| //==- SPUInstrInfo.td - Describe the Cell SPU Instructions -*- tablegen -*-==// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // Cell SPU Instructions: |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| // TODO Items (not urgent today, but would be nice, low priority) |
| // |
| // ANDBI, ORBI: SPU constructs a 4-byte constant for these instructions by |
| // concatenating the byte argument b as "bbbb". Could recognize this bit pattern |
| // in 16-bit and 32-bit constants and reduce instruction count. |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| // Pseudo instructions: |
| //===----------------------------------------------------------------------===// |
| |
| let hasCtrlDep = 1, Defs = [R1], Uses = [R1] in { |
| def ADJCALLSTACKDOWN : Pseudo<(outs), (ins u16imm_i32:$amt), |
| "${:comment} ADJCALLSTACKDOWN", |
| [(callseq_start timm:$amt)]>; |
| def ADJCALLSTACKUP : Pseudo<(outs), (ins u16imm_i32:$amt), |
| "${:comment} ADJCALLSTACKUP", |
| [(callseq_end timm:$amt)]>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Loads: |
| // NB: The ordering is actually important, since the instruction selection |
| // will try each of the instructions in sequence, i.e., the D-form first with |
| // the 10-bit displacement, then the A-form with the 16 bit displacement, and |
| // finally the X-form with the register-register. |
| //===----------------------------------------------------------------------===// |
| |
| let canFoldAsLoad = 1 in { |
| class LoadDFormVec<ValueType vectype> |
| : RI10Form<0b00101100, (outs VECREG:$rT), (ins dformaddr:$src), |
| "lqd\t$rT, $src", |
| LoadStore, |
| [(set (vectype VECREG:$rT), (load dform_addr:$src))]> |
| { } |
| |
| class LoadDForm<RegisterClass rclass> |
| : RI10Form<0b00101100, (outs rclass:$rT), (ins dformaddr:$src), |
| "lqd\t$rT, $src", |
| LoadStore, |
| [(set rclass:$rT, (load dform_addr:$src))]> |
| { } |
| |
| multiclass LoadDForms |
| { |
| def v16i8: LoadDFormVec<v16i8>; |
| def v8i16: LoadDFormVec<v8i16>; |
| def v4i32: LoadDFormVec<v4i32>; |
| def v2i64: LoadDFormVec<v2i64>; |
| def v4f32: LoadDFormVec<v4f32>; |
| def v2f64: LoadDFormVec<v2f64>; |
| |
| def v2i32: LoadDFormVec<v2i32>; |
| def v2f32: LoadDFormVec<v2f32>; |
| |
| def r128: LoadDForm<GPRC>; |
| def r64: LoadDForm<R64C>; |
| def r32: LoadDForm<R32C>; |
| def f32: LoadDForm<R32FP>; |
| def f64: LoadDForm<R64FP>; |
| def r16: LoadDForm<R16C>; |
| def r8: LoadDForm<R8C>; |
| } |
| |
| class LoadAFormVec<ValueType vectype> |
| : RI16Form<0b100001100, (outs VECREG:$rT), (ins addr256k:$src), |
| "lqa\t$rT, $src", |
| LoadStore, |
| [(set (vectype VECREG:$rT), (load aform_addr:$src))]> |
| { } |
| |
| class LoadAForm<RegisterClass rclass> |
| : RI16Form<0b100001100, (outs rclass:$rT), (ins addr256k:$src), |
| "lqa\t$rT, $src", |
| LoadStore, |
| [(set rclass:$rT, (load aform_addr:$src))]> |
| { } |
| |
| multiclass LoadAForms |
| { |
| def v16i8: LoadAFormVec<v16i8>; |
| def v8i16: LoadAFormVec<v8i16>; |
| def v4i32: LoadAFormVec<v4i32>; |
| def v2i64: LoadAFormVec<v2i64>; |
| def v4f32: LoadAFormVec<v4f32>; |
| def v2f64: LoadAFormVec<v2f64>; |
| |
| def v2i32: LoadAFormVec<v2i32>; |
| def v2f32: LoadAFormVec<v2f32>; |
| |
| def r128: LoadAForm<GPRC>; |
| def r64: LoadAForm<R64C>; |
| def r32: LoadAForm<R32C>; |
| def f32: LoadAForm<R32FP>; |
| def f64: LoadAForm<R64FP>; |
| def r16: LoadAForm<R16C>; |
| def r8: LoadAForm<R8C>; |
| } |
| |
| class LoadXFormVec<ValueType vectype> |
| : RRForm<0b00100011100, (outs VECREG:$rT), (ins memrr:$src), |
| "lqx\t$rT, $src", |
| LoadStore, |
| [(set (vectype VECREG:$rT), (load xform_addr:$src))]> |
| { } |
| |
| class LoadXForm<RegisterClass rclass> |
| : RRForm<0b00100011100, (outs rclass:$rT), (ins memrr:$src), |
| "lqx\t$rT, $src", |
| LoadStore, |
| [(set rclass:$rT, (load xform_addr:$src))]> |
| { } |
| |
| multiclass LoadXForms |
| { |
| def v16i8: LoadXFormVec<v16i8>; |
| def v8i16: LoadXFormVec<v8i16>; |
| def v4i32: LoadXFormVec<v4i32>; |
| def v2i64: LoadXFormVec<v2i64>; |
| def v4f32: LoadXFormVec<v4f32>; |
| def v2f64: LoadXFormVec<v2f64>; |
| |
| def v2i32: LoadXFormVec<v2i32>; |
| def v2f32: LoadXFormVec<v2f32>; |
| |
| def r128: LoadXForm<GPRC>; |
| def r64: LoadXForm<R64C>; |
| def r32: LoadXForm<R32C>; |
| def f32: LoadXForm<R32FP>; |
| def f64: LoadXForm<R64FP>; |
| def r16: LoadXForm<R16C>; |
| def r8: LoadXForm<R8C>; |
| } |
| |
| defm LQA : LoadAForms; |
| defm LQD : LoadDForms; |
| defm LQX : LoadXForms; |
| |
| /* Load quadword, PC relative: Not much use at this point in time. |
| Might be of use later for relocatable code. It's effectively the |
| same as LQA, but uses PC-relative addressing. |
| def LQR : RI16Form<0b111001100, (outs VECREG:$rT), (ins s16imm:$disp), |
| "lqr\t$rT, $disp", LoadStore, |
| [(set VECREG:$rT, (load iaddr:$disp))]>; |
| */ |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Stores: |
| //===----------------------------------------------------------------------===// |
| class StoreDFormVec<ValueType vectype> |
| : RI10Form<0b00100100, (outs), (ins VECREG:$rT, dformaddr:$src), |
| "stqd\t$rT, $src", |
| LoadStore, |
| [(store (vectype VECREG:$rT), dform_addr:$src)]> |
| { } |
| |
| class StoreDForm<RegisterClass rclass> |
| : RI10Form<0b00100100, (outs), (ins rclass:$rT, dformaddr:$src), |
| "stqd\t$rT, $src", |
| LoadStore, |
| [(store rclass:$rT, dform_addr:$src)]> |
| { } |
| |
| multiclass StoreDForms |
| { |
| def v16i8: StoreDFormVec<v16i8>; |
| def v8i16: StoreDFormVec<v8i16>; |
| def v4i32: StoreDFormVec<v4i32>; |
| def v2i64: StoreDFormVec<v2i64>; |
| def v4f32: StoreDFormVec<v4f32>; |
| def v2f64: StoreDFormVec<v2f64>; |
| |
| def v2i32: StoreDFormVec<v2i32>; |
| def v2f32: StoreDFormVec<v2f32>; |
| |
| def r128: StoreDForm<GPRC>; |
| def r64: StoreDForm<R64C>; |
| def r32: StoreDForm<R32C>; |
| def f32: StoreDForm<R32FP>; |
| def f64: StoreDForm<R64FP>; |
| def r16: StoreDForm<R16C>; |
| def r8: StoreDForm<R8C>; |
| } |
| |
| class StoreAFormVec<ValueType vectype> |
| : RI16Form<0b0010010, (outs), (ins VECREG:$rT, addr256k:$src), |
| "stqa\t$rT, $src", |
| LoadStore, |
| [(store (vectype VECREG:$rT), aform_addr:$src)]>; |
| |
| class StoreAForm<RegisterClass rclass> |
| : RI16Form<0b001001, (outs), (ins rclass:$rT, addr256k:$src), |
| "stqa\t$rT, $src", |
| LoadStore, |
| [(store rclass:$rT, aform_addr:$src)]>; |
| |
| multiclass StoreAForms |
| { |
| def v16i8: StoreAFormVec<v16i8>; |
| def v8i16: StoreAFormVec<v8i16>; |
| def v4i32: StoreAFormVec<v4i32>; |
| def v2i64: StoreAFormVec<v2i64>; |
| def v4f32: StoreAFormVec<v4f32>; |
| def v2f64: StoreAFormVec<v2f64>; |
| |
| def v2i32: StoreAFormVec<v2i32>; |
| def v2f32: StoreAFormVec<v2f32>; |
| |
| def r128: StoreAForm<GPRC>; |
| def r64: StoreAForm<R64C>; |
| def r32: StoreAForm<R32C>; |
| def f32: StoreAForm<R32FP>; |
| def f64: StoreAForm<R64FP>; |
| def r16: StoreAForm<R16C>; |
| def r8: StoreAForm<R8C>; |
| } |
| |
| class StoreXFormVec<ValueType vectype> |
| : RRForm<0b00100100, (outs), (ins VECREG:$rT, memrr:$src), |
| "stqx\t$rT, $src", |
| LoadStore, |
| [(store (vectype VECREG:$rT), xform_addr:$src)]> |
| { } |
| |
| class StoreXForm<RegisterClass rclass> |
| : RRForm<0b00100100, (outs), (ins rclass:$rT, memrr:$src), |
| "stqx\t$rT, $src", |
| LoadStore, |
| [(store rclass:$rT, xform_addr:$src)]> |
| { } |
| |
| multiclass StoreXForms |
| { |
| def v16i8: StoreXFormVec<v16i8>; |
| def v8i16: StoreXFormVec<v8i16>; |
| def v4i32: StoreXFormVec<v4i32>; |
| def v2i64: StoreXFormVec<v2i64>; |
| def v4f32: StoreXFormVec<v4f32>; |
| def v2f64: StoreXFormVec<v2f64>; |
| |
| def v2i32: StoreXFormVec<v2i32>; |
| def v2f32: StoreXFormVec<v2f32>; |
| |
| def r128: StoreXForm<GPRC>; |
| def r64: StoreXForm<R64C>; |
| def r32: StoreXForm<R32C>; |
| def f32: StoreXForm<R32FP>; |
| def f64: StoreXForm<R64FP>; |
| def r16: StoreXForm<R16C>; |
| def r8: StoreXForm<R8C>; |
| } |
| |
| defm STQD : StoreDForms; |
| defm STQA : StoreAForms; |
| defm STQX : StoreXForms; |
| |
| /* Store quadword, PC relative: Not much use at this point in time. Might |
| be useful for relocatable code. |
| def STQR : RI16Form<0b111000100, (outs), (ins VECREG:$rT, s16imm:$disp), |
| "stqr\t$rT, $disp", LoadStore, |
| [(store VECREG:$rT, iaddr:$disp)]>; |
| */ |
| |
| //===----------------------------------------------------------------------===// |
| // Generate Controls for Insertion: |
| //===----------------------------------------------------------------------===// |
| |
| def CBD: RI7Form<0b10101111100, (outs VECREG:$rT), (ins shufaddr:$src), |
| "cbd\t$rT, $src", ShuffleOp, |
| [(set (v16i8 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>; |
| |
| def CBX: RRForm<0b00101011100, (outs VECREG:$rT), (ins memrr:$src), |
| "cbx\t$rT, $src", ShuffleOp, |
| [(set (v16i8 VECREG:$rT), (SPUshufmask xform_addr:$src))]>; |
| |
| def CHD: RI7Form<0b10101111100, (outs VECREG:$rT), (ins shufaddr:$src), |
| "chd\t$rT, $src", ShuffleOp, |
| [(set (v8i16 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>; |
| |
| def CHX: RRForm<0b10101011100, (outs VECREG:$rT), (ins memrr:$src), |
| "chx\t$rT, $src", ShuffleOp, |
| [(set (v8i16 VECREG:$rT), (SPUshufmask xform_addr:$src))]>; |
| |
| def CWD: RI7Form<0b01101111100, (outs VECREG:$rT), (ins shufaddr:$src), |
| "cwd\t$rT, $src", ShuffleOp, |
| [(set (v4i32 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>; |
| |
| def CWX: RRForm<0b01101011100, (outs VECREG:$rT), (ins memrr:$src), |
| "cwx\t$rT, $src", ShuffleOp, |
| [(set (v4i32 VECREG:$rT), (SPUshufmask xform_addr:$src))]>; |
| |
| def CWDf32: RI7Form<0b01101111100, (outs VECREG:$rT), (ins shufaddr:$src), |
| "cwd\t$rT, $src", ShuffleOp, |
| [(set (v4f32 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>; |
| |
| def CWXf32: RRForm<0b01101011100, (outs VECREG:$rT), (ins memrr:$src), |
| "cwx\t$rT, $src", ShuffleOp, |
| [(set (v4f32 VECREG:$rT), (SPUshufmask xform_addr:$src))]>; |
| |
| def CDD: RI7Form<0b11101111100, (outs VECREG:$rT), (ins shufaddr:$src), |
| "cdd\t$rT, $src", ShuffleOp, |
| [(set (v2i64 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>; |
| |
| def CDX: RRForm<0b11101011100, (outs VECREG:$rT), (ins memrr:$src), |
| "cdx\t$rT, $src", ShuffleOp, |
| [(set (v2i64 VECREG:$rT), (SPUshufmask xform_addr:$src))]>; |
| |
| def CDDf64: RI7Form<0b11101111100, (outs VECREG:$rT), (ins shufaddr:$src), |
| "cdd\t$rT, $src", ShuffleOp, |
| [(set (v2f64 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>; |
| |
| def CDXf64: RRForm<0b11101011100, (outs VECREG:$rT), (ins memrr:$src), |
| "cdx\t$rT, $src", ShuffleOp, |
| [(set (v2f64 VECREG:$rT), (SPUshufmask xform_addr:$src))]>; |
| |
| //===----------------------------------------------------------------------===// |
| // Constant formation: |
| //===----------------------------------------------------------------------===// |
| |
| def ILHv8i16: |
| RI16Form<0b110000010, (outs VECREG:$rT), (ins s16imm:$val), |
| "ilh\t$rT, $val", ImmLoad, |
| [(set (v8i16 VECREG:$rT), (v8i16 v8i16SExt16Imm:$val))]>; |
| |
| def ILHr16: |
| RI16Form<0b110000010, (outs R16C:$rT), (ins s16imm:$val), |
| "ilh\t$rT, $val", ImmLoad, |
| [(set R16C:$rT, immSExt16:$val)]>; |
| |
| // Cell SPU doesn't have a native 8-bit immediate load, but ILH works ("with |
| // the right constant") |
| def ILHr8: |
| RI16Form<0b110000010, (outs R8C:$rT), (ins s16imm_i8:$val), |
| "ilh\t$rT, $val", ImmLoad, |
| [(set R8C:$rT, immSExt8:$val)]>; |
| |
| // IL does sign extension! |
| |
| class ILInst<dag OOL, dag IOL, list<dag> pattern>: |
| RI16Form<0b100000010, OOL, IOL, "il\t$rT, $val", |
| ImmLoad, pattern>; |
| |
| class ILVecInst<ValueType vectype, Operand immtype, PatLeaf xform>: |
| ILInst<(outs VECREG:$rT), (ins immtype:$val), |
| [(set (vectype VECREG:$rT), (vectype xform:$val))]>; |
| |
| class ILRegInst<RegisterClass rclass, Operand immtype, PatLeaf xform>: |
| ILInst<(outs rclass:$rT), (ins immtype:$val), |
| [(set rclass:$rT, xform:$val)]>; |
| |
| multiclass ImmediateLoad |
| { |
| def v2i64: ILVecInst<v2i64, s16imm_i64, v2i64SExt16Imm>; |
| def v4i32: ILVecInst<v4i32, s16imm_i32, v4i32SExt16Imm>; |
| |
| // TODO: Need v2f64, v4f32 |
| |
| def r64: ILRegInst<R64C, s16imm_i64, immSExt16>; |
| def r32: ILRegInst<R32C, s16imm_i32, immSExt16>; |
| def f32: ILRegInst<R32FP, s16imm_f32, fpimmSExt16>; |
| def f64: ILRegInst<R64FP, s16imm_f64, fpimmSExt16>; |
| } |
| |
| defm IL : ImmediateLoad; |
| |
| class ILHUInst<dag OOL, dag IOL, list<dag> pattern>: |
| RI16Form<0b010000010, OOL, IOL, "ilhu\t$rT, $val", |
| ImmLoad, pattern>; |
| |
| class ILHUVecInst<ValueType vectype, Operand immtype, PatLeaf xform>: |
| ILHUInst<(outs VECREG:$rT), (ins immtype:$val), |
| [(set (vectype VECREG:$rT), (vectype xform:$val))]>; |
| |
| class ILHURegInst<RegisterClass rclass, Operand immtype, PatLeaf xform>: |
| ILHUInst<(outs rclass:$rT), (ins immtype:$val), |
| [(set rclass:$rT, xform:$val)]>; |
| |
| multiclass ImmLoadHalfwordUpper |
| { |
| def v2i64: ILHUVecInst<v2i64, u16imm_i64, immILHUvec_i64>; |
| def v4i32: ILHUVecInst<v4i32, u16imm_i32, immILHUvec>; |
| |
| def r64: ILHURegInst<R64C, u16imm_i64, hi16>; |
| def r32: ILHURegInst<R32C, u16imm_i32, hi16>; |
| |
| // Loads the high portion of an address |
| def hi: ILHURegInst<R32C, symbolHi, hi16>; |
| |
| // Used in custom lowering constant SFP loads: |
| def f32: ILHURegInst<R32FP, f16imm, hi16_f32>; |
| } |
| |
| defm ILHU : ImmLoadHalfwordUpper; |
| |
| // Immediate load address (can also be used to load 18-bit unsigned constants, |
| // see the zext 16->32 pattern) |
| |
| class ILAInst<dag OOL, dag IOL, list<dag> pattern>: |
| RI18Form<0b1000010, OOL, IOL, "ila\t$rT, $val", |
| LoadNOP, pattern>; |
| |
| class ILAVecInst<ValueType vectype, Operand immtype, PatLeaf xform>: |
| ILAInst<(outs VECREG:$rT), (ins immtype:$val), |
| [(set (vectype VECREG:$rT), (vectype xform:$val))]>; |
| |
| class ILARegInst<RegisterClass rclass, Operand immtype, PatLeaf xform>: |
| ILAInst<(outs rclass:$rT), (ins immtype:$val), |
| [(set rclass:$rT, xform:$val)]>; |
| |
| multiclass ImmLoadAddress |
| { |
| def v2i64: ILAVecInst<v2i64, u18imm, v2i64Uns18Imm>; |
| def v4i32: ILAVecInst<v4i32, u18imm, v4i32Uns18Imm>; |
| |
| def r64: ILARegInst<R64C, u18imm_i64, imm18>; |
| def r32: ILARegInst<R32C, u18imm, imm18>; |
| def f32: ILARegInst<R32FP, f18imm, fpimm18>; |
| def f64: ILARegInst<R64FP, f18imm_f64, fpimm18>; |
| |
| def hi: ILARegInst<R32C, symbolHi, imm18>; |
| def lo: ILARegInst<R32C, symbolLo, imm18>; |
| |
| def lsa: ILAInst<(outs R32C:$rT), (ins symbolLSA:$val), |
| [/* no pattern */]>; |
| } |
| |
| defm ILA : ImmLoadAddress; |
| |
| // Immediate OR, Halfword Lower: The "other" part of loading large constants |
| // into 32-bit registers. See the anonymous pattern Pat<(i32 imm:$imm), ...> |
| // Note that these are really two operand instructions, but they're encoded |
| // as three operands with the first two arguments tied-to each other. |
| |
| class IOHLInst<dag OOL, dag IOL, list<dag> pattern>: |
| RI16Form<0b100000110, OOL, IOL, "iohl\t$rT, $val", |
| ImmLoad, pattern>, |
| RegConstraint<"$rS = $rT">, |
| NoEncode<"$rS">; |
| |
| class IOHLVecInst<ValueType vectype, Operand immtype /* , PatLeaf xform */>: |
| IOHLInst<(outs VECREG:$rT), (ins VECREG:$rS, immtype:$val), |
| [/* no pattern */]>; |
| |
| class IOHLRegInst<RegisterClass rclass, Operand immtype /* , PatLeaf xform */>: |
| IOHLInst<(outs rclass:$rT), (ins rclass:$rS, immtype:$val), |
| [/* no pattern */]>; |
| |
| multiclass ImmOrHalfwordLower |
| { |
| def v2i64: IOHLVecInst<v2i64, u16imm_i64>; |
| def v4i32: IOHLVecInst<v4i32, u16imm_i32>; |
| |
| def r32: IOHLRegInst<R32C, i32imm>; |
| def f32: IOHLRegInst<R32FP, f32imm>; |
| |
| def lo: IOHLRegInst<R32C, symbolLo>; |
| } |
| |
| defm IOHL: ImmOrHalfwordLower; |
| |
| // Form select mask for bytes using immediate, used in conjunction with the |
| // SELB instruction: |
| |
| class FSMBIVec<ValueType vectype>: |
| RI16Form<0b101001100, (outs VECREG:$rT), (ins u16imm:$val), |
| "fsmbi\t$rT, $val", |
| SelectOp, |
| [(set (vectype VECREG:$rT), (SPUselmask (i16 immU16:$val)))]>; |
| |
| multiclass FormSelectMaskBytesImm |
| { |
| def v16i8: FSMBIVec<v16i8>; |
| def v8i16: FSMBIVec<v8i16>; |
| def v4i32: FSMBIVec<v4i32>; |
| def v2i64: FSMBIVec<v2i64>; |
| } |
| |
| defm FSMBI : FormSelectMaskBytesImm; |
| |
| // fsmb: Form select mask for bytes. N.B. Input operand, $rA, is 16-bits |
| class FSMBInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm_1<0b01101101100, OOL, IOL, "fsmb\t$rT, $rA", SelectOp, |
| pattern>; |
| |
| class FSMBRegInst<RegisterClass rclass, ValueType vectype>: |
| FSMBInst<(outs VECREG:$rT), (ins rclass:$rA), |
| [(set (vectype VECREG:$rT), (SPUselmask rclass:$rA))]>; |
| |
| class FSMBVecInst<ValueType vectype>: |
| FSMBInst<(outs VECREG:$rT), (ins VECREG:$rA), |
| [(set (vectype VECREG:$rT), |
| (SPUselmask (vectype VECREG:$rA)))]>; |
| |
| multiclass FormSelectMaskBits { |
| def v16i8_r16: FSMBRegInst<R16C, v16i8>; |
| def v16i8: FSMBVecInst<v16i8>; |
| } |
| |
| defm FSMB: FormSelectMaskBits; |
| |
| // fsmh: Form select mask for halfwords. N.B., Input operand, $rA, is |
| // only 8-bits wide (even though it's input as 16-bits here) |
| |
| class FSMHInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm_1<0b10101101100, OOL, IOL, "fsmh\t$rT, $rA", SelectOp, |
| pattern>; |
| |
| class FSMHRegInst<RegisterClass rclass, ValueType vectype>: |
| FSMHInst<(outs VECREG:$rT), (ins rclass:$rA), |
| [(set (vectype VECREG:$rT), (SPUselmask rclass:$rA))]>; |
| |
| class FSMHVecInst<ValueType vectype>: |
| FSMHInst<(outs VECREG:$rT), (ins VECREG:$rA), |
| [(set (vectype VECREG:$rT), |
| (SPUselmask (vectype VECREG:$rA)))]>; |
| |
| multiclass FormSelectMaskHalfword { |
| def v8i16_r16: FSMHRegInst<R16C, v8i16>; |
| def v8i16: FSMHVecInst<v8i16>; |
| } |
| |
| defm FSMH: FormSelectMaskHalfword; |
| |
| // fsm: Form select mask for words. Like the other fsm* instructions, |
| // only the lower 4 bits of $rA are significant. |
| |
| class FSMInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm_1<0b00101101100, OOL, IOL, "fsm\t$rT, $rA", SelectOp, |
| pattern>; |
| |
| class FSMRegInst<ValueType vectype, RegisterClass rclass>: |
| FSMInst<(outs VECREG:$rT), (ins rclass:$rA), |
| [(set (vectype VECREG:$rT), (SPUselmask rclass:$rA))]>; |
| |
| class FSMVecInst<ValueType vectype>: |
| FSMInst<(outs VECREG:$rT), (ins VECREG:$rA), |
| [(set (vectype VECREG:$rT), (SPUselmask (vectype VECREG:$rA)))]>; |
| |
| multiclass FormSelectMaskWord { |
| def v4i32: FSMVecInst<v4i32>; |
| |
| def r32 : FSMRegInst<v4i32, R32C>; |
| def r16 : FSMRegInst<v4i32, R16C>; |
| } |
| |
| defm FSM : FormSelectMaskWord; |
| |
| // Special case when used for i64 math operations |
| multiclass FormSelectMaskWord64 { |
| def r32 : FSMRegInst<v2i64, R32C>; |
| def r16 : FSMRegInst<v2i64, R16C>; |
| } |
| |
| defm FSM64 : FormSelectMaskWord64; |
| |
| //===----------------------------------------------------------------------===// |
| // Integer and Logical Operations: |
| //===----------------------------------------------------------------------===// |
| |
| def AHv8i16: |
| RRForm<0b00010011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| "ah\t$rT, $rA, $rB", IntegerOp, |
| [(set (v8i16 VECREG:$rT), (int_spu_si_ah VECREG:$rA, VECREG:$rB))]>; |
| |
| def : Pat<(add (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)), |
| (AHv8i16 VECREG:$rA, VECREG:$rB)>; |
| |
| def AHr16: |
| RRForm<0b00010011000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), |
| "ah\t$rT, $rA, $rB", IntegerOp, |
| [(set R16C:$rT, (add R16C:$rA, R16C:$rB))]>; |
| |
| def AHIvec: |
| RI10Form<0b10111000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), |
| "ahi\t$rT, $rA, $val", IntegerOp, |
| [(set (v8i16 VECREG:$rT), (add (v8i16 VECREG:$rA), |
| v8i16SExt10Imm:$val))]>; |
| |
| def AHIr16: |
| RI10Form<0b10111000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val), |
| "ahi\t$rT, $rA, $val", IntegerOp, |
| [(set R16C:$rT, (add R16C:$rA, i16ImmSExt10:$val))]>; |
| |
| // v4i32, i32 add instruction: |
| |
| class AInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm<0b00000011000, OOL, IOL, |
| "a\t$rT, $rA, $rB", IntegerOp, |
| pattern>; |
| |
| class AVecInst<ValueType vectype>: |
| AInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [(set (vectype VECREG:$rT), (add (vectype VECREG:$rA), |
| (vectype VECREG:$rB)))]>; |
| |
| class ARegInst<RegisterClass rclass>: |
| AInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), |
