n" |
| "}\n" |
| "\n"; |
| } |
| |
| if (mUsesTexture2DProjLod) |
| { |
| out << "float4 gl_texture2DProjLod(sampler2D s, float3 t, float lod)\n" |
| "{\n" |
| " return tex2Dlod(s, float4(t.x / t.z, 1 - t.y / t.z, 0, lod));\n" |
| "}\n" |
| "\n" |
| "float4 gl_texture2DProjLod(sampler2D s, float4 t, float lod)\n" |
| "{\n" |
| " return tex2Dlod(s, float4(t.x / t.w, 1 - t.y / t.w, 0, lod));\n" |
| "}\n" |
| "\n"; |
| } |
| |
| if (mUsesTextureCube) |
| { |
| out << "float4 gl_textureCube(samplerCUBE s, float3 t)\n" |
| "{\n" |
| " return texCUBElod(s, float4(t.x, -t.y, t.z, 0));\n" |
| "}\n" |
| "\n"; |
| } |
| |
| if (mUsesTextureCubeLod) |
| { |
| out << "float4 gl_textureCubeLod(samplerCUBE s, float3 t, float lod)\n" |
| "{\n" |
| " return texCUBElod(s, float4(t.x, -t.y, t.z, lod));\n" |
| "}\n" |
| "\n"; |
| } |
| } |
| |
| if (mUsesFragCoord) |
| { |
| out << "#define GL_USES_FRAG_COORD\n"; |
| } |
| |
| if (mUsesPointCoord) |
| { |
| out << "#define GL_USES_POINT_COORD\n"; |
| } |
| |
| if (mUsesFrontFacing) |
| { |
| out << "#define GL_USES_FRONT_FACING\n"; |
| } |
| |
| if (mUsesPointSize) |
| { |
| out << "#define GL_USES_POINT_SIZE\n"; |
| } |
| |
| if (mUsesDepthRange) |
| { |
| out << "struct gl_DepthRangeParameters\n" |
| "{\n" |
| " float near;\n" |
| " float far;\n" |
| " float diff;\n" |
| "};\n" |
| "\n" |
| "uniform float3 dx_DepthRange;" |
| "static gl_DepthRangeParameters gl_DepthRange = {dx_DepthRange.x, dx_DepthRange.y, dx_DepthRange.z};\n" |
| "\n"; |
| } |
| |
| if (mUsesXor) |
| { |
| out << "bool xor(bool p, bool q)\n" |
| "{\n" |
| " return (p || q) && !(p && q);\n" |
| "}\n" |
| "\n"; |
| } |
| |
| if (mUsesMod1) |
| { |
| out << "float mod(float x, float y)\n" |
| "{\n" |
| " return x - y * floor(x / y);\n" |
| "}\n" |
| "\n"; |
| } |
| |
| if (mUsesMod2) |
| { |
| out << "float2 mod(float2 x, float y)\n" |
| "{\n" |
| " return x - y * floor(x / y);\n" |
| "}\n" |
| "\n"; |
| } |
| |
| if (mUsesMod3) |
| { |
| out << "float3 mod(float3 x, float y)\n" |
| "{\n" |
| " return x - y * floor(x / y);\n" |
| "}\n" |
| "\n"; |
| } |
| |
| if (mUsesMod4) |
| { |
| out << "float4 mod(float4 x, float y)\n" |
| "{\n" |
| " return x - y * floor(x / y);\n" |
| "}\n" |
| "\n"; |
| } |
| |
| if (mUsesFaceforward1) |
| { |
| out << "float faceforward(float N, float I, float Nref)\n" |
| "{\n" |
| " if(dot(Nref, I) >= 0)\n" |
| " {\n" |
| " return -N;\n" |
| " }\n" |
| " else\n" |
| " {\n" |
| " return N;\n" |
| " }\n" |
| "}\n" |
| "\n"; |
| } |
| |
| if (mUsesFaceforward2) |
| { |
| out << "float2 faceforward(float2 N, float2 I, float2 Nref)\n" |
| "{\n" |
| " if(dot(Nref, I) >= 0)\n" |
| " {\n" |
| " return -N;\n" |
| " }\n" |
| " else\n" |
| " {\n" |
| " return N;\n" |
| " }\n" |
| "}\n" |
| "\n"; |
| } |
| |
| if (mUsesFaceforward3) |
| { |
| out << "float3 faceforward(float3 N, float3 I, float3 Nref)\n" |
| "{\n" |
| " if(dot(Nref, I) >= 0)\n" |
| " {\n" |
| " return -N;\n" |
| " }\n" |
| " else\n" |
| " {\n" |
| " return N;\n" |
| " }\n" |
| "}\n" |
| "\n"; |
| } |
| |
| if (mUsesFaceforward4) |
| { |
| out << "float4 faceforward(float4 N, float4 I, float4 Nref)\n" |
| "{\n" |
| " if(dot(Nref, I) >= 0)\n" |
| " {\n" |
| " return -N;\n" |
| " }\n" |
| " else\n" |
| " {\n" |
| " return N;\n" |
| " }\n" |
| "}\n" |
| "\n"; |
| } |
| |
| if (mUsesEqualMat2) |
| { |
| out << "bool equal(float2x2 m, float2x2 n)\n" |
| "{\n" |
| " return m[0][0] == n[0][0] && m[0][1] == n[0][1] &&\n" |
| " m[1][0] == n[1][0] && m[1][1] == n[1][1];\n" |
| "}\n"; |
| } |
| |
| if (mUsesEqualMat3) |
| { |
| out << "bool equal(float3x3 m, float3x3 n)\n" |
| "{\n" |
| " return m[0][0] == n[0][0] && m[0][1] == n[0][1] && m[0][2] == n[0][2] &&\n" |
| " m[1][0] == n[1][0] && m[1][1] == n[1][1] && m[1][2] == n[1][2] &&\n" |
| " m[2][0] == n[2][0] && m[2][1] == n[2][1] && m[2][2] == n[2][2];\n" |
| "}\n"; |
| } |
| |
| if (mUsesEqualMat4) |
| { |
| out << "bool equal(float4x4 m, float4x4 n)\n" |
| "{\n" |
| " return m[0][0] == n[0][0] && m[0][1] == n[0][1] && m[0][2] == n[0][2] && m[0][3] == n[0][3] &&\n" |
| " m[1][0] == n[1][0] && m[1][1] == n[1][1] && m[1][2] == n[1][2] && m[1][3] == n[1][3] &&\n" |
| " m[2][0] == n[2][0] && m[2][1] == n[2][1] && m[2][2] == n[2][2] && m[2][3] == n[2][3] &&\n" |
| " m[3][0] == n[3][0] && m[3][1] == n[3][1] && m[3][2] == n[3][2] && m[3][3] == n[3][3];\n" |
| "}\n"; |
| } |
| |
| if (mUsesEqualVec2) |
| { |
| out << "bool equal(float2 v, float2 u)\n" |
| "{\n" |
| " return v.x == u.x && v.y == u.y;\n" |
| "}\n"; |
| } |
| |
| if (mUsesEqualVec3) |
| { |
| out << "bool equal(float3 v, float3 u)\n" |
| "{\n" |
| " return v.x == u.x && v.y == u.y && v.z == u.z;\n" |
| "}\n"; |
| } |
| |
| if (mUsesEqualVec4) |
| { |
| out << "bool equal(float4 v, float4 u)\n" |
| "{\n" |
| " return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w;\n" |
| "}\n"; |
| } |
| |
| if (mUsesEqualIVec2) |
| { |
| out << "bool equal(int2 v, int2 u)\n" |
| "{\n" |
| " return v.x == u.x && v.y == u.y;\n" |
| "}\n"; |
| } |
| |
| if (mUsesEqualIVec3) |
| { |
| out << "bool equal(int3 v, int3 u)\n" |
| "{\n" |
| " return v.x == u.x && v.y == u.y && v.z == u.z;\n" |
| "}\n"; |
| } |
| |
| if (mUsesEqualIVec4) |
| { |
| out << "bool equal(int4 v, int4 u)\n" |
| "{\n" |
| " return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w;\n" |
| "}\n"; |
| } |
| |
| if (mUsesEqualBVec2) |
| { |
| out << "bool equal(bool2 v, bool2 u)\n" |
| "{\n" |
| " return v.x == u.x && v.y == u.y;\n" |
| "}\n"; |
| } |
| |
| if (mUsesEqualBVec3) |
| { |
| out << "bool equal(bool3 v, bool3 u)\n" |
| "{\n" |
| " return v.x == u.x && v.y == u.y && v.z == u.z;\n" |
| "}\n"; |
| } |
| |
| if (mUsesEqualBVec4) |
| { |
| out << "bool equal(bool4 v, bool4 u)\n" |
| "{\n" |
| " return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w;\n" |
| "}\n"; |
| } |
| |
| if (mUsesAtan2) |
| { |
| out << "float atanyx(float y, float x)\n" |
| "{\n" |
| " if(x == 0 && y == 0) x = 1;\n" // Avoid producing a NaN |
