blob: af5696fdf70cc2ba558e354758bcf7edc672baad [file] [log] [blame]
//
// Copyright (c) 2002-2011 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#include "compiler/OutputHLSL.h"
#include "compiler/debug.h"
#include "compiler/InfoSink.h"
#include "compiler/UnfoldSelect.h"
#include "compiler/SearchSymbol.h"
#include <stdio.h>
#include <algorithm>
namespace sh
{
// Integer to TString conversion
TString str(int i)
{
char buffer[20];
sprintf(buffer, "%d", i);
return buffer;
}
OutputHLSL::OutputHLSL(TParseContext &context) : TIntermTraverser(true, true, true), mContext(context)
{
mUnfoldSelect = new UnfoldSelect(context, this);
mInsideFunction = false;
mUsesTexture2D = false;
mUsesTexture2D_bias = false;
mUsesTexture2DProj = false;
mUsesTexture2DProj_bias = false;
mUsesTexture2DProjLod = false;
mUsesTexture2DLod = false;
mUsesTextureCube = false;
mUsesTextureCube_bias = false;
mUsesTextureCubeLod = false;
mUsesDepthRange = false;
mUsesFragCoord = false;
mUsesPointCoord = false;
mUsesFrontFacing = false;
mUsesPointSize = false;
mUsesXor = false;
mUsesMod1 = false;
mUsesMod2 = false;
mUsesMod3 = false;
mUsesMod4 = false;
mUsesFaceforward1 = false;
mUsesFaceforward2 = false;
mUsesFaceforward3 = false;
mUsesFaceforward4 = false;
mUsesEqualMat2 = false;
mUsesEqualMat3 = false;
mUsesEqualMat4 = false;
mUsesEqualVec2 = false;
mUsesEqualVec3 = false;
mUsesEqualVec4 = false;
mUsesEqualIVec2 = false;
mUsesEqualIVec3 = false;
mUsesEqualIVec4 = false;
mUsesEqualBVec2 = false;
mUsesEqualBVec3 = false;
mUsesEqualBVec4 = false;
mUsesAtan2 = false;
mScopeDepth = 0;
mUniqueIndex = 0;
}
OutputHLSL::~OutputHLSL()
{
delete mUnfoldSelect;
}
void OutputHLSL::output()
{
mContext.treeRoot->traverse(this); // Output the body first to determine what has to go in the header
header();
mContext.infoSink.obj << mHeader.c_str();
mContext.infoSink.obj << mBody.c_str();
}
TInfoSinkBase &OutputHLSL::getBodyStream()
{
return mBody;
}
int OutputHLSL::vectorSize(const TType &type) const
{
int elementSize = type.isMatrix() ? type.getNominalSize() : 1;
int arraySize = type.isArray() ? type.getArraySize() : 1;
return elementSize * arraySize;
}
void OutputHLSL::header()
{
ShShaderType shaderType = mContext.shaderType;
TInfoSinkBase &out = mHeader;
for (StructDeclarations::iterator structDeclaration = mStructDeclarations.begin(); structDeclaration != mStructDeclarations.end(); structDeclaration++)
{
out << *structDeclaration;
}
for (Constructors::iterator constructor = mConstructors.begin(); constructor != mConstructors.end(); constructor++)
{
out << *constructor;
}
if (shaderType == SH_FRAGMENT_SHADER)
{
TString uniforms;
TString varyings;
TSymbolTableLevel *symbols = mContext.symbolTable.getGlobalLevel();
int semanticIndex = 0;
for (TSymbolTableLevel::const_iterator namedSymbol = symbols->begin(); namedSymbol != symbols->end(); namedSymbol++)
{
const TSymbol *symbol = (*namedSymbol).second;
const TString &name = symbol->getName();
if (symbol->isVariable())
{
const TVariable *variable = static_cast<const TVariable*>(symbol);
const TType &type = variable->getType();
TQualifier qualifier = type.getQualifier();
if (qualifier == EvqUniform)
{
if (mReferencedUniforms.find(name.c_str()) != mReferencedUniforms.end())
{
uniforms += "uniform " + typeString(type) + " " + decorateUniform(name, type.isArray()) + arrayString(type) + ";\n";
}
}
else if (qualifier == EvqVaryingIn || qualifier == EvqInvariantVaryingIn)
{
if (mReferencedVaryings.find(name.c_str()) != mReferencedVaryings.end())
{
// Program linking depends on this exact format
varyings += "static " + typeString(type) + " " + decorate(name) + arrayString(type) + " = " + initializer(type) + ";\n";
semanticIndex += type.isArray() ? type.getArraySize() : 1;
}
}
else if (qualifier == EvqGlobal || qualifier == EvqTemporary)
{
// Globals are declared and intialized as an aggregate node
}
else if (qualifier == EvqConst)
{
// Constants are repeated as literals where used
}
else UNREACHABLE();
}
}
out << "// Varyings\n";
out << varyings;
out << "\n"
"static float4 gl_Color[1] = {float4(0, 0, 0, 0)};\n";
if (mUsesFragCoord)
{
out << "static float4 gl_FragCoord = float4(0, 0, 0, 0);\n";
}
if (mUsesPointCoord)
{
out << "static float2 gl_PointCoord = float2(0.5, 0.5);\n";
}
if (mUsesFrontFacing)
{
out << "static bool gl_FrontFacing = false;\n";
}
out << "\n";
if (mUsesFragCoord)
{
out << "uniform float4 dx_Viewport;\n"
"uniform float2 dx_Depth;\n";
}
if (mUsesFrontFacing)
{
out << "uniform bool dx_PointsOrLines;\n"
"uniform bool dx_FrontCCW;\n";
}
out << "\n";
out << uniforms;
out << "\n";
// The texture fetch functions "flip" the Y coordinate in one way or another. This is because textures are stored
// according to the OpenGL convention, i.e. (0, 0) is "bottom left", rather than the D3D convention where (0, 0)
// is "top left". Since the HLSL texture fetch functions expect textures to be stored according to the D3D
// convention, the Y coordinate passed to these functions is adjusted to compensate.
//
// The simplest case is texture2D where the mapping is Y -> 1-Y, which maps [0, 1] -> [1, 0].
//
// The texture2DProj functions are more complicated because the projection divides by either Z or W. For the vec3
// case, the mapping is Y -> Z-Y or Y/Z -> 1-Y/Z, which again maps [0, 1] -> [1, 0].
//
// For cube textures the mapping is Y -> -Y, which maps [-1, 1] -> [1, -1]. This is not sufficient on its own for the
// +Y and -Y faces, which are now on the "wrong sides" of the cube. This is compensated for by exchanging the
// +Y and -Y faces everywhere else throughout the code.