| [(set rclass:$rT, (add rclass:$rA, rclass:$rB))]>; |
| |
| multiclass AddInstruction { |
| def v4i32: AVecInst<v4i32>; |
| def v16i8: AVecInst<v16i8>; |
| def v2i32: AVecInst<v2i32>; |
| def r32: ARegInst<R32C>; |
| } |
| |
| defm A : AddInstruction; |
| |
| class AIInst<dag OOL, dag IOL, list<dag> pattern>: |
| RI10Form<0b00111000, OOL, IOL, |
| "ai\t$rT, $rA, $val", IntegerOp, |
| pattern>; |
| |
| class AIVecInst<ValueType vectype, PatLeaf immpred>: |
| AIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), |
| [(set (vectype VECREG:$rT), (add (vectype VECREG:$rA), immpred:$val))]>; |
| |
| class AIFPVecInst<ValueType vectype, PatLeaf immpred>: |
| AIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), |
| [/* no pattern */]>; |
| |
| class AIRegInst<RegisterClass rclass, PatLeaf immpred>: |
| AIInst<(outs rclass:$rT), (ins rclass:$rA, s10imm_i32:$val), |
| [(set rclass:$rT, (add rclass:$rA, immpred:$val))]>; |
| |
| // This is used to add epsilons to floating point numbers in the f32 fdiv code: |
| class AIFPInst<RegisterClass rclass, PatLeaf immpred>: |
| AIInst<(outs rclass:$rT), (ins rclass:$rA, s10imm_i32:$val), |
| [/* no pattern */]>; |
| |
| multiclass AddImmediate { |
| def v4i32: AIVecInst<v4i32, v4i32SExt10Imm>; |
| |
| def r32: AIRegInst<R32C, i32ImmSExt10>; |
| |
| def v4f32: AIFPVecInst<v4f32, v4i32SExt10Imm>; |
| def f32: AIFPInst<R32FP, i32ImmSExt10>; |
| } |
| |
| defm AI : AddImmediate; |
| |
| def SFHvec: |
| RRForm<0b00010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| "sfh\t$rT, $rA, $rB", IntegerOp, |
| [(set (v8i16 VECREG:$rT), (sub (v8i16 VECREG:$rA), |
| (v8i16 VECREG:$rB)))]>; |
| |
| def SFHr16: |
| RRForm<0b00010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), |
| "sfh\t$rT, $rA, $rB", IntegerOp, |
| [(set R16C:$rT, (sub R16C:$rB, R16C:$rA))]>; |
| |
| def SFHIvec: |
| RI10Form<0b10110000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), |
| "sfhi\t$rT, $rA, $val", IntegerOp, |
| [(set (v8i16 VECREG:$rT), (sub v8i16SExt10Imm:$val, |
| (v8i16 VECREG:$rA)))]>; |
| |
| def SFHIr16 : RI10Form<0b10110000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val), |
| "sfhi\t$rT, $rA, $val", IntegerOp, |
| [(set R16C:$rT, (sub i16ImmSExt10:$val, R16C:$rA))]>; |
| |
| def SFvec : RRForm<0b00000010000, (outs VECREG:$rT), |
| (ins VECREG:$rA, VECREG:$rB), |
| "sf\t$rT, $rA, $rB", IntegerOp, |
| [(set (v4i32 VECREG:$rT), (sub (v4i32 VECREG:$rB), (v4i32 VECREG:$rA)))]>; |
| |
| def SF2vec : RRForm<0b00000010000, (outs VECREG:$rT), |
| (ins VECREG:$rA, VECREG:$rB), |
| "sf\t$rT, $rA, $rB", IntegerOp, |
| [(set (v2i32 VECREG:$rT), (sub (v2i32 VECREG:$rB), (v2i32 VECREG:$rA)))]>; |
| |
| |
| def SFr32 : RRForm<0b00000010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), |
| "sf\t$rT, $rA, $rB", IntegerOp, |
| [(set R32C:$rT, (sub R32C:$rB, R32C:$rA))]>; |
| |
| def SFIvec: |
| RI10Form<0b00110000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), |
| "sfi\t$rT, $rA, $val", IntegerOp, |
| [(set (v4i32 VECREG:$rT), (sub v4i32SExt10Imm:$val, |
| (v4i32 VECREG:$rA)))]>; |
| |
| def SFIr32 : RI10Form<0b00110000, (outs R32C:$rT), |
| (ins R32C:$rA, s10imm_i32:$val), |
| "sfi\t$rT, $rA, $val", IntegerOp, |
| [(set R32C:$rT, (sub i32ImmSExt10:$val, R32C:$rA))]>; |
| |
| // ADDX: only available in vector form, doesn't match a pattern. |
| class ADDXInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm<0b00000010110, OOL, IOL, |
| "addx\t$rT, $rA, $rB", |
| IntegerOp, pattern>; |
| |
| class ADDXVecInst<ValueType vectype>: |
| ADDXInst<(outs VECREG:$rT), |
| (ins VECREG:$rA, VECREG:$rB, VECREG:$rCarry), |
| [/* no pattern */]>, |
| RegConstraint<"$rCarry = $rT">, |
| NoEncode<"$rCarry">; |
| |
| class ADDXRegInst<RegisterClass rclass>: |
| ADDXInst<(outs rclass:$rT), |
| (ins rclass:$rA, rclass:$rB, rclass:$rCarry), |
| [/* no pattern */]>, |
| RegConstraint<"$rCarry = $rT">, |
| NoEncode<"$rCarry">; |
| |
| multiclass AddExtended { |
| def v2i64 : ADDXVecInst<v2i64>; |
| def v4i32 : ADDXVecInst<v4i32>; |
| def r64 : ADDXRegInst<R64C>; |
| def r32 : ADDXRegInst<R32C>; |
| } |
| |
| defm ADDX : AddExtended; |
| |
| // CG: Generate carry for add |
| class CGInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm<0b01000011000, OOL, IOL, |
| "cg\t$rT, $rA, $rB", |
| IntegerOp, pattern>; |
| |
| class CGVecInst<ValueType vectype>: |
| CGInst<(outs VECREG:$rT), |
| (ins VECREG:$rA, VECREG:$rB), |
| [/* no pattern */]>; |
| |
| class CGRegInst<RegisterClass rclass>: |
| CGInst<(outs rclass:$rT), |
| (ins rclass:$rA, rclass:$rB), |
| [/* no pattern */]>; |
| |
| multiclass CarryGenerate { |
| def v2i64 : CGVecInst<v2i64>; |
| def v4i32 : CGVecInst<v4i32>; |
| def r64 : CGRegInst<R64C>; |
| def r32 : CGRegInst<R32C>; |
| } |
| |
| defm CG : CarryGenerate; |
| |
| // SFX: Subract from, extended. This is used in conjunction with BG to subtract |
| // with carry (borrow, in this case) |
| class SFXInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm<0b10000010110, OOL, IOL, |
| "sfx\t$rT, $rA, $rB", |
| IntegerOp, pattern>; |
| |
| class SFXVecInst<ValueType vectype>: |
| SFXInst<(outs VECREG:$rT), |
| (ins VECREG:$rA, VECREG:$rB, VECREG:$rCarry), |
| [/* no pattern */]>, |
| RegConstraint<"$rCarry = $rT">, |
| NoEncode<"$rCarry">; |
| |
| class SFXRegInst<RegisterClass rclass>: |
| SFXInst<(outs rclass:$rT), |
| (ins rclass:$rA, rclass:$rB, rclass:$rCarry), |
| [/* no pattern */]>, |
| RegConstraint<"$rCarry = $rT">, |
| NoEncode<"$rCarry">; |
| |
| multiclass SubtractExtended { |
| def v2i64 : SFXVecInst<v2i64>; |
| def v4i32 : SFXVecInst<v4i32>; |
| def r64 : SFXRegInst<R64C>; |
| def r32 : SFXRegInst<R32C>; |
| } |
| |
| defm SFX : SubtractExtended; |
| |
| // BG: only available in vector form, doesn't match a pattern. |
| class BGInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm<0b01000010000, OOL, IOL, |
| "bg\t$rT, $rA, $rB", |
| IntegerOp, pattern>; |
| |
| class BGVecInst<ValueType vectype>: |
| BGInst<(outs VECREG:$rT), |
| (ins VECREG:$rA, VECREG:$rB), |
| [/* no pattern */]>; |
| |
| class BGRegInst<RegisterClass rclass>: |
| BGInst<(outs rclass:$rT), |
| (ins rclass:$rA, rclass:$rB), |
| [/* no pattern */]>; |
| |
| multiclass BorrowGenerate { |
| def v4i32 : BGVecInst<v4i32>; |
| def v2i64 : BGVecInst<v2i64>; |
| def r64 : BGRegInst<R64C>; |
| def r32 : BGRegInst<R32C>; |
| } |
| |
| defm BG : BorrowGenerate; |
| |
| // BGX: Borrow generate, extended. |
| def BGXvec: |
| RRForm<0b11000010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, |
| VECREG:$rCarry), |
| "bgx\t$rT, $rA, $rB", IntegerOp, |
| []>, |
| RegConstraint<"$rCarry = $rT">, |
| NoEncode<"$rCarry">; |
| |
| // Halfword multiply variants: |
| // N.B: These can be used to build up larger quantities (16x16 -> 32) |
| |
| def MPYv8i16: |
| RRForm<0b00100011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| "mpy\t$rT, $rA, $rB", IntegerMulDiv, |
| [/* no pattern */]>; |
| |
| def MPYr16: |
| RRForm<0b00100011110, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), |
| "mpy\t$rT, $rA, $rB", IntegerMulDiv, |
| [(set R16C:$rT, (mul R16C:$rA, R16C:$rB))]>; |
| |
| // Unsigned 16-bit multiply: |
| |
| class MPYUInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm<0b00110011110, OOL, IOL, |
| "mpyu\t$rT, $rA, $rB", IntegerMulDiv, |
| pattern>; |
| |
| def MPYUv4i32: |
| MPYUInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [/* no pattern */]>; |
| |
| def MPYUv2i32: |
| MPYUInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [/* no pattern */]>; |
| |
| def MPYUr16: |
| MPYUInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB), |
| [(set R32C:$rT, (mul (zext R16C:$rA), (zext R16C:$rB)))]>; |
| |
| def MPYUr32: |
| MPYUInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB), |
| [/* no pattern */]>; |
| |
| // mpyi: multiply 16 x s10imm -> 32 result. |
| |
| class MPYIInst<dag OOL, dag IOL, list<dag> pattern>: |
| RI10Form<0b00101110, OOL, IOL, |
| "mpyi\t$rT, $rA, $val", IntegerMulDiv, |
| pattern>; |
| |
| def MPYIvec: |
| MPYIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), |
| [(set (v8i16 VECREG:$rT), |
| (mul (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>; |
| |
| def MPYIr16: |
| MPYIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val), |
| [(set R16C:$rT, (mul R16C:$rA, i16ImmSExt10:$val))]>; |
| |
| // mpyui: same issues as other multiplies, plus, this doesn't match a |
| // pattern... but may be used during target DAG selection or lowering |
| |
| class MPYUIInst<dag OOL, dag IOL, list<dag> pattern>: |
| RI10Form<0b10101110, OOL, IOL, |
| "mpyui\t$rT, $rA, $val", IntegerMulDiv, |
| pattern>; |
| |
| def MPYUIvec: |
| MPYUIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), |
| []>; |
| |
| def MPYUIr16: |
| MPYUIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val), |
| []>; |
| |
| // mpya: 16 x 16 + 16 -> 32 bit result |
| class MPYAInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRRForm<0b0011, OOL, IOL, |
| "mpya\t$rT, $rA, $rB, $rC", IntegerMulDiv, |
| pattern>; |
| |
| def MPYAv4i32: |
| MPYAInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), |
| [(set (v4i32 VECREG:$rT), |
| (add (v4i32 (bitconvert (mul (v8i16 VECREG:$rA), |
| (v8i16 VECREG:$rB)))), |
| (v4i32 VECREG:$rC)))]>; |
| |
| def MPYAr32: |
| MPYAInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB, R32C:$rC), |
| [(set R32C:$rT, (add (sext (mul R16C:$rA, R16C:$rB)), |
| R32C:$rC))]>; |
| |
| def MPYAr32_sext: |
| MPYAInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB, R32C:$rC), |
| [(set R32C:$rT, (add (mul (sext R16C:$rA), (sext R16C:$rB)), |
| R32C:$rC))]>; |
| |
| def MPYAr32_sextinreg: |
| MPYAInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB, R32C:$rC), |
| [(set R32C:$rT, (add (mul (sext_inreg R32C:$rA, i16), |
| (sext_inreg R32C:$rB, i16)), |
| R32C:$rC))]>; |
| |
| // mpyh: multiply high, used to synthesize 32-bit multiplies |
| class MPYHInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm<0b10100011110, OOL, IOL, |
| "mpyh\t$rT, $rA, $rB", IntegerMulDiv, |
| pattern>; |
| |
| def MPYHv4i32: |
| MPYHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [/* no pattern */]>; |
| |
| def MPYHv2i32: |
| MPYHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [/* no pattern */]>; |
| |
| def MPYHr32: |
| MPYHInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB), |
| [/* no pattern */]>; |
| |
| // mpys: multiply high and shift right (returns the top half of |
| // a 16-bit multiply, sign extended to 32 bits.) |
| |
| class MPYSInst<dag OOL, dag IOL>: |
| RRForm<0b11100011110, OOL, IOL, |
| "mpys\t$rT, $rA, $rB", IntegerMulDiv, |
| [/* no pattern */]>; |
| |
| def MPYSv4i32: |
| MPYSInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>; |
| |
| def MPYSr16: |
| MPYSInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB)>; |
| |
| // mpyhh: multiply high-high (returns the 32-bit result from multiplying |
| // the top 16 bits of the $rA, $rB) |
| |
| class MPYHHInst<dag OOL, dag IOL>: |
| RRForm<0b01100011110, OOL, IOL, |
| "mpyhh\t$rT, $rA, $rB", IntegerMulDiv, |
| [/* no pattern */]>; |
| |
| def MPYHHv8i16: |
| MPYHHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>; |
| |
| def MPYHHr32: |
| MPYHHInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>; |
| |
| // mpyhha: Multiply high-high, add to $rT: |
| |
| class MPYHHAInst<dag OOL, dag IOL>: |
| RRForm<0b01100010110, OOL, IOL, |
| "mpyhha\t$rT, $rA, $rB", IntegerMulDiv, |
| [/* no pattern */]>; |
| |
| def MPYHHAvec: |
| MPYHHAInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>; |
| |
| def MPYHHAr32: |
| MPYHHAInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>; |
| |
| // mpyhhu: Multiply high-high, unsigned, e.g.: |
| // |
| // +-------+-------+ +-------+-------+ +---------+ |
| // | a0 . a1 | x | b0 . b1 | = | a0 x b0 | |
| // +-------+-------+ +-------+-------+ +---------+ |
| // |
| // where a0, b0 are the upper 16 bits of the 32-bit word |
| |
| class MPYHHUInst<dag OOL, dag IOL>: |
| RRForm<0b01110011110, OOL, IOL, |
| "mpyhhu\t$rT, $rA, $rB", IntegerMulDiv, |
| [/* no pattern */]>; |
| |
| def MPYHHUv4i32: |
| MPYHHUInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>; |
| |
| def MPYHHUr32: |
| MPYHHUInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>; |
| |
| // mpyhhau: Multiply high-high, unsigned |
| |
| class MPYHHAUInst<dag OOL, dag IOL>: |
| RRForm<0b01110010110, OOL, IOL, |
| "mpyhhau\t$rT, $rA, $rB", IntegerMulDiv, |
| [/* no pattern */]>; |
| |
| def MPYHHAUvec: |
| MPYHHAUInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>; |
| |
| def MPYHHAUr32: |
| MPYHHAUInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>; |
| |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| // clz: Count leading zeroes |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| class CLZInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm_1<0b10100101010, OOL, IOL, "clz\t$rT, $rA", |
| IntegerOp, pattern>; |
| |
| class CLZRegInst<RegisterClass rclass>: |
| CLZInst<(outs rclass:$rT), (ins rclass:$rA), |
| [(set rclass:$rT, (ctlz rclass:$rA))]>; |
| |
| class CLZVecInst<ValueType vectype>: |
| CLZInst<(outs VECREG:$rT), (ins VECREG:$rA), |
| [(set (vectype VECREG:$rT), (ctlz (vectype VECREG:$rA)))]>; |
| |
| multiclass CountLeadingZeroes { |
| def v4i32 : CLZVecInst<v4i32>; |
| def r32 : CLZRegInst<R32C>; |
| } |
| |
| defm CLZ : CountLeadingZeroes; |
| |
| // cntb: Count ones in bytes (aka "population count") |
| // |
| // NOTE: This instruction is really a vector instruction, but the custom |
| // lowering code uses it in unorthodox ways to support CTPOP for other |
| // data types! |
| |
| def CNTBv16i8: |
| RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA), |
| "cntb\t$rT, $rA", IntegerOp, |
| [(set (v16i8 VECREG:$rT), (SPUcntb (v16i8 VECREG:$rA)))]>; |
| |
| def CNTBv8i16 : |
| RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA), |
| "cntb\t$rT, $rA", IntegerOp, |
| [(set (v8i16 VECREG:$rT), (SPUcntb (v8i16 VECREG:$rA)))]>; |
| |
| def CNTBv4i32 : |
| RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA), |
| "cntb\t$rT, $rA", IntegerOp, |
| [(set (v4i32 VECREG:$rT), (SPUcntb (v4i32 VECREG:$rA)))]>; |
| |
| // gbb: Gather the low order bits from each byte in $rA into a single 16-bit |
| // quantity stored into $rT's slot 0, upper 16 bits are zeroed, as are |
| // slots 1-3. |
| // |
| // Note: This instruction "pairs" with the fsmb instruction for all of the |
| // various types defined here. |
| // |
| // Note 2: The "VecInst" and "RegInst" forms refer to the result being either |
| // a vector or register. |
| |
| class GBBInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm_1<0b01001101100, OOL, IOL, "gbb\t$rT, $rA", GatherOp, pattern>; |
| |
| class GBBRegInst<RegisterClass rclass, ValueType vectype>: |
| GBBInst<(outs rclass:$rT), (ins VECREG:$rA), |
| [/* no pattern */]>; |
| |
| class GBBVecInst<ValueType vectype>: |
| GBBInst<(outs VECREG:$rT), (ins VECREG:$rA), |
| [/* no pattern */]>; |
| |
| multiclass GatherBitsFromBytes { |
| def v16i8_r32: GBBRegInst<R32C, v16i8>; |
| def v16i8_r16: GBBRegInst<R16C, v16i8>; |
| def v16i8: GBBVecInst<v16i8>; |
| } |
| |
| defm GBB: GatherBitsFromBytes; |
| |
| // gbh: Gather all low order bits from each halfword in $rA into a single |
| // 8-bit quantity stored in $rT's slot 0, with the upper bits of $rT set to 0 |
| // and slots 1-3 also set to 0. |
| // |
| // See notes for GBBInst, above. |
| |
| class GBHInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm_1<0b10001101100, OOL, IOL, "gbh\t$rT, $rA", GatherOp, |
| pattern>; |
| |
| class GBHRegInst<RegisterClass rclass, ValueType vectype>: |
| GBHInst<(outs rclass:$rT), (ins VECREG:$rA), |
| [/* no pattern */]>; |
| |
| class GBHVecInst<ValueType vectype>: |
| GBHInst<(outs VECREG:$rT), (ins VECREG:$rA), |
| [/* no pattern */]>; |
| |
| multiclass GatherBitsHalfword { |
| def v8i16_r32: GBHRegInst<R32C, v8i16>; |
| def v8i16_r16: GBHRegInst<R16C, v8i16>; |
| def v8i16: GBHVecInst<v8i16>; |
| } |
| |
| defm GBH: GatherBitsHalfword; |
| |
| // gb: Gather all low order bits from each word in $rA into a single |
| // 4-bit quantity stored in $rT's slot 0, upper bits in $rT set to 0, |
| // as well as slots 1-3. |
| // |
| // See notes for gbb, above. |
| |
| class GBInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm_1<0b00001101100, OOL, IOL, "gb\t$rT, $rA", GatherOp, |
| pattern>; |
| |
| class GBRegInst<RegisterClass rclass, ValueType vectype>: |
| GBInst<(outs rclass:$rT), (ins VECREG:$rA), |
| [/* no pattern */]>; |
| |
| class GBVecInst<ValueType vectype>: |
| GBInst<(outs VECREG:$rT), (ins VECREG:$rA), |
| [/* no pattern */]>; |
| |
| multiclass GatherBitsWord { |
| def v4i32_r32: GBRegInst<R32C, v4i32>; |
| def v4i32_r16: GBRegInst<R16C, v4i32>; |
| def v4i32: GBVecInst<v4i32>; |
| } |
| |
| defm GB: GatherBitsWord; |
| |
| // avgb: average bytes |
| def AVGB: |
| RRForm<0b11001011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| "avgb\t$rT, $rA, $rB", ByteOp, |
| []>; |
| |
| // absdb: absolute difference of bytes |
| def ABSDB: |
| RRForm<0b11001010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| "absdb\t$rT, $rA, $rB", ByteOp, |
| []>; |
| |
| // sumb: sum bytes into halfwords |
| def SUMB: |
| RRForm<0b11001010010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| "sumb\t$rT, $rA, $rB", ByteOp, |
| []>; |
| |
| // Sign extension operations: |
| class XSBHInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm_1<0b01101101010, OOL, IOL, |
| "xsbh\t$rDst, $rSrc", |
| IntegerOp, pattern>; |
| |
| class XSBHInRegInst<RegisterClass rclass, list<dag> pattern>: |
| XSBHInst<(outs rclass:$rDst), (ins rclass:$rSrc), |
| pattern>; |
| |
| multiclass ExtendByteHalfword { |
| def v16i8: XSBHInst<(outs VECREG:$rDst), (ins VECREG:$rSrc), |
| [ |
| /*(set (v8i16 VECREG:$rDst), (sext (v8i16 VECREG:$rSrc)))*/]>; |
| def r8: XSBHInst<(outs R16C:$rDst), (ins R8C:$rSrc), |
| [(set R16C:$rDst, (sext R8C:$rSrc))]>; |
| def r16: XSBHInRegInst<R16C, |
| [(set R16C:$rDst, (sext_inreg R16C:$rSrc, i8))]>; |
| |
| // 32-bit form for XSBH: used to sign extend 8-bit quantities to 16-bit |
| // quantities to 32-bit quantities via a 32-bit register (see the sext 8->32 |
| // pattern below). Intentionally doesn't match a pattern because we want the |
| // sext 8->32 pattern to do the work for us, namely because we need the extra |
| // XSHWr32. |
| def r32: XSBHInRegInst<R32C, [/* no pattern */]>; |
| |
| // Same as the 32-bit version, but for i64 |
| def r64: XSBHInRegInst<R64C, [/* no pattern */]>; |
| } |
| |
| defm XSBH : ExtendByteHalfword; |
| |
| // Sign extend halfwords to words: |
| |
| class XSHWInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm_1<0b01101101010, OOL, IOL, "xshw\t$rDest, $rSrc", |
| IntegerOp, pattern>; |
| |
| class XSHWVecInst<ValueType in_vectype, ValueType out_vectype>: |
| XSHWInst<(outs VECREG:$rDest), (ins VECREG:$rSrc), |
| [(set (out_vectype VECREG:$rDest), |
| (sext (in_vectype VECREG:$rSrc)))]>; |
| |
| class XSHWInRegInst<RegisterClass rclass, list<dag> pattern>: |
| XSHWInst<(outs rclass:$rDest), (ins rclass:$rSrc), |
| pattern>; |
| |
| class XSHWRegInst<RegisterClass rclass>: |
| XSHWInst<(outs rclass:$rDest), (ins R16C:$rSrc), |
| [(set rclass:$rDest, (sext R16C:$rSrc))]>; |
| |
| multiclass ExtendHalfwordWord { |
| def v4i32: XSHWVecInst<v4i32, v8i16>; |
| |
| def r16: XSHWRegInst<R32C>; |
| |
| def r32: XSHWInRegInst<R32C, |
| [(set R32C:$rDest, (sext_inreg R32C:$rSrc, i16))]>; |
| def r64: XSHWInRegInst<R64C, [/* no pattern */]>; |
| } |
| |
| defm XSHW : ExtendHalfwordWord; |
| |
| // Sign-extend words to doublewords (32->64 bits) |
| |
| class XSWDInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm_1<0b01100101010, OOL, IOL, "xswd\t$rDst, $rSrc", |
| IntegerOp, pattern>; |
| |
| class XSWDVecInst<ValueType in_vectype, ValueType out_vectype>: |
| XSWDInst<(outs VECREG:$rDst), (ins VECREG:$rSrc), |
| [/*(set (out_vectype VECREG:$rDst), |
| (sext (out_vectype VECREG:$rSrc)))*/]>; |
| |
| class XSWDRegInst<RegisterClass in_rclass, RegisterClass out_rclass>: |
| XSWDInst<(outs out_rclass:$rDst), (ins in_rclass:$rSrc), |
| [(set out_rclass:$rDst, (sext in_rclass:$rSrc))]>; |
| |
| multiclass ExtendWordToDoubleWord { |
| def v2i64: XSWDVecInst<v4i32, v2i64>; |
| def r64: XSWDRegInst<R32C, R64C>; |
| |
| def r64_inreg: XSWDInst<(outs R64C:$rDst), (ins R64C:$rSrc), |
| [(set R64C:$rDst, (sext_inreg R64C:$rSrc, i32))]>; |
| } |
| |
| defm XSWD : ExtendWordToDoubleWord; |
| |
| // AND operations |
| |
| class ANDInst<dag OOL, dag IOL, list<dag> pattern> : |