| " return atan2(y, x);\n" |
| "}\n"; |
| } |
| } |
| |
| void OutputHLSL::visitSymbol(TIntermSymbol *node) |
| { |
| TInfoSinkBase &out = mBody; |
| |
| TString name = node->getSymbol(); |
| |
| if (name == "gl_FragColor") |
| { |
| out << "gl_Color[0]"; |
| } |
| else if (name == "gl_FragData") |
| { |
| out << "gl_Color"; |
| } |
| else if (name == "gl_DepthRange") |
| { |
| mUsesDepthRange = true; |
| out << name; |
| } |
| else if (name == "gl_FragCoord") |
| { |
| mUsesFragCoord = true; |
| out << name; |
| } |
| else if (name == "gl_PointCoord") |
| { |
| mUsesPointCoord = true; |
| out << name; |
| } |
| else if (name == "gl_FrontFacing") |
| { |
| mUsesFrontFacing = true; |
| out << name; |
| } |
| else if (name == "gl_PointSize") |
| { |
| mUsesPointSize = true; |
| out << name; |
| } |
| else |
| { |
| TQualifier qualifier = node->getQualifier(); |
| |
| if (qualifier == EvqUniform) |
| { |
| mReferencedUniforms.insert(name.c_str()); |
| out << decorateUniform(name, node->isArray()); |
| } |
| else if (qualifier == EvqAttribute) |
| { |
| mReferencedAttributes.insert(name.c_str()); |
| out << decorate(name); |
| } |
| else if (qualifier == EvqVaryingOut || qualifier == EvqInvariantVaryingOut || qualifier == EvqVaryingIn || qualifier == EvqInvariantVaryingIn) |
| { |
| mReferencedVaryings.insert(name.c_str()); |
| out << decorate(name); |
| } |
| else |
| { |
| out << decorate(name); |
| } |
| } |
| } |
| |
| bool OutputHLSL::visitBinary(Visit visit, TIntermBinary *node) |
| { |
| TInfoSinkBase &out = mBody; |
| |
| switch (node->getOp()) |
| { |
| case EOpAssign: outputTriplet(visit, "(", " = ", ")"); break; |
| case EOpInitialize: |
| if (visit == PreVisit) |
| { |
| // GLSL allows to write things like "float x = x;" where a new variable x is defined |
| // and the value of an existing variable x is assigned. HLSL uses C semantics (the |
| // new variable is created before the assignment is evaluated), so we need to convert |
| // this to "float t = x, x = t;". |
| |
| TIntermSymbol *symbolNode = node->getLeft()->getAsSymbolNode(); |
| TIntermTyped *expression = node->getRight(); |
| |
| sh::SearchSymbol searchSymbol(symbolNode->getSymbol()); |
| expression->traverse(&searchSymbol); |
| bool sameSymbol = searchSymbol.foundMatch(); |
| |
| if (sameSymbol) |
| { |
| // Type already printed |
| out << "t" + str(mUniqueIndex) + " = "; |
| expression->traverse(this); |
| out << ", "; |
| symbolNode->traverse(this); |
| out << " = t" + str(mUniqueIndex); |
| |
| mUniqueIndex++; |
| return false; |
| } |
| } |
| else if (visit == InVisit) |
| { |
| out << " = "; |
| } |
| break; |
| case EOpAddAssign: outputTriplet(visit, "(", " += ", ")"); break; |
| case EOpSubAssign: outputTriplet(visit, "(", " -= ", ")"); break; |
| case EOpMulAssign: outputTriplet(visit, "(", " *= ", ")"); break; |
| case EOpVectorTimesScalarAssign: outputTriplet(visit, "(", " *= ", ")"); break; |
| case EOpMatrixTimesScalarAssign: outputTriplet(visit, "(", " *= ", ")"); break; |
| case EOpVectorTimesMatrixAssign: |
| if (visit == PreVisit) |
| { |
| out << "("; |
| } |
| else if (visit == InVisit) |
| { |
| out << " = mul("; |
| node->getLeft()->traverse(this); |
| out << ", transpose("; |
| } |
| else |
| { |
| out << ")))"; |
| } |
| break; |
| case EOpMatrixTimesMatrixAssign: |
| if (visit == PreVisit) |
| { |
| out << "("; |
| } |
| else if (visit == InVisit) |
| { |
| out << " = mul("; |
| node->getLeft()->traverse(this); |
| out << ", "; |
| } |
| else |
| { |
| out << "))"; |
| } |
| break; |
| case EOpDivAssign: outputTriplet(visit, "(", " /= ", ")"); break; |
| case EOpIndexDirect: outputTriplet(visit, "", "[", "]"); break; |
| case EOpIndexIndirect: outputTriplet(visit, "", "[", "]"); break; |
| case EOpIndexDirectStruct: |
| if (visit == InVisit) |
| { |
| out << "." + node->getType().getFieldName(); |
| |
| return false; |
| } |
| break; |
| case EOpVectorSwizzle: |
| if (visit == InVisit) |
| { |
| out << "."; |
| |
| TIntermAggregate *swizzle = node->getRight()->getAsAggregate(); |
| |
| if (swizzle) |
| { |
| TIntermSequence &sequence = swizzle->getSequence(); |
| |
| for (TIntermSequence::iterator sit = sequence.begin(); sit != sequence.end(); sit++) |
| { |
| TIntermConstantUnion *element = (*sit)->getAsConstantUnion(); |
| |
| if (element) |
| { |
| int i = element->getUnionArrayPointer()[0].getIConst(); |
| |
| switch (i) |
| { |
| case 0: out << "x"; break; |
| case 1: out << "y"; break; |
| case 2: out << "z"; break; |
| case 3: out << "w"; break; |
| default: UNREACHABLE(); |
| } |
| } |
| else UNREACHABLE(); |
| } |
| } |
| else UNREACHABLE(); |
| |
| return false; // Fully processed |
| } |
| break; |
| case EOpAdd: outputTriplet(visit, "(", " + ", ")"); break; |
| case EOpSub: outputTriplet(visit, "(", " - ", ")"); break; |
| case EOpMul: outputTriplet(visit, "(", " * ", ")"); break; |
| case EOpDiv: outputTriplet(visit, "(", " / ", ")"); break; |
| case EOpEqual: |
| case EOpNotEqual: |
| if (node->getLeft()->isScalar()) |
| { |
| if (node->getOp() == EOpEqual) |
| { |
| outputTriplet(visit, "(", " == ", ")"); |
| } |
| else |
| { |
| outputTriplet(visit, "(", " != ", ")"); |
| } |
| } |
| else if (node->getLeft()->getBasicType() == EbtStruct) |
| { |
| if (node->getOp() == EOpEqual) |
| { |
| out << "("; |
| } |
| else |
| { |
| out << "!("; |
| } |
| |
| const TTypeList *fields = node->getLeft()->getType().getStruct(); |
| |
| for (size_t i = 0; i < fields->size(); i++) |
| { |
| const TType *fieldType = (*fields)[i].type; |
| |
| node->getLeft()->traverse(this); |
| out << "." + fieldType->getFieldName() + " == "; |
| node->getRight()->traverse(this); |
| out << "." + fieldType->getFieldName(); |
| |
| if (i < fields->size() - 1) |
| { |
| out << " && "; |
| } |
| } |
| |
| out << ")"; |
| |
| return false; |
| } |
| else |
| { |
| if (node->getLeft()->isMatrix()) |
| { |
| switch (node->getLeft()->getNominalSize()) |