if (mUsesTexture2D)
{
out << "float4 gl_texture2D(sampler2D s, float2 t)\n"
"{\n"
" return tex2D(s, float2(t.x, 1 - t.y));\n"
"}\n"
"\n";
}
if (mUsesTexture2D_bias)
{
out << "float4 gl_texture2D(sampler2D s, float2 t, float bias)\n"
"{\n"
" return tex2Dbias(s, float4(t.x, 1 - t.y, 0, bias));\n"
"}\n"
"\n";
}
if (mUsesTexture2DProj)
{
out << "float4 gl_texture2DProj(sampler2D s, float3 t)\n"
"{\n"
" return tex2Dproj(s, float4(t.x, t.z - t.y, 0, t.z));\n"
"}\n"
"\n"
"float4 gl_texture2DProj(sampler2D s, float4 t)\n"
"{\n"
" return tex2Dproj(s, float4(t.x, t.w - t.y, t.z, t.w));\n"
"}\n"
"\n";
}
if (mUsesTexture2DProj_bias)
{
out << "float4 gl_texture2DProj(sampler2D s, float3 t, float bias)\n"
"{\n"
" return tex2Dbias(s, float4(t.x / t.z, 1 - (t.y / t.z), 0, bias));\n"
"}\n"
"\n"
"float4 gl_texture2DProj(sampler2D s, float4 t, float bias)\n"
"{\n"
" return tex2Dbias(s, float4(t.x / t.w, 1 - (t.y / t.w), 0, bias));\n"
"}\n"
"\n";
}
if (mUsesTextureCube)
{
out << "float4 gl_textureCube(samplerCUBE s, float3 t)\n"
"{\n"
" return texCUBE(s, float3(t.x, -t.y, t.z));\n"
"}\n"
"\n";
}
if (mUsesTextureCube_bias)
{
out << "float4 gl_textureCube(samplerCUBE s, float3 t, float bias)\n"
"{\n"
" return texCUBEbias(s, float4(t.x, -t.y, t.z, bias));\n"
"}\n"
"\n";
}
}
else // Vertex shader
{
TString uniforms;
TString attributes;
TString varyings;
TSymbolTableLevel *symbols = mContext.symbolTable.getGlobalLevel();
for (TSymbolTableLevel::const_iterator namedSymbol = symbols->begin(); namedSymbol != symbols->end(); namedSymbol++)
{
const TSymbol *symbol = (*namedSymbol).second;
const TString &name = symbol->getName();
if (symbol->isVariable())
{
const TVariable *variable = static_cast<const TVariable*>(symbol);
const TType &type = variable->getType();
TQualifier qualifier = type.getQualifier();
if (qualifier == EvqUniform)
{
if (mReferencedUniforms.find(name.c_str()) != mReferencedUniforms.end())
{
uniforms += "uniform " + typeString(type) + " " + decorateUniform(name, type.isArray()) + arrayString(type) + ";\n";
}
}
else if (qualifier == EvqAttribute)
{
if (mReferencedAttributes.find(name.c_str()) != mReferencedAttributes.end())
{
attributes += "static " + typeString(type) + " " + decorate(name) + arrayString(type) + " = " + initializer(type) + ";\n";
}
}
else if (qualifier == EvqVaryingOut || qualifier == EvqInvariantVaryingOut)
{
if (mReferencedVaryings.find(name.c_str()) != mReferencedVaryings.end())
{
// Program linking depends on this exact format
varyings += "static " + typeString(type) + " " + decorate(name) + arrayString(type) + " = " + initializer(type) + ";\n";
}
}
else if (qualifier == EvqGlobal || qualifier == EvqTemporary)
{
// Globals are declared and intialized as an aggregate node
}
else if (qualifier == EvqConst)
{
// Constants are repeated as literals where used
}
else UNREACHABLE();
}
}
out << "// Attributes\n";
out << attributes;
out << "\n"
"static float4 gl_Position = float4(0, 0, 0, 0);\n";
if (mUsesPointSize)
{
out << "static float gl_PointSize = float(1);\n";
}
out << "\n"
"// Varyings\n";
out << varyings;
out << "\n"
"uniform float2 dx_HalfPixelSize;\n"
"\n";
out << uniforms;
out << "\n";
// The texture fetch functions "flip" the Y coordinate in one way or another. This is because textures are stored
// according to the OpenGL convention, i.e. (0, 0) is "bottom left", rather than the D3D convention where (0, 0)
// is "top left". Since the HLSL texture fetch functions expect textures to be stored according to the D3D
// convention, the Y coordinate passed to these functions is adjusted to compensate.
//
// The simplest case is texture2D where the mapping is Y -> 1-Y, which maps [0, 1] -> [1, 0].
//
// The texture2DProj functions are more complicated because the projection divides by either Z or W. For the vec3
// case, the mapping is Y -> Z-Y or Y/Z -> 1-Y/Z, which again maps [0, 1] -> [1, 0].
//
// For cube textures the mapping is Y -> -Y, which maps [-1, 1] -> [1, -1]. This is not sufficient on its own for the
// +Y and -Y faces, which are now on the "wrong sides" of the cube. This is compensated for by exchanging the
// +Y and -Y faces everywhere else throughout the code.
if (mUsesTexture2D)
{
out << "float4 gl_texture2D(sampler2D s, float2 t)\n"
"{\n"
" return tex2Dlod(s, float4(t.x, 1 - t.y, 0, 0));\n"
"}\n"
"\n";
}
if (mUsesTexture2DLod)
{
out << "float4 gl_texture2DLod(sampler2D s, float2 t, float lod)\n"
"{\n"
" return tex2Dlod(s, float4(t.x, 1 - t.y, 0, lod));\n"
"}\n"
"\n";
}
if (mUsesTexture2DProj)
{
out << "float4 gl_texture2DProj(sampler2D s, float3 t)\n"
"{\n"
" return tex2Dlod(s, float4(t.x / t.z, 1 - t.y / t.z, 0, 0));\n"
"}\n"
"\n"
"float4 gl_texture2DProj(sampler2D s, float4 t)\n"
"{\n"
" return tex2Dlod(s, float4(t.x / t.w, 1 - t.y / t.w, 0, 0));\n"
"}\n"
"\n";
}
if (mUsesTexture2DProjLod)
{
out << "float4 gl_texture2DProjLod(sampler2D s, float3 t, float lod)\n"
"{\n"
" return tex2Dlod(s, float4(t.x / t.z, 1 - t.y / t.z, 0, lod));\n"
"}\n"
"\n"
"float4 gl_texture2DProjLod(sampler2D s, float4 t, float lod)\n"
"{\n"
" return tex2Dlod(s, float4(t.x / t.w, 1 - t.y / t.w, 0, lod));\n"
"}\n"
"\n";
}
if (mUsesTextureCube)
{
out << "float4 gl_textureCube(samplerCUBE s, float3 t)\n"
"{\n"
" return texCUBElod(s, float4(t.x, -t.y, t.z, 0));\n"
"}\n"
"\n";
}
if (mUsesTextureCubeLod)
{
out << "float4 gl_textureCubeLod(samplerCUBE s, float3 t, float lod)\n"
"{\n"
" return texCUBElod(s, float4(t.x, -t.y, t.z, lod));\n"
"}\n"
"\n";
}
}
if (mUsesFragCoord)
{
out << "#define GL_USES_FRAG_COORD\n";
}
if (mUsesPointCoord)
{
out << "#define GL_USES_POINT_COORD\n";
}
if (mUsesFrontFacing)
{
out << "#define GL_USES_FRONT_FACING\n";