| RRForm<0b10000011000, OOL, IOL, "and\t$rT, $rA, $rB", |
| IntegerOp, pattern>; |
| |
| class ANDVecInst<ValueType vectype>: |
| ANDInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [(set (vectype VECREG:$rT), (and (vectype VECREG:$rA), |
| (vectype VECREG:$rB)))]>; |
| |
| class ANDRegInst<RegisterClass rclass>: |
| ANDInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), |
| [(set rclass:$rT, (and rclass:$rA, rclass:$rB))]>; |
| |
| multiclass BitwiseAnd |
| { |
| def v16i8: ANDVecInst<v16i8>; |
| def v8i16: ANDVecInst<v8i16>; |
| def v4i32: ANDVecInst<v4i32>; |
| def v2i64: ANDVecInst<v2i64>; |
| |
| def r128: ANDRegInst<GPRC>; |
| def r64: ANDRegInst<R64C>; |
| def r32: ANDRegInst<R32C>; |
| def r16: ANDRegInst<R16C>; |
| def r8: ANDRegInst<R8C>; |
| |
| //===--------------------------------------------- |
| // Special instructions to perform the fabs instruction |
| def fabs32: ANDInst<(outs R32FP:$rT), (ins R32FP:$rA, R32C:$rB), |
| [/* Intentionally does not match a pattern */]>; |
| |
| def fabs64: ANDInst<(outs R64FP:$rT), (ins R64FP:$rA, R64C:$rB), |
| [/* Intentionally does not match a pattern */]>; |
| |
| def fabsvec: ANDInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [/* Intentionally does not match a pattern */]>; |
| |
| //===--------------------------------------------- |
| |
| // Hacked form of AND to zero-extend 16-bit quantities to 32-bit |
| // quantities -- see 16->32 zext pattern. |
| // |
| // This pattern is somewhat artificial, since it might match some |
| // compiler generated pattern but it is unlikely to do so. |
| |
| def i16i32: ANDInst<(outs R32C:$rT), (ins R16C:$rA, R32C:$rB), |
| [(set R32C:$rT, (and (zext R16C:$rA), R32C:$rB))]>; |
| } |
| |
| defm AND : BitwiseAnd; |
| |
| |
| def vnot_cell_conv : PatFrag<(ops node:$in), |
| (xor node:$in, (bitconvert (v4i32 immAllOnesV)))>; |
| |
| // N.B.: vnot_cell_conv is one of those special target selection pattern |
| // fragments, |
| // in which we expect there to be a bit_convert on the constant. Bear in mind |
| // that llvm translates "not <reg>" to "xor <reg>, -1" (or in this case, a |
| // constant -1 vector.) |
| |
| class ANDCInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm<0b10000011010, OOL, IOL, "andc\t$rT, $rA, $rB", |
| IntegerOp, pattern>; |
| |
| class ANDCVecInst<ValueType vectype, PatFrag vnot_frag = vnot>: |
| ANDCInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [(set (vectype VECREG:$rT), |
| (and (vectype VECREG:$rA), |
| (vnot_frag (vectype VECREG:$rB))))]>; |
| |
| class ANDCRegInst<RegisterClass rclass>: |
| ANDCInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), |
| [(set rclass:$rT, (and rclass:$rA, (not rclass:$rB)))]>; |
| |
| multiclass AndComplement |
| { |
| def v16i8: ANDCVecInst<v16i8>; |
| def v8i16: ANDCVecInst<v8i16>; |
| def v4i32: ANDCVecInst<v4i32>; |
| def v2i64: ANDCVecInst<v2i64>; |
| |
| def r128: ANDCRegInst<GPRC>; |
| def r64: ANDCRegInst<R64C>; |
| def r32: ANDCRegInst<R32C>; |
| def r16: ANDCRegInst<R16C>; |
| def r8: ANDCRegInst<R8C>; |
| |
| // Sometimes, the xor pattern has a bitcast constant: |
| def v16i8_conv: ANDCVecInst<v16i8, vnot_cell_conv>; |
| } |
| |
| defm ANDC : AndComplement; |
| |
| class ANDBIInst<dag OOL, dag IOL, list<dag> pattern>: |
| RI10Form<0b01101000, OOL, IOL, "andbi\t$rT, $rA, $val", |
| ByteOp, pattern>; |
| |
| multiclass AndByteImm |
| { |
| def v16i8: ANDBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val), |
| [(set (v16i8 VECREG:$rT), |
| (and (v16i8 VECREG:$rA), |
| (v16i8 v16i8U8Imm:$val)))]>; |
| |
| def r8: ANDBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val), |
| [(set R8C:$rT, (and R8C:$rA, immU8:$val))]>; |
| } |
| |
| defm ANDBI : AndByteImm; |
| |
| class ANDHIInst<dag OOL, dag IOL, list<dag> pattern> : |
| RI10Form<0b10101000, OOL, IOL, "andhi\t$rT, $rA, $val", |
| ByteOp, pattern>; |
| |
| multiclass AndHalfwordImm |
| { |
| def v8i16: ANDHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), |
| [(set (v8i16 VECREG:$rT), |
| (and (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>; |
| |
| def r16: ANDHIInst<(outs R16C:$rT), (ins R16C:$rA, u10imm:$val), |
| [(set R16C:$rT, (and R16C:$rA, i16ImmUns10:$val))]>; |
| |
| // Zero-extend i8 to i16: |
| def i8i16: ANDHIInst<(outs R16C:$rT), (ins R8C:$rA, u10imm:$val), |
| [(set R16C:$rT, (and (zext R8C:$rA), i16ImmUns10:$val))]>; |
| } |
| |
| defm ANDHI : AndHalfwordImm; |
| |
| class ANDIInst<dag OOL, dag IOL, list<dag> pattern> : |
| RI10Form<0b00101000, OOL, IOL, "andi\t$rT, $rA, $val", |
| IntegerOp, pattern>; |
| |
| multiclass AndWordImm |
| { |
| def v4i32: ANDIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), |
| [(set (v4i32 VECREG:$rT), |
| (and (v4i32 VECREG:$rA), v4i32SExt10Imm:$val))]>; |
| |
| def r32: ANDIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val), |
| [(set R32C:$rT, (and R32C:$rA, i32ImmSExt10:$val))]>; |
| |
| // Hacked form of ANDI to zero-extend i8 quantities to i32. See the zext 8->32 |
| // pattern below. |
| def i8i32: ANDIInst<(outs R32C:$rT), (ins R8C:$rA, s10imm_i32:$val), |
| [(set R32C:$rT, |
| (and (zext R8C:$rA), i32ImmSExt10:$val))]>; |
| |
| // Hacked form of ANDI to zero-extend i16 quantities to i32. See the |
| // zext 16->32 pattern below. |
| // |
| // Note that this pattern is somewhat artificial, since it might match |
| // something the compiler generates but is unlikely to occur in practice. |
| def i16i32: ANDIInst<(outs R32C:$rT), (ins R16C:$rA, s10imm_i32:$val), |
| [(set R32C:$rT, |
| (and (zext R16C:$rA), i32ImmSExt10:$val))]>; |
| } |
| |
| defm ANDI : AndWordImm; |
| |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| // Bitwise OR group: |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| |
| // Bitwise "or" (N.B.: These are also register-register copy instructions...) |
| class ORInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm<0b10000010000, OOL, IOL, "or\t$rT, $rA, $rB", |
| IntegerOp, pattern>; |
| |
| class ORVecInst<ValueType vectype>: |
| ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [(set (vectype VECREG:$rT), (or (vectype VECREG:$rA), |
| (vectype VECREG:$rB)))]>; |
| |
| class ORRegInst<RegisterClass rclass>: |
| ORInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), |
| [(set rclass:$rT, (or rclass:$rA, rclass:$rB))]>; |
| |
| // ORCvtForm: OR conversion form |
| // |
| // This is used to "convert" the preferred slot to its vector equivalent, as |
| // well as convert a vector back to its preferred slot. |
| // |
| // These are effectively no-ops, but need to exist for proper type conversion |
| // and type coercion. |
| |
| class ORCvtForm<dag OOL, dag IOL, list<dag> pattern = [/* no pattern */]> |
| : SPUInstr<OOL, IOL, "or\t$rT, $rA, $rA", IntegerOp> { |
| bits<7> RA; |
| bits<7> RT; |
| |
| let Pattern = pattern; |
| |
| let Inst{0-10} = 0b10000010000; |
| let Inst{11-17} = RA; |
| let Inst{18-24} = RA; |
| let Inst{25-31} = RT; |
| } |
| |
| class ORPromoteScalar<RegisterClass rclass>: |
| ORCvtForm<(outs VECREG:$rT), (ins rclass:$rA)>; |
| |
| class ORExtractElt<RegisterClass rclass>: |
| ORCvtForm<(outs rclass:$rT), (ins VECREG:$rA)>; |
| |
| /* class ORCvtRegGPRC<RegisterClass rclass>: |
| ORCvtForm<(outs GPRC:$rT), (ins rclass:$rA)>; */ |
| |
| /* class ORCvtGPRCReg<RegisterClass rclass>: |
| ORCvtForm<(outs rclass:$rT), (ins GPRC:$rA)>; */ |
| |
| class ORCvtFormR32Reg<RegisterClass rclass, list<dag> pattern = [ ]>: |
| ORCvtForm<(outs rclass:$rT), (ins R32C:$rA), pattern>; |
| |
| class ORCvtFormRegR32<RegisterClass rclass, list<dag> pattern = [ ]>: |
| ORCvtForm<(outs R32C:$rT), (ins rclass:$rA), pattern>; |
| |
| class ORCvtFormR64Reg<RegisterClass rclass, list<dag> pattern = [ ]>: |
| ORCvtForm<(outs rclass:$rT), (ins R64C:$rA), pattern>; |
| |
| class ORCvtFormRegR64<RegisterClass rclass, list<dag> pattern = [ ]>: |
| ORCvtForm<(outs R64C:$rT), (ins rclass:$rA), pattern>; |
| |
| class ORCvtGPRCVec: |
| ORCvtForm<(outs VECREG:$rT), (ins GPRC:$rA)>; |
| |
| class ORCvtVecGPRC: |
| ORCvtForm<(outs GPRC:$rT), (ins VECREG:$rA)>; |
| |
| class ORCvtVecVec: |
| ORCvtForm<(outs VECREG:$rT), (ins VECREG:$rA)>; |
| |
| multiclass BitwiseOr |
| { |
| def v16i8: ORVecInst<v16i8>; |
| def v8i16: ORVecInst<v8i16>; |
| def v4i32: ORVecInst<v4i32>; |
| def v2i64: ORVecInst<v2i64>; |
| |
| def v4f32: ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [(set (v4f32 VECREG:$rT), |
| (v4f32 (bitconvert (or (v4i32 VECREG:$rA), |
| (v4i32 VECREG:$rB)))))]>; |
| |
| def v2f64: ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [(set (v2f64 VECREG:$rT), |
| (v2f64 (bitconvert (or (v2i64 VECREG:$rA), |
| (v2i64 VECREG:$rB)))))]>; |
| |
| def r128: ORRegInst<GPRC>; |
| def r64: ORRegInst<R64C>; |
| def r32: ORRegInst<R32C>; |
| def r16: ORRegInst<R16C>; |
| def r8: ORRegInst<R8C>; |
| |
| // OR instructions used to copy f32 and f64 registers. |
| def f32: ORInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB), |
| [/* no pattern */]>; |
| |
| def f64: ORInst<(outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB), |
| [/* no pattern */]>; |
| |
| // scalar->vector promotion, prefslot2vec: |
| def v16i8_i8: ORPromoteScalar<R8C>; |
| def v8i16_i16: ORPromoteScalar<R16C>; |
| def v4i32_i32: ORPromoteScalar<R32C>; |
| def v2i64_i64: ORPromoteScalar<R64C>; |
| def v4f32_f32: ORPromoteScalar<R32FP>; |
| def v2f64_f64: ORPromoteScalar<R64FP>; |
| |
| // vector->scalar demotion, vec2prefslot: |
| def i8_v16i8: ORExtractElt<R8C>; |
| def i16_v8i16: ORExtractElt<R16C>; |
| def i32_v4i32: ORExtractElt<R32C>; |
| def i64_v2i64: ORExtractElt<R64C>; |
| def f32_v4f32: ORExtractElt<R32FP>; |
| def f64_v2f64: ORExtractElt<R64FP>; |
| |
| // half <-> full vector mappings |
| def v2i32_v4i32: ORCvtVecVec; |
| def v4i32_v2i32: ORCvtVecVec; |
| def v2f32_v4f32: ORCvtVecVec; |
| def v4f32_v2f32: ORCvtVecVec; |
| |
| |
| // Conversion from vector to GPRC |
| def i128_vec: ORCvtVecGPRC; |
| |
| // Conversion from GPRC to vector |
| def vec_i128: ORCvtGPRCVec; |
| |
| /* |
| // Conversion from register to GPRC |
| def i128_r64: ORCvtRegGPRC<R64C>; |
| def i128_f64: ORCvtRegGPRC<R64FP>; |
| def i128_r32: ORCvtRegGPRC<R32C>; |
| def i128_f32: ORCvtRegGPRC<R32FP>; |
| def i128_r16: ORCvtRegGPRC<R16C>; |
| def i128_r8: ORCvtRegGPRC<R8C>; |
| |
| // Conversion from GPRC to register |
| def r64_i128: ORCvtGPRCReg<R64C>; |
| def f64_i128: ORCvtGPRCReg<R64FP>; |
| def r32_i128: ORCvtGPRCReg<R32C>; |
| def f32_i128: ORCvtGPRCReg<R32FP>; |
| def r16_i128: ORCvtGPRCReg<R16C>; |
| def r8_i128: ORCvtGPRCReg<R8C>; |
| */ |
| /* |
| // Conversion from register to R32C: |
| def r32_r16: ORCvtFormRegR32<R16C>; |
| def r32_r8: ORCvtFormRegR32<R8C>; |
| |
| // Conversion from R32C to register |
| def r32_r16: ORCvtFormR32Reg<R16C>; |
| def r32_r8: ORCvtFormR32Reg<R8C>; |
| */ |
| |
| // Conversion from R64C to register: |
| def r32_r64: ORCvtFormR64Reg<R32C>; |
| // def r16_r64: ORCvtFormR64Reg<R16C>; |
| // def r8_r64: ORCvtFormR64Reg<R8C>; |
| |
| // Conversion to R64C from register: |
| def r64_r32: ORCvtFormRegR64<R32C>; |
| // def r64_r16: ORCvtFormRegR64<R16C>; |
| // def r64_r8: ORCvtFormRegR64<R8C>; |
| |
| // bitconvert patterns: |
| def r32_f32: ORCvtFormR32Reg<R32FP, |
| [(set R32FP:$rT, (bitconvert R32C:$rA))]>; |
| def f32_r32: ORCvtFormRegR32<R32FP, |
| [(set R32C:$rT, (bitconvert R32FP:$rA))]>; |
| |
| def r64_f64: ORCvtFormR64Reg<R64FP, |
| [(set R64FP:$rT, (bitconvert R64C:$rA))]>; |
| def f64_r64: ORCvtFormRegR64<R64FP, |
| [(set R64C:$rT, (bitconvert R64FP:$rA))]>; |
| } |
| |
| defm OR : BitwiseOr; |
| |
| // scalar->vector promotion patterns (preferred slot to vector): |
| def : Pat<(v16i8 (SPUprefslot2vec R8C:$rA)), |
| (ORv16i8_i8 R8C:$rA)>; |
| |
| def : Pat<(v8i16 (SPUprefslot2vec R16C:$rA)), |
| (ORv8i16_i16 R16C:$rA)>; |
| |
| def : Pat<(v4i32 (SPUprefslot2vec R32C:$rA)), |
| (ORv4i32_i32 R32C:$rA)>; |
| |
| def : Pat<(v2i32 (SPUprefslot2vec R32C:$rA)), |
| (ORv4i32_i32 R32C:$rA)>; |
| |
| def : Pat<(v2i64 (SPUprefslot2vec R64C:$rA)), |
| (ORv2i64_i64 R64C:$rA)>; |
| |
| def : Pat<(v4f32 (SPUprefslot2vec R32FP:$rA)), |
| (ORv4f32_f32 R32FP:$rA)>; |
| |
| def : Pat<(v2f32 (SPUprefslot2vec R32FP:$rA)), |
| (ORv4f32_f32 R32FP:$rA)>; |
| |
| def : Pat<(v2f64 (SPUprefslot2vec R64FP:$rA)), |
| (ORv2f64_f64 R64FP:$rA)>; |
| |
| // ORi*_v*: Used to extract vector element 0 (the preferred slot), otherwise |
| // known as converting the vector back to its preferred slot |
| |
| def : Pat<(SPUvec2prefslot (v16i8 VECREG:$rA)), |
| (ORi8_v16i8 VECREG:$rA)>; |
| |
| def : Pat<(SPUvec2prefslot (v8i16 VECREG:$rA)), |
| (ORi16_v8i16 VECREG:$rA)>; |
| |
| def : Pat<(SPUvec2prefslot (v4i32 VECREG:$rA)), |
| (ORi32_v4i32 VECREG:$rA)>; |
| |
| def : Pat<(SPUvec2prefslot (v2i32 VECREG:$rA)), |
| (ORi32_v4i32 VECREG:$rA)>; |
| |
| def : Pat<(SPUvec2prefslot (v2i64 VECREG:$rA)), |
| (ORi64_v2i64 VECREG:$rA)>; |
| |
| def : Pat<(SPUvec2prefslot (v4f32 VECREG:$rA)), |
| (ORf32_v4f32 VECREG:$rA)>; |
| |
| def : Pat<(SPUvec2prefslot (v2f32 VECREG:$rA)), |
| (ORf32_v4f32 VECREG:$rA)>; |
| |
| def : Pat<(SPUvec2prefslot (v2f64 VECREG:$rA)), |
| (ORf64_v2f64 VECREG:$rA)>; |
| |
| // Conversions between 64 bit and 128 bit vectors. |
| |
| def : Pat<(v4i32 (SPUhalf2vec (v2i32 VECREG:$rA))), |
| (ORv4i32_v2i32 (v2i32 VECREG:$rA))>; |
| def : Pat<(v4f32 (SPUhalf2vec (v2f32 VECREG:$rA))), |
| (ORv4f32_v2f32 (v2f32 VECREG:$rA))>; |
| |
| def : Pat<(v2i32 (SPUvec2half (v4i32 VECREG:$rA))), |
| (ORv2i32_v4i32 VECREG:$rA)>; |
| def : Pat<(v2f32 (SPUvec2half (v4f32 VECREG:$rA))), |
| (ORv2f32_v4f32 VECREG:$rA)>; |
| |
| // Load Register: This is an assembler alias for a bitwise OR of a register |
| // against itself. It's here because it brings some clarity to assembly |
| // language output. |
| |
| let hasCtrlDep = 1 in { |
| class LRInst<dag OOL, dag IOL> |
| : SPUInstr<OOL, IOL, "lr\t$rT, $rA", IntegerOp> { |
| bits<7> RA; |
| bits<7> RT; |
| |
| let Pattern = [/*no pattern*/]; |
| |
| let Inst{0-10} = 0b10000010000; /* It's an OR operation */ |
| let Inst{11-17} = RA; |
| let Inst{18-24} = RA; |
| let Inst{25-31} = RT; |
| } |
| |
| class LRVecInst<ValueType vectype>: |
| LRInst<(outs VECREG:$rT), (ins VECREG:$rA)>; |
| |
| class LRRegInst<RegisterClass rclass>: |
| LRInst<(outs rclass:$rT), (ins rclass:$rA)>; |
| |
| multiclass LoadRegister { |
| def v2i64: LRVecInst<v2i64>; |
| def v2f64: LRVecInst<v2f64>; |
| def v4i32: LRVecInst<v4i32>; |
| def v4f32: LRVecInst<v4f32>; |
| def v8i16: LRVecInst<v8i16>; |
| def v16i8: LRVecInst<v16i8>; |
| |
| def r128: LRRegInst<GPRC>; |
| def r64: LRRegInst<R64C>; |
| def f64: LRRegInst<R64FP>; |
| def r32: LRRegInst<R32C>; |
| def f32: LRRegInst<R32FP>; |
| def r16: LRRegInst<R16C>; |
| def r8: LRRegInst<R8C>; |
| } |
| |
| defm LR: LoadRegister; |
| } |
| |
| // ORC: Bitwise "or" with complement (c = a | ~b) |
| |
| class ORCInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm<0b10010010000, OOL, IOL, "orc\t$rT, $rA, $rB", |
| IntegerOp, pattern>; |
| |
| class ORCVecInst<ValueType vectype>: |
| ORCInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [(set (vectype VECREG:$rT), (or (vectype VECREG:$rA), |
| (vnot (vectype VECREG:$rB))))]>; |
| |
| class ORCRegInst<RegisterClass rclass>: |
| ORCInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), |
| [(set rclass:$rT, (or rclass:$rA, (not rclass:$rB)))]>; |
| |
| multiclass BitwiseOrComplement |
| { |
| def v16i8: ORCVecInst<v16i8>; |
| def v8i16: ORCVecInst<v8i16>; |
| def v4i32: ORCVecInst<v4i32>; |
| def v2i64: ORCVecInst<v2i64>; |
| |
| def r128: ORCRegInst<GPRC>; |
| def r64: ORCRegInst<R64C>; |
| def r32: ORCRegInst<R32C>; |
| def r16: ORCRegInst<R16C>; |
| def r8: ORCRegInst<R8C>; |
| } |
| |
| defm ORC : BitwiseOrComplement; |
| |
| // OR byte immediate |
| class ORBIInst<dag OOL, dag IOL, list<dag> pattern>: |
| RI10Form<0b01100000, OOL, IOL, "orbi\t$rT, $rA, $val", |
| IntegerOp, pattern>; |
| |
| class ORBIVecInst<ValueType vectype, PatLeaf immpred>: |
| ORBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val), |
| [(set (v16i8 VECREG:$rT), (or (vectype VECREG:$rA), |
| (vectype immpred:$val)))]>; |
| |
| multiclass BitwiseOrByteImm |
| { |
| def v16i8: ORBIVecInst<v16i8, v16i8U8Imm>; |
| |
| def r8: ORBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val), |
| [(set R8C:$rT, (or R8C:$rA, immU8:$val))]>; |
| } |
| |
| defm ORBI : BitwiseOrByteImm; |
| |
| // OR halfword immediate |
| class ORHIInst<dag OOL, dag IOL, list<dag> pattern>: |
| RI10Form<0b10100000, OOL, IOL, "orhi\t$rT, $rA, $val", |
| IntegerOp, pattern>; |
| |
| class ORHIVecInst<ValueType vectype, PatLeaf immpred>: |
| ORHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val), |
| [(set (vectype VECREG:$rT), (or (vectype VECREG:$rA), |
| immpred:$val))]>; |
| |
| multiclass BitwiseOrHalfwordImm |
| { |
| def v8i16: ORHIVecInst<v8i16, v8i16Uns10Imm>; |
| |
| def r16: ORHIInst<(outs R16C:$rT), (ins R16C:$rA, u10imm:$val), |
| [(set R16C:$rT, (or R16C:$rA, i16ImmUns10:$val))]>; |
| |
| // Specialized ORHI form used to promote 8-bit registers to 16-bit |
| def i8i16: ORHIInst<(outs R16C:$rT), (ins R8C:$rA, s10imm:$val), |
| [(set R16C:$rT, (or (anyext R8C:$rA), |
| i16ImmSExt10:$val))]>; |
| } |
| |
| defm ORHI : BitwiseOrHalfwordImm; |
| |
| class ORIInst<dag OOL, dag IOL, list<dag> pattern>: |
| RI10Form<0b00100000, OOL, IOL, "ori\t$rT, $rA, $val", |
| IntegerOp, pattern>; |
| |
| class ORIVecInst<ValueType vectype, PatLeaf immpred>: |
| ORIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val), |
| [(set (vectype VECREG:$rT), (or (vectype VECREG:$rA), |
| immpred:$val))]>; |
| |
| // Bitwise "or" with immediate |
| multiclass BitwiseOrImm |
| { |
| def v4i32: ORIVecInst<v4i32, v4i32Uns10Imm>; |
| |
| def r32: ORIInst<(outs R32C:$rT), (ins R32C:$rA, u10imm_i32:$val), |
| [(set R32C:$rT, (or R32C:$rA, i32ImmUns10:$val))]>; |
| |
| // i16i32: hacked version of the ori instruction to extend 16-bit quantities |
| // to 32-bit quantities. used exclusively to match "anyext" conversions (vide |
| // infra "anyext 16->32" pattern.) |
| def i16i32: ORIInst<(outs R32C:$rT), (ins R16C:$rA, s10imm_i32:$val), |
| [(set R32C:$rT, (or (anyext R16C:$rA), |
| i32ImmSExt10:$val))]>; |
| |
| // i8i32: Hacked version of the ORI instruction to extend 16-bit quantities |
| // to 32-bit quantities. Used exclusively to match "anyext" conversions (vide |
| // infra "anyext 16->32" pattern.) |
| def i8i32: ORIInst<(outs R32C:$rT), (ins R8C:$rA, s10imm_i32:$val), |
| [(set R32C:$rT, (or (anyext R8C:$rA), |
| i32ImmSExt10:$val))]>; |
| } |
| |
| defm ORI : BitwiseOrImm; |
| |
| // ORX: "or" across the vector: or's $rA's word slots leaving the result in |
| // $rT[0], slots 1-3 are zeroed. |
| // |
| // FIXME: Needs to match an intrinsic pattern. |
| def ORXv4i32: |
| RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| "orx\t$rT, $rA, $rB", IntegerOp, |
| []>; |
| |
| // XOR: |
| |
| class XORInst<dag OOL, dag IOL, list<dag> pattern> : |
| RRForm<0b10010010000, OOL, IOL, "xor\t$rT, $rA, $rB", |
| IntegerOp, pattern>; |
| |
| class XORVecInst<ValueType vectype>: |
| XORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [(set (vectype VECREG:$rT), (xor (vectype VECREG:$rA), |
| (vectype VECREG:$rB)))]>; |
| |
| class XORRegInst<RegisterClass rclass>: |
| XORInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), |
| [(set rclass:$rT, (xor rclass:$rA, rclass:$rB))]>; |
| |
| multiclass BitwiseExclusiveOr |
| { |
| def v16i8: XORVecInst<v16i8>; |
| def v8i16: XORVecInst<v8i16>; |
| def v4i32: XORVecInst<v4i32>; |
| def v2i64: XORVecInst<v2i64>; |
| |
| def r128: XORRegInst<GPRC>; |
| def r64: XORRegInst<R64C>; |
| def r32: XORRegInst<R32C>; |
| def r16: XORRegInst<R16C>; |
| def r8: XORRegInst<R8C>; |
| |
| // XOR instructions used to negate f32 and f64 quantities. |
| |
| def fneg32: XORInst<(outs R32FP:$rT), (ins R32FP:$rA, R32C:$rB), |
| [/* no pattern */]>; |
| |
| def fneg64: XORInst<(outs R64FP:$rT), (ins R64FP:$rA, R64C:$rB), |
| [/* no pattern */]>; |
| |
| def fnegvec: XORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [/* no pattern, see fneg{32,64} */]>; |
| } |
| |
| defm XOR : BitwiseExclusiveOr; |
| |
| //==---------------------------------------------------------- |
| |
| class XORBIInst<dag OOL, dag IOL, list<dag> pattern>: |
| RI10Form<0b01100000, OOL, IOL, "xorbi\t$rT, $rA, $val", |
| IntegerOp, pattern>; |
| |
| multiclass XorByteImm |
| { |
| def v16i8: |
| XORBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val), |