| { |
| case 2: mUsesEqualMat2 = true; break; |
| case 3: mUsesEqualMat3 = true; break; |
| case 4: mUsesEqualMat4 = true; break; |
| default: UNREACHABLE(); |
| } |
| } |
| else if (node->getLeft()->isVector()) |
| { |
| switch (node->getLeft()->getBasicType()) |
| { |
| case EbtFloat: |
| switch (node->getLeft()->getNominalSize()) |
| { |
| case 2: mUsesEqualVec2 = true; break; |
| case 3: mUsesEqualVec3 = true; break; |
| case 4: mUsesEqualVec4 = true; break; |
| default: UNREACHABLE(); |
| } |
| break; |
| case EbtInt: |
| switch (node->getLeft()->getNominalSize()) |
| { |
| case 2: mUsesEqualIVec2 = true; break; |
| case 3: mUsesEqualIVec3 = true; break; |
| case 4: mUsesEqualIVec4 = true; break; |
| default: UNREACHABLE(); |
| } |
| break; |
| case EbtBool: |
| switch (node->getLeft()->getNominalSize()) |
| { |
| case 2: mUsesEqualBVec2 = true; break; |
| case 3: mUsesEqualBVec3 = true; break; |
| case 4: mUsesEqualBVec4 = true; break; |
| default: UNREACHABLE(); |
| } |
| break; |
| default: UNREACHABLE(); |
| } |
| } |
| else UNREACHABLE(); |
| |
| if (node->getOp() == EOpEqual) |
| { |
| outputTriplet(visit, "equal(", ", ", ")"); |
| } |
| else |
| { |
| outputTriplet(visit, "!equal(", ", ", ")"); |
| } |
| } |
| break; |
| case EOpLessThan: outputTriplet(visit, "(", " < ", ")"); break; |
| case EOpGreaterThan: outputTriplet(visit, "(", " > ", ")"); break; |
| case EOpLessThanEqual: outputTriplet(visit, "(", " <= ", ")"); break; |
| case EOpGreaterThanEqual: outputTriplet(visit, "(", " >= ", ")"); break; |
| case EOpVectorTimesScalar: outputTriplet(visit, "(", " * ", ")"); break; |
| case EOpMatrixTimesScalar: outputTriplet(visit, "(", " * ", ")"); break; |
| case EOpVectorTimesMatrix: outputTriplet(visit, "mul(", ", transpose(", "))"); break; |
| case EOpMatrixTimesVector: outputTriplet(visit, "mul(transpose(", "), ", ")"); break; |
| case EOpMatrixTimesMatrix: outputTriplet(visit, "transpose(mul(transpose(", "), transpose(", ")))"); break; |
| case EOpLogicalOr: outputTriplet(visit, "(", " || ", ")"); break; |
| case EOpLogicalXor: |
| mUsesXor = true; |
| outputTriplet(visit, "xor(", ", ", ")"); |
| break; |
| case EOpLogicalAnd: outputTriplet(visit, "(", " && ", ")"); break; |
| default: UNREACHABLE(); |
| } |
| |
| return true; |
| } |
| |
| bool OutputHLSL::visitUnary(Visit visit, TIntermUnary *node) |
| { |
| TInfoSinkBase &out = mBody; |
| |
| switch (node->getOp()) |
| { |
| case EOpNegative: outputTriplet(visit, "(-", "", ")"); break; |
| case EOpVectorLogicalNot: outputTriplet(visit, "(!", "", ")"); break; |
| case EOpLogicalNot: outputTriplet(visit, "(!", "", ")"); break; |
| case EOpPostIncrement: outputTriplet(visit, "(", "", "++)"); break; |
| case EOpPostDecrement: outputTriplet(visit, "(", "", "--)"); break; |
| case EOpPreIncrement: outputTriplet(visit, "(++", "", ")"); break; |
| case EOpPreDecrement: outputTriplet(visit, "(--", "", ")"); break; |
| case EOpConvIntToBool: |
| case EOpConvFloatToBool: |
| switch (node->getOperand()->getType().getNominalSize()) |
| { |
| case 1: outputTriplet(visit, "bool(", "", ")"); break; |
| case 2: outputTriplet(visit, "bool2(", "", ")"); break; |
| case 3: outputTriplet(visit, "bool3(", "", ")"); break; |
| case 4: outputTriplet(visit, "bool4(", "", ")"); break; |
| default: UNREACHABLE(); |
| } |
| break; |
| case EOpConvBoolToFloat: |
| case EOpConvIntToFloat: |
| switch (node->getOperand()->getType().getNominalSize()) |
| { |
| case 1: outputTriplet(visit, "float(", "", ")"); break; |
| case 2: outputTriplet(visit, "float2(", "", ")"); break; |
| case 3: outputTriplet(visit, "float3(", "", ")"); break; |
| case 4: outputTriplet(visit, "float4(", "", ")"); break; |
| default: UNREACHABLE(); |
| } |
| break; |
| case EOpConvFloatToInt: |
| case EOpConvBoolToInt: |
| switch (node->getOperand()->getType().getNominalSize()) |
| { |
| case 1: outputTriplet(visit, "int(", "", ")"); break; |
| case 2: outputTriplet(visit, "int2(", "", ")"); break; |
| case 3: outputTriplet(visit, "int3(", "", ")"); break; |
| case 4: outputTriplet(visit, "int4(", "", ")"); break; |
| default: UNREACHABLE(); |
| } |
| break; |
| case EOpRadians: outputTriplet(visit, "radians(", "", ")"); break; |
| case EOpDegrees: outputTriplet(visit, "degrees(", "", ")"); break; |
| case EOpSin: outputTriplet(visit, "sin(", "", ")"); break; |
| case EOpCos: outputTriplet(visit, "cos(", "", ")"); break; |
| case EOpTan: outputTriplet(visit, "tan(", "", ")"); break; |
| case EOpAsin: outputTriplet(visit, "asin(", "", ")"); break; |
| case EOpAcos: outputTriplet(visit, "acos(", "", ")"); break; |
| case EOpAtan: outputTriplet(visit, "atan(", "", ")"); break; |
| case EOpExp: outputTriplet(visit, "exp(", "", ")"); break; |
| case EOpLog: outputTriplet(visit, "log(", "", ")"); break; |
| case EOpExp2: outputTriplet(visit, "exp2(", "", ")"); break; |
| case EOpLog2: outputTriplet(visit, "log2(", "", ")"); break; |
| case EOpSqrt: outputTriplet(visit, "sqrt(", "", ")"); break; |
| case EOpInverseSqrt: outputTriplet(visit, "rsqrt(", "", ")"); break; |
| case EOpAbs: outputTriplet(visit, "abs(", "", ")"); break; |
| case EOpSign: outputTriplet(visit, "sign(", "", ")"); break; |
| case EOpFloor: outputTriplet(visit, "floor(", "", ")"); break; |
| case EOpCeil: outputTriplet(visit, "ceil(", "", ")"); break; |
| case EOpFract: outputTriplet(visit, "frac(", "", ")"); break; |
| case EOpLength: outputTriplet(visit, "length(", "", ")"); break; |
| case EOpNormalize: outputTriplet(visit, "normalize(", "", ")"); break; |
| case EOpDFdx: outputTriplet(visit, "ddx(", "", ")"); break; |
| case EOpDFdy: outputTriplet(visit, "(-ddy(", "", "))"); break; |
| case EOpFwidth: outputTriplet(visit, "fwidth(", "", ")"); break; |
| case EOpAny: outputTriplet(visit, "any(", "", ")"); break; |
| case EOpAll: outputTriplet(visit, "all(", "", ")"); break; |
| default: UNREACHABLE(); |
| } |
| |
| return true; |
| } |
| |