}
if (mUsesPointSize)
{
out << "#define GL_USES_POINT_SIZE\n";
}
if (mUsesDepthRange)
{
out << "struct gl_DepthRangeParameters\n"
"{\n"
" float near;\n"
" float far;\n"
" float diff;\n"
"};\n"
"\n"
"uniform float3 dx_DepthRange;"
"static gl_DepthRangeParameters gl_DepthRange = {dx_DepthRange.x, dx_DepthRange.y, dx_DepthRange.z};\n"
"\n";
}
if (mUsesXor)
{
out << "bool xor(bool p, bool q)\n"
"{\n"
" return (p || q) && !(p && q);\n"
"}\n"
"\n";
}
if (mUsesMod1)
{
out << "float mod(float x, float y)\n"
"{\n"
" return x - y * floor(x / y);\n"
"}\n"
"\n";
}
if (mUsesMod2)
{
out << "float2 mod(float2 x, float y)\n"
"{\n"
" return x - y * floor(x / y);\n"
"}\n"
"\n";
}
if (mUsesMod3)
{
out << "float3 mod(float3 x, float y)\n"
"{\n"
" return x - y * floor(x / y);\n"
"}\n"
"\n";
}
if (mUsesMod4)
{
out << "float4 mod(float4 x, float y)\n"
"{\n"
" return x - y * floor(x / y);\n"
"}\n"
"\n";
}
if (mUsesFaceforward1)
{
out << "float faceforward(float N, float I, float Nref)\n"
"{\n"
" if(dot(Nref, I) >= 0)\n"
" {\n"
" return -N;\n"
" }\n"
" else\n"
" {\n"
" return N;\n"
" }\n"
"}\n"
"\n";
}
if (mUsesFaceforward2)
{
out << "float2 faceforward(float2 N, float2 I, float2 Nref)\n"
"{\n"
" if(dot(Nref, I) >= 0)\n"
" {\n"
" return -N;\n"
" }\n"
" else\n"
" {\n"
" return N;\n"
" }\n"
"}\n"
"\n";
}
if (mUsesFaceforward3)
{
out << "float3 faceforward(float3 N, float3 I, float3 Nref)\n"
"{\n"
" if(dot(Nref, I) >= 0)\n"
" {\n"
" return -N;\n"
" }\n"
" else\n"
" {\n"
" return N;\n"
" }\n"
"}\n"
"\n";
}
if (mUsesFaceforward4)
{
out << "float4 faceforward(float4 N, float4 I, float4 Nref)\n"
"{\n"
" if(dot(Nref, I) >= 0)\n"
" {\n"
" return -N;\n"
" }\n"
" else\n"
" {\n"
" return N;\n"
" }\n"
"}\n"
"\n";
}
if (mUsesEqualMat2)
{
out << "bool equal(float2x2 m, float2x2 n)\n"
"{\n"
" return m[0][0] == n[0][0] && m[0][1] == n[0][1] &&\n"
" m[1][0] == n[1][0] && m[1][1] == n[1][1];\n"
"}\n";
}
if (mUsesEqualMat3)
{
out << "bool equal(float3x3 m, float3x3 n)\n"
"{\n"
" return m[0][0] == n[0][0] && m[0][1] == n[0][1] && m[0][2] == n[0][2] &&\n"
" m[1][0] == n[1][0] && m[1][1] == n[1][1] && m[1][2] == n[1][2] &&\n"
" m[2][0] == n[2][0] && m[2][1] == n[2][1] && m[2][2] == n[2][2];\n"
"}\n";
}
if (mUsesEqualMat4)
{
out << "bool equal(float4x4 m, float4x4 n)\n"
"{\n"
" return m[0][0] == n[0][0] && m[0][1] == n[0][1] && m[0][2] == n[0][2] && m[0][3] == n[0][3] &&\n"
" m[1][0] == n[1][0] && m[1][1] == n[1][1] && m[1][2] == n[1][2] && m[1][3] == n[1][3] &&\n"
" m[2][0] == n[2][0] && m[2][1] == n[2][1] && m[2][2] == n[2][2] && m[2][3] == n[2][3] &&\n"
" m[3][0] == n[3][0] && m[3][1] == n[3][1] && m[3][2] == n[3][2] && m[3][3] == n[3][3];\n"
"}\n";
}
if (mUsesEqualVec2)
{
out << "bool equal(float2 v, float2 u)\n"
"{\n"
" return v.x == u.x && v.y == u.y;\n"
"}\n";
}
if (mUsesEqualVec3)
{
out << "bool equal(float3 v, float3 u)\n"
"{\n"
" return v.x == u.x && v.y == u.y && v.z == u.z;\n"
"}\n";
}
if (mUsesEqualVec4)
{
out << "bool equal(float4 v, float4 u)\n"
"{\n"
" return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w;\n"
"}\n";
}
if (mUsesEqualIVec2)
{
out << "bool equal(int2 v, int2 u)\n"
"{\n"
" return v.x == u.x && v.y == u.y;\n"
"}\n";
}
if (mUsesEqualIVec3)
{
out << "bool equal(int3 v, int3 u)\n"
"{\n"
" return v.x == u.x && v.y == u.y && v.z == u.z;\n"
"}\n";
}
if (mUsesEqualIVec4)
{
out << "bool equal(int4 v, int4 u)\n"
"{\n"
" return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w;\n"
"}\n";
}
if (mUsesEqualBVec2)
{
out << "bool equal(bool2 v, bool2 u)\n"
"{\n"
" return v.x == u.x && v.y == u.y;\n"
"}\n";
}
if (mUsesEqualBVec3)
{
out << "bool equal(bool3 v, bool3 u)\n"
"{\n"
" return v.x == u.x && v.y == u.y && v.z == u.z;\n"
"}\n";
}
if (mUsesEqualBVec4)
{
out << "bool equal(bool4 v, bool4 u)\n"
"{\n"
" return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w;\n"
"}\n";
}
if (mUsesAtan2)
{
out << "float atanyx(float y, float x)\n"
"{\n"
" if(x == 0 && y == 0) x = 1;\n" // Avoid producing a NaN
" return atan2(y, x);\n"
"}\n";
}
}
void OutputHLSL::visitSymbol(TIntermSymbol *node)
{
TInfoSinkBase &out = mBody;
TString name = node->getSymbol();
if (name == "gl_FragColor")
{
out << "gl_Color[0]";
}
else if (name == "gl_FragData")
{
out << "gl_Color";
}
else if (name == "gl_DepthRange")
{
mUsesDepthRange = true;
out << name;
}
else if (name == "gl_FragCoord")
{
mUsesFragCoord = true;
out << name;
}
else if (name == "gl_PointCoord")
{
mUsesPointCoord = true;
out << name;
}
else if (name == "gl_FrontFacing")
{
mUsesFrontFacing = true;
out << name;
}
else if (name == "gl_PointSize")
{
mUsesPointSize = true;
out << name;
}
else
{
TQualifier qualifier = node->getQualifier();
if (qualifier == EvqUniform)
{
mReferencedUniforms.insert(name.c_str());
out << decorateUniform(name, node->isArray());
}
else if (qualifier == EvqAttribute)
{
mReferencedAttributes.insert(name.c_str());
out << decorate(name);
}
else if (qualifier == EvqVaryingOut || qualifier == EvqInvariantVaryingOut || qualifier == EvqVaryingIn || qualifier == EvqInvariantVaryingIn)
{
mReferencedVaryings.insert(name.c_str());
out << decorate(name);
}
else
{
out << decorate(name);
}
}
}
bool OutputHLSL::visitBinary(Visit visit, TIntermBinary *node)
{
TInfoSinkBase &out = mBody;
switch (node->getOp())
{
case EOpAssign: outputTriplet(visit, "(", " = ", ")"); break;
case EOpInitialize:
if (visit == PreVisit)
{
// GLSL allows to write things like "float x = x;" where a new variable x is defined
// and the value of an existing variable x is assigned. HLSL uses C semantics (the
// new variable is created before the assignment is evaluated), so we need to convert
// this to "float t = x, x = t;".