| [(set (v16i8 VECREG:$rT), (xor (v16i8 VECREG:$rA), v16i8U8Imm:$val))]>; |
| |
| def r8: |
| XORBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val), |
| [(set R8C:$rT, (xor R8C:$rA, immU8:$val))]>; |
| } |
| |
| defm XORBI : XorByteImm; |
| |
| def XORHIv8i16: |
| RI10Form<0b10100000, (outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val), |
| "xorhi\t$rT, $rA, $val", IntegerOp, |
| [(set (v8i16 VECREG:$rT), (xor (v8i16 VECREG:$rA), |
| v8i16SExt10Imm:$val))]>; |
| |
| def XORHIr16: |
| RI10Form<0b10100000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val), |
| "xorhi\t$rT, $rA, $val", IntegerOp, |
| [(set R16C:$rT, (xor R16C:$rA, i16ImmSExt10:$val))]>; |
| |
| def XORIv4i32: |
| RI10Form<0b00100000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm_i32:$val), |
| "xori\t$rT, $rA, $val", IntegerOp, |
| [(set (v4i32 VECREG:$rT), (xor (v4i32 VECREG:$rA), |
| v4i32SExt10Imm:$val))]>; |
| |
| def XORIr32: |
| RI10Form<0b00100000, (outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val), |
| "xori\t$rT, $rA, $val", IntegerOp, |
| [(set R32C:$rT, (xor R32C:$rA, i32ImmSExt10:$val))]>; |
| |
| // NAND: |
| |
| class NANDInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm<0b10010011000, OOL, IOL, "nand\t$rT, $rA, $rB", |
| IntegerOp, pattern>; |
| |
| class NANDVecInst<ValueType vectype>: |
| NANDInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [(set (vectype VECREG:$rT), (vnot (and (vectype VECREG:$rA), |
| (vectype VECREG:$rB))))]>; |
| class NANDRegInst<RegisterClass rclass>: |
| NANDInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), |
| [(set rclass:$rT, (not (and rclass:$rA, rclass:$rB)))]>; |
| |
| multiclass BitwiseNand |
| { |
| def v16i8: NANDVecInst<v16i8>; |
| def v8i16: NANDVecInst<v8i16>; |
| def v4i32: NANDVecInst<v4i32>; |
| def v2i64: NANDVecInst<v2i64>; |
| |
| def r128: NANDRegInst<GPRC>; |
| def r64: NANDRegInst<R64C>; |
| def r32: NANDRegInst<R32C>; |
| def r16: NANDRegInst<R16C>; |
| def r8: NANDRegInst<R8C>; |
| } |
| |
| defm NAND : BitwiseNand; |
| |
| // NOR: |
| |
| class NORInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm<0b10010010000, OOL, IOL, "nor\t$rT, $rA, $rB", |
| IntegerOp, pattern>; |
| |
| class NORVecInst<ValueType vectype>: |
| NORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [(set (vectype VECREG:$rT), (vnot (or (vectype VECREG:$rA), |
| (vectype VECREG:$rB))))]>; |
| class NORRegInst<RegisterClass rclass>: |
| NORInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), |
| [(set rclass:$rT, (not (or rclass:$rA, rclass:$rB)))]>; |
| |
| multiclass BitwiseNor |
| { |
| def v16i8: NORVecInst<v16i8>; |
| def v8i16: NORVecInst<v8i16>; |
| def v4i32: NORVecInst<v4i32>; |
| def v2i64: NORVecInst<v2i64>; |
| |
| def r128: NORRegInst<GPRC>; |
| def r64: NORRegInst<R64C>; |
| def r32: NORRegInst<R32C>; |
| def r16: NORRegInst<R16C>; |
| def r8: NORRegInst<R8C>; |
| } |
| |
| defm NOR : BitwiseNor; |
| |
| // Select bits: |
| class SELBInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRRForm<0b1000, OOL, IOL, "selb\t$rT, $rA, $rB, $rC", |
| IntegerOp, pattern>; |
| |
| class SELBVecInst<ValueType vectype, PatFrag vnot_frag = vnot>: |
| SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), |
| [(set (vectype VECREG:$rT), |
| (or (and (vectype VECREG:$rC), (vectype VECREG:$rB)), |
| (and (vnot_frag (vectype VECREG:$rC)), |
| (vectype VECREG:$rA))))]>; |
| |
| class SELBVecVCondInst<ValueType vectype>: |
| SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), |
| [(set (vectype VECREG:$rT), |
| (select (vectype VECREG:$rC), |
| (vectype VECREG:$rB), |
| (vectype VECREG:$rA)))]>; |
| |
| class SELBVecCondInst<ValueType vectype>: |
| SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, R32C:$rC), |
| [(set (vectype VECREG:$rT), |
| (select R32C:$rC, |
| (vectype VECREG:$rB), |
| (vectype VECREG:$rA)))]>; |
| |
| class SELBRegInst<RegisterClass rclass>: |
| SELBInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB, rclass:$rC), |
| [(set rclass:$rT, |
| (or (and rclass:$rB, rclass:$rC), |
| (and rclass:$rA, (not rclass:$rC))))]>; |
| |
| class SELBRegCondInst<RegisterClass rcond, RegisterClass rclass>: |
| SELBInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB, rcond:$rC), |
| [(set rclass:$rT, |
| (select rcond:$rC, rclass:$rB, rclass:$rA))]>; |
| |
| multiclass SelectBits |
| { |
| def v16i8: SELBVecInst<v16i8>; |
| def v8i16: SELBVecInst<v8i16>; |
| def v4i32: SELBVecInst<v4i32>; |
| def v2i64: SELBVecInst<v2i64, vnot_cell_conv>; |
| |
| def r128: SELBRegInst<GPRC>; |
| def r64: SELBRegInst<R64C>; |
| def r32: SELBRegInst<R32C>; |
| def r16: SELBRegInst<R16C>; |
| def r8: SELBRegInst<R8C>; |
| |
| def v16i8_cond: SELBVecCondInst<v16i8>; |
| def v8i16_cond: SELBVecCondInst<v8i16>; |
| def v4i32_cond: SELBVecCondInst<v4i32>; |
| def v2i64_cond: SELBVecCondInst<v2i64>; |
| |
| def v16i8_vcond: SELBVecCondInst<v16i8>; |
| def v8i16_vcond: SELBVecCondInst<v8i16>; |
| def v4i32_vcond: SELBVecCondInst<v4i32>; |
| def v2i64_vcond: SELBVecCondInst<v2i64>; |
| |
| def v4f32_cond: |
| SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), |
| [(set (v4f32 VECREG:$rT), |
| (select (v4i32 VECREG:$rC), |
| (v4f32 VECREG:$rB), |
| (v4f32 VECREG:$rA)))]>; |
| |
| // SELBr64_cond is defined in SPU64InstrInfo.td |
| def r32_cond: SELBRegCondInst<R32C, R32C>; |
| def f32_cond: SELBRegCondInst<R32C, R32FP>; |
| def r16_cond: SELBRegCondInst<R16C, R16C>; |
| def r8_cond: SELBRegCondInst<R8C, R8C>; |
| } |
| |
| defm SELB : SelectBits; |
| |
| class SPUselbPatVec<ValueType vectype, SPUInstr inst>: |
| Pat<(SPUselb (vectype VECREG:$rA), (vectype VECREG:$rB), (vectype VECREG:$rC)), |
| (inst VECREG:$rA, VECREG:$rB, VECREG:$rC)>; |
| |
| def : SPUselbPatVec<v16i8, SELBv16i8>; |
| def : SPUselbPatVec<v8i16, SELBv8i16>; |
| def : SPUselbPatVec<v4i32, SELBv4i32>; |
| def : SPUselbPatVec<v2i64, SELBv2i64>; |
| |
| class SPUselbPatReg<RegisterClass rclass, SPUInstr inst>: |
| Pat<(SPUselb rclass:$rA, rclass:$rB, rclass:$rC), |
| (inst rclass:$rA, rclass:$rB, rclass:$rC)>; |
| |
| def : SPUselbPatReg<R8C, SELBr8>; |
| def : SPUselbPatReg<R16C, SELBr16>; |
| def : SPUselbPatReg<R32C, SELBr32>; |
| def : SPUselbPatReg<R64C, SELBr64>; |
| |
| // EQV: Equivalence (1 for each same bit, otherwise 0) |
| // |
| // Note: There are a lot of ways to match this bit operator and these patterns |
| // attempt to be as exhaustive as possible. |
| |
| class EQVInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm<0b10010010000, OOL, IOL, "eqv\t$rT, $rA, $rB", |
| IntegerOp, pattern>; |
| |
| class EQVVecInst<ValueType vectype>: |
| EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [(set (vectype VECREG:$rT), |
| (or (and (vectype VECREG:$rA), (vectype VECREG:$rB)), |
| (and (vnot (vectype VECREG:$rA)), |
| (vnot (vectype VECREG:$rB)))))]>; |
| |
| class EQVRegInst<RegisterClass rclass>: |
| EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), |
| [(set rclass:$rT, (or (and rclass:$rA, rclass:$rB), |
| (and (not rclass:$rA), (not rclass:$rB))))]>; |
| |
| class EQVVecPattern1<ValueType vectype>: |
| EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [(set (vectype VECREG:$rT), |
| (xor (vectype VECREG:$rA), (vnot (vectype VECREG:$rB))))]>; |
| |
| class EQVRegPattern1<RegisterClass rclass>: |
| EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), |
| [(set rclass:$rT, (xor rclass:$rA, (not rclass:$rB)))]>; |
| |
| class EQVVecPattern2<ValueType vectype>: |
| EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [(set (vectype VECREG:$rT), |
| (or (and (vectype VECREG:$rA), (vectype VECREG:$rB)), |
| (vnot (or (vectype VECREG:$rA), (vectype VECREG:$rB)))))]>; |
| |
| class EQVRegPattern2<RegisterClass rclass>: |
| EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), |
| [(set rclass:$rT, |
| (or (and rclass:$rA, rclass:$rB), |
| (not (or rclass:$rA, rclass:$rB))))]>; |
| |
| class EQVVecPattern3<ValueType vectype>: |
| EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [(set (vectype VECREG:$rT), |
| (not (xor (vectype VECREG:$rA), (vectype VECREG:$rB))))]>; |
| |
| class EQVRegPattern3<RegisterClass rclass>: |
| EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), |
| [(set rclass:$rT, (not (xor rclass:$rA, rclass:$rB)))]>; |
| |
| multiclass BitEquivalence |
| { |
| def v16i8: EQVVecInst<v16i8>; |
| def v8i16: EQVVecInst<v8i16>; |
| def v4i32: EQVVecInst<v4i32>; |
| def v2i64: EQVVecInst<v2i64>; |
| |
| def v16i8_1: EQVVecPattern1<v16i8>; |
| def v8i16_1: EQVVecPattern1<v8i16>; |
| def v4i32_1: EQVVecPattern1<v4i32>; |
| def v2i64_1: EQVVecPattern1<v2i64>; |
| |
| def v16i8_2: EQVVecPattern2<v16i8>; |
| def v8i16_2: EQVVecPattern2<v8i16>; |
| def v4i32_2: EQVVecPattern2<v4i32>; |
| def v2i64_2: EQVVecPattern2<v2i64>; |
| |
| def v16i8_3: EQVVecPattern3<v16i8>; |
| def v8i16_3: EQVVecPattern3<v8i16>; |
| def v4i32_3: EQVVecPattern3<v4i32>; |
| def v2i64_3: EQVVecPattern3<v2i64>; |
| |
| def r128: EQVRegInst<GPRC>; |
| def r64: EQVRegInst<R64C>; |
| def r32: EQVRegInst<R32C>; |
| def r16: EQVRegInst<R16C>; |
| def r8: EQVRegInst<R8C>; |
| |
| def r128_1: EQVRegPattern1<GPRC>; |
| def r64_1: EQVRegPattern1<R64C>; |
| def r32_1: EQVRegPattern1<R32C>; |
| def r16_1: EQVRegPattern1<R16C>; |
| def r8_1: EQVRegPattern1<R8C>; |
| |
| def r128_2: EQVRegPattern2<GPRC>; |
| def r64_2: EQVRegPattern2<R64C>; |
| def r32_2: EQVRegPattern2<R32C>; |
| def r16_2: EQVRegPattern2<R16C>; |
| def r8_2: EQVRegPattern2<R8C>; |
| |
| def r128_3: EQVRegPattern3<GPRC>; |
| def r64_3: EQVRegPattern3<R64C>; |
| def r32_3: EQVRegPattern3<R32C>; |
| def r16_3: EQVRegPattern3<R16C>; |
| def r8_3: EQVRegPattern3<R8C>; |
| } |
| |
| defm EQV: BitEquivalence; |
| |
| //===----------------------------------------------------------------------===// |
| // Vector shuffle... |
| //===----------------------------------------------------------------------===// |
| // SPUshuffle is generated in LowerVECTOR_SHUFFLE and gets replaced with SHUFB. |
| // See the SPUshuffle SDNode operand above, which sets up the DAG pattern |
| // matcher to emit something when the LowerVECTOR_SHUFFLE generates a node with |
| // the SPUISD::SHUFB opcode. |
| //===----------------------------------------------------------------------===// |
| |
| class SHUFBInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRRForm<0b1000, OOL, IOL, "shufb\t$rT, $rA, $rB, $rC", |
| IntegerOp, pattern>; |
| |
| class SHUFBVecInst<ValueType resultvec, ValueType maskvec>: |
| SHUFBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), |
| [(set (resultvec VECREG:$rT), |
| (SPUshuffle (resultvec VECREG:$rA), |
| (resultvec VECREG:$rB), |
| (maskvec VECREG:$rC)))]>; |
| |
| class SHUFBGPRCInst: |
| SHUFBInst<(outs VECREG:$rT), (ins GPRC:$rA, GPRC:$rB, VECREG:$rC), |
| [/* no pattern */]>; |
| |
| multiclass ShuffleBytes |
| { |
| def v16i8 : SHUFBVecInst<v16i8, v16i8>; |
| def v16i8_m32 : SHUFBVecInst<v16i8, v4i32>; |
| def v8i16 : SHUFBVecInst<v8i16, v16i8>; |
| def v8i16_m32 : SHUFBVecInst<v8i16, v4i32>; |
| def v4i32 : SHUFBVecInst<v4i32, v16i8>; |
| def v4i32_m32 : SHUFBVecInst<v4i32, v4i32>; |
| def v2i32 : SHUFBVecInst<v2i32, v16i8>; |
| def v2i32_m32 : SHUFBVecInst<v2i32, v4i32>; |
| def v2i64 : SHUFBVecInst<v2i64, v16i8>; |
| def v2i64_m32 : SHUFBVecInst<v2i64, v4i32>; |
| |
| def v4f32 : SHUFBVecInst<v4f32, v16i8>; |
| def v4f32_m32 : SHUFBVecInst<v4f32, v4i32>; |
| def v2f32 : SHUFBVecInst<v2f32, v16i8>; |
| def v2f32_m32 : SHUFBVecInst<v2f32, v4i32>; |
| |
| def v2f64 : SHUFBVecInst<v2f64, v16i8>; |
| def v2f64_m32 : SHUFBVecInst<v2f64, v4i32>; |
| |
| def gprc : SHUFBGPRCInst; |
| } |
| |
| defm SHUFB : ShuffleBytes; |
| |
| //===----------------------------------------------------------------------===// |
| // Shift and rotate group: |
| //===----------------------------------------------------------------------===// |
| |
| class SHLHInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm<0b11111010000, OOL, IOL, "shlh\t$rT, $rA, $rB", |
| RotateShift, pattern>; |
| |
| class SHLHVecInst<ValueType vectype>: |
| SHLHInst<(outs VECREG:$rT), (ins VECREG:$rA, R16C:$rB), |
| [(set (vectype VECREG:$rT), |
| (SPUvec_shl (vectype VECREG:$rA), R16C:$rB))]>; |
| |
| multiclass ShiftLeftHalfword |
| { |
| def v8i16: SHLHVecInst<v8i16>; |
| def r16: SHLHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB), |
| [(set R16C:$rT, (shl R16C:$rA, R16C:$rB))]>; |
| def r16_r32: SHLHInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB), |
| [(set R16C:$rT, (shl R16C:$rA, R32C:$rB))]>; |
| } |
| |
| defm SHLH : ShiftLeftHalfword; |
| |
| //===----------------------------------------------------------------------===// |
| |
| class SHLHIInst<dag OOL, dag IOL, list<dag> pattern>: |
| RI7Form<0b11111010000, OOL, IOL, "shlhi\t$rT, $rA, $val", |
| RotateShift, pattern>; |
| |
| class SHLHIVecInst<ValueType vectype>: |
| SHLHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val), |
| [(set (vectype VECREG:$rT), |
| (SPUvec_shl (vectype VECREG:$rA), (i16 uimm7:$val)))]>; |
| |
| multiclass ShiftLeftHalfwordImm |
| { |
| def v8i16: SHLHIVecInst<v8i16>; |
| def r16: SHLHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm:$val), |
| [(set R16C:$rT, (shl R16C:$rA, (i16 uimm7:$val)))]>; |
| } |
| |
| defm SHLHI : ShiftLeftHalfwordImm; |
| |
| def : Pat<(SPUvec_shl (v8i16 VECREG:$rA), (i32 uimm7:$val)), |
| (SHLHIv8i16 VECREG:$rA, (TO_IMM16 uimm7:$val))>; |
| |
| def : Pat<(shl R16C:$rA, (i32 uimm7:$val)), |
| (SHLHIr16 R16C:$rA, (TO_IMM16 uimm7:$val))>; |
| |
| //===----------------------------------------------------------------------===// |
| |
| class SHLInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm<0b11111010000, OOL, IOL, "shl\t$rT, $rA, $rB", |
| RotateShift, pattern>; |
| |
| multiclass ShiftLeftWord |
| { |
| def v4i32: |
| SHLInst<(outs VECREG:$rT), (ins VECREG:$rA, R16C:$rB), |
| [(set (v4i32 VECREG:$rT), |
| (SPUvec_shl (v4i32 VECREG:$rA), R16C:$rB))]>; |
| def r32: |
| SHLInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB), |
| [(set R32C:$rT, (shl R32C:$rA, R32C:$rB))]>; |
| } |
| |
| defm SHL: ShiftLeftWord; |
| |
| //===----------------------------------------------------------------------===// |
| |
| class SHLIInst<dag OOL, dag IOL, list<dag> pattern>: |
| RI7Form<0b11111010000, OOL, IOL, "shli\t$rT, $rA, $val", |
| RotateShift, pattern>; |
| |
| multiclass ShiftLeftWordImm |
| { |
| def v4i32: |
| SHLIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val), |
| [(set (v4i32 VECREG:$rT), |
| (SPUvec_shl (v4i32 VECREG:$rA), (i32 uimm7:$val)))]>; |
| |
| def r32: |
| SHLIInst<(outs R32C:$rT), (ins R32C:$rA, u7imm_i32:$val), |
| [(set R32C:$rT, (shl R32C:$rA, (i32 uimm7:$val)))]>; |
| } |
| |
| defm SHLI : ShiftLeftWordImm; |
| |
| //===----------------------------------------------------------------------===// |
| // SHLQBI vec form: Note that this will shift the entire vector (the 128-bit |
| // register) to the left. Vector form is here to ensure type correctness. |
| // |
| // The shift count is in the lowest 3 bits (29-31) of $rB, so only a bit shift |
| // of 7 bits is actually possible. |
| // |
| // Note also that SHLQBI/SHLQBII are used in conjunction with SHLQBY/SHLQBYI |
| // to shift i64 and i128. SHLQBI is the residual left over after shifting by |
| // bytes with SHLQBY. |
| |
| class SHLQBIInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm<0b11011011100, OOL, IOL, "shlqbi\t$rT, $rA, $rB", |
| RotateShift, pattern>; |
| |
| class SHLQBIVecInst<ValueType vectype>: |
| SHLQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), |
| [(set (vectype VECREG:$rT), |
| (SPUshlquad_l_bits (vectype VECREG:$rA), R32C:$rB))]>; |
| |
| class SHLQBIRegInst<RegisterClass rclass>: |
| SHLQBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB), |
| [/* no pattern */]>; |
| |
| multiclass ShiftLeftQuadByBits |
| { |
| def v16i8: SHLQBIVecInst<v16i8>; |
| def v8i16: SHLQBIVecInst<v8i16>; |
| def v4i32: SHLQBIVecInst<v4i32>; |
| def v4f32: SHLQBIVecInst<v4f32>; |
| def v2i64: SHLQBIVecInst<v2i64>; |
| def v2f64: SHLQBIVecInst<v2f64>; |
| |
| def r128: SHLQBIRegInst<GPRC>; |
| } |
| |
| defm SHLQBI : ShiftLeftQuadByBits; |
| |
| // See note above on SHLQBI. In this case, the predicate actually does then |
| // enforcement, whereas with SHLQBI, we have to "take it on faith." |
| class SHLQBIIInst<dag OOL, dag IOL, list<dag> pattern>: |
| RI7Form<0b11011111100, OOL, IOL, "shlqbii\t$rT, $rA, $val", |
| RotateShift, pattern>; |
| |
| class SHLQBIIVecInst<ValueType vectype>: |
| SHLQBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val), |
| [(set (vectype VECREG:$rT), |
| (SPUshlquad_l_bits (vectype VECREG:$rA), (i32 bitshift:$val)))]>; |
| |
| multiclass ShiftLeftQuadByBitsImm |
| { |
| def v16i8 : SHLQBIIVecInst<v16i8>; |
| def v8i16 : SHLQBIIVecInst<v8i16>; |
| def v4i32 : SHLQBIIVecInst<v4i32>; |
| def v4f32 : SHLQBIIVecInst<v4f32>; |
| def v2i64 : SHLQBIIVecInst<v2i64>; |
| def v2f64 : SHLQBIIVecInst<v2f64>; |
| } |
| |
| defm SHLQBII : ShiftLeftQuadByBitsImm; |
| |
| // SHLQBY, SHLQBYI vector forms: Shift the entire vector to the left by bytes, |
| // not by bits. See notes above on SHLQBI. |
| |
| class SHLQBYInst<dag OOL, dag IOL, list<dag> pattern>: |
| RI7Form<0b11111011100, OOL, IOL, "shlqby\t$rT, $rA, $rB", |
| RotateShift, pattern>; |
| |
| class SHLQBYVecInst<ValueType vectype>: |
| SHLQBYInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), |
| [(set (vectype VECREG:$rT), |
| (SPUshlquad_l_bytes (vectype VECREG:$rA), R32C:$rB))]>; |
| |
| multiclass ShiftLeftQuadBytes |
| { |
| def v16i8: SHLQBYVecInst<v16i8>; |
| def v8i16: SHLQBYVecInst<v8i16>; |
| def v4i32: SHLQBYVecInst<v4i32>; |
| def v4f32: SHLQBYVecInst<v4f32>; |
| def v2i64: SHLQBYVecInst<v2i64>; |
| def v2f64: SHLQBYVecInst<v2f64>; |
| def r128: SHLQBYInst<(outs GPRC:$rT), (ins GPRC:$rA, R32C:$rB), |
| [(set GPRC:$rT, (SPUshlquad_l_bytes GPRC:$rA, R32C:$rB))]>; |
| } |
| |
| defm SHLQBY: ShiftLeftQuadBytes; |
| |
| class SHLQBYIInst<dag OOL, dag IOL, list<dag> pattern>: |
| RI7Form<0b11111111100, OOL, IOL, "shlqbyi\t$rT, $rA, $val", |
| RotateShift, pattern>; |
| |
| class SHLQBYIVecInst<ValueType vectype>: |
| SHLQBYIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val), |
| [(set (vectype VECREG:$rT), |
| (SPUshlquad_l_bytes (vectype VECREG:$rA), (i32 uimm7:$val)))]>; |
| |
| multiclass ShiftLeftQuadBytesImm |
| { |
| def v16i8: SHLQBYIVecInst<v16i8>; |
| def v8i16: SHLQBYIVecInst<v8i16>; |
| def v4i32: SHLQBYIVecInst<v4i32>; |
| def v4f32: SHLQBYIVecInst<v4f32>; |
| def v2i64: SHLQBYIVecInst<v2i64>; |
| def v2f64: SHLQBYIVecInst<v2f64>; |
| def r128: SHLQBYIInst<(outs GPRC:$rT), (ins GPRC:$rA, u7imm_i32:$val), |
| [(set GPRC:$rT, |
| (SPUshlquad_l_bytes GPRC:$rA, (i32 uimm7:$val)))]>; |
| } |
| |
| defm SHLQBYI : ShiftLeftQuadBytesImm; |
| |
| class SHLQBYBIInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm<0b00111001111, OOL, IOL, "shlqbybi\t$rT, $rA, $rB", |
| RotateShift, pattern>; |
| |
| class SHLQBYBIVecInst<ValueType vectype>: |
| SHLQBYBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), |
| [/* no pattern */]>; |
| |
| class SHLQBYBIRegInst<RegisterClass rclass>: |
| SHLQBYBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB), |
| [/* no pattern */]>; |
| |
| multiclass ShiftLeftQuadBytesBitCount |
| { |
| def v16i8: SHLQBYBIVecInst<v16i8>; |
| def v8i16: SHLQBYBIVecInst<v8i16>; |
| def v4i32: SHLQBYBIVecInst<v4i32>; |
| def v4f32: SHLQBYBIVecInst<v4f32>; |
| def v2i64: SHLQBYBIVecInst<v2i64>; |
| def v2f64: SHLQBYBIVecInst<v2f64>; |
| |
| def r128: SHLQBYBIRegInst<GPRC>; |
| } |
| |
| defm SHLQBYBI : ShiftLeftQuadBytesBitCount; |
| |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| // Rotate halfword: |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| class ROTHInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm<0b00111010000, OOL, IOL, "roth\t$rT, $rA, $rB", |
| RotateShift, pattern>; |
| |
| class ROTHVecInst<ValueType vectype>: |
| ROTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [(set (vectype VECREG:$rT), |
| (SPUvec_rotl VECREG:$rA, (v8i16 VECREG:$rB)))]>; |
| |
| class ROTHRegInst<RegisterClass rclass>: |
| ROTHInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), |
| [(set rclass:$rT, (rotl rclass:$rA, rclass:$rB))]>; |
| |
| multiclass RotateLeftHalfword |
| { |
| def v8i16: ROTHVecInst<v8i16>; |
| def r16: ROTHRegInst<R16C>; |
| } |
| |
| defm ROTH: RotateLeftHalfword; |
| |
| def ROTHr16_r32: ROTHInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB), |
| [(set R16C:$rT, (rotl R16C:$rA, R32C:$rB))]>; |