| bool OutputHLSL::visitAggregate(Visit visit, TIntermAggregate *node) |
| { |
| ShShaderType shaderType = mContext.shaderType; |
| TInfoSinkBase &out = mBody; |
| |
| switch (node->getOp()) |
| { |
| case EOpSequence: |
| { |
| if (mInsideFunction) |
| { |
| outputLineDirective(node->getLine()); |
| out << "{\n"; |
| |
| mScopeDepth++; |
| |
| if (mScopeBracket.size() < mScopeDepth) |
| { |
| mScopeBracket.push_back(0); // New scope level |
| } |
| else |
| { |
| mScopeBracket[mScopeDepth - 1]++; // New scope at existing level |
| } |
| } |
| |
| for (TIntermSequence::iterator sit = node->getSequence().begin(); sit != node->getSequence().end(); sit++) |
| { |
| outputLineDirective((*sit)->getLine()); |
| |
| if (isSingleStatement(*sit)) |
| { |
| mUnfoldSelect->traverse(*sit); |
| } |
| |
| (*sit)->traverse(this); |
| |
| out << ";\n"; |
| } |
| |
| if (mInsideFunction) |
| { |
| outputLineDirective(node->getEndLine()); |
| out << "}\n"; |
| |
| mScopeDepth--; |
| } |
| |
| return false; |
| } |
| case EOpDeclaration: |
| if (visit == PreVisit) |
| { |
| TIntermSequence &sequence = node->getSequence(); |
| TIntermTyped *variable = sequence[0]->getAsTyped(); |
| bool visit = true; |
| |
| if (variable && (variable->getQualifier() == EvqTemporary || variable->getQualifier() == EvqGlobal)) |
| { |
| if (variable->getType().getStruct()) |
| { |
| addConstructor(variable->getType(), scopedStruct(variable->getType().getTypeName()), NULL); |
| } |
| |
| if (!variable->getAsSymbolNode() || variable->getAsSymbolNode()->getSymbol() != "") // Variable declaration |
| { |
| if (!mInsideFunction) |
| { |
| out << "static "; |
| } |
| |
| out << typeString(variable->getType()) + " "; |
| |
| for (TIntermSequence::iterator sit = sequence.begin(); sit != sequence.end(); sit++) |
| { |
| TIntermSymbol *symbol = (*sit)->getAsSymbolNode(); |
| |
| if (symbol) |
| { |
| symbol->traverse(this); |
| out << arrayString(symbol->getType()); |
| out << " = " + initializer(variable->getType()); |
| } |
| else |
| { |
| (*sit)->traverse(this); |
| } |
| |
| if (visit && this->inVisit) |
| { |
| if (*sit != sequence.back()) |
| { |
| visit = this->visitAggregate(InVisit, node); |
| } |
| } |
| } |
| |
| if (visit && this->postVisit) |
| { |
| this->visitAggregate(PostVisit, node); |
| } |
| } |
| else if (variable->getAsSymbolNode() && variable->getAsSymbolNode()->getSymbol() == "") // Type (struct) declaration |
| { |
| // Already added to constructor map |
| } |
| else UNREACHABLE(); |
| } |
| |
| return false; |
| } |
| else if (visit == InVisit) |
| { |
| out << ", "; |
| } |
| break; |
| case EOpPrototype: |
| if (visit == PreVisit) |
| { |
| out << typeString(node->getType()) << " " << decorate(node->getName()) << "("; |
| |
| TIntermSequence &arguments = node->getSequence(); |
| |
| for (unsigned int i = 0; i < arguments.size(); i++) |
| { |
| TIntermSymbol *symbol = arguments[i]->getAsSymbolNode(); |
| |
| if (symbol) |
| { |
| out << argumentString(symbol); |
| |
| if (i < arguments.size() - 1) |
| { |
| out << ", "; |
| } |
| } |
| else UNREACHABLE(); |
| } |
| |
| out << ");\n"; |
| |
| return false; |
| } |
| break; |
| case EOpComma: outputTriplet(visit, "", ", ", ""); break; |
| case EOpFunction: |
| { |
| TString name = TFunction::unmangleName(node->getName()); |
| |
| if (visit == PreVisit) |
| { |
| out << typeString(node->getType()) << " "; |
| |
| if (name == "main") |
| { |
| out << "gl_main("; |
| } |
| else |
| { |
| out << decorate(name) << "("; |
| } |
| |
| TIntermSequence &sequence = node->getSequence(); |
| TIntermSequence &arguments = sequence[0]->getAsAggregate()->getSequence(); |
| |
| for (unsigned int i = 0; i < arguments.size(); i++) |
| { |
| TIntermSymbol *symbol = arguments[i]->getAsSymbolNode(); |
| |
| if (symbol) |
| { |
| out << argumentString(symbol); |
| |
| if (i < arguments.size() - 1) |
| { |
| out << ", "; |
| } |
| } |
| else UNREACHABLE(); |
| } |
| |
| sequence.erase(sequence.begin()); |
| |
| out << ")\n"; |
| |
| outputLineDirective(node->getLine()); |
| out << "{\n"; |
| |
| mInsideFunction = true; |
| } |
| else if (visit == PostVisit) |
| { |
| outputLineDirective(node->getEndLine()); |
| out << "}\n"; |
| |
| mInsideFunction = false; |
| } |
| } |
| break; |
| case EOpFunctionCall: |
| { |
| if (visit == PreVisit) |
| { |
| TString name = TFunction::unmangleName(node->getName()); |
| |
| if (node->isUserDefined()) |
| { |
| out << decorate(name) << "("; |
| } |
| else |
| { |
| if (name == "texture2D") |
| { |
| if (node->getSequence().size() == 2) |
| { |
| mUsesTexture2D = true; |
| } |
| else if (node->getSequence().size() == 3) |
| { |
| mUsesTexture2D_bias = true; |
| } |
| else UNREACHABLE(); |
| |
| out << "gl_texture2D("; |
| } |
| else if (name == "texture2DProj") |
| { |
| if (node->getSequence().size() == 2) |
| { |
| mUsesTexture2DProj = true; |
| } |
| else if (node->getSequence().size() == 3) |
| { |
| mUsesTexture2DProj_bias = true; |
| } |
| else UNREACHABLE(); |
| |
| out << "gl_texture2DProj("; |
| } |
| else if (name == "textureCube") |
| { |
| if (node->getSequence().size() == 2) |
| { |
| mUsesTextureCube = true; |
| } |
| else if (node->getSequence().size() == 3) |
| { |
| mUsesTextureCube_bias = true; |
| } |
| else UNREACHABLE(); |
| |
| out << "gl_textureCube("; |
| } |
| else if (name == "texture2DLod") |
| { |
| if (node->getSequence().size() == 3) |
| { |
| mUsesTexture2DLod = true; |
| } |
| else UNREACHABLE(); |
| |
| out << "gl_texture2DLod("; |
| } |
| else if (name == "texture2DProjLod") |
| { |
| if (node->getSequence().size() == 3) |
| { |
| mUsesTexture2DProjLod = true; |
| } |
| else UNREACHABLE(); |
| |
| out << "gl_texture2DProjLod("; |
| } |
| else if (name == "textureCubeLod") |
| { |
| if (node->getSequence().size() == 3) |
| { |
| mUsesTextureCubeLod = true; |
| } |
| else UNREACHABLE(); |
| |
| out << "gl_textureCubeLod("; |
| } |
| else UNREACHABLE(); |
| } |
| } |
| else if (visit == InVisit) |