TIntermSymbol *symbolNode = node->getLeft()->getAsSymbolNode();
TIntermTyped *expression = node->getRight();
sh::SearchSymbol searchSymbol(symbolNode->getSymbol());
expression->traverse(&searchSymbol);
bool sameSymbol = searchSymbol.foundMatch();
if (sameSymbol)
{
// Type already printed
out << "t" + str(mUniqueIndex) + " = ";
expression->traverse(this);
out << ", ";
symbolNode->traverse(this);
out << " = t" + str(mUniqueIndex);
mUniqueIndex++;
return false;
}
}
else if (visit == InVisit)
{
out << " = ";
}
break;
case EOpAddAssign: outputTriplet(visit, "(", " += ", ")"); break;
case EOpSubAssign: outputTriplet(visit, "(", " -= ", ")"); break;
case EOpMulAssign: outputTriplet(visit, "(", " *= ", ")"); break;
case EOpVectorTimesScalarAssign: outputTriplet(visit, "(", " *= ", ")"); break;
case EOpMatrixTimesScalarAssign: outputTriplet(visit, "(", " *= ", ")"); break;
case EOpVectorTimesMatrixAssign:
if (visit == PreVisit)
{
out << "(";
}
else if (visit == InVisit)
{
out << " = mul(";
node->getLeft()->traverse(this);
out << ", transpose(";
}
else
{
out << ")))";
}
break;
case EOpMatrixTimesMatrixAssign:
if (visit == PreVisit)
{
out << "(";
}
else if (visit == InVisit)
{
out << " = mul(";
node->getLeft()->traverse(this);
out << ", ";
}
else
{
out << "))";
}
break;
case EOpDivAssign: outputTriplet(visit, "(", " /= ", ")"); break;
case EOpIndexDirect: outputTriplet(visit, "", "[", "]"); break;
case EOpIndexIndirect: outputTriplet(visit, "", "[", "]"); break;
case EOpIndexDirectStruct:
if (visit == InVisit)
{
out << "." + node->getType().getFieldName();
return false;
}
break;
case EOpVectorSwizzle:
if (visit == InVisit)
{
out << ".";
TIntermAggregate *swizzle = node->getRight()->getAsAggregate();
if (swizzle)
{
TIntermSequence &sequence = swizzle->getSequence();
for (TIntermSequence::iterator sit = sequence.begin(); sit != sequence.end(); sit++)
{
TIntermConstantUnion *element = (*sit)->getAsConstantUnion();
if (element)
{
int i = element->getUnionArrayPointer()[0].getIConst();
switch (i)
{
case 0: out << "x"; break;
case 1: out << "y"; break;
case 2: out << "z"; break;
case 3: out << "w"; break;
default: UNREACHABLE();
}
}
else UNREACHABLE();
}
}
else UNREACHABLE();
return false; // Fully processed
}
break;
case EOpAdd: outputTriplet(visit, "(", " + ", ")"); break;
case EOpSub: outputTriplet(visit, "(", " - ", ")"); break;
case EOpMul: outputTriplet(visit, "(", " * ", ")"); break;
case EOpDiv: outputTriplet(visit, "(", " / ", ")"); break;
case EOpEqual:
case EOpNotEqual:
if (node->getLeft()->isScalar())
{
if (node->getOp() == EOpEqual)
{
outputTriplet(visit, "(", " == ", ")");
}
else
{
outputTriplet(visit, "(", " != ", ")");
}
}
else if (node->getLeft()->getBasicType() == EbtStruct)
{
if (node->getOp() == EOpEqual)
{
out << "(";
}
else
{
out << "!(";
}
const TTypeList *fields = node->getLeft()->getType().getStruct();
for (size_t i = 0; i < fields->size(); i++)
{
const TType *fieldType = (*fields)[i].type;
node->getLeft()->traverse(this);
out << "." + fieldType->getFieldName() + " == ";
node->getRight()->traverse(this);
out << "." + fieldType->getFieldName();
if (i < fields->size() - 1)
{
out << " && ";
}
}
out << ")";
return false;
}
else
{
if (node->getLeft()->isMatrix())
{
switch (node->getLeft()->getNominalSize())
{
case 2: mUsesEqualMat2 = true; break;
case 3: mUsesEqualMat3 = true; break;
case 4: mUsesEqualMat4 = true; break;
default: UNREACHABLE();
}
}
else if (node->getLeft()->isVector())
{
switch (node->getLeft()->getBasicType())
{
case EbtFloat:
switch (node->getLeft()->getNominalSize())
{
case 2: mUsesEqualVec2 = true; break;
case 3: mUsesEqualVec3 = true; break;
case 4: mUsesEqualVec4 = true; break;
default: UNREACHABLE();
}
break;
case EbtInt:
switch (node->getLeft()->getNominalSize())
{
case 2: mUsesEqualIVec2 = true; break;
case 3: mUsesEqualIVec3 = true; break;
case 4: mUsesEqualIVec4 = true; break;
default: UNREACHABLE();
}
break;
case EbtBool:
switch (node->getLeft()->getNominalSize())
{
case 2: mUsesEqualBVec2 = true; break;
case 3: mUsesEqualBVec3 = true; break;
case 4: mUsesEqualBVec4 = true; break;
default: UNREACHABLE();
}
break;
default: UNREACHABLE();
}
}
else UNREACHABLE();
if (node->getOp() == EOpEqual)
{
outputTriplet(visit, "equal(", ", ", ")");
}
else
{
outputTriplet(visit, "!equal(", ", ", ")");
}
}
break;
case EOpLessThan: outputTriplet(visit, "(", " < ", ")"); break;
case EOpGreaterThan: outputTriplet(visit, "(", " > ", ")"); break;
case EOpLessThanEqual: outputTriplet(visit, "(", " <= ", ")"); break;
case EOpGreaterThanEqual: outputTriplet(visit, "(", " >= ", ")"); break;
case EOpVectorTimesScalar: outputTriplet(visit, "(", " * ", ")"); break;
case EOpMatrixTimesScalar: outputTriplet(visit, "(", " * ", ")"); break;
case EOpVectorTimesMatrix: outputTriplet(visit, "mul(", ", transpose(", "))"); break;
case EOpMatrixTimesVector: outputTriplet(visit, "mul(transpose(", "), ", ")"); break;
case EOpMatrixTimesMatrix: outputTriplet(visit, "transpose(mul(transpose(", "), transpose(", ")))"); break;
case EOpLogicalOr: outputTriplet(visit, "(", " || ", ")"); break;
case EOpLogicalXor:
mUsesXor = true;
outputTriplet(visit, "xor(", ", ", ")");
break;
case EOpLogicalAnd: outputTriplet(visit, "(", " && ", ")"); break;
default: UNREACHABLE();
}
return true;
}
bool OutputHLSL::visitUnary(Visit visit, TIntermUnary *node)
{
TInfoSinkBase &out = mBody;
switch (node->getOp())
{
case EOpNegative: outputTriplet(visit, "(-", "", ")"); break;
case EOpVectorLogicalNot: outputTriplet(visit, "(!", "", ")"); break;
case EOpLogicalNot: outputTriplet(visit, "(!", "", ")"); break;
case EOpPostIncrement: outputTriplet(visit, "(", "", "++)"); break;
case EOpPostDecrement: outputTriplet(visit, "(", "", "--)"); break;
case EOpPreIncrement: outputTriplet(visit, "(++", "", ")"); break;
case EOpPreDecrement: outputTriplet(visit, "(--", "", ")"); break;
case EOpConvIntToBool:
case EOpConvFloatToBool:
switch (node->getOperand()->getType().getNominalSize())
{
case 1: outputTriplet(visit, "bool(", "", ")"); break;
case 2: outputTriplet(visit, "bool2(", "", ")"); break;
case 3: outputTriplet(visit, "bool3(", "", ")"); break;
case 4: outputTriplet(visit, "bool4(", "", ")"); break;
default: UNREACHABLE();
}
break;
case EOpConvBoolToFloat:
case EOpConvIntToFloat:
switch (node->getOperand()->getType().getNominalSize())
{
case 1: outputTriplet(visit, "float(", "", ")"); break;
case 2: outputTriplet(visit, "float2(", "", ")"); break;
case 3: outputTriplet(visit, "float3(", "", ")"); break;
case 4: outputTriplet(visit, "float4(", "", ")"); break;
default: UNREACHABLE();
}
break;
case EOpConvFloatToInt:
case EOpConvBoolToInt:
switch (node->getOperand()->getType().getNominalSize())