| |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| // Rotate halfword, immediate: |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| class ROTHIInst<dag OOL, dag IOL, list<dag> pattern>: |
| RI7Form<0b00111110000, OOL, IOL, "rothi\t$rT, $rA, $val", |
| RotateShift, pattern>; |
| |
| class ROTHIVecInst<ValueType vectype>: |
| ROTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val), |
| [(set (vectype VECREG:$rT), |
| (SPUvec_rotl VECREG:$rA, (i16 uimm7:$val)))]>; |
| |
| multiclass RotateLeftHalfwordImm |
| { |
| def v8i16: ROTHIVecInst<v8i16>; |
| def r16: ROTHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm:$val), |
| [(set R16C:$rT, (rotl R16C:$rA, (i16 uimm7:$val)))]>; |
| def r16_r32: ROTHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm_i32:$val), |
| [(set R16C:$rT, (rotl R16C:$rA, (i32 uimm7:$val)))]>; |
| } |
| |
| defm ROTHI: RotateLeftHalfwordImm; |
| |
| def : Pat<(SPUvec_rotl (v8i16 VECREG:$rA), (i32 uimm7:$val)), |
| (ROTHIv8i16 VECREG:$rA, (TO_IMM16 imm:$val))>; |
| |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| // Rotate word: |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| |
| class ROTInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm<0b00011010000, OOL, IOL, "rot\t$rT, $rA, $rB", |
| RotateShift, pattern>; |
| |
| class ROTVecInst<ValueType vectype>: |
| ROTInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), |
| [(set (vectype VECREG:$rT), |
| (SPUvec_rotl (vectype VECREG:$rA), R32C:$rB))]>; |
| |
| class ROTRegInst<RegisterClass rclass>: |
| ROTInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB), |
| [(set rclass:$rT, |
| (rotl rclass:$rA, R32C:$rB))]>; |
| |
| multiclass RotateLeftWord |
| { |
| def v4i32: ROTVecInst<v4i32>; |
| def r32: ROTRegInst<R32C>; |
| } |
| |
| defm ROT: RotateLeftWord; |
| |
| // The rotate amount is in the same bits whether we've got an 8-bit, 16-bit or |
| // 32-bit register |
| def ROTr32_r16_anyext: |
| ROTInst<(outs R32C:$rT), (ins R32C:$rA, R16C:$rB), |
| [(set R32C:$rT, (rotl R32C:$rA, (i32 (anyext R16C:$rB))))]>; |
| |
| def : Pat<(rotl R32C:$rA, (i32 (zext R16C:$rB))), |
| (ROTr32_r16_anyext R32C:$rA, R16C:$rB)>; |
| |
| def : Pat<(rotl R32C:$rA, (i32 (sext R16C:$rB))), |
| (ROTr32_r16_anyext R32C:$rA, R16C:$rB)>; |
| |
| def ROTr32_r8_anyext: |
| ROTInst<(outs R32C:$rT), (ins R32C:$rA, R8C:$rB), |
| [(set R32C:$rT, (rotl R32C:$rA, (i32 (anyext R8C:$rB))))]>; |
| |
| def : Pat<(rotl R32C:$rA, (i32 (zext R8C:$rB))), |
| (ROTr32_r8_anyext R32C:$rA, R8C:$rB)>; |
| |
| def : Pat<(rotl R32C:$rA, (i32 (sext R8C:$rB))), |
| (ROTr32_r8_anyext R32C:$rA, R8C:$rB)>; |
| |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| // Rotate word, immediate |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| |
| class ROTIInst<dag OOL, dag IOL, list<dag> pattern>: |
| RI7Form<0b00011110000, OOL, IOL, "roti\t$rT, $rA, $val", |
| RotateShift, pattern>; |
| |
| class ROTIVecInst<ValueType vectype, Operand optype, ValueType inttype, PatLeaf pred>: |
| ROTIInst<(outs VECREG:$rT), (ins VECREG:$rA, optype:$val), |
| [(set (vectype VECREG:$rT), |
| (SPUvec_rotl (vectype VECREG:$rA), (inttype pred:$val)))]>; |
| |
| class ROTIRegInst<RegisterClass rclass, Operand optype, ValueType inttype, PatLeaf pred>: |
| ROTIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val), |
| [(set rclass:$rT, (rotl rclass:$rA, (inttype pred:$val)))]>; |
| |
| multiclass RotateLeftWordImm |
| { |
| def v4i32: ROTIVecInst<v4i32, u7imm_i32, i32, uimm7>; |
| def v4i32_i16: ROTIVecInst<v4i32, u7imm, i16, uimm7>; |
| def v4i32_i8: ROTIVecInst<v4i32, u7imm_i8, i8, uimm7>; |
| |
| def r32: ROTIRegInst<R32C, u7imm_i32, i32, uimm7>; |
| def r32_i16: ROTIRegInst<R32C, u7imm, i16, uimm7>; |
| def r32_i8: ROTIRegInst<R32C, u7imm_i8, i8, uimm7>; |
| } |
| |
| defm ROTI : RotateLeftWordImm; |
| |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| // Rotate quad by byte (count) |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| |
| class ROTQBYInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm<0b00111011100, OOL, IOL, "rotqby\t$rT, $rA, $rB", |
| RotateShift, pattern>; |
| |
| class ROTQBYVecInst<ValueType vectype>: |
| ROTQBYInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), |
| [(set (vectype VECREG:$rT), |
| (SPUrotbytes_left (vectype VECREG:$rA), R32C:$rB))]>; |
| |
| multiclass RotateQuadLeftByBytes |
| { |
| def v16i8: ROTQBYVecInst<v16i8>; |
| def v8i16: ROTQBYVecInst<v8i16>; |
| def v4i32: ROTQBYVecInst<v4i32>; |
| def v4f32: ROTQBYVecInst<v4f32>; |
| def v2i64: ROTQBYVecInst<v2i64>; |
| def v2f64: ROTQBYVecInst<v2f64>; |
| } |
| |
| defm ROTQBY: RotateQuadLeftByBytes; |
| |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| // Rotate quad by byte (count), immediate |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| |
| class ROTQBYIInst<dag OOL, dag IOL, list<dag> pattern>: |
| RI7Form<0b00111111100, OOL, IOL, "rotqbyi\t$rT, $rA, $val", |
| RotateShift, pattern>; |
| |
| class ROTQBYIVecInst<ValueType vectype>: |
| ROTQBYIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val), |
| [(set (vectype VECREG:$rT), |
| (SPUrotbytes_left (vectype VECREG:$rA), (i16 uimm7:$val)))]>; |
| |
| multiclass RotateQuadByBytesImm |
| { |
| def v16i8: ROTQBYIVecInst<v16i8>; |
| def v8i16: ROTQBYIVecInst<v8i16>; |
| def v4i32: ROTQBYIVecInst<v4i32>; |
| def v4f32: ROTQBYIVecInst<v4f32>; |
| def v2i64: ROTQBYIVecInst<v2i64>; |
| def vfi64: ROTQBYIVecInst<v2f64>; |
| } |
| |
| defm ROTQBYI: RotateQuadByBytesImm; |
| |
| // See ROTQBY note above. |
| class ROTQBYBIInst<dag OOL, dag IOL, list<dag> pattern>: |
| RI7Form<0b00110011100, OOL, IOL, |
| "rotqbybi\t$rT, $rA, $shift", |
| RotateShift, pattern>; |
| |
| class ROTQBYBIVecInst<ValueType vectype, RegisterClass rclass>: |
| ROTQBYBIInst<(outs VECREG:$rT), (ins VECREG:$rA, rclass:$shift), |
| [(set (vectype VECREG:$rT), |
| (SPUrotbytes_left_bits (vectype VECREG:$rA), rclass:$shift))]>; |
| |
| multiclass RotateQuadByBytesByBitshift { |
| def v16i8_r32: ROTQBYBIVecInst<v16i8, R32C>; |
| def v8i16_r32: ROTQBYBIVecInst<v8i16, R32C>; |
| def v4i32_r32: ROTQBYBIVecInst<v4i32, R32C>; |
| def v2i64_r32: ROTQBYBIVecInst<v2i64, R32C>; |
| } |
| |
| defm ROTQBYBI : RotateQuadByBytesByBitshift; |
| |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| // See ROTQBY note above. |
| // |
| // Assume that the user of this instruction knows to shift the rotate count |
| // into bit 29 |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| |
| class ROTQBIInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm<0b00011011100, OOL, IOL, "rotqbi\t$rT, $rA, $rB", |
| RotateShift, pattern>; |
| |
| class ROTQBIVecInst<ValueType vectype>: |
| ROTQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), |
| [/* no pattern yet */]>; |
| |
| class ROTQBIRegInst<RegisterClass rclass>: |
| ROTQBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB), |
| [/* no pattern yet */]>; |
| |
| multiclass RotateQuadByBitCount |
| { |
| def v16i8: ROTQBIVecInst<v16i8>; |
| def v8i16: ROTQBIVecInst<v8i16>; |
| def v4i32: ROTQBIVecInst<v4i32>; |
| def v2i64: ROTQBIVecInst<v2i64>; |
| |
| def r128: ROTQBIRegInst<GPRC>; |
| def r64: ROTQBIRegInst<R64C>; |
| } |
| |
| defm ROTQBI: RotateQuadByBitCount; |
| |
| class ROTQBIIInst<dag OOL, dag IOL, list<dag> pattern>: |
| RI7Form<0b00011111100, OOL, IOL, "rotqbii\t$rT, $rA, $val", |
| RotateShift, pattern>; |
| |
| class ROTQBIIVecInst<ValueType vectype, Operand optype, ValueType inttype, |
| PatLeaf pred>: |
| ROTQBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, optype:$val), |
| [/* no pattern yet */]>; |
| |
| class ROTQBIIRegInst<RegisterClass rclass, Operand optype, ValueType inttype, |
| PatLeaf pred>: |
| ROTQBIIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val), |
| [/* no pattern yet */]>; |
| |
| multiclass RotateQuadByBitCountImm |
| { |
| def v16i8: ROTQBIIVecInst<v16i8, u7imm_i32, i32, uimm7>; |
| def v8i16: ROTQBIIVecInst<v8i16, u7imm_i32, i32, uimm7>; |
| def v4i32: ROTQBIIVecInst<v4i32, u7imm_i32, i32, uimm7>; |
| def v2i64: ROTQBIIVecInst<v2i64, u7imm_i32, i32, uimm7>; |
| |
| def r128: ROTQBIIRegInst<GPRC, u7imm_i32, i32, uimm7>; |
| def r64: ROTQBIIRegInst<R64C, u7imm_i32, i32, uimm7>; |
| } |
| |
| defm ROTQBII : RotateQuadByBitCountImm; |
| |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| // ROTHM v8i16 form: |
| // NOTE(1): No vector rotate is generated by the C/C++ frontend (today), |
| // so this only matches a synthetically generated/lowered code |
| // fragment. |
| // NOTE(2): $rB must be negated before the right rotate! |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| |
| class ROTHMInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm<0b10111010000, OOL, IOL, "rothm\t$rT, $rA, $rB", |
| RotateShift, pattern>; |
| |
| def ROTHMv8i16: |
| ROTHMInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), |
| [/* see patterns below - $rB must be negated */]>; |
| |
| def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), R32C:$rB), |
| (ROTHMv8i16 VECREG:$rA, (SFIr32 R32C:$rB, 0))>; |
| |
| def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), R16C:$rB), |
| (ROTHMv8i16 VECREG:$rA, |
| (SFIr32 (XSHWr16 R16C:$rB), 0))>; |
| |
| def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), R8C:$rB), |
| (ROTHMv8i16 VECREG:$rA, |
| (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB) ), 0))>; |
| |
| // ROTHM r16 form: Rotate 16-bit quantity to right, zero fill at the left |
| // Note: This instruction doesn't match a pattern because rB must be negated |
| // for the instruction to work. Thus, the pattern below the instruction! |
| |
| def ROTHMr16: |
| ROTHMInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB), |
| [/* see patterns below - $rB must be negated! */]>; |
| |
| def : Pat<(srl R16C:$rA, R32C:$rB), |
| (ROTHMr16 R16C:$rA, (SFIr32 R32C:$rB, 0))>; |
| |
| def : Pat<(srl R16C:$rA, R16C:$rB), |
| (ROTHMr16 R16C:$rA, |
| (SFIr32 (XSHWr16 R16C:$rB), 0))>; |
| |
| def : Pat<(srl R16C:$rA, R8C:$rB), |
| (ROTHMr16 R16C:$rA, |
| (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB) ), 0))>; |
| |
| // ROTHMI v8i16 form: See the comment for ROTHM v8i16. The difference here is |
| // that the immediate can be complemented, so that the user doesn't have to |
| // worry about it. |
| |
| class ROTHMIInst<dag OOL, dag IOL, list<dag> pattern>: |
| RI7Form<0b10111110000, OOL, IOL, "rothmi\t$rT, $rA, $val", |
| RotateShift, pattern>; |
| |
| def ROTHMIv8i16: |
| ROTHMIInst<(outs VECREG:$rT), (ins VECREG:$rA, rothNeg7imm:$val), |
| [/* no pattern */]>; |
| |
| def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i32 imm:$val)), |
| (ROTHMIv8i16 VECREG:$rA, imm:$val)>; |
| |
| def: Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i16 imm:$val)), |
| (ROTHMIv8i16 VECREG:$rA, (TO_IMM32 imm:$val))>; |
| |
| def: Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i8 imm:$val)), |
| (ROTHMIv8i16 VECREG:$rA, (TO_IMM32 imm:$val))>; |
| |
| def ROTHMIr16: |
| ROTHMIInst<(outs R16C:$rT), (ins R16C:$rA, rothNeg7imm:$val), |
| [/* no pattern */]>; |
| |
| def: Pat<(srl R16C:$rA, (i32 uimm7:$val)), |
| (ROTHMIr16 R16C:$rA, uimm7:$val)>; |
| |
| def: Pat<(srl R16C:$rA, (i16 uimm7:$val)), |
| (ROTHMIr16 R16C:$rA, (TO_IMM32 uimm7:$val))>; |
| |
| def: Pat<(srl R16C:$rA, (i8 uimm7:$val)), |
| (ROTHMIr16 R16C:$rA, (TO_IMM32 uimm7:$val))>; |
| |
| // ROTM v4i32 form: See the ROTHM v8i16 comments. |
| class ROTMInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm<0b10011010000, OOL, IOL, "rotm\t$rT, $rA, $rB", |
| RotateShift, pattern>; |
| |
| def ROTMv4i32: |
| ROTMInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), |
| [/* see patterns below - $rB must be negated */]>; |
| |
| def : Pat<(SPUvec_srl (v4i32 VECREG:$rA), R32C:$rB), |
| (ROTMv4i32 VECREG:$rA, (SFIr32 R32C:$rB, 0))>; |
| |
| def : Pat<(SPUvec_srl (v4i32 VECREG:$rA), R16C:$rB), |
| (ROTMv4i32 VECREG:$rA, |
| (SFIr32 (XSHWr16 R16C:$rB), 0))>; |
| |
| def : Pat<(SPUvec_srl (v4i32 VECREG:$rA), R8C:$rB), |
| (ROTMv4i32 VECREG:$rA, |
| (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>; |
| |
| def ROTMr32: |
| ROTMInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB), |
| [/* see patterns below - $rB must be negated */]>; |
| |
| def : Pat<(srl R32C:$rA, R32C:$rB), |
| (ROTMr32 R32C:$rA, (SFIr32 R32C:$rB, 0))>; |
| |
| def : Pat<(srl R32C:$rA, R16C:$rB), |
| (ROTMr32 R32C:$rA, |
| (SFIr32 (XSHWr16 R16C:$rB), 0))>; |
| |
| def : Pat<(srl R32C:$rA, R8C:$rB), |
| (ROTMr32 R32C:$rA, |
| (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>; |
| |
| // ROTMI v4i32 form: See the comment for ROTHM v8i16. |
| def ROTMIv4i32: |
| RI7Form<0b10011110000, (outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val), |
| "rotmi\t$rT, $rA, $val", RotateShift, |
| [(set (v4i32 VECREG:$rT), |
| (SPUvec_srl VECREG:$rA, (i32 uimm7:$val)))]>; |
| |
| def : Pat<(SPUvec_srl (v4i32 VECREG:$rA), (i16 uimm7:$val)), |
| (ROTMIv4i32 VECREG:$rA, (TO_IMM32 uimm7:$val))>; |
| |
| def : Pat<(SPUvec_srl (v4i32 VECREG:$rA), (i8 uimm7:$val)), |
| (ROTMIv4i32 VECREG:$rA, (TO_IMM32 uimm7:$val))>; |
| |
| // ROTMI r32 form: know how to complement the immediate value. |
| def ROTMIr32: |
| RI7Form<0b10011110000, (outs R32C:$rT), (ins R32C:$rA, rotNeg7imm:$val), |
| "rotmi\t$rT, $rA, $val", RotateShift, |
| [(set R32C:$rT, (srl R32C:$rA, (i32 uimm7:$val)))]>; |
| |
| def : Pat<(srl R32C:$rA, (i16 imm:$val)), |
| (ROTMIr32 R32C:$rA, (TO_IMM32 uimm7:$val))>; |
| |
| def : Pat<(srl R32C:$rA, (i8 imm:$val)), |
| (ROTMIr32 R32C:$rA, (TO_IMM32 uimm7:$val))>; |
| |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| // ROTQMBY: This is a vector form merely so that when used in an |
| // instruction pattern, type checking will succeed. This instruction assumes |
| // that the user knew to negate $rB. |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| |
| class ROTQMBYInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm<0b10111011100, OOL, IOL, "rotqmby\t$rT, $rA, $rB", |
| RotateShift, pattern>; |
| |
| class ROTQMBYVecInst<ValueType vectype>: |
| ROTQMBYInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), |
| [/* no pattern, $rB must be negated */]>; |
| |
| class ROTQMBYRegInst<RegisterClass rclass>: |
| ROTQMBYInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB), |
| [/* no pattern */]>; |
| |
| multiclass RotateQuadBytes |
| { |
| def v16i8: ROTQMBYVecInst<v16i8>; |
| def v8i16: ROTQMBYVecInst<v8i16>; |
| def v4i32: ROTQMBYVecInst<v4i32>; |
| def v2i64: ROTQMBYVecInst<v2i64>; |
| |
| def r128: ROTQMBYRegInst<GPRC>; |
| def r64: ROTQMBYRegInst<R64C>; |
| } |
| |
| defm ROTQMBY : RotateQuadBytes; |
| |
| class ROTQMBYIInst<dag OOL, dag IOL, list<dag> pattern>: |
| RI7Form<0b10111111100, OOL, IOL, "rotqmbyi\t$rT, $rA, $val", |
| RotateShift, pattern>; |
| |
| class ROTQMBYIVecInst<ValueType vectype>: |
| ROTQMBYIInst<(outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val), |
| [/* no pattern */]>; |
| |
| class ROTQMBYIRegInst<RegisterClass rclass, Operand optype, ValueType inttype, |
| PatLeaf pred>: |
| ROTQMBYIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val), |
| [/* no pattern */]>; |
| |
| // 128-bit zero extension form: |
| class ROTQMBYIZExtInst<RegisterClass rclass, Operand optype, PatLeaf pred>: |
| ROTQMBYIInst<(outs GPRC:$rT), (ins rclass:$rA, optype:$val), |
| [/* no pattern */]>; |
| |
| multiclass RotateQuadBytesImm |
| { |
| def v16i8: ROTQMBYIVecInst<v16i8>; |
| def v8i16: ROTQMBYIVecInst<v8i16>; |
| def v4i32: ROTQMBYIVecInst<v4i32>; |
| def v2i64: ROTQMBYIVecInst<v2i64>; |
| |
| def r128: ROTQMBYIRegInst<GPRC, rotNeg7imm, i32, uimm7>; |
| def r64: ROTQMBYIRegInst<R64C, rotNeg7imm, i32, uimm7>; |
| |
| def r128_zext_r8: ROTQMBYIZExtInst<R8C, rotNeg7imm, uimm7>; |
| def r128_zext_r16: ROTQMBYIZExtInst<R16C, rotNeg7imm, uimm7>; |
| def r128_zext_r32: ROTQMBYIZExtInst<R32C, rotNeg7imm, uimm7>; |
| def r128_zext_r64: ROTQMBYIZExtInst<R64C, rotNeg7imm, uimm7>; |
| } |
| |
| defm ROTQMBYI : RotateQuadBytesImm; |
| |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| // Rotate right and mask by bit count |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| |
| class ROTQMBYBIInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm<0b10110011100, OOL, IOL, "rotqmbybi\t$rT, $rA, $rB", |
| RotateShift, pattern>; |
| |
| class ROTQMBYBIVecInst<ValueType vectype>: |
| ROTQMBYBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), |
| [/* no pattern, */]>; |
| |
| multiclass RotateMaskQuadByBitCount |
| { |
| def v16i8: ROTQMBYBIVecInst<v16i8>; |
| def v8i16: ROTQMBYBIVecInst<v8i16>; |
| def v4i32: ROTQMBYBIVecInst<v4i32>; |
| def v2i64: ROTQMBYBIVecInst<v2i64>; |
| } |
| |
| defm ROTQMBYBI: RotateMaskQuadByBitCount; |
| |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| // Rotate quad and mask by bits |
| // Note that the rotate amount has to be negated |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| |
| class ROTQMBIInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm<0b10011011100, OOL, IOL, "rotqmbi\t$rT, $rA, $rB", |
| RotateShift, pattern>; |
| |
| class ROTQMBIVecInst<ValueType vectype>: |
| ROTQMBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), |
| [/* no pattern */]>; |
| |
| class ROTQMBIRegInst<RegisterClass rclass>: |
| ROTQMBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB), |
| [/* no pattern */]>; |
| |
| multiclass RotateMaskQuadByBits |
| { |
| def v16i8: ROTQMBIVecInst<v16i8>; |
| def v8i16: ROTQMBIVecInst<v8i16>; |
| def v4i32: ROTQMBIVecInst<v4i32>; |
| def v2i64: ROTQMBIVecInst<v2i64>; |
| |
| def r128: ROTQMBIRegInst<GPRC>; |
| def r64: ROTQMBIRegInst<R64C>; |
| } |
| |
| defm ROTQMBI: RotateMaskQuadByBits; |
| |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| // Rotate quad and mask by bits, immediate |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| |
| class ROTQMBIIInst<dag OOL, dag IOL, list<dag> pattern>: |
| RI7Form<0b10011111100, OOL, IOL, "rotqmbii\t$rT, $rA, $val", |
| RotateShift, pattern>; |
| |
| class ROTQMBIIVecInst<ValueType vectype>: |
| ROTQMBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val), |
| [/* no pattern */]>; |
| |
| class ROTQMBIIRegInst<RegisterClass rclass>: |
| ROTQMBIIInst<(outs rclass:$rT), (ins rclass:$rA, rotNeg7imm:$val), |
| [/* no pattern */]>; |
| |
| multiclass RotateMaskQuadByBitsImm |
| { |
| def v16i8: ROTQMBIIVecInst<v16i8>; |
| def v8i16: ROTQMBIIVecInst<v8i16>; |
| def v4i32: ROTQMBIIVecInst<v4i32>; |
| def v2i64: ROTQMBIIVecInst<v2i64>; |
| |
| def r128: ROTQMBIIRegInst<GPRC>; |
| def r64: ROTQMBIIRegInst<R64C>; |
| } |
| |
| defm ROTQMBII: RotateMaskQuadByBitsImm; |
| |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| |
| def ROTMAHv8i16: |
| RRForm<0b01111010000, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), |
| "rotmah\t$rT, $rA, $rB", RotateShift, |
| [/* see patterns below - $rB must be negated */]>; |
| |
| def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), R32C:$rB), |
| (ROTMAHv8i16 VECREG:$rA, (SFIr32 R32C:$rB, 0))>; |
| |
| def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), R16C:$rB), |
| (ROTMAHv8i16 VECREG:$rA, |
| (SFIr32 (XSHWr16 R16C:$rB), 0))>; |
| |
| def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), R8C:$rB), |
| (ROTMAHv8i16 VECREG:$rA, |
| (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>; |
| |
| def ROTMAHr16: |
| RRForm<0b01111010000, (outs R16C:$rT), (ins R16C:$rA, R32C:$rB), |
| "rotmah\t$rT, $rA, $rB", RotateShift, |
| [/* see patterns below - $rB must be negated */]>; |
| |
| def : Pat<(sra R16C:$rA, R32C:$rB), |
| (ROTMAHr16 R16C:$rA, (SFIr32 R32C:$rB, 0))>; |
| |
| def : Pat<(sra R16C:$rA, R16C:$rB), |
| (ROTMAHr16 R16C:$rA, |
| (SFIr32 (XSHWr16 R16C:$rB), 0))>; |
| |
| def : Pat<(sra R16C:$rA, R8C:$rB), |
| (ROTMAHr16 R16C:$rA, |
| (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>; |
| |
| def ROTMAHIv8i16: |
| RRForm<0b01111110000, (outs VECREG:$rT), (ins VECREG:$rA, rothNeg7imm:$val), |
| "rotmahi\t$rT, $rA, $val", RotateShift, |
| [(set (v8i16 VECREG:$rT), |
| (SPUvec_sra (v8i16 VECREG:$rA), (i32 uimm7:$val)))]>; |
| |
| def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), (i16 uimm7:$val)), |
| (ROTMAHIv8i16 (v8i16 VECREG:$rA), (TO_IMM32 uimm7:$val))>; |
| |
| def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), (i8 uimm7:$val)), |
| (ROTMAHIv8i16 (v8i16 VECREG:$rA), (TO_IMM32 uimm7:$val))>; |
| |
| def ROTMAHIr16: |
| RRForm<0b01111110000, (outs R16C:$rT), (ins R16C:$rA, rothNeg7imm_i16:$val), |
| "rotmahi\t$rT, $rA, $val", RotateShift, |
| [(set R16C:$rT, (sra R16C:$rA, (i16 uimm7:$val)))]>; |