| { |
| out << ", "; |
| } |
| else |
| { |
| out << ")"; |
| } |
| } |
| break; |
| case EOpParameters: outputTriplet(visit, "(", ", ", ")\n{\n"); break; |
| case EOpConstructFloat: |
| addConstructor(node->getType(), "vec1", &node->getSequence()); |
| outputTriplet(visit, "vec1(", "", ")"); |
| break; |
| case EOpConstructVec2: |
| addConstructor(node->getType(), "vec2", &node->getSequence()); |
| outputTriplet(visit, "vec2(", ", ", ")"); |
| break; |
| case EOpConstructVec3: |
| addConstructor(node->getType(), "vec3", &node->getSequence()); |
| outputTriplet(visit, "vec3(", ", ", ")"); |
| break; |
| case EOpConstructVec4: |
| addConstructor(node->getType(), "vec4", &node->getSequence()); |
| outputTriplet(visit, "vec4(", ", ", ")"); |
| break; |
| case EOpConstructBool: |
| addConstructor(node->getType(), "bvec1", &node->getSequence()); |
| outputTriplet(visit, "bvec1(", "", ")"); |
| break; |
| case EOpConstructBVec2: |
| addConstructor(node->getType(), "bvec2", &node->getSequence()); |
| outputTriplet(visit, "bvec2(", ", ", ")"); |
| break; |
| case EOpConstructBVec3: |
| addConstructor(node->getType(), "bvec3", &node->getSequence()); |
| outputTriplet(visit, "bvec3(", ", ", ")"); |
| break; |
| case EOpConstructBVec4: |
| addConstructor(node->getType(), "bvec4", &node->getSequence()); |
| outputTriplet(visit, "bvec4(", ", ", ")"); |
| break; |
| case EOpConstructInt: |
| addConstructor(node->getType(), "ivec1", &node->getSequence()); |
| outputTriplet(visit, "ivec1(", "", ")"); |
| break; |
| case EOpConstructIVec2: |
| addConstructor(node->getType(), "ivec2", &node->getSequence()); |
| outputTriplet(visit, "ivec2(", ", ", ")"); |
| break; |
| case EOpConstructIVec3: |
| addConstructor(node->getType(), "ivec3", &node->getSequence()); |
| outputTriplet(visit, "ivec3(", ", ", ")"); |
| break; |
| case EOpConstructIVec4: |
| addConstructor(node->getType(), "ivec4", &node->getSequence()); |
| outputTriplet(visit, "ivec4(", ", ", ")"); |
| break; |
| case EOpConstructMat2: |
| addConstructor(node->getType(), "mat2", &node->getSequence()); |
| outputTriplet(visit, "mat2(", ", ", ")"); |
| break; |
| case EOpConstructMat3: |
| addConstructor(node->getType(), "mat3", &node->getSequence()); |
| outputTriplet(visit, "mat3(", ", ", ")"); |
| break; |
| case EOpConstructMat4: |
| addConstructor(node->getType(), "mat4", &node->getSequence()); |
| outputTriplet(visit, "mat4(", ", ", ")"); |
| break; |
| case EOpConstructStruct: |
| addConstructor(node->getType(), scopedStruct(node->getType().getTypeName()), &node->getSequence()); |
| outputTriplet(visit, structLookup(node->getType().getTypeName()) + "_ctor(", ", ", ")"); |
| break; |
| case EOpLessThan: outputTriplet(visit, "(", " < ", ")"); break; |
| case EOpGreaterThan: outputTriplet(visit, "(", " > ", ")"); break; |
| case EOpLessThanEqual: outputTriplet(visit, "(", " <= ", ")"); break; |
| case EOpGreaterThanEqual: outputTriplet(visit, "(", " >= ", ")"); break; |
| case EOpVectorEqual: outputTriplet(visit, "(", " == ", ")"); break; |
| case EOpVectorNotEqual: outputTriplet(visit, "(", " != ", ")"); break; |
| case EOpMod: |
| { |
| switch (node->getSequence()[0]->getAsTyped()->getNominalSize()) // Number of components in the first argument |
| { |
| case 1: mUsesMod1 = true; break; |
| case 2: mUsesMod2 = true; break; |
| case 3: mUsesMod3 = true; break; |
| case 4: mUsesMod4 = true; break; |
| default: UNREACHABLE(); |
| } |
| |
| outputTriplet(visit, "mod(", ", ", ")"); |
| } |
| break; |
| case EOpPow: outputTriplet(visit, "pow(", ", ", ")"); break; |
| case EOpAtan: |
| ASSERT(node->getSequence().size() == 2); // atan(x) is a unary operator |
| mUsesAtan2 = true; |
| outputTriplet(visit, "atanyx(", ", ", ")"); |
| break; |
| case EOpMin: outputTriplet(visit, "min(", ", ", ")"); break; |
| case EOpMax: outputTriplet(visit, "max(", ", ", ")"); break; |
| case EOpClamp: outputTriplet(visit, "clamp(", ", ", ")"); break; |
| case EOpMix: outputTriplet(visit, "lerp(", ", ", ")"); break; |
| case EOpStep: outputTriplet(visit, "step(", ", ", ")"); break; |
| case EOpSmoothStep: outputTriplet(visit, "smoothstep(", ", ", ")"); break; |
| case EOpDistance: outputTriplet(visit, "distance(", ", ", ")"); break; |
| case EOpDot: outputTriplet(visit, "dot(", ", ", ")"); break; |
| case EOpCross: outputTriplet(visit, "cross(", ", ", ")"); break; |
| case EOpFaceForward: |
| { |
| switch (node->getSequence()[0]->getAsTyped()->getNominalSize()) // Number of components in the first argument |
| { |
| case 1: mUsesFaceforward1 = true; break; |
| case 2: mUsesFaceforward2 = true; break; |
| case 3: mUsesFaceforward3 = true; break; |
| case 4: mUsesFaceforward4 = true; break; |
| default: UNREACHABLE(); |
| } |
| |
| outputTriplet(visit, "faceforward(", ", ", ")"); |
| } |
| break; |
| case EOpReflect: outputTriplet(visit, "reflect(", ", ", ")"); break; |
| case EOpRefract: outputTriplet(visit, "refract(", ", ", ")"); break; |
| case EOpMul: outputTriplet(visit, "(", " * ", ")"); break; |
| default: UNREACHABLE(); |
| } |
| |
| return true; |
| } |
| |
| bool OutputHLSL::visitSelection(Visit visit, TIntermSelection *node) |
| { |
| TInfoSinkBase &out = mBody; |
| |
| if (node->usesTernaryOperator()) |
| { |
| out << "s" << mUnfoldSelect->getNextTemporaryIndex(); |
| } |
| else // if/else statement |
| { |
| mUnfoldSelect->traverse(node->getCondition()); |
| |
| out << "if("; |
| |
| node->getCondition()->traverse(this); |
| |
| out << ")\n"; |
| |
| outputLineDirective(node->getLine()); |
| out << "{\n"; |
| |
| if (node->getTrueBlock()) |
| { |
| node->getTrueBlock()->traverse(this); |
| } |
| |
| outputLineDirective(node->getLine()); |
| out << ";}\n"; |
| |
| if (node->getFalseBlock()) |
| { |
| out << "else\n"; |
| |
| outputLineDirective(node->getFalseBlock()->getLine()); |
| out << "{\n"; |
| |
| outputLineDirective(node->getFalseBlock()->getLine()); |
| node->getFalseBlock()->traverse(this); |