{
case 1: outputTriplet(visit, "int(", "", ")"); break;
case 2: outputTriplet(visit, "int2(", "", ")"); break;
case 3: outputTriplet(visit, "int3(", "", ")"); break;
case 4: outputTriplet(visit, "int4(", "", ")"); break;
default: UNREACHABLE();
}
break;
case EOpRadians: outputTriplet(visit, "radians(", "", ")"); break;
case EOpDegrees: outputTriplet(visit, "degrees(", "", ")"); break;
case EOpSin: outputTriplet(visit, "sin(", "", ")"); break;
case EOpCos: outputTriplet(visit, "cos(", "", ")"); break;
case EOpTan: outputTriplet(visit, "tan(", "", ")"); break;
case EOpAsin: outputTriplet(visit, "asin(", "", ")"); break;
case EOpAcos: outputTriplet(visit, "acos(", "", ")"); break;
case EOpAtan: outputTriplet(visit, "atan(", "", ")"); break;
case EOpExp: outputTriplet(visit, "exp(", "", ")"); break;
case EOpLog: outputTriplet(visit, "log(", "", ")"); break;
case EOpExp2: outputTriplet(visit, "exp2(", "", ")"); break;
case EOpLog2: outputTriplet(visit, "log2(", "", ")"); break;
case EOpSqrt: outputTriplet(visit, "sqrt(", "", ")"); break;
case EOpInverseSqrt: outputTriplet(visit, "rsqrt(", "", ")"); break;
case EOpAbs: outputTriplet(visit, "abs(", "", ")"); break;
case EOpSign: outputTriplet(visit, "sign(", "", ")"); break;
case EOpFloor: outputTriplet(visit, "floor(", "", ")"); break;
case EOpCeil: outputTriplet(visit, "ceil(", "", ")"); break;
case EOpFract: outputTriplet(visit, "frac(", "", ")"); break;
case EOpLength: outputTriplet(visit, "length(", "", ")"); break;
case EOpNormalize: outputTriplet(visit, "normalize(", "", ")"); break;
case EOpDFdx: outputTriplet(visit, "ddx(", "", ")"); break;
case EOpDFdy: outputTriplet(visit, "(-ddy(", "", "))"); break;
case EOpFwidth: outputTriplet(visit, "fwidth(", "", ")"); break;
case EOpAny: outputTriplet(visit, "any(", "", ")"); break;
case EOpAll: outputTriplet(visit, "all(", "", ")"); break;
default: UNREACHABLE();
}
return true;
}
bool OutputHLSL::visitAggregate(Visit visit, TIntermAggregate *node)
{
ShShaderType shaderType = mContext.shaderType;
TInfoSinkBase &out = mBody;
switch (node->getOp())
{
case EOpSequence:
{
if (mInsideFunction)
{
outputLineDirective(node->getLine());
out << "{\n";
mScopeDepth++;
if (mScopeBracket.size() < mScopeDepth)
{
mScopeBracket.push_back(0); // New scope level
}
else
{
mScopeBracket[mScopeDepth - 1]++; // New scope at existing level
}
}
for (TIntermSequence::iterator sit = node->getSequence().begin(); sit != node->getSequence().end(); sit++)
{
outputLineDirective((*sit)->getLine());
if (isSingleStatement(*sit))
{
mUnfoldSelect->traverse(*sit);
}
(*sit)->traverse(this);
out << ";\n";
}
if (mInsideFunction)
{
outputLineDirective(node->getEndLine());
out << "}\n";
mScopeDepth--;
}
return false;
}
case EOpDeclaration:
if (visit == PreVisit)
{
TIntermSequence &sequence = node->getSequence();
TIntermTyped *variable = sequence[0]->getAsTyped();
bool visit = true;
if (variable && (variable->getQualifier() == EvqTemporary || variable->getQualifier() == EvqGlobal))
{
if (variable->getType().getStruct())
{
addConstructor(variable->getType(), scopedStruct(variable->getType().getTypeName()), NULL);
}
if (!variable->getAsSymbolNode() || variable->getAsSymbolNode()->getSymbol() != "") // Variable declaration
{
if (!mInsideFunction)
{
out << "static ";
}
out << typeString(variable->getType()) + " ";
for (TIntermSequence::iterator sit = sequence.begin(); sit != sequence.end(); sit++)
{
TIntermSymbol *symbol = (*sit)->getAsSymbolNode();
if (symbol)
{
symbol->traverse(this);
out << arrayString(symbol->getType());
out << " = " + initializer(variable->getType());
}
else
{
(*sit)->traverse(this);
}
if (visit && this->inVisit)
{
if (*sit != sequence.back())
{
visit = this->visitAggregate(InVisit, node);
}
}
}
if (visit && this->postVisit)
{
this->visitAggregate(PostVisit, node);
}
}
else if (variable->getAsSymbolNode() && variable->getAsSymbolNode()->getSymbol() == "") // Type (struct) declaration
{
// Already added to constructor map
}
else UNREACHABLE();
}
return false;
}
else if (visit == InVisit)
{
out << ", ";
}
break;
case EOpPrototype:
if (visit == PreVisit)
{
out << typeString(node->getType()) << " " << decorate(node->getName()) << "(";
TIntermSequence &arguments = node->getSequence();
for (unsigned int i = 0; i < arguments.size(); i++)
{
TIntermSymbol *symbol = arguments[i]->getAsSymbolNode();
if (symbol)
{
out << argumentString(symbol);
if (i < arguments.size() - 1)
{
out << ", ";
}
}
else UNREACHABLE();
}
out << ");\n";
return false;
}
break;
case EOpComma: outputTriplet(visit, "", ", ", ""); break;
case EOpFunction:
{
TString name = TFunction::unmangleName(node->getName());
if (visit == PreVisit)
{
out << typeString(node->getType()) << " ";
if (name == "main")
{
out << "gl_main(";
}
else
{
out << decorate(name) << "(";
}
TIntermSequence &sequence = node->getSequence();
TIntermSequence &arguments = sequence[0]->getAsAggregate()->getSequence();
for (unsigned int i = 0; i < arguments.size(); i++)
{
TIntermSymbol *symbol = arguments[i]->getAsSymbolNode();
if (symbol)
{
out << argumentString(symbol);
if (i < arguments.size() - 1)
{
out << ", ";
}
}
else UNREACHABLE();
}
sequence.erase(sequence.begin());
out << ")\n";
outputLineDirective(node->getLine());
out << "{\n";
mInsideFunction = true;
}
else if (visit == PostVisit)
{
outputLineDirective(node->getEndLine());
out << "}\n";
mInsideFunction = false;
}
}
break;
case EOpFunctionCall:
{
if (visit == PreVisit)
{
TString name = TFunction::unmangleName(node->getName());
if (node->isUserDefined())
{
out << decorate(name) << "(";
}
else
{
if (name == "texture2D")
{
if (node->getSequence().size() == 2)
{
mUsesTexture2D = true;
}
else if (node->getSequence().size() == 3)
{
mUsesTexture2D_bias = true;
}
else UNREACHABLE();
out << "gl_texture2D(";
}
else if (name == "texture2DProj")
{
if (node->getSequence().size() == 2)
{
mUsesTexture2DProj = true;
}
else if (node->getSequence().size() == 3)
{
mUsesTexture2DProj_bias = true;
}
else UNREACHABLE();
out << "gl_texture2DProj(";
}
else if (name == "textureCube")
{
if (node->getSequence().size() == 2)
{
mUsesTextureCube = true;
}
else if (node->getSequence().size() == 3)
{
mUsesTextureCube_bias = true;
}
else UNREACHABLE();
out << "gl_textureCube(";
}
else if (name == "texture2DLod")
{
if (node->getSequence().size() == 3)
{
mUsesTexture2DLod = true;
}
else UNREACHABLE();
out << "gl_texture2DLod(";
}
else if (name == "texture2DProjLod")
{
if (node->getSequence().size() == 3)
{
mUsesTexture2DProjLod = true;
}
else UNREACHABLE();
out << "gl_texture2DProjLod(";
}
else if (name == "textureCubeLod")
{
if (node->getSequence().size() == 3)
{
mUsesTextureCubeLod = true;
}