| |
| def : Pat<(sra R16C:$rA, (i32 imm:$val)), |
| (ROTMAHIr16 R16C:$rA, (TO_IMM32 uimm7:$val))>; |
| |
| def : Pat<(sra R16C:$rA, (i8 imm:$val)), |
| (ROTMAHIr16 R16C:$rA, (TO_IMM32 uimm7:$val))>; |
| |
| def ROTMAv4i32: |
| RRForm<0b01011010000, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), |
| "rotma\t$rT, $rA, $rB", RotateShift, |
| [/* see patterns below - $rB must be negated */]>; |
| |
| def : Pat<(SPUvec_sra (v4i32 VECREG:$rA), R32C:$rB), |
| (ROTMAv4i32 VECREG:$rA, (SFIr32 R32C:$rB, 0))>; |
| |
| def : Pat<(SPUvec_sra (v4i32 VECREG:$rA), R16C:$rB), |
| (ROTMAv4i32 VECREG:$rA, |
| (SFIr32 (XSHWr16 R16C:$rB), 0))>; |
| |
| def : Pat<(SPUvec_sra (v4i32 VECREG:$rA), R8C:$rB), |
| (ROTMAv4i32 VECREG:$rA, |
| (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>; |
| |
| def ROTMAr32: |
| RRForm<0b01011010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), |
| "rotma\t$rT, $rA, $rB", RotateShift, |
| [/* see patterns below - $rB must be negated */]>; |
| |
| def : Pat<(sra R32C:$rA, R32C:$rB), |
| (ROTMAr32 R32C:$rA, (SFIr32 R32C:$rB, 0))>; |
| |
| def : Pat<(sra R32C:$rA, R16C:$rB), |
| (ROTMAr32 R32C:$rA, |
| (SFIr32 (XSHWr16 R16C:$rB), 0))>; |
| |
| def : Pat<(sra R32C:$rA, R8C:$rB), |
| (ROTMAr32 R32C:$rA, |
| (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>; |
| |
| class ROTMAIInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm<0b01011110000, OOL, IOL, |
| "rotmai\t$rT, $rA, $val", |
| RotateShift, pattern>; |
| |
| class ROTMAIVecInst<ValueType vectype, Operand intop, ValueType inttype>: |
| ROTMAIInst<(outs VECREG:$rT), (ins VECREG:$rA, intop:$val), |
| [(set (vectype VECREG:$rT), |
| (SPUvec_sra VECREG:$rA, (inttype uimm7:$val)))]>; |
| |
| class ROTMAIRegInst<RegisterClass rclass, Operand intop, ValueType inttype>: |
| ROTMAIInst<(outs rclass:$rT), (ins rclass:$rA, intop:$val), |
| [(set rclass:$rT, (sra rclass:$rA, (inttype uimm7:$val)))]>; |
| |
| multiclass RotateMaskAlgebraicImm { |
| def v2i64_i32 : ROTMAIVecInst<v2i64, rotNeg7imm, i32>; |
| def v4i32_i32 : ROTMAIVecInst<v4i32, rotNeg7imm, i32>; |
| def r64_i32 : ROTMAIRegInst<R64C, rotNeg7imm, i32>; |
| def r32_i32 : ROTMAIRegInst<R32C, rotNeg7imm, i32>; |
| } |
| |
| defm ROTMAI : RotateMaskAlgebraicImm; |
| |
| //===----------------------------------------------------------------------===// |
| // Branch and conditionals: |
| //===----------------------------------------------------------------------===// |
| |
| let isTerminator = 1, isBarrier = 1 in { |
| // Halt If Equal (r32 preferred slot only, no vector form) |
| def HEQr32: |
| RRForm_3<0b00011011110, (outs), (ins R32C:$rA, R32C:$rB), |
| "heq\t$rA, $rB", BranchResolv, |
| [/* no pattern to match */]>; |
| |
| def HEQIr32 : |
| RI10Form_2<0b11111110, (outs), (ins R32C:$rA, s10imm:$val), |
| "heqi\t$rA, $val", BranchResolv, |
| [/* no pattern to match */]>; |
| |
| // HGT/HGTI: These instructions use signed arithmetic for the comparison, |
| // contrasting with HLGT/HLGTI, which use unsigned comparison: |
| def HGTr32: |
| RRForm_3<0b00011010010, (outs), (ins R32C:$rA, R32C:$rB), |
| "hgt\t$rA, $rB", BranchResolv, |
| [/* no pattern to match */]>; |
| |
| def HGTIr32: |
| RI10Form_2<0b11110010, (outs), (ins R32C:$rA, s10imm:$val), |
| "hgti\t$rA, $val", BranchResolv, |
| [/* no pattern to match */]>; |
| |
| def HLGTr32: |
| RRForm_3<0b00011011010, (outs), (ins R32C:$rA, R32C:$rB), |
| "hlgt\t$rA, $rB", BranchResolv, |
| [/* no pattern to match */]>; |
| |
| def HLGTIr32: |
| RI10Form_2<0b11111010, (outs), (ins R32C:$rA, s10imm:$val), |
| "hlgti\t$rA, $val", BranchResolv, |
| [/* no pattern to match */]>; |
| } |
| |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| // Comparison operators for i8, i16 and i32: |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| |
| class CEQBInst<dag OOL, dag IOL, list<dag> pattern> : |
| RRForm<0b00001011110, OOL, IOL, "ceqb\t$rT, $rA, $rB", |
| ByteOp, pattern>; |
| |
| multiclass CmpEqualByte |
| { |
| def v16i8 : |
| CEQBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [(set (v16i8 VECREG:$rT), (seteq (v8i16 VECREG:$rA), |
| (v8i16 VECREG:$rB)))]>; |
| |
| def r8 : |
| CEQBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB), |
| [(set R8C:$rT, (seteq R8C:$rA, R8C:$rB))]>; |
| } |
| |
| class CEQBIInst<dag OOL, dag IOL, list<dag> pattern> : |
| RI10Form<0b01111110, OOL, IOL, "ceqbi\t$rT, $rA, $val", |
| ByteOp, pattern>; |
| |
| multiclass CmpEqualByteImm |
| { |
| def v16i8 : |
| CEQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val), |
| [(set (v16i8 VECREG:$rT), (seteq (v16i8 VECREG:$rA), |
| v16i8SExt8Imm:$val))]>; |
| def r8: |
| CEQBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val), |
| [(set R8C:$rT, (seteq R8C:$rA, immSExt8:$val))]>; |
| } |
| |
| class CEQHInst<dag OOL, dag IOL, list<dag> pattern> : |
| RRForm<0b00010011110, OOL, IOL, "ceqh\t$rT, $rA, $rB", |
| ByteOp, pattern>; |
| |
| multiclass CmpEqualHalfword |
| { |
| def v8i16 : CEQHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [(set (v8i16 VECREG:$rT), (seteq (v8i16 VECREG:$rA), |
| (v8i16 VECREG:$rB)))]>; |
| |
| def r16 : CEQHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB), |
| [(set R16C:$rT, (seteq R16C:$rA, R16C:$rB))]>; |
| } |
| |
| class CEQHIInst<dag OOL, dag IOL, list<dag> pattern> : |
| RI10Form<0b10111110, OOL, IOL, "ceqhi\t$rT, $rA, $val", |
| ByteOp, pattern>; |
| |
| multiclass CmpEqualHalfwordImm |
| { |
| def v8i16 : CEQHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), |
| [(set (v8i16 VECREG:$rT), |
| (seteq (v8i16 VECREG:$rA), |
| (v8i16 v8i16SExt10Imm:$val)))]>; |
| def r16 : CEQHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val), |
| [(set R16C:$rT, (seteq R16C:$rA, i16ImmSExt10:$val))]>; |
| } |
| |
| class CEQInst<dag OOL, dag IOL, list<dag> pattern> : |
| RRForm<0b00000011110, OOL, IOL, "ceq\t$rT, $rA, $rB", |
| ByteOp, pattern>; |
| |
| multiclass CmpEqualWord |
| { |
| def v4i32 : CEQInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [(set (v4i32 VECREG:$rT), |
| (seteq (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>; |
| |
| def r32 : CEQInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB), |
| [(set R32C:$rT, (seteq R32C:$rA, R32C:$rB))]>; |
| } |
| |
| class CEQIInst<dag OOL, dag IOL, list<dag> pattern> : |
| RI10Form<0b00111110, OOL, IOL, "ceqi\t$rT, $rA, $val", |
| ByteOp, pattern>; |
| |
| multiclass CmpEqualWordImm |
| { |
| def v4i32 : CEQIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), |
| [(set (v4i32 VECREG:$rT), |
| (seteq (v4i32 VECREG:$rA), |
| (v4i32 v4i32SExt16Imm:$val)))]>; |
| |
| def r32: CEQIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val), |
| [(set R32C:$rT, (seteq R32C:$rA, i32ImmSExt10:$val))]>; |
| } |
| |
| class CGTBInst<dag OOL, dag IOL, list<dag> pattern> : |
| RRForm<0b00001010010, OOL, IOL, "cgtb\t$rT, $rA, $rB", |
| ByteOp, pattern>; |
| |
| multiclass CmpGtrByte |
| { |
| def v16i8 : |
| CGTBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [(set (v16i8 VECREG:$rT), (setgt (v8i16 VECREG:$rA), |
| (v8i16 VECREG:$rB)))]>; |
| |
| def r8 : |
| CGTBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB), |
| [(set R8C:$rT, (setgt R8C:$rA, R8C:$rB))]>; |
| } |
| |
| class CGTBIInst<dag OOL, dag IOL, list<dag> pattern> : |
| RI10Form<0b01110010, OOL, IOL, "cgtbi\t$rT, $rA, $val", |
| ByteOp, pattern>; |
| |
| multiclass CmpGtrByteImm |
| { |
| def v16i8 : |
| CGTBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val), |
| [(set (v16i8 VECREG:$rT), (setgt (v16i8 VECREG:$rA), |
| v16i8SExt8Imm:$val))]>; |
| def r8: |
| CGTBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val), |
| [(set R8C:$rT, (setgt R8C:$rA, immSExt8:$val))]>; |
| } |
| |
| class CGTHInst<dag OOL, dag IOL, list<dag> pattern> : |
| RRForm<0b00010010010, OOL, IOL, "cgth\t$rT, $rA, $rB", |
| ByteOp, pattern>; |
| |
| multiclass CmpGtrHalfword |
| { |
| def v8i16 : CGTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [(set (v8i16 VECREG:$rT), (setgt (v8i16 VECREG:$rA), |
| (v8i16 VECREG:$rB)))]>; |
| |
| def r16 : CGTHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB), |
| [(set R16C:$rT, (setgt R16C:$rA, R16C:$rB))]>; |
| } |
| |
| class CGTHIInst<dag OOL, dag IOL, list<dag> pattern> : |
| RI10Form<0b10110010, OOL, IOL, "cgthi\t$rT, $rA, $val", |
| ByteOp, pattern>; |
| |
| multiclass CmpGtrHalfwordImm |
| { |
| def v8i16 : CGTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), |
| [(set (v8i16 VECREG:$rT), |
| (setgt (v8i16 VECREG:$rA), |
| (v8i16 v8i16SExt10Imm:$val)))]>; |
| def r16 : CGTHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val), |
| [(set R16C:$rT, (setgt R16C:$rA, i16ImmSExt10:$val))]>; |
| } |
| |
| class CGTInst<dag OOL, dag IOL, list<dag> pattern> : |
| RRForm<0b00000010010, OOL, IOL, "cgt\t$rT, $rA, $rB", |
| ByteOp, pattern>; |
| |
| multiclass CmpGtrWord |
| { |
| def v4i32 : CGTInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [(set (v4i32 VECREG:$rT), |
| (setgt (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>; |
| |
| def r32 : CGTInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB), |
| [(set R32C:$rT, (setgt R32C:$rA, R32C:$rB))]>; |
| } |
| |
| class CGTIInst<dag OOL, dag IOL, list<dag> pattern> : |
| RI10Form<0b00110010, OOL, IOL, "cgti\t$rT, $rA, $val", |
| ByteOp, pattern>; |
| |
| multiclass CmpGtrWordImm |
| { |
| def v4i32 : CGTIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), |
| [(set (v4i32 VECREG:$rT), |
| (setgt (v4i32 VECREG:$rA), |
| (v4i32 v4i32SExt16Imm:$val)))]>; |
| |
| def r32: CGTIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val), |
| [(set R32C:$rT, (setgt R32C:$rA, i32ImmSExt10:$val))]>; |
| |
| // CGTIv4f32, CGTIf32: These are used in the f32 fdiv instruction sequence: |
| def v4f32: CGTIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), |
| [(set (v4i32 VECREG:$rT), |
| (setgt (v4i32 (bitconvert (v4f32 VECREG:$rA))), |
| (v4i32 v4i32SExt16Imm:$val)))]>; |
| |
| def f32: CGTIInst<(outs R32C:$rT), (ins R32FP:$rA, s10imm_i32:$val), |
| [/* no pattern */]>; |
| } |
| |
| class CLGTBInst<dag OOL, dag IOL, list<dag> pattern> : |
| RRForm<0b00001011010, OOL, IOL, "clgtb\t$rT, $rA, $rB", |
| ByteOp, pattern>; |
| |
| multiclass CmpLGtrByte |
| { |
| def v16i8 : |
| CLGTBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [(set (v16i8 VECREG:$rT), (setugt (v8i16 VECREG:$rA), |
| (v8i16 VECREG:$rB)))]>; |
| |
| def r8 : |
| CLGTBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB), |
| [(set R8C:$rT, (setugt R8C:$rA, R8C:$rB))]>; |
| } |
| |
| class CLGTBIInst<dag OOL, dag IOL, list<dag> pattern> : |
| RI10Form<0b01111010, OOL, IOL, "clgtbi\t$rT, $rA, $val", |
| ByteOp, pattern>; |
| |
| multiclass CmpLGtrByteImm |
| { |
| def v16i8 : |
| CLGTBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val), |
| [(set (v16i8 VECREG:$rT), (setugt (v16i8 VECREG:$rA), |
| v16i8SExt8Imm:$val))]>; |
| def r8: |
| CLGTBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val), |
| [(set R8C:$rT, (setugt R8C:$rA, immSExt8:$val))]>; |
| } |
| |
| class CLGTHInst<dag OOL, dag IOL, list<dag> pattern> : |
| RRForm<0b00010011010, OOL, IOL, "clgth\t$rT, $rA, $rB", |
| ByteOp, pattern>; |
| |
| multiclass CmpLGtrHalfword |
| { |
| def v8i16 : CLGTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [(set (v8i16 VECREG:$rT), (setugt (v8i16 VECREG:$rA), |
| (v8i16 VECREG:$rB)))]>; |
| |
| def r16 : CLGTHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB), |
| [(set R16C:$rT, (setugt R16C:$rA, R16C:$rB))]>; |
| } |
| |
| class CLGTHIInst<dag OOL, dag IOL, list<dag> pattern> : |
| RI10Form<0b10111010, OOL, IOL, "clgthi\t$rT, $rA, $val", |
| ByteOp, pattern>; |
| |
| multiclass CmpLGtrHalfwordImm |
| { |
| def v8i16 : CLGTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), |
| [(set (v8i16 VECREG:$rT), |
| (setugt (v8i16 VECREG:$rA), |
| (v8i16 v8i16SExt10Imm:$val)))]>; |
| def r16 : CLGTHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val), |
| [(set R16C:$rT, (setugt R16C:$rA, i16ImmSExt10:$val))]>; |
| } |
| |
| class CLGTInst<dag OOL, dag IOL, list<dag> pattern> : |
| RRForm<0b00000011010, OOL, IOL, "clgt\t$rT, $rA, $rB", |
| ByteOp, pattern>; |
| |
| multiclass CmpLGtrWord |
| { |
| def v4i32 : CLGTInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [(set (v4i32 VECREG:$rT), |
| (setugt (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>; |
| |
| def r32 : CLGTInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB), |
| [(set R32C:$rT, (setugt R32C:$rA, R32C:$rB))]>; |
| } |
| |
| class CLGTIInst<dag OOL, dag IOL, list<dag> pattern> : |
| RI10Form<0b00111010, OOL, IOL, "clgti\t$rT, $rA, $val", |
| ByteOp, pattern>; |
| |
| multiclass CmpLGtrWordImm |
| { |
| def v4i32 : CLGTIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), |
| [(set (v4i32 VECREG:$rT), |
| (setugt (v4i32 VECREG:$rA), |
| (v4i32 v4i32SExt16Imm:$val)))]>; |
| |
| def r32: CLGTIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val), |
| [(set R32C:$rT, (setugt R32C:$rA, i32ImmSExt10:$val))]>; |
| } |
| |
| defm CEQB : CmpEqualByte; |
| defm CEQBI : CmpEqualByteImm; |
| defm CEQH : CmpEqualHalfword; |
| defm CEQHI : CmpEqualHalfwordImm; |
| defm CEQ : CmpEqualWord; |
| defm CEQI : CmpEqualWordImm; |
| defm CGTB : CmpGtrByte; |
| defm CGTBI : CmpGtrByteImm; |
| defm CGTH : CmpGtrHalfword; |
| defm CGTHI : CmpGtrHalfwordImm; |
| defm CGT : CmpGtrWord; |
| defm CGTI : CmpGtrWordImm; |
| defm CLGTB : CmpLGtrByte; |
| defm CLGTBI : CmpLGtrByteImm; |
| defm CLGTH : CmpLGtrHalfword; |
| defm CLGTHI : CmpLGtrHalfwordImm; |
| defm CLGT : CmpLGtrWord; |
| defm CLGTI : CmpLGtrWordImm; |
| |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| // For SETCC primitives not supported above (setlt, setle, setge, etc.) |
| // define a pattern to generate the right code, as a binary operator |
| // (in a manner of speaking.) |
| // |
| // Notes: |
| // 1. This only matches the setcc set of conditionals. Special pattern |
| // matching is used for select conditionals. |
| // |
| // 2. The "DAG" versions of these classes is almost exclusively used for |
| // i64 comparisons. See the tblgen fundamentals documentation for what |
| // ".ResultInstrs[0]" means; see TargetSelectionDAG.td and the Pattern |
| // class for where ResultInstrs originates. |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| |
| class SETCCNegCondReg<PatFrag cond, RegisterClass rclass, ValueType inttype, |
| SPUInstr xorinst, SPUInstr cmpare>: |
| Pat<(cond rclass:$rA, rclass:$rB), |
| (xorinst (cmpare rclass:$rA, rclass:$rB), (inttype -1))>; |
| |
| class SETCCNegCondImm<PatFrag cond, RegisterClass rclass, ValueType inttype, |
| PatLeaf immpred, SPUInstr xorinst, SPUInstr cmpare>: |
| Pat<(cond rclass:$rA, (inttype immpred:$imm)), |
| (xorinst (cmpare rclass:$rA, (inttype immpred:$imm)), (inttype -1))>; |
| |
| def : SETCCNegCondReg<setne, R8C, i8, XORBIr8, CEQBr8>; |
| def : SETCCNegCondImm<setne, R8C, i8, immSExt8, XORBIr8, CEQBIr8>; |
| |
| def : SETCCNegCondReg<setne, R16C, i16, XORHIr16, CEQHr16>; |
| def : SETCCNegCondImm<setne, R16C, i16, i16ImmSExt10, XORHIr16, CEQHIr16>; |
| |
| def : SETCCNegCondReg<setne, R32C, i32, XORIr32, CEQr32>; |
| def : SETCCNegCondImm<setne, R32C, i32, i32ImmSExt10, XORIr32, CEQIr32>; |
| |
| class SETCCBinOpReg<PatFrag cond, RegisterClass rclass, |
| SPUInstr binop, SPUInstr cmpOp1, SPUInstr cmpOp2>: |
| Pat<(cond rclass:$rA, rclass:$rB), |
| (binop (cmpOp1 rclass:$rA, rclass:$rB), |
| (cmpOp2 rclass:$rA, rclass:$rB))>; |
| |
| class SETCCBinOpImm<PatFrag cond, RegisterClass rclass, PatLeaf immpred, |
| ValueType immtype, |
| SPUInstr binop, SPUInstr cmpOp1, SPUInstr cmpOp2>: |
| Pat<(cond rclass:$rA, (immtype immpred:$imm)), |
| (binop (cmpOp1 rclass:$rA, (immtype immpred:$imm)), |
| (cmpOp2 rclass:$rA, (immtype immpred:$imm)))>; |
| |
| def : SETCCBinOpReg<setge, R8C, ORr8, CGTBr8, CEQBr8>; |
| def : SETCCBinOpImm<setge, R8C, immSExt8, i8, ORr8, CGTBIr8, CEQBIr8>; |
| def : SETCCBinOpReg<setlt, R8C, NORr8, CGTBr8, CEQBr8>; |
| def : SETCCBinOpImm<setlt, R8C, immSExt8, i8, NORr8, CGTBIr8, CEQBIr8>; |
| def : Pat<(setle R8C:$rA, R8C:$rB), |
| (XORBIr8 (CGTBr8 R8C:$rA, R8C:$rB), 0xff)>; |
| def : Pat<(setle R8C:$rA, immU8:$imm), |
| (XORBIr8 (CGTBIr8 R8C:$rA, immU8:$imm), 0xff)>; |
| |
| def : SETCCBinOpReg<setge, R16C, ORr16, CGTHr16, CEQHr16>; |
| def : SETCCBinOpImm<setge, R16C, i16ImmSExt10, i16, |
| ORr16, CGTHIr16, CEQHIr16>; |
| def : SETCCBinOpReg<setlt, R16C, NORr16, CGTHr16, CEQHr16>; |
| def : SETCCBinOpImm<setlt, R16C, i16ImmSExt10, i16, NORr16, CGTHIr16, CEQHIr16>; |
| def : Pat<(setle R16C:$rA, R16C:$rB), |
| (XORHIr16 (CGTHr16 R16C:$rA, R16C:$rB), 0xffff)>; |
| def : Pat<(setle R16C:$rA, i16ImmSExt10:$imm), |
| (XORHIr16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$imm), 0xffff)>; |
| |
| def : SETCCBinOpReg<setge, R32C, ORr32, CGTr32, CEQr32>; |
| def : SETCCBinOpImm<setge, R32C, i32ImmSExt10, i32, |
| ORr32, CGTIr32, CEQIr32>; |
| def : SETCCBinOpReg<setlt, R32C, NORr32, CGTr32, CEQr32>; |
| def : SETCCBinOpImm<setlt, R32C, i32ImmSExt10, i32, NORr32, CGTIr32, CEQIr32>; |
| def : Pat<(setle R32C:$rA, R32C:$rB), |
| (XORIr32 (CGTr32 R32C:$rA, R32C:$rB), 0xffffffff)>; |
| def : Pat<(setle R32C:$rA, i32ImmSExt10:$imm), |
| (XORIr32 (CGTIr32 R32C:$rA, i32ImmSExt10:$imm), 0xffffffff)>; |
| |
| def : SETCCBinOpReg<setuge, R8C, ORr8, CLGTBr8, CEQBr8>; |
| def : SETCCBinOpImm<setuge, R8C, immSExt8, i8, ORr8, CLGTBIr8, CEQBIr8>; |
| def : SETCCBinOpReg<setult, R8C, NORr8, CLGTBr8, CEQBr8>; |
| def : SETCCBinOpImm<setult, R8C, immSExt8, i8, NORr8, CLGTBIr8, CEQBIr8>; |
| def : Pat<(setule R8C:$rA, R8C:$rB), |
| (XORBIr8 (CLGTBr8 R8C:$rA, R8C:$rB), 0xff)>; |
| def : Pat<(setule R8C:$rA, immU8:$imm), |
| (XORBIr8 (CLGTBIr8 R8C:$rA, immU8:$imm), 0xff)>; |
| |
| def : SETCCBinOpReg<setuge, R16C, ORr16, CLGTHr16, CEQHr16>; |
| def : SETCCBinOpImm<setuge, R16C, i16ImmSExt10, i16, |
| ORr16, CLGTHIr16, CEQHIr16>; |
| def : SETCCBinOpReg<setult, R16C, NORr16, CLGTHr16, CEQHr16>; |
| def : SETCCBinOpImm<setult, R16C, i16ImmSExt10, i16, NORr16, |
| CLGTHIr16, CEQHIr16>; |
| def : Pat<(setule R16C:$rA, R16C:$rB), |
| (XORHIr16 (CLGTHr16 R16C:$rA, R16C:$rB), 0xffff)>; |
| def : Pat<(setule R16C:$rA, i16ImmSExt10:$imm), |
| (XORHIr16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$imm), 0xffff)>; |
| |
| def : SETCCBinOpReg<setuge, R32C, ORr32, CLGTr32, CEQr32>; |
| def : SETCCBinOpImm<setuge, R32C, i32ImmSExt10, i32, |
| ORr32, CLGTIr32, CEQIr32>; |
| def : SETCCBinOpReg<setult, R32C, NORr32, CLGTr32, CEQr32>; |
| def : SETCCBinOpImm<setult, R32C, i32ImmSExt10, i32, NORr32, CLGTIr32, CEQIr32>; |
| def : Pat<(setule R32C:$rA, R32C:$rB), |
| (XORIr32 (CLGTr32 R32C:$rA, R32C:$rB), 0xffffffff)>; |
| def : Pat<(setule R32C:$rA, i32ImmSExt10:$imm), |
| (XORIr32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$imm), 0xffffffff)>; |
| |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| // select conditional patterns: |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| |
| class SELECTNegCondReg<PatFrag cond, RegisterClass rclass, ValueType inttype, |
| SPUInstr selinstr, SPUInstr cmpare>: |
| Pat<(select (inttype (cond rclass:$rA, rclass:$rB)), |
| rclass:$rTrue, rclass:$rFalse), |
| (selinstr rclass:$rTrue, rclass:$rFalse, |
| (cmpare rclass:$rA, rclass:$rB))>; |
| |
| class SELECTNegCondImm<PatFrag cond, RegisterClass rclass, ValueType inttype, |
| PatLeaf immpred, SPUInstr selinstr, SPUInstr cmpare>: |
| Pat<(select (inttype (cond rclass:$rA, immpred:$imm)), |
| rclass:$rTrue, rclass:$rFalse), |
| (selinstr rclass:$rTrue, rclass:$rFalse, |
| (cmpare rclass:$rA, immpred:$imm))>; |
| |
| def : SELECTNegCondReg<setne, R8C, i8, SELBr8, CEQBr8>; |
| def : SELECTNegCondImm<setne, R8C, i8, immSExt8, SELBr8, CEQBIr8>; |
| def : SELECTNegCondReg<setle, R8C, i8, SELBr8, CGTBr8>; |
| def : SELECTNegCondImm<setle, R8C, i8, immSExt8, SELBr8, CGTBr8>; |
| def : SELECTNegCondReg<setule, R8C, i8, SELBr8, CLGTBr8>; |
| def : SELECTNegCondImm<setule, R8C, i8, immU8, SELBr8, CLGTBIr8>; |
| |
| def : SELECTNegCondReg<setne, R16C, i16, SELBr16, CEQHr16>; |
| def : SELECTNegCondImm<setne, R16C, i16, i16ImmSExt10, SELBr16, CEQHIr16>; |
| def : SELECTNegCondReg<setle, R16C, i16, SELBr16, CGTHr16>; |
| def : SELECTNegCondImm<setle, R16C, i16, i16ImmSExt10, SELBr16, CGTHIr16>; |
| def : SELECTNegCondReg<setule, R16C, i16, SELBr16, CLGTHr16>; |
| def : SELECTNegCondImm<setule, R16C, i16, i16ImmSExt10, SELBr16, CLGTHIr16>; |
| |
| def : SELECTNegCondReg<setne, R32C, i32, SELBr32, CEQr32>; |
| def : SELECTNegCondImm<setne, R32C, i32, i32ImmSExt10, SELBr32, CEQIr32>; |