| |
| outputLineDirective(node->getFalseBlock()->getLine()); |
| out << ";}\n"; |
| } |
| } |
| |
| return false; |
| } |
| |
| void OutputHLSL::visitConstantUnion(TIntermConstantUnion *node) |
| { |
| writeConstantUnion(node->getType(), node->getUnionArrayPointer()); |
| } |
| |
| bool OutputHLSL::visitLoop(Visit visit, TIntermLoop *node) |
| { |
| if (handleExcessiveLoop(node)) |
| { |
| return false; |
| } |
| |
| TInfoSinkBase &out = mBody; |
| |
| if (node->getType() == ELoopDoWhile) |
| { |
| out << "do\n"; |
| |
| outputLineDirective(node->getLine()); |
| out << "{\n"; |
| } |
| else |
| { |
| out << "for("; |
| |
| if (node->getInit()) |
| { |
| node->getInit()->traverse(this); |
| } |
| |
| out << "; "; |
| |
| if (node->getCondition()) |
| { |
| node->getCondition()->traverse(this); |
| } |
| |
| out << "; "; |
| |
| if (node->getExpression()) |
| { |
| node->getExpression()->traverse(this); |
| } |
| |
| out << ")\n"; |
| |
| outputLineDirective(node->getLine()); |
| out << "{\n"; |
| } |
| |
| if (node->getBody()) |
| { |
| node->getBody()->traverse(this); |
| } |
| |
| outputLineDirective(node->getLine()); |
| out << ";}\n"; |
| |
| if (node->getType() == ELoopDoWhile) |
| { |
| outputLineDirective(node->getCondition()->getLine()); |
| out << "while(\n"; |
| |
| node->getCondition()->traverse(this); |
| |
| out << ")"; |
| } |
| |
| out << ";\n"; |
| |
| return false; |
| } |
| |
| bool OutputHLSL::visitBranch(Visit visit, TIntermBranch *node) |
| { |
| TInfoSinkBase &out = mBody; |
| |
| switch (node->getFlowOp()) |
| { |
| case EOpKill: outputTriplet(visit, "discard;\n", "", ""); break; |
| case EOpBreak: outputTriplet(visit, "break;\n", "", ""); break; |
| case EOpContinue: outputTriplet(visit, "continue;\n", "", ""); break; |
| case EOpReturn: |
| if (visit == PreVisit) |
| { |
| if (node->getExpression()) |
| { |
| out << "return "; |
| } |
| else |
| { |
| out << "return;\n"; |
| } |
| } |
| else if (visit == PostVisit) |
| { |
| if (node->getExpression()) |
| { |
| out << ";\n"; |
| } |
| } |
| break; |
| default: UNREACHABLE(); |
| } |
| |
| return true; |
| } |
| |
| bool OutputHLSL::isSingleStatement(TIntermNode *node) |
| { |
| TIntermAggregate *aggregate = node->getAsAggregate(); |
| |
| if (aggregate) |
| { |
| if (aggregate->getOp() == EOpSequence) |
| { |
| return false; |
| } |
| else |
| { |
| for (TIntermSequence::iterator sit = aggregate->getSequence().begin(); sit != aggregate->getSequence().end(); sit++) |
| { |
| if (!isSingleStatement(*sit)) |
| { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| } |
| |
| return true; |
| } |
| |
| // Handle loops with more than 255 iterations (unsupported by D3D9) by splitting them |
| bool OutputHLSL::handleExcessiveLoop(TIntermLoop *node) |
| { |
| TInfoSinkBase &out = mBody; |
| |
| // Parse loops of the form: |
| // for(int index = initial; index [comparator] limit; index += increment) |
| TIntermSymbol *index = NULL; |
| TOperator comparator = EOpNull; |
| int initial = 0; |
| int limit = 0; |
| int increment = 0; |
| |
| // Parse index name and intial value |
| if (node->getInit()) |
| { |
| TIntermAggregate *init = node->getInit()->getAsAggregate(); |
| |
| if (init) |
| { |
| TIntermSequence &sequence = init->getSequence(); |
| TIntermTyped *variable = sequence[0]->getAsTyped(); |
| |
| if (variable && variable->getQualifier() == EvqTemporary) |
| { |
| TIntermBinary *assign = variable->getAsBinaryNode(); |
| |
| if (assign->getOp() == EOpInitialize) |
| { |
| TIntermSymbol *symbol = assign->getLeft()->getAsSymbolNode(); |
| TIntermConstantUnion *constant = assign->getRight()->getAsConstantUnion(); |
| |
| if (symbol && constant) |
| { |
| if (constant->getBasicType() == EbtInt && constant->getNominalSize() == 1) |
| { |
| index = symbol; |
| initial = constant->getUnionArrayPointer()[0].getIConst(); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // Parse comparator and limit value |
| if (index != NULL && node->getCondition()) |
| { |
| TIntermBinary *test = node->getCondition()->getAsBinaryNode(); |
| |
| if (test && test->getLeft()->getAsSymbolNode()->getId() == index->getId()) |
| { |
| TIntermConstantUnion *constant = test->getRight()->getAsConstantUnion(); |
| |
| if (constant) |
| { |
| if (constant->getBasicType() == EbtInt && constant->getNominalSize() == 1) |
| { |
| comparator = test->getOp(); |
| limit = constant->getUnionArrayPointer()[0].getIConst(); |
| } |
| } |
| } |
| } |
| |
| // Parse increment |
| if (index != NULL && comparator != EOpNull && node->getExpression()) |
| { |
| TIntermBinary *binaryTerminal = node->getExpression()->getAsBinaryNode(); |
| TIntermUnary *unaryTerminal = node->getExpression()->getAsUnaryNode(); |
| |
| if (binaryTerminal) |
| { |
| TOperator op = binaryTerminal->getOp(); |
| TIntermConstantUnion *constant = binaryTerminal->getRight()->getAsConstantUnion(); |
| |
| if (constant) |
| { |
| if (constant->getBasicType() == EbtInt && constant->getNominalSize() == 1) |
| { |
| int value = constant->getUnionArrayPointer()[0].getIConst(); |
| |
| switch (op) |
| { |
| case EOpAddAssign: increment = value; break; |
| case EOpSubAssign: increment = -value; break; |
| default: UNIMPLEMENTED(); |
| } |
| } |
| } |
| } |
| else if (unaryTerminal) |
| { |
| TOperator op = unaryTerminal->getOp(); |
| |
| switch (op) |
| { |
| case EOpPostIncrement: increment = 1; break; |
| case EOpPostDecrement: increment = -1; break; |
| case EOpPreIncrement: increment = 1; break; |
| case EOpPreDecrement: increment = -1; break; |
| default: UNIMPLEMENTED(); |
| } |
| } |
| } |
| |
| if (index != NULL && comparator != EOpNull && increment != 0) |
| { |
| if (comparator == EOpLessThanEqual) |
| { |
| comparator = EOpLessThan; |
| limit += 1; |
| } |
| |
| if (comparator == EOpLessThan) |
| { |
| int iterations = (limit - initial) / increment; |
| |
| if (iterations <= 255) |
| { |
| return false; // Not an excessive loop |
| } |
| |