else UNREACHABLE();
out << "gl_textureCubeLod(";
}
else UNREACHABLE();
}
}
else if (visit == InVisit)
{
out << ", ";
}
else
{
out << ")";
}
}
break;
case EOpParameters: outputTriplet(visit, "(", ", ", ")\n{\n"); break;
case EOpConstructFloat:
addConstructor(node->getType(), "vec1", &node->getSequence());
outputTriplet(visit, "vec1(", "", ")");
break;
case EOpConstructVec2:
addConstructor(node->getType(), "vec2", &node->getSequence());
outputTriplet(visit, "vec2(", ", ", ")");
break;
case EOpConstructVec3:
addConstructor(node->getType(), "vec3", &node->getSequence());
outputTriplet(visit, "vec3(", ", ", ")");
break;
case EOpConstructVec4:
addConstructor(node->getType(), "vec4", &node->getSequence());
outputTriplet(visit, "vec4(", ", ", ")");
break;
case EOpConstructBool:
addConstructor(node->getType(), "bvec1", &node->getSequence());
outputTriplet(visit, "bvec1(", "", ")");
break;
case EOpConstructBVec2:
addConstructor(node->getType(), "bvec2", &node->getSequence());
outputTriplet(visit, "bvec2(", ", ", ")");
break;
case EOpConstructBVec3:
addConstructor(node->getType(), "bvec3", &node->getSequence());
outputTriplet(visit, "bvec3(", ", ", ")");
break;
case EOpConstructBVec4:
addConstructor(node->getType(), "bvec4", &node->getSequence());
outputTriplet(visit, "bvec4(", ", ", ")");
break;
case EOpConstructInt:
addConstructor(node->getType(), "ivec1", &node->getSequence());
outputTriplet(visit, "ivec1(", "", ")");
break;
case EOpConstructIVec2:
addConstructor(node->getType(), "ivec2", &node->getSequence());
outputTriplet(visit, "ivec2(", ", ", ")");
break;
case EOpConstructIVec3:
addConstructor(node->getType(), "ivec3", &node->getSequence());
outputTriplet(visit, "ivec3(", ", ", ")");
break;
case EOpConstructIVec4:
addConstructor(node->getType(), "ivec4", &node->getSequence());
outputTriplet(visit, "ivec4(", ", ", ")");
break;
case EOpConstructMat2:
addConstructor(node->getType(), "mat2", &node->getSequence());
outputTriplet(visit, "mat2(", ", ", ")");
break;
case EOpConstructMat3:
addConstructor(node->getType(), "mat3", &node->getSequence());
outputTriplet(visit, "mat3(", ", ", ")");
break;
case EOpConstructMat4:
addConstructor(node->getType(), "mat4", &node->getSequence());
outputTriplet(visit, "mat4(", ", ", ")");
break;
case EOpConstructStruct:
addConstructor(node->getType(), scopedStruct(node->getType().getTypeName()), &node->getSequence());
outputTriplet(visit, structLookup(node->getType().getTypeName()) + "_ctor(", ", ", ")");
break;
case EOpLessThan: outputTriplet(visit, "(", " < ", ")"); break;
case EOpGreaterThan: outputTriplet(visit, "(", " > ", ")"); break;
case EOpLessThanEqual: outputTriplet(visit, "(", " <= ", ")"); break;
case EOpGreaterThanEqual: outputTriplet(visit, "(", " >= ", ")"); break;
case EOpVectorEqual: outputTriplet(visit, "(", " == ", ")"); break;
case EOpVectorNotEqual: outputTriplet(visit, "(", " != ", ")"); break;
case EOpMod:
{
switch (node->getSequence()[0]->getAsTyped()->getNominalSize()) // Number of components in the first argument
{
case 1: mUsesMod1 = true; break;
case 2: mUsesMod2 = true; break;
case 3: mUsesMod3 = true; break;
case 4: mUsesMod4 = true; break;
default: UNREACHABLE();
}
outputTriplet(visit, "mod(", ", ", ")");
}
break;
case EOpPow: outputTriplet(visit, "pow(", ", ", ")"); break;
case EOpAtan:
ASSERT(node->getSequence().size() == 2); // atan(x) is a unary operator
mUsesAtan2 = true;
outputTriplet(visit, "atanyx(", ", ", ")");
break;
case EOpMin: outputTriplet(visit, "min(", ", ", ")"); break;
case EOpMax: outputTriplet(visit, "max(", ", ", ")"); break;
case EOpClamp: outputTriplet(visit, "clamp(", ", ", ")"); break;
case EOpMix: outputTriplet(visit, "lerp(", ", ", ")"); break;
case EOpStep: outputTriplet(visit, "step(", ", ", ")"); break;
case EOpSmoothStep: outputTriplet(visit, "smoothstep(", ", ", ")"); break;
case EOpDistance: outputTriplet(visit, "distance(", ", ", ")"); break;
case EOpDot: outputTriplet(visit, "dot(", ", ", ")"); break;
case EOpCross: outputTriplet(visit, "cross(", ", ", ")"); break;
case EOpFaceForward:
{
switch (node->getSequence()[0]->getAsTyped()->getNominalSize()) // Number of components in the first argument
{
case 1: mUsesFaceforward1 = true; break;
case 2: mUsesFaceforward2 = true; break;
case 3: mUsesFaceforward3 = true; break;
case 4: mUsesFaceforward4 = true; break;
default: UNREACHABLE();
}
outputTriplet(visit, "faceforward(", ", ", ")");
}
break;
case EOpReflect: outputTriplet(visit, "reflect(", ", ", ")"); break;
case EOpRefract: outputTriplet(visit, "refract(", ", ", ")"); break;
case EOpMul: outputTriplet(visit, "(", " * ", ")"); break;
default: UNREACHABLE();
}
return true;
}
bool OutputHLSL::visitSelection(Visit visit, TIntermSelection *node)
{
TInfoSinkBase &out = mBody;
if (node->usesTernaryOperator())
{
out << "s" << mUnfoldSelect->getNextTemporaryIndex();
}
else // if/else statement
{
mUnfoldSelect->traverse(node->getCondition());
out << "if(";
node->getCondition()->traverse(this);
out << ")\n";
outputLineDirective(node->getLine());
out << "{\n";
if (node->getTrueBlock())
{
node->getTrueBlock()->traverse(this);
}
outputLineDirective(node->getLine());
out << ";}\n";
if (node->getFalseBlock())
{
out << "else\n";
outputLineDirective(node->getFalseBlock()->getLine());
out << "{\n";
outputLineDirective(node->getFalseBlock()->getLine());
node->getFalseBlock()->traverse(this);
outputLineDirective(node->getFalseBlock()->getLine());
out << ";}\n";
}
}
return false;
}
void OutputHLSL::visitConstantUnion(TIntermConstantUnion *node)
{
writeConstantUnion(node->getType(), node->getUnionArrayPointer());
}
bool OutputHLSL::visitLoop(Visit visit, TIntermLoop *node)
{
if (handleExcessiveLoop(node))
{
return false;
}
TInfoSinkBase &out = mBody;
if (node->getType() == ELoopDoWhile)
{
out << "do\n";
outputLineDirective(node->getLine());
out << "{\n";
}
else
{
out << "for(";
if (node->getInit())
{
node->getInit()->traverse(this);
}
out << "; ";
if (node->getCondition())
{
node->getCondition()->traverse(this);
}
out << "; ";
if (node->getExpression())
{
node->getExpression()->traverse(this);
}
out << ")\n";
outputLineDirective(node->getLine());
out << "{\n";
}
if (node->getBody())
{
node->getBody()->traverse(this);
}
outputLineDirective(node->getLine());
out << ";}\n";
if (node->getType() == ELoopDoWhile)
{
outputLineDirective(node->getCondition()->getLine());
out << "while(\n";
node->getCondition()->traverse(this);
out << ")";
}
out << ";\n";
return false;
}
bool OutputHLSL::visitBranch(Visit visit, TIntermBranch *node)
{
TInfoSinkBase &out = mBody;
switch (node->getFlowOp())
{
case EOpKill: outputTriplet(visit, "discard;\n", "", ""); break;