| def : SELECTNegCondReg<setle, R32C, i32, SELBr32, CGTr32>; |
| def : SELECTNegCondImm<setle, R32C, i32, i32ImmSExt10, SELBr32, CGTIr32>; |
| def : SELECTNegCondReg<setule, R32C, i32, SELBr32, CLGTr32>; |
| def : SELECTNegCondImm<setule, R32C, i32, i32ImmSExt10, SELBr32, CLGTIr32>; |
| |
| class SELECTBinOpReg<PatFrag cond, RegisterClass rclass, ValueType inttype, |
| SPUInstr selinstr, SPUInstr binop, SPUInstr cmpOp1, |
| SPUInstr cmpOp2>: |
| Pat<(select (inttype (cond rclass:$rA, rclass:$rB)), |
| rclass:$rTrue, rclass:$rFalse), |
| (selinstr rclass:$rFalse, rclass:$rTrue, |
| (binop (cmpOp1 rclass:$rA, rclass:$rB), |
| (cmpOp2 rclass:$rA, rclass:$rB)))>; |
| |
| class SELECTBinOpImm<PatFrag cond, RegisterClass rclass, PatLeaf immpred, |
| ValueType inttype, |
| SPUInstr selinstr, SPUInstr binop, SPUInstr cmpOp1, |
| SPUInstr cmpOp2>: |
| Pat<(select (inttype (cond rclass:$rA, (inttype immpred:$imm))), |
| rclass:$rTrue, rclass:$rFalse), |
| (selinstr rclass:$rFalse, rclass:$rTrue, |
| (binop (cmpOp1 rclass:$rA, (inttype immpred:$imm)), |
| (cmpOp2 rclass:$rA, (inttype immpred:$imm))))>; |
| |
| def : SELECTBinOpReg<setge, R8C, i8, SELBr8, ORr8, CGTBr8, CEQBr8>; |
| def : SELECTBinOpImm<setge, R8C, immSExt8, i8, |
| SELBr8, ORr8, CGTBIr8, CEQBIr8>; |
| |
| def : SELECTBinOpReg<setge, R16C, i16, SELBr16, ORr16, CGTHr16, CEQHr16>; |
| def : SELECTBinOpImm<setge, R16C, i16ImmSExt10, i16, |
| SELBr16, ORr16, CGTHIr16, CEQHIr16>; |
| |
| def : SELECTBinOpReg<setge, R32C, i32, SELBr32, ORr32, CGTr32, CEQr32>; |
| def : SELECTBinOpImm<setge, R32C, i32ImmSExt10, i32, |
| SELBr32, ORr32, CGTIr32, CEQIr32>; |
| |
| def : SELECTBinOpReg<setuge, R8C, i8, SELBr8, ORr8, CLGTBr8, CEQBr8>; |
| def : SELECTBinOpImm<setuge, R8C, immSExt8, i8, |
| SELBr8, ORr8, CLGTBIr8, CEQBIr8>; |
| |
| def : SELECTBinOpReg<setuge, R16C, i16, SELBr16, ORr16, CLGTHr16, CEQHr16>; |
| def : SELECTBinOpImm<setuge, R16C, i16ImmUns10, i16, |
| SELBr16, ORr16, CLGTHIr16, CEQHIr16>; |
| |
| def : SELECTBinOpReg<setuge, R32C, i32, SELBr32, ORr32, CLGTr32, CEQr32>; |
| def : SELECTBinOpImm<setuge, R32C, i32ImmUns10, i32, |
| SELBr32, ORr32, CLGTIr32, CEQIr32>; |
| |
| //-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ |
| |
| let isCall = 1, |
| // All calls clobber the non-callee-saved registers: |
| Defs = [R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, |
| R10,R11,R12,R13,R14,R15,R16,R17,R18,R19, |
| R20,R21,R22,R23,R24,R25,R26,R27,R28,R29, |
| R30,R31,R32,R33,R34,R35,R36,R37,R38,R39, |
| R40,R41,R42,R43,R44,R45,R46,R47,R48,R49, |
| R50,R51,R52,R53,R54,R55,R56,R57,R58,R59, |
| R60,R61,R62,R63,R64,R65,R66,R67,R68,R69, |
| R70,R71,R72,R73,R74,R75,R76,R77,R78,R79], |
| // All of these instructions use $lr (aka $0) |
| Uses = [R0] in { |
| // Branch relative and set link: Used if we actually know that the target |
| // is within [-32768, 32767] bytes of the target |
| def BRSL: |
| BranchSetLink<0b011001100, (outs), (ins relcalltarget:$func, variable_ops), |
| "brsl\t$$lr, $func", |
| [(SPUcall (SPUpcrel tglobaladdr:$func, 0))]>; |
| |
| // Branch absolute and set link: Used if we actually know that the target |
| // is an absolute address |
| def BRASL: |
| BranchSetLink<0b011001100, (outs), (ins calltarget:$func, variable_ops), |
| "brasl\t$$lr, $func", |
| [(SPUcall (SPUaform tglobaladdr:$func, 0))]>; |
| |
| // Branch indirect and set link if external data. These instructions are not |
| // actually generated, matched by an intrinsic: |
| def BISLED_00: BISLEDForm<0b11, "bisled\t$$lr, $func", [/* empty pattern */]>; |
| def BISLED_E0: BISLEDForm<0b10, "bisled\t$$lr, $func", [/* empty pattern */]>; |
| def BISLED_0D: BISLEDForm<0b01, "bisled\t$$lr, $func", [/* empty pattern */]>; |
| def BISLED_ED: BISLEDForm<0b00, "bisled\t$$lr, $func", [/* empty pattern */]>; |
| |
| // Branch indirect and set link. This is the "X-form" address version of a |
| // function call |
| def BISL: |
| BIForm<0b10010101100, "bisl\t$$lr, $func", [(SPUcall R32C:$func)]>; |
| } |
| |
| // Support calls to external symbols: |
| def : Pat<(SPUcall (SPUpcrel texternalsym:$func, 0)), |
| (BRSL texternalsym:$func)>; |
| |
| def : Pat<(SPUcall (SPUaform texternalsym:$func, 0)), |
| (BRASL texternalsym:$func)>; |
| |
| // Unconditional branches: |
| let isBranch = 1, isTerminator = 1, hasCtrlDep = 1 in { |
| let isBarrier = 1 in { |
| def BR : |
| UncondBranch<0b001001100, (outs), (ins brtarget:$dest), |
| "br\t$dest", |
| [(br bb:$dest)]>; |
| |
| // Unconditional, absolute address branch |
| def BRA: |
| UncondBranch<0b001100000, (outs), (ins brtarget:$dest), |
| "bra\t$dest", |
| [/* no pattern */]>; |
| |
| // Indirect branch |
| def BI: |
| BIForm<0b00010101100, "bi\t$func", [(brind R32C:$func)]>; |
| } |
| |
| // Conditional branches: |
| class BRNZInst<dag IOL, list<dag> pattern>: |
| RI16Form<0b010000100, (outs), IOL, "brnz\t$rCond,$dest", |
| BranchResolv, pattern>; |
| |
| class BRNZRegInst<RegisterClass rclass>: |
| BRNZInst<(ins rclass:$rCond, brtarget:$dest), |
| [(brcond rclass:$rCond, bb:$dest)]>; |
| |
| class BRNZVecInst<ValueType vectype>: |
| BRNZInst<(ins VECREG:$rCond, brtarget:$dest), |
| [(brcond (vectype VECREG:$rCond), bb:$dest)]>; |
| |
| multiclass BranchNotZero { |
| def v4i32 : BRNZVecInst<v4i32>; |
| def r32 : BRNZRegInst<R32C>; |
| } |
| |
| defm BRNZ : BranchNotZero; |
| |
| class BRZInst<dag IOL, list<dag> pattern>: |
| RI16Form<0b000000100, (outs), IOL, "brz\t$rT,$dest", |
| BranchResolv, pattern>; |
| |
| class BRZRegInst<RegisterClass rclass>: |
| BRZInst<(ins rclass:$rT, brtarget:$dest), [/* no pattern */]>; |
| |
| class BRZVecInst<ValueType vectype>: |
| BRZInst<(ins VECREG:$rT, brtarget:$dest), [/* no pattern */]>; |
| |
| multiclass BranchZero { |
| def v4i32: BRZVecInst<v4i32>; |
| def r32: BRZRegInst<R32C>; |
| } |
| |
| defm BRZ: BranchZero; |
| |
| // Note: LLVM doesn't do branch conditional, indirect. Otherwise these would |
| // be useful: |
| /* |
| class BINZInst<dag IOL, list<dag> pattern>: |
| BICondForm<0b10010100100, (outs), IOL, "binz\t$rA, $dest", pattern>; |
| |
| class BINZRegInst<RegisterClass rclass>: |
| BINZInst<(ins rclass:$rA, brtarget:$dest), |
| [(brcond rclass:$rA, R32C:$dest)]>; |
| |
| class BINZVecInst<ValueType vectype>: |
| BINZInst<(ins VECREG:$rA, R32C:$dest), |
| [(brcond (vectype VECREG:$rA), R32C:$dest)]>; |
| |
| multiclass BranchNotZeroIndirect { |
| def v4i32: BINZVecInst<v4i32>; |
| def r32: BINZRegInst<R32C>; |
| } |
| |
| defm BINZ: BranchNotZeroIndirect; |
| |
| class BIZInst<dag IOL, list<dag> pattern>: |
| BICondForm<0b00010100100, (outs), IOL, "biz\t$rA, $func", pattern>; |
| |
| class BIZRegInst<RegisterClass rclass>: |
| BIZInst<(ins rclass:$rA, R32C:$func), [/* no pattern */]>; |
| |
| class BIZVecInst<ValueType vectype>: |
| BIZInst<(ins VECREG:$rA, R32C:$func), [/* no pattern */]>; |
| |
| multiclass BranchZeroIndirect { |
| def v4i32: BIZVecInst<v4i32>; |
| def r32: BIZRegInst<R32C>; |
| } |
| |
| defm BIZ: BranchZeroIndirect; |
| */ |
| |
| class BRHNZInst<dag IOL, list<dag> pattern>: |
| RI16Form<0b011000100, (outs), IOL, "brhnz\t$rCond,$dest", BranchResolv, |
| pattern>; |
| |
| class BRHNZRegInst<RegisterClass rclass>: |
| BRHNZInst<(ins rclass:$rCond, brtarget:$dest), |
| [(brcond rclass:$rCond, bb:$dest)]>; |
| |
| class BRHNZVecInst<ValueType vectype>: |
| BRHNZInst<(ins VECREG:$rCond, brtarget:$dest), [/* no pattern */]>; |
| |
| multiclass BranchNotZeroHalfword { |
| def v8i16: BRHNZVecInst<v8i16>; |
| def r16: BRHNZRegInst<R16C>; |
| } |
| |
| defm BRHNZ: BranchNotZeroHalfword; |
| |
| class BRHZInst<dag IOL, list<dag> pattern>: |
| RI16Form<0b001000100, (outs), IOL, "brhz\t$rT,$dest", BranchResolv, |
| pattern>; |
| |
| class BRHZRegInst<RegisterClass rclass>: |
| BRHZInst<(ins rclass:$rT, brtarget:$dest), [/* no pattern */]>; |
| |
| class BRHZVecInst<ValueType vectype>: |
| BRHZInst<(ins VECREG:$rT, brtarget:$dest), [/* no pattern */]>; |
| |
| multiclass BranchZeroHalfword { |
| def v8i16: BRHZVecInst<v8i16>; |
| def r16: BRHZRegInst<R16C>; |
| } |
| |
| defm BRHZ: BranchZeroHalfword; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // setcc and brcond patterns: |
| //===----------------------------------------------------------------------===// |
| |
| def : Pat<(brcond (i16 (seteq R16C:$rA, 0)), bb:$dest), |
| (BRHZr16 R16C:$rA, bb:$dest)>; |
| def : Pat<(brcond (i16 (setne R16C:$rA, 0)), bb:$dest), |
| (BRHNZr16 R16C:$rA, bb:$dest)>; |
| |
| def : Pat<(brcond (i32 (seteq R32C:$rA, 0)), bb:$dest), |
| (BRZr32 R32C:$rA, bb:$dest)>; |
| def : Pat<(brcond (i32 (setne R32C:$rA, 0)), bb:$dest), |
| (BRNZr32 R32C:$rA, bb:$dest)>; |
| |
| multiclass BranchCondEQ<PatFrag cond, SPUInstr brinst16, SPUInstr brinst32> |
| { |
| def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest), |
| (brinst16 (CEQHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>; |
| |
| def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest), |
| (brinst16 (CEQHr16 R16C:$rA, R16:$rB), bb:$dest)>; |
| |
| def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest), |
| (brinst32 (CEQIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>; |
| |
| def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest), |
| (brinst32 (CEQr32 R32C:$rA, R32C:$rB), bb:$dest)>; |
| } |
| |
| defm BRCONDeq : BranchCondEQ<seteq, BRHNZr16, BRNZr32>; |
| defm BRCONDne : BranchCondEQ<setne, BRHZr16, BRZr32>; |
| |
| multiclass BranchCondLGT<PatFrag cond, SPUInstr brinst16, SPUInstr brinst32> |
| { |
| def r16imm : Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest), |
| (brinst16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>; |
| |
| def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest), |
| (brinst16 (CLGTHr16 R16C:$rA, R16:$rB), bb:$dest)>; |
| |
| def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest), |
| (brinst32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>; |
| |
| def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest), |
| (brinst32 (CLGTr32 R32C:$rA, R32C:$rB), bb:$dest)>; |
| } |
| |
| defm BRCONDugt : BranchCondLGT<setugt, BRHNZr16, BRNZr32>; |
| defm BRCONDule : BranchCondLGT<setule, BRHZr16, BRZr32>; |
| |
| multiclass BranchCondLGTEQ<PatFrag cond, SPUInstr orinst16, SPUInstr brinst16, |
| SPUInstr orinst32, SPUInstr brinst32> |
| { |
| def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest), |
| (brinst16 (orinst16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$val), |
| (CEQHIr16 R16C:$rA, i16ImmSExt10:$val)), |
| bb:$dest)>; |
| |
| def r16: Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest), |
| (brinst16 (orinst16 (CLGTHr16 R16C:$rA, R16:$rB), |
| (CEQHr16 R16C:$rA, R16:$rB)), |
| bb:$dest)>; |
| |
| def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest), |
| (brinst32 (orinst32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$val), |
| (CEQIr32 R32C:$rA, i32ImmSExt10:$val)), |
| bb:$dest)>; |
| |
| def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest), |
| (brinst32 (orinst32 (CLGTr32 R32C:$rA, R32C:$rB), |
| (CEQr32 R32C:$rA, R32C:$rB)), |
| bb:$dest)>; |
| } |
| |
| defm BRCONDuge : BranchCondLGTEQ<setuge, ORr16, BRHNZr16, ORr32, BRNZr32>; |
| defm BRCONDult : BranchCondLGTEQ<setult, ORr16, BRHZr16, ORr32, BRZr32>; |
| |
| multiclass BranchCondGT<PatFrag cond, SPUInstr brinst16, SPUInstr brinst32> |
| { |
| def r16imm : Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest), |
| (brinst16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>; |
| |
| def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest), |
| (brinst16 (CGTHr16 R16C:$rA, R16:$rB), bb:$dest)>; |
| |
| def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest), |
| (brinst32 (CGTIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>; |
| |
| def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest), |
| (brinst32 (CGTr32 R32C:$rA, R32C:$rB), bb:$dest)>; |
| } |
| |
| defm BRCONDgt : BranchCondGT<setgt, BRHNZr16, BRNZr32>; |
| defm BRCONDle : BranchCondGT<setle, BRHZr16, BRZr32>; |
| |
| multiclass BranchCondGTEQ<PatFrag cond, SPUInstr orinst16, SPUInstr brinst16, |
| SPUInstr orinst32, SPUInstr brinst32> |
| { |
| def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest), |
| (brinst16 (orinst16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$val), |
| (CEQHIr16 R16C:$rA, i16ImmSExt10:$val)), |
| bb:$dest)>; |
| |
| def r16: Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest), |
| (brinst16 (orinst16 (CGTHr16 R16C:$rA, R16:$rB), |
| (CEQHr16 R16C:$rA, R16:$rB)), |
| bb:$dest)>; |
| |
| def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest), |
| (brinst32 (orinst32 (CGTIr32 R32C:$rA, i32ImmSExt10:$val), |
| (CEQIr32 R32C:$rA, i32ImmSExt10:$val)), |
| bb:$dest)>; |
| |
| def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest), |
| (brinst32 (orinst32 (CGTr32 R32C:$rA, R32C:$rB), |
| (CEQr32 R32C:$rA, R32C:$rB)), |
| bb:$dest)>; |
| } |
| |
| defm BRCONDge : BranchCondGTEQ<setge, ORr16, BRHNZr16, ORr32, BRNZr32>; |
| defm BRCONDlt : BranchCondGTEQ<setlt, ORr16, BRHZr16, ORr32, BRZr32>; |
| |
| let isTerminator = 1, isBarrier = 1 in { |
| let isReturn = 1 in { |
| def RET: |
| RETForm<"bi\t$$lr", [(retflag)]>; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Single precision floating point instructions |
| //===----------------------------------------------------------------------===// |
| |
| class FAInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm<0b01011000100, OOL, IOL, "fa\t$rT, $rA, $rB", |
| SPrecFP, pattern>; |
| |
| class FAVecInst<ValueType vectype>: |
| FAInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [(set (vectype VECREG:$rT), |
| (fadd (vectype VECREG:$rA), (vectype VECREG:$rB)))]>; |
| |
| multiclass SFPAdd |
| { |
| def v4f32: FAVecInst<v4f32>; |
| def v2f32: FAVecInst<v2f32>; |
| def f32: FAInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB), |
| [(set R32FP:$rT, (fadd R32FP:$rA, R32FP:$rB))]>; |
| } |
| |
| defm FA : SFPAdd; |
| |
| class FSInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm<0b01011000100, OOL, IOL, "fs\t$rT, $rA, $rB", |
| SPrecFP, pattern>; |
| |
| class FSVecInst<ValueType vectype>: |
| FSInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [(set (vectype VECREG:$rT), |
| (fsub (vectype VECREG:$rA), (vectype VECREG:$rB)))]>; |
| |
| multiclass SFPSub |
| { |
| def v4f32: FSVecInst<v4f32>; |
| def v2f32: FSVecInst<v2f32>; |
| def f32: FSInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB), |
| [(set R32FP:$rT, (fsub R32FP:$rA, R32FP:$rB))]>; |
| } |
| |
| defm FS : SFPSub; |
| |
| class FMInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm<0b01100011010, OOL, IOL, |
| "fm\t$rT, $rA, $rB", SPrecFP, |
| pattern>; |
| |
| class FMVecInst<ValueType type>: |
| FMInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| [(set (type VECREG:$rT), |
| (fmul (type VECREG:$rA), (type VECREG:$rB)))]>; |
| |
| multiclass SFPMul |
| { |
| def v4f32: FMVecInst<v4f32>; |
| def v2f32: FMVecInst<v2f32>; |
| def f32: FMInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB), |
| [(set R32FP:$rT, (fmul R32FP:$rA, R32FP:$rB))]>; |
| } |
| |
| defm FM : SFPMul; |
| |
| // Floating point multiply and add |
| // e.g. d = c + (a * b) |
| def FMAv4f32: |
| RRRForm<0b0111, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), |
| "fma\t$rT, $rA, $rB, $rC", SPrecFP, |
| [(set (v4f32 VECREG:$rT), |
| (fadd (v4f32 VECREG:$rC), |
| (fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB))))]>; |
| |
| def FMAf32: |
| RRRForm<0b0111, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC), |
| "fma\t$rT, $rA, $rB, $rC", SPrecFP, |
| [(set R32FP:$rT, (fadd R32FP:$rC, (fmul R32FP:$rA, R32FP:$rB)))]>; |
| |
| // FP multiply and subtract |
| // Subtracts value in rC from product |
| // res = a * b - c |
| def FMSv4f32 : |
| RRRForm<0b0111, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), |
| "fms\t$rT, $rA, $rB, $rC", SPrecFP, |
| [(set (v4f32 VECREG:$rT), |
| (fsub (fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB)), |
| (v4f32 VECREG:$rC)))]>; |
| |
| def FMSf32 : |
| RRRForm<0b0111, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC), |
| "fms\t$rT, $rA, $rB, $rC", SPrecFP, |
| [(set R32FP:$rT, |
| (fsub (fmul R32FP:$rA, R32FP:$rB), R32FP:$rC))]>; |
| |
| // Floating Negative Mulitply and Subtract |
| // Subtracts product from value in rC |
| // res = fneg(fms a b c) |
| // = - (a * b - c) |
| // = c - a * b |
| // NOTE: subtraction order |
| // fsub a b = a - b |
| // fs a b = b - a? |
| def FNMSf32 : |
| RRRForm<0b1101, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC), |
| "fnms\t$rT, $rA, $rB, $rC", SPrecFP, |
| [(set R32FP:$rT, (fsub R32FP:$rC, (fmul R32FP:$rA, R32FP:$rB)))]>; |
| |
| def FNMSv4f32 : |
| RRRForm<0b1101, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), |
| "fnms\t$rT, $rA, $rB, $rC", SPrecFP, |
| [(set (v4f32 VECREG:$rT), |
| (fsub (v4f32 VECREG:$rC), |
| (fmul (v4f32 VECREG:$rA), |
| (v4f32 VECREG:$rB))))]>; |
| |
| |
| |
| |
| // Floating point reciprocal estimate |
| |
| class FRESTInst<dag OOL, dag IOL>: |
| RRForm_1<0b00110111000, OOL, IOL, |
| "frest\t$rT, $rA", SPrecFP, |
| [/* no pattern */]>; |
| |
| def FRESTv4f32 : |
| FRESTInst<(outs VECREG:$rT), (ins VECREG:$rA)>; |
| |
| def FRESTf32 : |
| FRESTInst<(outs R32FP:$rT), (ins R32FP:$rA)>; |
| |
| // Floating point interpolate (used in conjunction with reciprocal estimate) |
| def FIv4f32 : |
| RRForm<0b00101011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| "fi\t$rT, $rA, $rB", SPrecFP, |
| [/* no pattern */]>; |
| |
| def FIf32 : |
| RRForm<0b00101011110, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB), |
| "fi\t$rT, $rA, $rB", SPrecFP, |
| [/* no pattern */]>; |
| |
| //-------------------------------------------------------------------------- |
| // Basic single precision floating point comparisons: |
| // |
| // Note: There is no support on SPU for single precision NaN. Consequently, |
| // ordered and unordered comparisons are the same. |
| //-------------------------------------------------------------------------- |
| |
| def FCEQf32 : |
| RRForm<0b01000011110, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB), |
| "fceq\t$rT, $rA, $rB", SPrecFP, |
| [(set R32C:$rT, (setueq R32FP:$rA, R32FP:$rB))]>; |
| |
| def : Pat<(setoeq R32FP:$rA, R32FP:$rB), |
| (FCEQf32 R32FP:$rA, R32FP:$rB)>; |
| |
| def FCMEQf32 : |
| RRForm<0b01010011110, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB), |
| "fcmeq\t$rT, $rA, $rB", SPrecFP, |
| [(set R32C:$rT, (setueq (fabs R32FP:$rA), (fabs R32FP:$rB)))]>; |
| |
| def : Pat<(setoeq (fabs R32FP:$rA), (fabs R32FP:$rB)), |
| (FCMEQf32 R32FP:$rA, R32FP:$rB)>; |
| |
| def FCGTf32 : |
| RRForm<0b01000011010, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB), |
| "fcgt\t$rT, $rA, $rB", SPrecFP, |
| [(set R32C:$rT, (setugt R32FP:$rA, R32FP:$rB))]>; |
| |
| def : Pat<(setugt R32FP:$rA, R32FP:$rB), |
| (FCGTf32 R32FP:$rA, R32FP:$rB)>; |
| |
| def FCMGTf32 : |
| RRForm<0b01010011010, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB), |
| "fcmgt\t$rT, $rA, $rB", SPrecFP, |
| [(set R32C:$rT, (setugt (fabs R32FP:$rA), (fabs R32FP:$rB)))]>; |
| |
| def : Pat<(setugt (fabs R32FP:$rA), (fabs R32FP:$rB)), |
| (FCMGTf32 R32FP:$rA, R32FP:$rB)>; |
| |
| //-------------------------------------------------------------------------- |
| // Single precision floating point comparisons and SETCC equivalents: |
| //-------------------------------------------------------------------------- |
| |
| def : SETCCNegCondReg<setune, R32FP, i32, XORIr32, FCEQf32>; |
| def : SETCCNegCondReg<setone, R32FP, i32, XORIr32, FCEQf32>; |
| |
| def : SETCCBinOpReg<setuge, R32FP, ORr32, FCGTf32, FCEQf32>; |
| def : SETCCBinOpReg<setoge, R32FP, ORr32, FCGTf32, FCEQf32>; |
| |
| def : SETCCBinOpReg<setult, R32FP, NORr32, FCGTf32, FCEQf32>; |
| def : SETCCBinOpReg<setolt, R32FP, NORr32, FCGTf32, FCEQf32>; |
| |
| def : Pat<(setule R32FP:$rA, R32FP:$rB), |
| (XORIr32 (FCGTf32 R32FP:$rA, R32FP:$rB), 0xffffffff)>; |
| def : Pat<(setole R32FP:$rA, R32FP:$rB), |
| (XORIr32 (FCGTf32 R32FP:$rA, R32FP:$rB), 0xffffffff)>; |
| |
| // FP Status and Control Register Write |
| // Why isn't rT a don't care in the ISA? |
| // Should we create a special RRForm_3 for this guy and zero out the rT? |
| def FSCRWf32 : |
| RRForm_1<0b01011101110, (outs R32FP:$rT), (ins R32FP:$rA), |
| "fscrwr\t$rA", SPrecFP, |
| [/* This instruction requires an intrinsic. Note: rT is unused. */]>; |
| |
| // FP Status and Control Register Read |
| def FSCRRf32 : |
| RRForm_2<0b01011101110, (outs R32FP:$rT), (ins), |