| while (iterations > 0) |
| { |
| int remainder = (limit - initial) % increment; |
| int clampedLimit = initial + increment * std::min(255, iterations); |
| |
| // for(int index = initial; index < clampedLimit; index += increment) |
| |
| out << "for(int "; |
| index->traverse(this); |
| out << " = "; |
| out << initial; |
| |
| out << "; "; |
| index->traverse(this); |
| out << " < "; |
| out << clampedLimit; |
| |
| out << "; "; |
| index->traverse(this); |
| out << " += "; |
| out << increment; |
| out << ")\n"; |
| |
| outputLineDirective(node->getLine()); |
| out << "{\n"; |
| |
| if (node->getBody()) |
| { |
| node->getBody()->traverse(this); |
| } |
| |
| outputLineDirective(node->getLine()); |
| out << ";}\n"; |
| |
| initial += 255 * increment; |
| iterations -= 255; |
| } |
| |
| return true; |
| } |
| else UNIMPLEMENTED(); |
| } |
| |
| return false; // Not handled as an excessive loop |
| } |
| |
| void OutputHLSL::outputTriplet(Visit visit, const TString &preString, const TString &inString, const TString &postString) |
| { |
| TInfoSinkBase &out = mBody; |
| |
| if (visit == PreVisit) |
| { |
| out << preString; |
| } |
| else if (visit == InVisit) |
| { |
| out << inString; |
| } |
| else if (visit == PostVisit) |
| { |
| out << postString; |
| } |
| } |
| |
| void OutputHLSL::outputLineDirective(int line) |
| { |
| if ((mContext.compileOptions & SH_LINE_DIRECTIVES) && (line > 0)) |
| { |
| mBody << "\n"; |
| mBody << "#line " << line; |
| |
| if (mContext.sourcePath) |
| { |
| mBody << " \"" << mContext.sourcePath << "\""; |
| } |
| |
| mBody << "\n"; |
| } |
| } |
| |
| TString OutputHLSL::argumentString(const TIntermSymbol *symbol) |
| { |
| TQualifier qualifier = symbol->getQualifier(); |
| const TType &type = symbol->getType(); |
| TString name = symbol->getSymbol(); |
| |
| if (name.empty()) // HLSL demands named arguments, also for prototypes |
| { |
| name = "x" + str(mUniqueIndex++); |
| } |
| else |
| { |
| name = decorate(name); |
| } |
| |
| return qualifierString(qualifier) + " " + typeString(type) + " " + name + arrayString(type); |
| } |
| |
| TString OutputHLSL::qualifierString(TQualifier qualifier) |
| { |
| switch(qualifier) |
| { |
| case EvqIn: return "in"; |
| case EvqOut: return "out"; |
| case EvqInOut: return "inout"; |
| case EvqConstReadOnly: return "const"; |
| default: UNREACHABLE(); |
| } |
| |
| return ""; |
| } |
| |
| TString OutputHLSL::typeString(const TType &type) |
| { |
| if (type.getBasicType() == EbtStruct) |
| { |
| if (type.getTypeName() != "") |
| { |
| return structLookup(type.getTypeName()); |
| } |
| else // Nameless structure, define in place |
| { |
| const TTypeList &fields = *type.getStruct(); |
| |
| TString string = "struct\n" |
| "{\n"; |
| |
| for (unsigned int i = 0; i < fields.size(); i++) |
| { |
| const TType &field = *fields[i].type; |
| |
| string += " " + typeString(field) + " " + field.getFieldName() + arrayString(field) + ";\n"; |
| } |
| |
| string += "} "; |
| |
| return string; |
| } |
| } |
| else if (type.isMatrix()) |
| { |
| switch (type.getNominalSize()) |
| { |
| case 2: return "float2x2"; |
| case 3: return "float3x3"; |
| case 4: return "float4x4"; |
| } |
| } |
| else |
| { |
| switch (type.getBasicType()) |
| { |
| case EbtFloat: |
| switch (type.getNominalSize()) |
| { |
| case 1: return "float"; |
| case 2: return "float2"; |
| case 3: return "float3"; |
| case 4: return "float4"; |
| } |
| case EbtInt: |
| switch (type.getNominalSize()) |
| { |
| case 1: return "int"; |
| case 2: return "int2"; |
| case 3: return "int3"; |
| case 4: return "int4"; |
| } |
| case EbtBool: |
| switch (type.getNominalSize()) |
| { |
| case 1: return "bool"; |
| case 2: return "bool2"; |
| case 3: return "bool3"; |
| case 4: return "bool4"; |
| } |
| case EbtVoid: |
| return "void"; |
| case EbtSampler2D: |
| return "sampler2D"; |
| case EbtSamplerCube: |
| return "samplerCUBE"; |
| } |
| } |
| |
| UNIMPLEMENTED(); // FIXME |
| return "<unknown type>"; |
| } |
| |
| TString OutputHLSL::arrayString(const TType &type) |
| { |
| if (!type.isArray()) |
| { |
| return ""; |
| } |
| |
| return "[" + str(type.getArraySize()) + "]"; |
| } |
| |
| TString OutputHLSL::initializer(const TType &type) |
| { |
| TString string; |
| |
| for (int component = 0; component < type.getObjectSize(); component++) |
| { |
| string += "0"; |
| |
| if (component < type.getObjectSize() - 1) |
| { |
| string += ", "; |
| } |
| } |
| |
| return "{" + string + "}"; |
| } |
| |
| void OutputHLSL::addConstructor(const TType &type, const TString &name, const TIntermSequence *parameters) |
| { |
| if (name == "") |
| { |
| return; // Nameless structures don't have constructors |
| } |
| |
| TType ctorType = type; |
| ctorType.clearArrayness(); |
| ctorType.setPrecision(EbpHigh); |
| ctorType.setQualifier(EvqTemporary); |
| |
| TString ctorName = type.getStruct() ? decorate(name) : name; |
| |
| typedef std::vector<TType> ParameterArray; |
| ParameterArray ctorParameters; |
| |
| if (type.getStruct()) |
| { |
| mStructNames.insert(decorate(name)); |
| |
| TString structure; |
| structure += "struct " + decorate(name) + "\n" |
| "{\n"; |
| |
| const TTypeList &fields = *type.getStruct(); |
| |
| for (unsigned int i = 0; i < fields.size(); i++) |
| { |
| const TType &field = *fields[i].type; |
| |
| structure += " " + typeString(field) + " " + field.getFieldName() + arrayString(field) + ";\n"; |
| } |
| |
| structure += "};\n"; |
| |
| if (std::find(mStructDeclarations.begin(), mStructDeclarations.end(), structure) == mStructDeclarations.end()) |
| { |
| mStructDeclarations.push_back(structure); |
| } |
| |
| for (unsigned int i = 0; i < fields.size(); i++) |
| { |
| ctorParameters.push_back(*fields[i].type); |
| } |
| } |
| else if (parameters) |
| { |
| for (TIntermSequence::const_iterator parameter = parameters->begin(); parameter != parameters->end(); parameter++) |
| { |