case EOpBreak: outputTriplet(visit, "break;\n", "", ""); break;
case EOpContinue: outputTriplet(visit, "continue;\n", "", ""); break;
case EOpReturn:
if (visit == PreVisit)
{
if (node->getExpression())
{
out << "return ";
}
else
{
out << "return;\n";
}
}
else if (visit == PostVisit)
{
if (node->getExpression())
{
out << ";\n";
}
}
break;
default: UNREACHABLE();
}
return true;
}
bool OutputHLSL::isSingleStatement(TIntermNode *node)
{
TIntermAggregate *aggregate = node->getAsAggregate();
if (aggregate)
{
if (aggregate->getOp() == EOpSequence)
{
return false;
}
else
{
for (TIntermSequence::iterator sit = aggregate->getSequence().begin(); sit != aggregate->getSequence().end(); sit++)
{
if (!isSingleStatement(*sit))
{
return false;
}
}
return true;
}
}
return true;
}
// Handle loops with more than 255 iterations (unsupported by D3D9) by splitting them
bool OutputHLSL::handleExcessiveLoop(TIntermLoop *node)
{
TInfoSinkBase &out = mBody;
// Parse loops of the form:
// for(int index = initial; index [comparator] limit; index += increment)
TIntermSymbol *index = NULL;
TOperator comparator = EOpNull;
int initial = 0;
int limit = 0;
int increment = 0;
// Parse index name and intial value
if (node->getInit())
{
TIntermAggregate *init = node->getInit()->getAsAggregate();
if (init)
{
TIntermSequence &sequence = init->getSequence();
TIntermTyped *variable = sequence[0]->getAsTyped();
if (variable && variable->getQualifier() == EvqTemporary)
{
TIntermBinary *assign = variable->getAsBinaryNode();
if (assign->getOp() == EOpInitialize)
{
TIntermSymbol *symbol = assign->getLeft()->getAsSymbolNode();
TIntermConstantUnion *constant = assign->getRight()->getAsConstantUnion();
if (symbol && constant)
{
if (constant->getBasicType() == EbtInt && constant->getNominalSize() == 1)
{
index = symbol;
initial = constant->getUnionArrayPointer()[0].getIConst();
}
}
}
}
}
}
// Parse comparator and limit value
if (index != NULL && node->getCondition())
{
TIntermBinary *test = node->getCondition()->getAsBinaryNode();
if (test && test->getLeft()->getAsSymbolNode()->getId() == index->getId())
{
TIntermConstantUnion *constant = test->getRight()->getAsConstantUnion();
if (constant)
{
if (constant->getBasicType() == EbtInt && constant->getNominalSize() == 1)
{
comparator = test->getOp();
limit = constant->getUnionArrayPointer()[0].getIConst();
}
}
}
}
// Parse increment
if (index != NULL && comparator != EOpNull && node->getExpression())
{
TIntermBinary *binaryTerminal = node->getExpression()->getAsBinaryNode();
TIntermUnary *unaryTerminal = node->getExpression()->getAsUnaryNode();
if (binaryTerminal)
{
TOperator op = binaryTerminal->getOp();
TIntermConstantUnion *constant = binaryTerminal->getRight()->getAsConstantUnion();
if (constant)
{
if (constant->getBasicType() == EbtInt && constant->getNominalSize() == 1)
{
int value = constant->getUnionArrayPointer()[0].getIConst();
switch (op)
{
case EOpAddAssign: increment = value; break;
case EOpSubAssign: increment = -value; break;
default: UNIMPLEMENTED();
}
}
}
}
else if (unaryTerminal)
{
TOperator op = unaryTerminal->getOp();
switch (op)
{
case EOpPostIncrement: increment = 1; break;
case EOpPostDecrement: increment = -1; break;
case EOpPreIncrement: increment = 1; break;
case EOpPreDecrement: increment = -1; break;
default: UNIMPLEMENTED();
}
}
}
if (index != NULL && comparator != EOpNull && increment != 0)
{
if (comparator == EOpLessThanEqual)
{
comparator = EOpLessThan;
limit += 1;
}
if (comparator == EOpLessThan)
{
int iterations = (limit - initial) / increment;
if (iterations <= 255)
{
return false; // Not an excessive loop
}
while (iterations > 0)
{
int remainder = (limit - initial) % increment;
int clampedLimit = initial + increment * std::min(255, iterations);
// for(int index = initial; index < clampedLimit; index += increment)
out << "for(int ";
index->traverse(this);
out << " = ";
out << initial;
out << "; ";
index->traverse(this);
out << " < ";
out << clampedLimit;
out << "; ";
index->traverse(this);
out << " += ";
out << increment;
out << ")\n";
outputLineDirective(node->getLine());
out << "{\n";
if (node->getBody())
{
node->getBody()->traverse(this);
}
outputLineDirective(node->getLine());
out << ";}\n";
initial += 255 * increment;
iterations -= 255;
}
return true;
}
else UNIMPLEMENTED();
}
return false; // Not handled as an excessive loop
}
void OutputHLSL::outputTriplet(Visit visit, const TString &preString, const TString &inString, const TString &postString)
{
TInfoSinkBase &out = mBody;
if (visit == PreVisit)
{
out << preString;
}
else if (visit == InVisit)
{
out << inString;
}
else if (visit == PostVisit)
{
out << postString;
}
}
void OutputHLSL::outputLineDirective(int line)
{
if ((mContext.compileOptions & SH_LINE_DIRECTIVES) && (line > 0))
{
mBody << "\n";
mBody << "#line " << line;
if (mContext.sourcePath)
{
mBody << " \"" << mContext.sourcePath << "\"";
}
mBody << "\n";
}
}
TString OutputHLSL::argumentString(const TIntermSymbol *symbol)
{
TQualifier qualifier = symbol->getQualifier();
const TType &type = symbol->getType();
TString name = symbol->getSymbol();
if (name.empty()) // HLSL demands named arguments, also for prototypes
{
name = "x" + str(mUniqueIndex++);
}
else
{
name = decorate(name);
}
return qualifierString(qualifier) + " " + typeString(type) + " " + name + arrayString(type);
}
TString OutputHLSL::qualifierString(TQualifier qualifier)
{
switch(qualifier)
{
case EvqIn: return "in";
case EvqOut: return "out";
case EvqInOut: return "inout";
case EvqConstReadOnly: return "const";
default: UNREACHABLE();
}
return "";
}
TString OutputHLSL::typeString(const TType &type)
{
if (type.getBasicType() == EbtStruct)
{
if (type.getTypeName() != "")
{
return structLookup(type.getTypeName());
}
else // Nameless structure, define in place
{
const TTypeList &fields = *type.getStruct();
TString string = "struct\n"
"{\n";
for (unsigned int i = 0; i < fields.size(); i++)
{
const TType &field = *fields[i].type;
string += " " + typeString(field) + " " + field.getFieldName() + arrayString(field) + ";\n";
}
string += "} ";
return string;
}
}
else if (type.isMatrix())
{
switch (type.getNominalSize())
{
case 2: return "float2x2";
case 3: return "float3x3";
case 4: return "float4x4";
}
}
else
{
switch (type.getBasicType())
{
case EbtFloat:
switch (type.getNominalSize())
{
case 1: return "float";
case 2: return "float2";
case 3: return "float3";
case 4: return "float4";
}
case EbtInt:
switch (type.getNominalSize())
{
case 1: return "int";
case 2: return "int2";
case 3: return "int3";
case 4: return "int4";
}
case EbtBool:
switch (type.getNominalSize())
{
case 1: return "bool";
case 2: return "bool2";
case 3: return "bool3";
case 4: return "bool4";