| "fscrrd\t$rT", SPrecFP, |
| [/* This instruction requires an intrinsic */]>; |
| |
| // llvm instruction space |
| // How do these map onto cell instructions? |
| // fdiv rA rB |
| // frest rC rB # c = 1/b (both lines) |
| // fi rC rB rC |
| // fm rD rA rC # d = a * 1/b |
| // fnms rB rD rB rA # b = - (d * b - a) --should == 0 in a perfect world |
| // fma rB rB rC rD # b = b * c + d |
| // = -(d *b -a) * c + d |
| // = a * c - c ( a *b *c - a) |
| |
| // fcopysign (???) |
| |
| // Library calls: |
| // These llvm instructions will actually map to library calls. |
| // All that's needed, then, is to check that the appropriate library is |
| // imported and do a brsl to the proper function name. |
| // frem # fmod(x, y): x - (x/y) * y |
| // (Note: fmod(double, double), fmodf(float,float) |
| // fsqrt? |
| // fsin? |
| // fcos? |
| // Unimplemented SPU instruction space |
| // floating reciprocal absolute square root estimate (frsqest) |
| |
| // The following are probably just intrinsics |
| // status and control register write |
| // status and control register read |
| |
| //-------------------------------------- |
| // Floating Point Conversions |
| // Signed conversions: |
| def CSiFv4f32: |
| CVTIntFPForm<0b0101101110, (outs VECREG:$rT), (ins VECREG:$rA), |
| "csflt\t$rT, $rA, 0", SPrecFP, |
| [(set (v4f32 VECREG:$rT), (sint_to_fp (v4i32 VECREG:$rA)))]>; |
| |
| // Convert signed integer to floating point |
| def CSiFf32 : |
| CVTIntFPForm<0b0101101110, (outs R32FP:$rT), (ins R32C:$rA), |
| "csflt\t$rT, $rA, 0", SPrecFP, |
| [(set R32FP:$rT, (sint_to_fp R32C:$rA))]>; |
| |
| // Convert unsigned into to float |
| def CUiFv4f32 : |
| CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA), |
| "cuflt\t$rT, $rA, 0", SPrecFP, |
| [(set (v4f32 VECREG:$rT), (uint_to_fp (v4i32 VECREG:$rA)))]>; |
| |
| def CUiFf32 : |
| CVTIntFPForm<0b1101101110, (outs R32FP:$rT), (ins R32C:$rA), |
| "cuflt\t$rT, $rA, 0", SPrecFP, |
| [(set R32FP:$rT, (uint_to_fp R32C:$rA))]>; |
| |
| // Convert float to unsigned int |
| // Assume that scale = 0 |
| |
| def CFUiv4f32 : |
| CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA), |
| "cfltu\t$rT, $rA, 0", SPrecFP, |
| [(set (v4i32 VECREG:$rT), (fp_to_uint (v4f32 VECREG:$rA)))]>; |
| |
| def CFUif32 : |
| CVTIntFPForm<0b1101101110, (outs R32C:$rT), (ins R32FP:$rA), |
| "cfltu\t$rT, $rA, 0", SPrecFP, |
| [(set R32C:$rT, (fp_to_uint R32FP:$rA))]>; |
| |
| // Convert float to signed int |
| // Assume that scale = 0 |
| |
| def CFSiv4f32 : |
| CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA), |
| "cflts\t$rT, $rA, 0", SPrecFP, |
| [(set (v4i32 VECREG:$rT), (fp_to_sint (v4f32 VECREG:$rA)))]>; |
| |
| def CFSif32 : |
| CVTIntFPForm<0b1101101110, (outs R32C:$rT), (ins R32FP:$rA), |
| "cflts\t$rT, $rA, 0", SPrecFP, |
| [(set R32C:$rT, (fp_to_sint R32FP:$rA))]>; |
| |
| //===----------------------------------------------------------------------==// |
| // Single<->Double precision conversions |
| //===----------------------------------------------------------------------==// |
| |
| // NOTE: We use "vec" name suffix here to avoid confusion (e.g. input is a |
| // v4f32, output is v2f64--which goes in the name?) |
| |
| // Floating point extend single to double |
| // NOTE: Not sure if passing in v4f32 to FESDvec is correct since it |
| // operates on two double-word slots (i.e. 1st and 3rd fp numbers |
| // are ignored). |
| def FESDvec : |
| RRForm_1<0b00011101110, (outs VECREG:$rT), (ins VECREG:$rA), |
| "fesd\t$rT, $rA", SPrecFP, |
| [/*(set (v2f64 VECREG:$rT), (fextend (v4f32 VECREG:$rA)))*/]>; |
| |
| def FESDf32 : |
| RRForm_1<0b00011101110, (outs R64FP:$rT), (ins R32FP:$rA), |
| "fesd\t$rT, $rA", SPrecFP, |
| [(set R64FP:$rT, (fextend R32FP:$rA))]>; |
| |
| // Floating point round double to single |
| //def FRDSvec : |
| // RRForm_1<0b10011101110, (outs VECREG:$rT), (ins VECREG:$rA), |
| // "frds\t$rT, $rA,", SPrecFP, |
| // [(set (v4f32 R32FP:$rT), (fround (v2f64 R64FP:$rA)))]>; |
| |
| def FRDSf64 : |
| RRForm_1<0b10011101110, (outs R32FP:$rT), (ins R64FP:$rA), |
| "frds\t$rT, $rA", SPrecFP, |
| [(set R32FP:$rT, (fround R64FP:$rA))]>; |
| |
| //ToDo include anyextend? |
| |
| //===----------------------------------------------------------------------==// |
| // Double precision floating point instructions |
| //===----------------------------------------------------------------------==// |
| def FAf64 : |
| RRForm<0b00110011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB), |
| "dfa\t$rT, $rA, $rB", DPrecFP, |
| [(set R64FP:$rT, (fadd R64FP:$rA, R64FP:$rB))]>; |
| |
| def FAv2f64 : |
| RRForm<0b00110011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| "dfa\t$rT, $rA, $rB", DPrecFP, |
| [(set (v2f64 VECREG:$rT), (fadd (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>; |
| |
| def FSf64 : |
| RRForm<0b10100011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB), |
| "dfs\t$rT, $rA, $rB", DPrecFP, |
| [(set R64FP:$rT, (fsub R64FP:$rA, R64FP:$rB))]>; |
| |
| def FSv2f64 : |
| RRForm<0b10100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| "dfs\t$rT, $rA, $rB", DPrecFP, |
| [(set (v2f64 VECREG:$rT), |
| (fsub (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>; |
| |
| def FMf64 : |
| RRForm<0b01100011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB), |
| "dfm\t$rT, $rA, $rB", DPrecFP, |
| [(set R64FP:$rT, (fmul R64FP:$rA, R64FP:$rB))]>; |
| |
| def FMv2f64: |
| RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), |
| "dfm\t$rT, $rA, $rB", DPrecFP, |
| [(set (v2f64 VECREG:$rT), |
| (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>; |
| |
| def FMAf64: |
| RRForm<0b00111010110, (outs R64FP:$rT), |
| (ins R64FP:$rA, R64FP:$rB, R64FP:$rC), |
| "dfma\t$rT, $rA, $rB", DPrecFP, |
| [(set R64FP:$rT, (fadd R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB)))]>, |
| RegConstraint<"$rC = $rT">, |
| NoEncode<"$rC">; |
| |
| def FMAv2f64: |
| RRForm<0b00111010110, (outs VECREG:$rT), |
| (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), |
| "dfma\t$rT, $rA, $rB", DPrecFP, |
| [(set (v2f64 VECREG:$rT), |
| (fadd (v2f64 VECREG:$rC), |
| (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB))))]>, |
| RegConstraint<"$rC = $rT">, |
| NoEncode<"$rC">; |
| |
| def FMSf64 : |
| RRForm<0b10111010110, (outs R64FP:$rT), |
| (ins R64FP:$rA, R64FP:$rB, R64FP:$rC), |
| "dfms\t$rT, $rA, $rB", DPrecFP, |
| [(set R64FP:$rT, (fsub (fmul R64FP:$rA, R64FP:$rB), R64FP:$rC))]>, |
| RegConstraint<"$rC = $rT">, |
| NoEncode<"$rC">; |
| |
| def FMSv2f64 : |
| RRForm<0b10111010110, (outs VECREG:$rT), |
| (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), |
| "dfms\t$rT, $rA, $rB", DPrecFP, |
| [(set (v2f64 VECREG:$rT), |
| (fsub (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)), |
| (v2f64 VECREG:$rC)))]>; |
| |
| // DFNMS: - (a * b - c) |
| // - (a * b) + c => c - (a * b) |
| |
| class DFNMSInst<dag OOL, dag IOL, list<dag> pattern>: |
| RRForm<0b01111010110, OOL, IOL, "dfnms\t$rT, $rA, $rB", |
| DPrecFP, pattern>, |
| RegConstraint<"$rC = $rT">, |
| NoEncode<"$rC">; |
| |
| class DFNMSVecInst<list<dag> pattern>: |
| DFNMSInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), |
| pattern>; |
| |
| class DFNMSRegInst<list<dag> pattern>: |
| DFNMSInst<(outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB, R64FP:$rC), |
| pattern>; |
| |
| multiclass DFMultiplySubtract |
| { |
| def v2f64 : DFNMSVecInst<[(set (v2f64 VECREG:$rT), |
| (fsub (v2f64 VECREG:$rC), |
| (fmul (v2f64 VECREG:$rA), |
| (v2f64 VECREG:$rB))))]>; |
| |
| def f64 : DFNMSRegInst<[(set R64FP:$rT, |
| (fsub R64FP:$rC, |
| (fmul R64FP:$rA, R64FP:$rB)))]>; |
| } |
| |
| defm DFNMS : DFMultiplySubtract; |
| |
| // - (a * b + c) |
| // - (a * b) - c |
| def FNMAf64 : |
| RRForm<0b11111010110, (outs R64FP:$rT), |
| (ins R64FP:$rA, R64FP:$rB, R64FP:$rC), |
| "dfnma\t$rT, $rA, $rB", DPrecFP, |
| [(set R64FP:$rT, (fneg (fadd R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB))))]>, |
| RegConstraint<"$rC = $rT">, |
| NoEncode<"$rC">; |
| |
| def FNMAv2f64 : |
| RRForm<0b11111010110, (outs VECREG:$rT), |
| (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), |
| "dfnma\t$rT, $rA, $rB", DPrecFP, |
| [(set (v2f64 VECREG:$rT), |
| (fneg (fadd (v2f64 VECREG:$rC), |
| (fmul (v2f64 VECREG:$rA), |
| (v2f64 VECREG:$rB)))))]>, |
| RegConstraint<"$rC = $rT">, |
| NoEncode<"$rC">; |
| |
| //===----------------------------------------------------------------------==// |
| // Floating point negation and absolute value |
| //===----------------------------------------------------------------------==// |
| |
| def : Pat<(fneg (v4f32 VECREG:$rA)), |
| (XORfnegvec (v4f32 VECREG:$rA), |
| (v4f32 (ILHUv4i32 0x8000)))>; |
| |
| def : Pat<(fneg R32FP:$rA), |
| (XORfneg32 R32FP:$rA, (ILHUr32 0x8000))>; |
| |
| // Floating point absolute value |
| // Note: f64 fabs is custom-selected. |
| |
| def : Pat<(fabs R32FP:$rA), |
| (ANDfabs32 R32FP:$rA, (IOHLr32 (ILHUr32 0x7fff), 0xffff))>; |
| |
| def : Pat<(fabs (v4f32 VECREG:$rA)), |
| (ANDfabsvec (v4f32 VECREG:$rA), |
| (IOHLv4i32 (ILHUv4i32 0x7fff), 0xffff))>; |
| |
| //===----------------------------------------------------------------------===// |
| // Hint for branch instructions: |
| //===----------------------------------------------------------------------===// |
| |
| /* def HBR : SPUInstr<(outs), (ins), "hbr\t" */ |
| |
| //===----------------------------------------------------------------------===// |
| // Execution, Load NOP (execute NOPs belong in even pipeline, load NOPs belong |
| // in the odd pipeline) |
| //===----------------------------------------------------------------------===// |
| |
| def ENOP : SPUInstr<(outs), (ins), "enop", ExecNOP> { |
| let Pattern = []; |
| |
| let Inst{0-10} = 0b10000000010; |
| let Inst{11-17} = 0; |
| let Inst{18-24} = 0; |
| let Inst{25-31} = 0; |
| } |
| |
| def LNOP : SPUInstr<(outs), (ins), "lnop", LoadNOP> { |
| let Pattern = []; |
| |
| let Inst{0-10} = 0b10000000000; |
| let Inst{11-17} = 0; |
| let Inst{18-24} = 0; |
| let Inst{25-31} = 0; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Bit conversions (type conversions between vector/packed types) |
| // NOTE: Promotions are handled using the XS* instructions. |
| //===----------------------------------------------------------------------===// |
| def : Pat<(v16i8 (bitconvert (v8i16 VECREG:$src))), (v16i8 VECREG:$src)>; |
| def : Pat<(v16i8 (bitconvert (v4i32 VECREG:$src))), (v16i8 VECREG:$src)>; |
| def : Pat<(v16i8 (bitconvert (v2i64 VECREG:$src))), (v16i8 VECREG:$src)>; |
| def : Pat<(v16i8 (bitconvert (v4f32 VECREG:$src))), (v16i8 VECREG:$src)>; |
| def : Pat<(v16i8 (bitconvert (v2f64 VECREG:$src))), (v16i8 VECREG:$src)>; |
| |
| def : Pat<(v8i16 (bitconvert (v16i8 VECREG:$src))), (v8i16 VECREG:$src)>; |
| def : Pat<(v8i16 (bitconvert (v4i32 VECREG:$src))), (v8i16 VECREG:$src)>; |
| def : Pat<(v8i16 (bitconvert (v2i64 VECREG:$src))), (v8i16 VECREG:$src)>; |
| def : Pat<(v8i16 (bitconvert (v4f32 VECREG:$src))), (v8i16 VECREG:$src)>; |
| def : Pat<(v8i16 (bitconvert (v2f64 VECREG:$src))), (v8i16 VECREG:$src)>; |
| |
| def : Pat<(v4i32 (bitconvert (v16i8 VECREG:$src))), (v4i32 VECREG:$src)>; |
| def : Pat<(v4i32 (bitconvert (v8i16 VECREG:$src))), (v4i32 VECREG:$src)>; |
| def : Pat<(v4i32 (bitconvert (v2i64 VECREG:$src))), (v4i32 VECREG:$src)>; |
| def : Pat<(v4i32 (bitconvert (v4f32 VECREG:$src))), (v4i32 VECREG:$src)>; |
| def : Pat<(v4i32 (bitconvert (v2f64 VECREG:$src))), (v4i32 VECREG:$src)>; |
| |
| def : Pat<(v2i64 (bitconvert (v16i8 VECREG:$src))), (v2i64 VECREG:$src)>; |
| def : Pat<(v2i64 (bitconvert (v8i16 VECREG:$src))), (v2i64 VECREG:$src)>; |
| def : Pat<(v2i64 (bitconvert (v4i32 VECREG:$src))), (v2i64 VECREG:$src)>; |
| def : Pat<(v2i64 (bitconvert (v4f32 VECREG:$src))), (v2i64 VECREG:$src)>; |
| def : Pat<(v2i64 (bitconvert (v2f64 VECREG:$src))), (v2i64 VECREG:$src)>; |
| |
| def : Pat<(v4f32 (bitconvert (v16i8 VECREG:$src))), (v4f32 VECREG:$src)>; |
| def : Pat<(v4f32 (bitconvert (v8i16 VECREG:$src))), (v4f32 VECREG:$src)>; |
| def : Pat<(v4f32 (bitconvert (v2i64 VECREG:$src))), (v4f32 VECREG:$src)>; |
| def : Pat<(v4f32 (bitconvert (v4i32 VECREG:$src))), (v4f32 VECREG:$src)>; |
| def : Pat<(v4f32 (bitconvert (v2f64 VECREG:$src))), (v4f32 VECREG:$src)>; |
| |
| def : Pat<(v2f64 (bitconvert (v16i8 VECREG:$src))), (v2f64 VECREG:$src)>; |
| def : Pat<(v2f64 (bitconvert (v8i16 VECREG:$src))), (v2f64 VECREG:$src)>; |
| def : Pat<(v2f64 (bitconvert (v4i32 VECREG:$src))), (v2f64 VECREG:$src)>; |
| def : Pat<(v2f64 (bitconvert (v2i64 VECREG:$src))), (v2f64 VECREG:$src)>; |
| def : Pat<(v2f64 (bitconvert (v4f32 VECREG:$src))), (v2f64 VECREG:$src)>; |
| |
| def : Pat<(i128 (bitconvert (v16i8 VECREG:$src))), |
| (ORi128_vec VECREG:$src)>; |
| def : Pat<(i128 (bitconvert (v8i16 VECREG:$src))), |
| (ORi128_vec VECREG:$src)>; |
| def : Pat<(i128 (bitconvert (v4i32 VECREG:$src))), |
| (ORi128_vec VECREG:$src)>; |
| def : Pat<(i128 (bitconvert (v2i64 VECREG:$src))), |
| (ORi128_vec VECREG:$src)>; |
| def : Pat<(i128 (bitconvert (v4f32 VECREG:$src))), |
| (ORi128_vec VECREG:$src)>; |
| def : Pat<(i128 (bitconvert (v2f64 VECREG:$src))), |
| (ORi128_vec VECREG:$src)>; |
| |
| def : Pat<(v16i8 (bitconvert (i128 GPRC:$src))), |
| (v16i8 (ORvec_i128 GPRC:$src))>; |
| def : Pat<(v8i16 (bitconvert (i128 GPRC:$src))), |
| (v8i16 (ORvec_i128 GPRC:$src))>; |
| def : Pat<(v4i32 (bitconvert (i128 GPRC:$src))), |
| (v4i32 (ORvec_i128 GPRC:$src))>; |
| def : Pat<(v2i64 (bitconvert (i128 GPRC:$src))), |
| (v2i64 (ORvec_i128 GPRC:$src))>; |
| def : Pat<(v4f32 (bitconvert (i128 GPRC:$src))), |
| (v4f32 (ORvec_i128 GPRC:$src))>; |
| def : Pat<(v2f64 (bitconvert (i128 GPRC:$src))), |
| (v2f64 (ORvec_i128 GPRC:$src))>; |
| |
| //===----------------------------------------------------------------------===// |
| // Instruction patterns: |
| //===----------------------------------------------------------------------===// |
| |
| // General 32-bit constants: |
| def : Pat<(i32 imm:$imm), |
| (IOHLr32 (ILHUr32 (HI16 imm:$imm)), (LO16 imm:$imm))>; |
| |
| // Single precision float constants: |
| def : Pat<(f32 fpimm:$imm), |
| (IOHLf32 (ILHUf32 (HI16_f32 fpimm:$imm)), (LO16_f32 fpimm:$imm))>; |
| |
| // General constant 32-bit vectors |
| def : Pat<(v4i32 v4i32Imm:$imm), |
| (IOHLv4i32 (v4i32 (ILHUv4i32 (HI16_vec v4i32Imm:$imm))), |
| (LO16_vec v4i32Imm:$imm))>; |
| |
| // 8-bit constants |
| def : Pat<(i8 imm:$imm), |
| (ILHr8 imm:$imm)>; |
| |
| //===----------------------------------------------------------------------===// |
| // Zero/Any/Sign extensions |
| //===----------------------------------------------------------------------===// |
| |
| // sext 8->32: Sign extend bytes to words |
| def : Pat<(sext_inreg R32C:$rSrc, i8), |
| (XSHWr32 (XSBHr32 R32C:$rSrc))>; |
| |
| def : Pat<(i32 (sext R8C:$rSrc)), |
| (XSHWr16 (XSBHr8 R8C:$rSrc))>; |
| |
| // sext 8->64: Sign extend bytes to double word |
| def : Pat<(sext_inreg R64C:$rSrc, i8), |
| (XSWDr64_inreg (XSHWr64 (XSBHr64 R64C:$rSrc)))>; |
| |
| def : Pat<(i64 (sext R8C:$rSrc)), |
| (XSWDr64 (XSHWr16 (XSBHr8 R8C:$rSrc)))>; |
| |
| // zext 8->16: Zero extend bytes to halfwords |
| def : Pat<(i16 (zext R8C:$rSrc)), |
| (ANDHIi8i16 R8C:$rSrc, 0xff)>; |
| |
| // zext 8->32: Zero extend bytes to words |
| def : Pat<(i32 (zext R8C:$rSrc)), |
| (ANDIi8i32 R8C:$rSrc, 0xff)>; |
| |
| // zext 8->64: Zero extend bytes to double words |
| def : Pat<(i64 (zext R8C:$rSrc)), |
| (ORi64_v2i64 (SELBv4i32 (ROTQMBYv4i32 |
| (ORv4i32_i32 (ANDIi8i32 R8C:$rSrc, 0xff)), |
| 0x4), |
| (ILv4i32 0x0), |
| (FSMBIv4i32 0x0f0f)))>; |
| |
| // anyext 8->16: Extend 8->16 bits, irrespective of sign, preserves high bits |
| def : Pat<(i16 (anyext R8C:$rSrc)), |
| (ORHIi8i16 R8C:$rSrc, 0)>; |
| |
| // anyext 8->32: Extend 8->32 bits, irrespective of sign, preserves high bits |
| def : Pat<(i32 (anyext R8C:$rSrc)), |
| (ORIi8i32 R8C:$rSrc, 0)>; |
| |
| // sext 16->64: Sign extend halfword to double word |
| def : Pat<(sext_inreg R64C:$rSrc, i16), |
| (XSWDr64_inreg (XSHWr64 R64C:$rSrc))>; |
| |
| def : Pat<(sext R16C:$rSrc), |
| (XSWDr64 (XSHWr16 R16C:$rSrc))>; |
| |
| // zext 16->32: Zero extend halfwords to words |
| def : Pat<(i32 (zext R16C:$rSrc)), |
| (ANDi16i32 R16C:$rSrc, (ILAr32 0xffff))>; |
| |
| def : Pat<(i32 (zext (and R16C:$rSrc, 0xf))), |
| (ANDIi16i32 R16C:$rSrc, 0xf)>; |
| |
| def : Pat<(i32 (zext (and R16C:$rSrc, 0xff))), |
| (ANDIi16i32 R16C:$rSrc, 0xff)>; |
| |
| def : Pat<(i32 (zext (and R16C:$rSrc, 0xfff))), |
| (ANDIi16i32 R16C:$rSrc, 0xfff)>; |
| |
| // anyext 16->32: Extend 16->32 bits, irrespective of sign |
| def : Pat<(i32 (anyext R16C:$rSrc)), |
| (ORIi16i32 R16C:$rSrc, 0)>; |
| |
| //===----------------------------------------------------------------------===// |
| // Truncates: |
| // These truncates are for the SPU's supported types (i8, i16, i32). i64 and |
| // above are custom lowered. |
| //===----------------------------------------------------------------------===// |
| |
| def : Pat<(i8 (trunc GPRC:$src)), |
| (ORi8_v16i8 |
| (SHUFBgprc GPRC:$src, GPRC:$src, |
| (IOHLv4i32 (ILHUv4i32 0x0f0f), 0x0f0f)))>; |
| |
| def : Pat<(i8 (trunc R64C:$src)), |
| (ORi8_v16i8 |
| (SHUFBv2i64_m32 |
| (ORv2i64_i64 R64C:$src), |
| (ORv2i64_i64 R64C:$src), |
| (IOHLv4i32 (ILHUv4i32 0x0707), 0x0707)))>; |
| |
| def : Pat<(i8 (trunc R32C:$src)), |
| (ORi8_v16i8 |
| (SHUFBv4i32_m32 |
| (ORv4i32_i32 R32C:$src), |
| (ORv4i32_i32 R32C:$src), |
| (IOHLv4i32 (ILHUv4i32 0x0303), 0x0303)))>; |
| |
| def : Pat<(i8 (trunc R16C:$src)), |
| (ORi8_v16i8 |
| (SHUFBv4i32_m32 |
| (ORv8i16_i16 R16C:$src), |
| (ORv8i16_i16 R16C:$src), |
| (IOHLv4i32 (ILHUv4i32 0x0303), 0x0303)))>; |
| |
| def : Pat<(i16 (trunc GPRC:$src)), |
| (ORi16_v8i16 |
| (SHUFBgprc GPRC:$src, GPRC:$src, |
| (IOHLv4i32 (ILHUv4i32 0x0e0f), 0x0e0f)))>; |
| |
| def : Pat<(i16 (trunc R64C:$src)), |
| (ORi16_v8i16 |
| (SHUFBv2i64_m32 |
| (ORv2i64_i64 R64C:$src), |
| (ORv2i64_i64 R64C:$src), |
| (IOHLv4i32 (ILHUv4i32 0x0607), 0x0607)))>; |
| |
| def : Pat<(i16 (trunc R32C:$src)), |
| (ORi16_v8i16 |
| (SHUFBv4i32_m32 |
| (ORv4i32_i32 R32C:$src), |
| (ORv4i32_i32 R32C:$src), |
| (IOHLv4i32 (ILHUv4i32 0x0203), 0x0203)))>; |
| |
| def : Pat<(i32 (trunc GPRC:$src)), |
| (ORi32_v4i32 |
| (SHUFBgprc GPRC:$src, GPRC:$src, |
| (IOHLv4i32 (ILHUv4i32 0x0c0d), 0x0e0f)))>; |
| |
| def : Pat<(i32 (trunc R64C:$src)), |
| (ORi32_v4i32 |
| (SHUFBv2i64_m32 |
| (ORv2i64_i64 R64C:$src), |
| (ORv2i64_i64 R64C:$src), |
| (IOHLv4i32 (ILHUv4i32 0x0405), 0x0607)))>; |
| |
| //===----------------------------------------------------------------------===// |
| // Address generation: SPU, like PPC, has to split addresses into high and |
| // low parts in order to load them into a register. |
| //===----------------------------------------------------------------------===// |
| |
| def : Pat<(SPUaform tglobaladdr:$in, 0), (ILAlsa tglobaladdr:$in)>; |
| def : Pat<(SPUaform texternalsym:$in, 0), (ILAlsa texternalsym:$in)>; |
| def : Pat<(SPUaform tjumptable:$in, 0), (ILAlsa tjumptable:$in)>; |
| def : Pat<(SPUaform tconstpool:$in, 0), (ILAlsa tconstpool:$in)>; |
| |
| def : Pat<(SPUindirect (SPUhi tglobaladdr:$in, 0), |
| (SPUlo tglobaladdr:$in, 0)), |
| (IOHLlo (ILHUhi tglobaladdr:$in), tglobaladdr:$in)>; |
| |
| def : Pat<(SPUindirect (SPUhi texternalsym:$in, 0), |
| (SPUlo texternalsym:$in, 0)), |
| (IOHLlo (ILHUhi texternalsym:$in), texternalsym:$in)>; |
| |
| def : Pat<(SPUindirect (SPUhi tjumptable:$in, 0), |
| (SPUlo tjumptable:$in, 0)), |
| (IOHLlo (ILHUhi tjumptable:$in), tjumptable:$in)>; |
| |
| def : Pat<(SPUindirect (SPUhi tconstpool:$in, 0), |
| (SPUlo tconstpool:$in, 0)), |
| (IOHLlo (ILHUhi tconstpool:$in), tconstpool:$in)>; |
| |
| def : Pat<(add (SPUhi tglobaladdr:$in, 0), (SPUlo tglobaladdr:$in, 0)), |
| (IOHLlo (ILHUhi tglobaladdr:$in), tglobaladdr:$in)>; |
| |
| def : Pat<(add (SPUhi texternalsym:$in, 0), (SPUlo texternalsym:$in, 0)), |
| (IOHLlo (ILHUhi texternalsym:$in), texternalsym:$in)>; |
| |
| def : Pat<(add (SPUhi tjumptable:$in, 0), (SPUlo tjumptable:$in, 0)), |
| (IOHLlo (ILHUhi tjumptable:$in), tjumptable:$in)>; |
| |
| def : Pat<(add (SPUhi tconstpool:$in, 0), (SPUlo tconstpool:$in, 0)), |
| (IOHLlo (ILHUhi tconstpool:$in), tconstpool:$in)>; |
| |
| // Intrinsics: |
| include "CellSDKIntrinsics.td" |
| // Various math operator instruction sequences |
| include "SPUMathInstr.td" |
| // 64-bit "instructions"/support |
| include "SPU64InstrInfo.td" |
| // 128-bit "instructions"/support |
| include "SPU128InstrInfo.td" |