| ctorParameters.push_back((*parameter)->getAsTyped()->getType()); |
| } |
| } |
| else UNREACHABLE(); |
| |
| TString constructor; |
| |
| if (ctorType.getStruct()) |
| { |
| constructor += ctorName + " " + ctorName + "_ctor("; |
| } |
| else // Built-in type |
| { |
| constructor += typeString(ctorType) + " " + ctorName + "("; |
| } |
| |
| for (unsigned int parameter = 0; parameter < ctorParameters.size(); parameter++) |
| { |
| const TType &type = ctorParameters[parameter]; |
| |
| constructor += typeString(type) + " x" + str(parameter) + arrayString(type); |
| |
| if (parameter < ctorParameters.size() - 1) |
| { |
| constructor += ", "; |
| } |
| } |
| |
| constructor += ")\n" |
| "{\n"; |
| |
| if (ctorType.getStruct()) |
| { |
| constructor += " " + ctorName + " structure = {"; |
| } |
| else |
| { |
| constructor += " return " + typeString(ctorType) + "("; |
| } |
| |
| if (ctorType.isMatrix() && ctorParameters.size() == 1) |
| { |
| int dim = ctorType.getNominalSize(); |
| const TType ¶meter = ctorParameters[0]; |
| |
| if (parameter.isScalar()) |
| { |
| for (int row = 0; row < dim; row++) |
| { |
| for (int col = 0; col < dim; col++) |
| { |
| constructor += TString((row == col) ? "x0" : "0.0"); |
| |
| if (row < dim - 1 || col < dim - 1) |
| { |
| constructor += ", "; |
| } |
| } |
| } |
| } |
| else if (parameter.isMatrix()) |
| { |
| for (int row = 0; row < dim; row++) |
| { |
| for (int col = 0; col < dim; col++) |
| { |
| if (row < parameter.getNominalSize() && col < parameter.getNominalSize()) |
| { |
| constructor += TString("x0") + "[" + str(row) + "]" + "[" + str(col) + "]"; |
| } |
| else |
| { |
| constructor += TString((row == col) ? "1.0" : "0.0"); |
| } |
| |
| if (row < dim - 1 || col < dim - 1) |
| { |
| constructor += ", "; |
| } |
| } |
| } |
| } |
| else UNREACHABLE(); |
| } |
| else |
| { |
| int remainingComponents = ctorType.getObjectSize(); |
| int parameterIndex = 0; |
| |
| while (remainingComponents > 0) |
| { |
| const TType ¶meter = ctorParameters[parameterIndex]; |
| bool moreParameters = parameterIndex < (int)ctorParameters.size() - 1; |
| |
| constructor += "x" + str(parameterIndex); |
| |
| if (parameter.isScalar()) |
| { |
| remainingComponents -= parameter.getObjectSize(); |
| } |
| else if (parameter.isVector()) |
| { |
| if (remainingComponents == parameter.getObjectSize() || moreParameters) |
| { |
| remainingComponents -= parameter.getObjectSize(); |
| } |
| else if (remainingComponents < parameter.getNominalSize()) |
| { |
| switch (remainingComponents) |
| { |
| case 1: constructor += ".x"; break; |
| case 2: constructor += ".xy"; break; |
| case 3: constructor += ".xyz"; break; |
| case 4: constructor += ".xyzw"; break; |
| default: UNREACHABLE(); |
| } |
| |
| remainingComponents = 0; |
| } |
| else UNREACHABLE(); |
| } |
| else if (parameter.isMatrix() || parameter.getStruct()) |
| { |
| ASSERT(remainingComponents == parameter.getObjectSize() || moreParameters); |
| |
| remainingComponents -= parameter.getObjectSize(); |
| } |
| else UNREACHABLE(); |
| |
| if (moreParameters) |
| { |
| parameterIndex++; |
| } |
| |
| if (remainingComponents) |
| { |
| constructor += ", "; |
| } |
| } |
| } |
| |
| if (ctorType.getStruct()) |
| { |
| constructor += "};\n" |
| " return structure;\n" |
| "}\n"; |
| } |
| else |
| { |
| constructor += ");\n" |
| "}\n"; |
| } |
| |
| mConstructors.insert(constructor); |
| } |
| |
| const ConstantUnion *OutputHLSL::writeConstantUnion(const TType &type, const ConstantUnion *constUnion) |
| { |
| TInfoSinkBase &out = mBody; |
| |
| if (type.getBasicType() == EbtStruct) |
| { |
| out << structLookup(type.getTypeName()) + "_ctor("; |
| |
| const TTypeList *structure = type.getStruct(); |
| |
| for (size_t i = 0; i < structure->size(); i++) |
| { |
| const TType *fieldType = (*structure)[i].type; |
| |
| constUnion = writeConstantUnion(*fieldType, constUnion); |
| |
| if (i != structure->size() - 1) |
| { |
| out << ", "; |
| } |
| } |
| |
| out << ")"; |
| } |
| else |
| { |
| int size = type.getObjectSize(); |
| bool writeType = size > 1; |
| |
| if (writeType) |
| { |
| out << typeString(type) << "("; |
| } |
| |
| for (int i = 0; i < size; i++, constUnion++) |
| { |
| switch (constUnion->getType()) |
| { |
| case EbtFloat: out << constUnion->getFConst(); break; |
| case EbtInt: out << constUnion->getIConst(); break; |
| case EbtBool: out << constUnion->getBConst(); break; |
| default: UNREACHABLE(); |
| } |
| |
| if (i != size - 1) |
| { |
| out << ", "; |
| } |
| } |
| |
| if (writeType) |
| { |
| out << ")"; |
| } |
| } |
| |
| return constUnion; |
| } |
| |
| TString OutputHLSL::scopeString(unsigned int depthLimit) |
| { |
| TString string; |
| |
| for (unsigned int i = 0; i < mScopeBracket.size() && i < depthLimit; i++) |
| { |
| string += "_" + str(i); |
| } |
| |
| return string; |
| } |
| |
| TString OutputHLSL::scopedStruct(const TString &typeName) |
| { |
| if (typeName == "") |
| { |
| return typeName; |
| } |
| |
| return typeName + scopeString(mScopeDepth); |
| } |
| |
| TString OutputHLSL::structLookup(const TString &typeName) |
| { |
| for (int depth = mScopeDepth; depth >= 0; depth--) |
| { |
| TString scopedName = decorate(typeName + scopeString(depth)); |
| |
| for (StructNames::iterator structName = mStructNames.begin(); structName != mStructNames.end(); structName++) |
| { |
| if (*structName == scopedName) |
| { |
| return scopedName; |
| } |
| } |
| } |
| |
| UNREACHABLE(); // Should have found a matching constructor |
| |
| return typeName; |
| } |
| |
| TString OutputHLSL::decorate(const TString &string) |
| { |
| if (string.compare(0, 3, "gl_") != 0 && string.compare(0, 3, "dx_") != 0) |
| { |
| return "_" + string; |
| } |
| |
| return string; |
| } |
| |
| TString OutputHLSL::decorateUniform(const TString &string, bool array) |
| { |
| if (array) |
| { |
| return "ar_" + string; // Allows identifying arrays of size 1 |
| } |
| |
| return decorate(string); |
| } |
| } |