}
case EbtVoid:
return "void";
case EbtSampler2D:
return "sampler2D";
case EbtSamplerCube:
return "samplerCUBE";
}
}
UNIMPLEMENTED(); // FIXME
return "<unknown type>";
}
TString OutputHLSL::arrayString(const TType &type)
{
if (!type.isArray())
{
return "";
}
return "[" + str(type.getArraySize()) + "]";
}
TString OutputHLSL::initializer(const TType &type)
{
TString string;
for (int component = 0; component < type.getObjectSize(); component++)
{
string += "0";
if (component < type.getObjectSize() - 1)
{
string += ", ";
}
}
return "{" + string + "}";
}
void OutputHLSL::addConstructor(const TType &type, const TString &name, const TIntermSequence *parameters)
{
if (name == "")
{
return; // Nameless structures don't have constructors
}
TType ctorType = type;
ctorType.clearArrayness();
ctorType.setPrecision(EbpHigh);
ctorType.setQualifier(EvqTemporary);
TString ctorName = type.getStruct() ? decorate(name) : name;
typedef std::vector<TType> ParameterArray;
ParameterArray ctorParameters;
if (type.getStruct())
{
mStructNames.insert(decorate(name));
TString structure;
structure += "struct " + decorate(name) + "\n"
"{\n";
const TTypeList &fields = *type.getStruct();
for (unsigned int i = 0; i < fields.size(); i++)
{
const TType &field = *fields[i].type;
structure += " " + typeString(field) + " " + field.getFieldName() + arrayString(field) + ";\n";
}
structure += "};\n";
if (std::find(mStructDeclarations.begin(), mStructDeclarations.end(), structure) == mStructDeclarations.end())
{
mStructDeclarations.push_back(structure);
}
for (unsigned int i = 0; i < fields.size(); i++)
{
ctorParameters.push_back(*fields[i].type);
}
}
else if (parameters)
{
for (TIntermSequence::const_iterator parameter = parameters->begin(); parameter != parameters->end(); parameter++)
{
ctorParameters.push_back((*parameter)->getAsTyped()->getType());
}
}
else UNREACHABLE();
TString constructor;
if (ctorType.getStruct())
{
constructor += ctorName + " " + ctorName + "_ctor(";
}
else // Built-in type
{
constructor += typeString(ctorType) + " " + ctorName + "(";
}
for (unsigned int parameter = 0; parameter < ctorParameters.size(); parameter++)
{
const TType &type = ctorParameters[parameter];
constructor += typeString(type) + " x" + str(parameter) + arrayString(type);
if (parameter < ctorParameters.size() - 1)
{
constructor += ", ";
}
}
constructor += ")\n"
"{\n";
if (ctorType.getStruct())
{
constructor += " " + ctorName + " structure = {";
}
else
{
constructor += " return " + typeString(ctorType) + "(";
}
if (ctorType.isMatrix() && ctorParameters.size() == 1)
{
int dim = ctorType.getNominalSize();
const TType &parameter = ctorParameters[0];
if (parameter.isScalar())
{
for (int row = 0; row < dim; row++)
{
for (int col = 0; col < dim; col++)
{
constructor += TString((row == col) ? "x0" : "0.0");
if (row < dim - 1 || col < dim - 1)
{
constructor += ", ";
}
}
}
}
else if (parameter.isMatrix())
{
for (int row = 0; row < dim; row++)
{
for (int col = 0; col < dim; col++)
{
if (row < parameter.getNominalSize() && col < parameter.getNominalSize())
{
constructor += TString("x0") + "[" + str(row) + "]" + "[" + str(col) + "]";
}
else
{
constructor += TString((row == col) ? "1.0" : "0.0");
}
if (row < dim - 1 || col < dim - 1)
{
constructor += ", ";
}
}
}
}
else UNREACHABLE();
}
else
{
int remainingComponents = ctorType.getObjectSize();
int parameterIndex = 0;
while (remainingComponents > 0)
{
const TType &parameter = ctorParameters[parameterIndex];
bool moreParameters = parameterIndex < (int)ctorParameters.size() - 1;
constructor += "x" + str(parameterIndex);
if (parameter.isScalar())
{
remainingComponents -= parameter.getObjectSize();
}
else if (parameter.isVector())
{
if (remainingComponents == parameter.getObjectSize() || moreParameters)
{
remainingComponents -= parameter.getObjectSize();
}
else if (remainingComponents < parameter.getNominalSize())
{
switch (remainingComponents)
{
case 1: constructor += ".x"; break;
case 2: constructor += ".xy"; break;
case 3: constructor += ".xyz"; break;
case 4: constructor += ".xyzw"; break;
default: UNREACHABLE();
}
remainingComponents = 0;
}
else UNREACHABLE();
}
else if (parameter.isMatrix() || parameter.getStruct())
{
ASSERT(remainingComponents == parameter.getObjectSize() || moreParameters);
remainingComponents -= parameter.getObjectSize();
}
else UNREACHABLE();
if (moreParameters)
{
parameterIndex++;
}
if (remainingComponents)
{
constructor += ", ";
}
}
}
if (ctorType.getStruct())
{
constructor += "};\n"
" return structure;\n"
"}\n";
}
else
{
constructor += ");\n"
"}\n";
}
mConstructors.insert(constructor);
}
const ConstantUnion *OutputHLSL::writeConstantUnion(const TType &type, const ConstantUnion *constUnion)
{
TInfoSinkBase &out = mBody;
if (type.getBasicType() == EbtStruct)
{
out << structLookup(type.getTypeName()) + "_ctor(";
const TTypeList *structure = type.getStruct();
for (size_t i = 0; i < structure->size(); i++)
{
const TType *fieldType = (*structure)[i].type;
constUnion = writeConstantUnion(*fieldType, constUnion);
if (i != structure->size() - 1)
{
out << ", ";
}
}
out << ")";
}
else
{
int size = type.getObjectSize();
bool writeType = size > 1;
if (writeType)
{
out << typeString(type) << "(";
}
for (int i = 0; i < size; i++, constUnion++)
{
switch (constUnion->getType())
{
case EbtFloat: out << constUnion->getFConst(); break;
case EbtInt: out << constUnion->getIConst(); break;
case EbtBool: out << constUnion->getBConst(); break;
default: UNREACHABLE();
}
if (i != size - 1)
{
out << ", ";
}
}
if (writeType)
{
out << ")";
}
}
return constUnion;
}
TString OutputHLSL::scopeString(unsigned int depthLimit)
{
TString string;
for (unsigned int i = 0; i < mScopeBracket.size() && i < depthLimit; i++)
{
string += "_" + str(i);
}
return string;
}
TString OutputHLSL::scopedStruct(const TString &typeName)
{
if (typeName == "")
{
return typeName;
}
return typeName + scopeString(mScopeDepth);
}
TString OutputHLSL::structLookup(const TString &typeName)
{
for (int depth = mScopeDepth; depth >= 0; depth--)
{
TString scopedName = decorate(typeName + scopeString(depth));
for (StructNames::iterator structName = mStructNames.begin(); structName != mStructNames.end(); structName++)
{
if (*structName == scopedName)
{
return scopedName;
}
}
}
UNREACHABLE(); // Should have found a matching constructor
return typeName;
}
TString OutputHLSL::decorate(const TString &string)
{
if (string.compare(0, 3, "gl_") != 0 && string.compare(0, 3, "dx_") != 0)
{
return "_" + string;
}
return string;
}
TString OutputHLSL::decorateUniform(const TString &string, bool array)
{
if (array)
{
return "ar_" + string; // Allows identifying arrays of size 1
}
return decorate(string);
}
}